summaryrefslogtreecommitdiff
path: root/asmcomp/power/emit.mlp
blob: afb66128ff33a1da5bb7e54ba85c741d05a6c4cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* Emission of PowerPC assembly code *)

open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux

(* Reserved space at bottom of stack *)

let reserved_stack_space =
  match abi with
  | ELF32 -> 0
  | ELF64v1 -> 48
  | ELF64v2 -> 32

(* Layout of the stack.  The stack is kept 16-aligned. *)

let stack_offset = ref 0

let frame_size () =
  let size =
    reserved_stack_space +
    !stack_offset +                     (* Trap frame, outgoing parameters *)
    size_int * num_stack_slots.(0) +    (* Local int variables *)
    size_float * num_stack_slots.(1) +  (* Local float variables *)
    (if !contains_calls && abi = ELF32 then size_int else 0) in
                                        (* The return address *)
  Misc.align size 16

let slot_offset loc cls =
  match loc with
    Local n ->
      reserved_stack_space + !stack_offset +
      (if cls = 0 then num_stack_slots.(1) * size_float + n * size_int
                  else n * size_float)
  | Incoming n -> frame_size() + reserved_stack_space + n
  | Outgoing n -> reserved_stack_space + n

let retaddr_offset () =
  match abi with
  | ELF32 -> frame_size() - size_addr
  | ELF64v1 | ELF64v2 -> frame_size() + 16

let toc_save_offset () =
  match abi with
  | ELF32 -> assert false
  | ELF64v1 | ELF64v2 -> frame_size() + 8
  
let (trap_size, trap_handler_offset, trap_previous_offset) =
  match abi with
  | ELF32 -> (16, 0, 4)
  | ELF64v1 -> (32, 56, 64)
  | ELF64v2 -> (32, 40, 48)

(* Output a symbol *)

let emit_symbol s = Emitaux.emit_symbol '.' s

(* Output a label *)

let label_prefix = ".L"

let emit_label lbl =
  emit_string label_prefix; emit_int lbl

let emit_data_label lbl =
  emit_string label_prefix; emit_string "d"; emit_int lbl

(* Section switching *)

let code_space =
  "	.section \".text\"\n"

let function_descr_space =
  match abi with
  | ELF32 -> code_space
  | ELF64v1 -> "	.section \".opd\",\"aw\"\n"
  | ELF64v2 -> code_space

let data_space =
  "	.section \".data\"\n"

let rodata_space =
  "	.section \".rodata\"\n"

let toc_space =
  " .section \".toc\",\"aw\"\n"

(* Names of instructions that differ in 32 and 64-bit modes *)

let lg = if ppc64 then "ld" else "lwz"
let stg = if ppc64 then "std" else "stw"
let lwa = if ppc64 then "lwa" else "lwz"
let cmpg = if ppc64 then "cmpd" else "cmpw"
let cmplg = if ppc64 then "cmpld" else "cmplw"
let datag = if ppc64 then ".quad" else ".long"
let mullg = if ppc64 then "mulld" else "mullw"
let divg = if ppc64 then "divd" else "divw"
let tglle = if ppc64 then "tdlle" else "twlle"
let slgi = if ppc64 then "sldi" else "slwi"

(* Output a processor register *)

let emit_gpr = emit_int  

(* Output a pseudo-register *)

let emit_reg r =
  match r.loc with
  | Reg r -> emit_string (register_name r)
  | _ -> fatal_error "Emit.emit_reg"

(* Output a stack reference *)

let emit_stack r =
  match r.loc with
  | Stack s ->
      let ofs = slot_offset s (register_class r) in `{emit_int ofs}(1)`
  | _ -> fatal_error "Emit.emit_stack"

(* Output the name of a symbol plus an optional offset *)

let emit_symbol_offset (s, d) =
  emit_symbol s;
  if d > 0 then `+`;
  if d <> 0 then emit_int d

(* Split a 32-bit integer constants in two 16-bit halves *)

let low_high_u n = (n land 0xFFFF, n asr 16)
  (* unsigned low half, for use with "ori" *)

let native_low_high_u n =
  (Nativeint.(to_int (logand n 0xFFFFn)),
   Nativeint.(to_int (shift_right n 16)))
  (* unsigned low half, for use with "ori" *)

let low_high_s n =
  let lo = ((n + 0x8000) land 0xFFFF) - 0x8000 in
  (lo, (n - lo) asr 16)
  (* signed low half, for use with "addi" *)

let native_low_high_s n =
  let lo = Nativeint.(sub (logand (add n 0x8000n) 0xFFFFn) 0x8000n) in
  (Nativeint.to_int lo,
   Nativeint.(to_int (shift_right (sub n lo) 16)))
  (* signed low half, for use with "addi" *)

let is_immediate n =
  n <= 32767 && n >= -32768

let is_native_immediate n =
  n <= 32767n && n >= -32768n

(* Record TOC entries *)

type tocentry =
  | TocSym of string
  | TocLabel of int
  | TocInt of nativeint
  | TocFloat of int64
  
let tocref_entries : (tocentry, label) Hashtbl.t = Hashtbl.create 64

let emit_tocentry = function
  | TocSym s -> emit_symbol s
  | TocInt i -> emit_nativeint i
  | TocFloat f -> emit_printf "0x%Lx # %.12g" f (Int64.float_of_bits f)
  | TocLabel lbl -> emit_label lbl

let label_for_tocref entry =
  try
    Hashtbl.find tocref_entries entry
  with Not_found ->
    let lbl = new_label() in
    Hashtbl.add tocref_entries entry lbl;
    lbl

let emit_toctable () =
  Hashtbl.iter
    (fun entry lbl ->
      `{emit_label lbl}:	.quad	{emit_tocentry entry}\n`)
    tocref_entries

(* Emit a load from a TOC entry *)
  
let emit_tocload emit_dest dest entry =
  let lbl = label_for_tocref entry in
  if !big_toc || !Clflags.for_package <> None then begin
    `	addis	{emit_dest dest}, 2, {emit_label lbl}@toc@ha\n`;
    `	ld	{emit_dest dest}, {emit_label lbl}@toc@l({emit_dest dest}) # {emit_tocentry entry}\n`
  end else begin
    `	ld	{emit_dest dest}, {emit_label lbl}@toc(2) # {emit_tocentry entry}\n`
  end

(* Output a "upper 16 bits" or "lower 16 bits" operator. *)

let emit_upper emit_fun arg =
  emit_fun arg; emit_string "@ha"

let emit_lower emit_fun arg =
  emit_fun arg; emit_string "@l"

(* Output a load or store operation *)

let valid_offset instr ofs =
  ofs land 3 = 0 || (instr <> "ld" && instr <> "std" && instr <> "lwa")

let emit_load_store instr addressing_mode addr n arg =
  match addressing_mode with
  | Ibased(s, d) ->
      begin match abi with
      | ELF32 ->
        `	addis	11, 0, {emit_upper emit_symbol_offset (s,d)}\n`;
        `	{emit_string instr}	{emit_reg arg}, {emit_lower emit_symbol_offset (s,d)}(11)\n`
      | ELF64v1 | ELF64v2 ->
        emit_tocload emit_gpr 11 (TocSym s);
        let (lo, hi) = low_high_s d in
        if hi <> 0 then
          `	addis	11, 11, {emit_int hi}\n`;
        `	{emit_string instr}	{emit_reg arg}, {emit_int lo}(11)\n`
      end
  | Iindexed ofs ->
      if is_immediate ofs && valid_offset instr ofs then
        `	{emit_string instr}	{emit_reg arg}, {emit_int ofs}({emit_reg addr.(n)})\n`
      else begin
        let (lo, hi) = low_high_u ofs in
        `	addis	0, 0, {emit_int hi}\n`;
        if lo <> 0 then
          `	ori	0, 0, {emit_int lo}\n`;
        `	{emit_string instr}x	{emit_reg arg}, {emit_reg addr.(n)}, 0\n`
      end
  | Iindexed2 ->
      `	{emit_string instr}x	{emit_reg arg}, {emit_reg addr.(n)}, {emit_reg addr.(n+1)}\n`

(* After a comparison, extract the result as 0 or 1 *)

let emit_set_comp cmp res =
  `	mfcr	0\n`;
  let bitnum =
    match cmp with
      Ceq | Cne -> 2
    | Cgt | Cle -> 1
    | Clt | Cge -> 0 in
`	rlwinm	{emit_reg res}, 0, {emit_int(bitnum+1)}, 31, 31\n`;
  begin match cmp with
    Cne | Cle | Cge -> `	xori	{emit_reg res}, {emit_reg res}, 1\n`
  | _ -> ()
  end

(* Free the stack frame *)

let emit_free_frame () =
  let n = frame_size() in
  if n > 0 then
    `	addi	1, 1, {emit_int n}\n`

(* Emit a "bl" instruction to a given symbol *)

let emit_call s =
  match abi with
  | ELF32 when !Clflags.dlcode || !Clflags.pic_code ->
    `	bl	{emit_symbol s}@plt\n`
  | _ ->
    `	bl	{emit_symbol s}\n`

(* Add a nop after a "bl" call for ELF64 *)

let emit_call_nop () =
  match abi with
  | ELF32 -> ()
  | ELF64v1 | ELF64v2 -> `	nop	\n`

(* Reload the TOC register r2 from the value saved on the stack *)

let emit_reload_toc () =
  `	ld	2, {emit_int (toc_save_offset())}(1)\n`

(* Adjust stack_offset and emit corresponding CFI directive *)

let adjust_stack_offset delta =
  stack_offset := !stack_offset + delta;
  cfi_adjust_cfa_offset delta

(* Record live pointers at call points *)

let record_frame live dbg =
  let lbl = new_label() in
  let live_offset = ref [] in
  Reg.Set.iter
    (function
      | {typ = Val; loc = Reg r} ->
          live_offset := ((r lsl 1) + 1) :: !live_offset
      | {typ = Val; loc = Stack s} as reg ->
          live_offset := slot_offset s (register_class reg) :: !live_offset
      | {typ = Addr} as r ->
          Misc.fatal_error ("bad GC root " ^ Reg.name r)
      | _ -> ())
    live;
  frame_descriptors :=
    { fd_lbl = lbl;
      fd_frame_size = frame_size();
      fd_live_offset = !live_offset;
      fd_debuginfo = dbg } :: !frame_descriptors;
  `{emit_label lbl}:\n`

(* Record floating-point literals (for PPC32) *)

let float_literals = ref ([] : (int64 * int) list)

(* Record jump tables (for PPC64).  In order to reduce the size of the TOC,
   we concatenate all jumptables and emit them at the end of the compilation
   unit. *)

let jumptables = ref ([] : label list)  (* in reverse order *)
let jumptables_lbl = ref (-1)

(* Names for conditional branches after comparisons *)

let branch_for_comparison = function
    Ceq -> "beq" | Cne -> "bne"
  | Cle -> "ble" | Cgt -> "bgt"
  | Cge -> "bge" | Clt -> "blt"

let name_for_int_comparison = function
    Isigned cmp -> (cmpg, branch_for_comparison cmp)
  | Iunsigned cmp -> (cmplg, branch_for_comparison cmp)

(* Names for various instructions *)

let name_for_intop = function
    Iadd  -> "add"
  | Imul  -> if ppc64 then "mulld" else "mullw"
  | Imulh -> if ppc64 then "mulhd" else "mulhw"
  | Idiv  -> if ppc64 then "divd" else "divw"
  | Iand  -> "and"
  | Ior   -> "or"
  | Ixor  -> "xor"
  | Ilsl  -> if ppc64 then "sld" else "slw"
  | Ilsr  -> if ppc64 then "srd" else "srw"
  | Iasr  -> if ppc64 then "srad" else "sraw"
  | _ -> Misc.fatal_error "Emit.Intop"

let name_for_intop_imm = function
    Iadd -> "addi"
  | Imul -> "mulli"
  | Iand -> "andi."
  | Ior  -> "ori"
  | Ixor -> "xori"
  | Ilsl -> if ppc64 then "sldi" else "slwi"
  | Ilsr -> if ppc64 then "srdi" else "srwi"
  | Iasr -> if ppc64 then "sradi" else "srawi"
  | _ -> Misc.fatal_error "Emit.Intop_imm"

let name_for_floatop1 = function
    Inegf -> "fneg"
  | Iabsf -> "fabs"
  | _ -> Misc.fatal_error "Emit.Iopf1"

let name_for_floatop2 = function
    Iaddf -> "fadd"
  | Isubf -> "fsub"
  | Imulf -> "fmul"
  | Idivf -> "fdiv"
  | _ -> Misc.fatal_error "Emit.Iopf2"

let name_for_specific = function
    Imultaddf -> "fmadd"
  | Imultsubf -> "fmsub"
  | _ -> Misc.fatal_error "Emit.Ispecific"

(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of glue code for calling the GC *)
let call_gc_label = ref 0

(* Relaxation of branches that exceed the span of a relative branch. *)

module BR = Branch_relaxation.Make (struct
  type distance = int

  module Cond_branch = struct
    type t = Branch

    let all = [Branch]

    let max_displacement = function
      (* 14-bit signed offset in words. *)
      | Branch -> 8192

    let classify_instr = function
      | Lop (Ialloc _)
      (* [Ialloc_far] does not need to be here, since its code sequence
         never involves any conditional branches that might need relaxing. *)
      | Lcondbranch _
      | Lcondbranch3 _ -> Some Branch
      | _ -> None
  end

  let offset_pc_at_branch = 1

  let size =
    match abi with
    | ELF32 -> (fun a b c -> a)
    | ELF64v1 -> (fun a b c -> b)
    | ELF64v2 -> (fun a b c -> c)

  let load_store_size = function
    | Ibased(s, d) -> 2
    | Iindexed ofs -> if is_immediate ofs then 1 else 3
    | Iindexed2 -> 1

  let instr_size = function
    | Lend -> 0
    | Lop(Imove | Ispill | Ireload) -> 1
    | Lop(Iconst_int n | Iconst_blockheader n) ->
      if is_native_immediate n then 1 else 2
    | Lop(Iconst_float s) -> size 2 1 1
    | Lop(Iconst_symbol s) -> size 2 1 1
    | Lop(Icall_ind) -> size 2 5 4
    | Lop(Icall_imm s) -> size 1 3 3
    | Lop(Itailcall_ind) -> size 5 7 6
    | Lop(Itailcall_imm s) -> if s = !function_name then 1 else size 4 8 6
    | Lop(Iextcall(s, true)) -> 3
    | Lop(Iextcall(s, false)) -> size 1 2 2
    | Lop(Istackoffset n) -> 1
    | Lop(Iload(chunk, addr)) ->
      if chunk = Byte_signed
      then load_store_size addr + 1
      else load_store_size addr
    | Lop(Istore(chunk, addr, _)) -> load_store_size addr
    | Lop(Ialloc n) -> 4
    | Lop(Ispecific(Ialloc_far n)) -> 5
    | Lop(Iintop Imod) -> 3
    | Lop(Iintop(Icomp cmp)) -> 4
    | Lop(Iintop op) -> 1
    | Lop(Iintop_imm(Icomp cmp, n)) -> 4
    | Lop(Iintop_imm(op, n)) -> 1
    | Lop(Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf) -> 1
    | Lop(Ifloatofint) -> 9
    | Lop(Iintoffloat) -> 4
    | Lop(Ispecific sop) -> 1
    | Lreloadretaddr -> 2
    | Lreturn -> 2
    | Llabel lbl -> 0
    | Lbranch lbl -> 1
    | Lcondbranch(tst, lbl) -> 2
    | Lcondbranch3(lbl0, lbl1, lbl2) ->
      1 + (if lbl0 = None then 0 else 1)
        + (if lbl1 = None then 0 else 1)
        + (if lbl2 = None then 0 else 1)
    | Lswitch jumptbl -> size 7 6 6
    | Lsetuptrap lbl -> size 1 2 2
    | Lpushtrap -> size 4 5 5
    | Lpoptrap -> 2
    | Lraise _ -> 6

  let relax_allocation ~num_words = Lop (Ispecific (Ialloc_far num_words))

  (* [classify_addr], above, never identifies these instructions as needing
     relaxing.  As such, these functions should never be called. *)
  let relax_specific_op _ = assert false
  let relax_intop_checkbound () = assert false
  let relax_intop_imm_checkbound ~bound:_ = assert false
end)

(* Output the assembly code for an instruction *)

let emit_instr i =
    emit_debug_info i.dbg;
    match i.desc with
    | Lend -> ()
    | Lop(Imove | Ispill | Ireload) ->
        let src = i.arg.(0) and dst = i.res.(0) in
        if src.loc <> dst.loc then begin
           match (src, dst) with
           |  {loc = Reg rs; typ = (Val | Int | Addr)}, {loc = Reg rd} ->
                `	mr	{emit_reg dst}, {emit_reg src}\n`
            | {loc = Reg rs; typ = Float}, {loc = Reg rd; typ = Float} ->
                `	fmr	{emit_reg dst}, {emit_reg src}\n`
            | {loc = Reg rs; typ = (Val | Int | Addr)}, {loc = Stack sd} ->
                `	{emit_string stg}	{emit_reg src}, {emit_stack dst}\n`
            | {loc = Reg rs; typ = Float}, {loc = Stack sd} ->
                `	stfd	{emit_reg src}, {emit_stack dst}\n`
            | {loc = Stack ss; typ = (Val | Int | Addr)}, {loc = Reg rd} ->
                `	{emit_string lg}	{emit_reg dst}, {emit_stack src}\n`
            | {loc = Stack ss; typ = Float}, {loc = Reg rd} ->
                `	lfd	{emit_reg dst}, {emit_stack src}\n`
            | (_, _) ->
                fatal_error "Emit: Imove"
        end
    | Lop(Iconst_int n | Iconst_blockheader n) ->
        if is_native_immediate n then
          `	li	{emit_reg i.res.(0)}, {emit_nativeint n}\n`
        else begin
        (* Try a signed decomposition first, because the sequence
           addis/addi is eligible for instruction fusion. *)
        let (lo, hi) = native_low_high_s n in
        if hi >= -0x8000 && hi <= 0x7FFF then begin
          `	addis	{emit_reg i.res.(0)}, 0, {emit_int hi}\n`;
          if lo <> 0 then
          `	addi	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_int lo}\n`
        end else begin
        (* Now try an unsigned decomposition *)
        let (lo, hi) = native_low_high_u n in
        if hi >= -0x8000 && hi <= 0x7FFF then begin
          `	addis	{emit_reg i.res.(0)}, 0, {emit_int hi}\n`;
          if lo <> 0 then
          `	ori	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_int lo}\n`
        end else begin
          match abi with
          | ELF32 -> assert false
          | ELF64v1 | ELF64v2 ->
              emit_tocload emit_reg i.res.(0) (TocInt n)
        end end end
    | Lop(Iconst_float f) ->
        begin match abi with
        | ELF32 ->
          let lbl = new_label() in
          float_literals := (Int64.bits_of_float f, lbl) :: !float_literals;
          `	addis	11, 0, {emit_upper emit_label lbl}\n`;
          `	lfd	{emit_reg i.res.(0)}, {emit_lower emit_label lbl}(11)\n`
        | ELF64v1 | ELF64v2 ->
          let entry = TocFloat (Int64.bits_of_float f) in
          let lbl = label_for_tocref entry in
          if !big_toc || !Clflags.for_package <> None then begin
            `	addis	11, 2, {emit_label lbl}@toc@ha\n`;
            `	lfd	{emit_reg i.res.(0)}, {emit_label lbl}@toc@l(11) # {emit_tocentry entry}\n`
          end else begin          
            `	lfd	{emit_reg i.res.(0)}, {emit_label lbl}@toc(2) # {emit_tocentry entry}\n`
          end
        end
    | Lop(Iconst_symbol s) ->
        begin match abi with
        | ELF32 ->
          `	addis	{emit_reg i.res.(0)}, 0, {emit_upper emit_symbol s}\n`;
          `	addi	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_lower emit_symbol s}\n`
        | ELF64v1 | ELF64v2 ->
          emit_tocload emit_reg i.res.(0) (TocSym s)
        end
    | Lop(Icall_ind) ->
        begin match abi with
        | ELF32 ->
          `	mtctr	{emit_reg i.arg.(0)}\n`;
          `	bctrl\n`;
          record_frame i.live i.dbg
        | ELF64v1 ->
          `	ld	0, 0({emit_reg i.arg.(0)})\n`;  (* code pointer *)
          `	mtctr	0\n`;
          `	ld	2, 8({emit_reg i.arg.(0)})\n`;  (* TOC for callee *)
          `	bctrl\n`;
          record_frame i.live i.dbg;
          emit_reload_toc()
        | ELF64v2 ->
          `	mtctr	{emit_reg i.arg.(0)}\n`;
          `	mr	12, {emit_reg i.arg.(0)}\n`;  (* addr of fn in r12 *)
          `	bctrl\n`;
          record_frame i.live i.dbg;
          emit_reload_toc()
        end
    | Lop(Icall_imm s) ->
        begin match abi with
        | ELF32 ->
            emit_call s;
            record_frame i.live i.dbg
        | ELF64v1 | ELF64v2 ->
        (* For PPC64, we cannot just emit a "bl s; nop" sequence, because 
           of the following scenario:
              - current function f1 calls f2 that has the same TOC
              - f2 tailcalls f3 that has a different TOC
           Because f1 and f2 have the same TOC, the linker inserted no
           code in f1 to save and restore r2 around the call to f1.
           Because f2 tailcalls f3, r2 will not be restored to f2's TOC
           when f3 returns.  So, we're back into f1, with the wrong TOC in r2.
           We have two options:
             1- Turn the call into an indirect call, like we do for 
                Itailcall_imm.  Cost: 6 instructions.
             2- Follow the "bl" with an instruction to restore r2
                explicitly.  If the called function has a different TOC,
                this instruction is redundant with those inserted
                by the linker, but this is harmless.
                Cost: 3 instructions if same TOC, 7 if different TOC.
           Let's try option 2. *)
            emit_call s;           
            record_frame i.live i.dbg;
            `	nop\n`;
            emit_reload_toc()
        end         
    | Lop(Itailcall_ind) ->
        begin match abi with
        | ELF32 ->
          `	mtctr	{emit_reg i.arg.(0)}\n`
        | ELF64v1 ->
          `	ld	0, 0({emit_reg i.arg.(0)})\n`;  (* code pointer *)
          `	mtctr	0\n`;
          `	ld	2, 8({emit_reg i.arg.(0)})\n`   (* TOC for callee *)
        | ELF64v2 ->
          `	mtctr	{emit_reg i.arg.(0)}\n`;
          `	mr	12, {emit_reg i.arg.(0)}\n`   (* addr of fn in r12 *)
        end;
        if !contains_calls then begin
          `	{emit_string lg}	11, {emit_int(retaddr_offset())}(1)\n`;
          `	mtlr	11\n`
        end;
        emit_free_frame();
        `	bctr\n`
    | Lop(Itailcall_imm s) ->
        if s = !function_name then
          `	b	{emit_label !tailrec_entry_point}\n`
        else begin
          begin match abi with
          | ELF32 ->
            ()
          | ELF64v1 ->
            emit_tocload emit_gpr 11 (TocSym s);
            `	ld	0, 0(11)\n`;  (* code pointer *)
            `	mtctr	0\n`;
            `	ld	2, 8(11)\n`   (* TOC for callee *)
          | ELF64v2 ->
            emit_tocload emit_gpr 12 (TocSym s); (* addr of fn must be in r12 *)
            `	mtctr	12\n`
          end;
          if !contains_calls then begin
            `	{emit_string lg}	11, {emit_int(retaddr_offset())}(1)\n`;
            `	mtlr	11\n`
          end;
          emit_free_frame();
          begin match abi with
          | ELF32 ->
            `	b	{emit_symbol s}\n`
          | ELF64v1 | ELF64v2 ->
            `	bctr\n`
          end
        end
    | Lop(Iextcall(s, alloc)) ->
        if not alloc then begin
          emit_call s;
          emit_call_nop()
        end else begin
          match abi with
          | ELF32 ->
            `	addis	28, 0, {emit_upper emit_symbol s}\n`;
            `	addi	28, 28, {emit_lower emit_symbol s}\n`;
            emit_call "caml_c_call";
            record_frame i.live i.dbg
          | ELF64v1 | ELF64v2 ->
            emit_tocload emit_gpr 28 (TocSym s);
            emit_call "caml_c_call";
            record_frame i.live i.dbg;
            `	nop\n`
        end
    | Lop(Istackoffset n) ->
        `	addi	1, 1, {emit_int (-n)}\n`;
        adjust_stack_offset n
    | Lop(Iload(chunk, addr)) ->
        let loadinstr =
          match chunk with
          | Byte_unsigned -> "lbz"
          | Byte_signed -> "lbz"
          | Sixteen_unsigned -> "lhz"
          | Sixteen_signed -> "lha"
          | Thirtytwo_unsigned -> "lwz"
          | Thirtytwo_signed -> if ppc64 then "lwa" else "lwz"
	  | Word_int | Word_val -> lg
          | Single -> "lfs"
          | Double | Double_u -> "lfd" in
        emit_load_store loadinstr addr i.arg 0 i.res.(0);
        if chunk = Byte_signed then
          `	extsb	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
    | Lop(Istore(chunk, addr, _)) ->
        let storeinstr =
          match chunk with
          | Byte_unsigned | Byte_signed -> "stb"
          | Sixteen_unsigned | Sixteen_signed -> "sth"
	  | Thirtytwo_unsigned | Thirtytwo_signed -> "stw"
	  | Word_int | Word_val -> stg
          | Single -> "stfs"
          | Double | Double_u -> "stfd" in
        emit_load_store storeinstr addr i.arg 1 i.arg.(0)
    | Lop(Ialloc n) ->
        if !call_gc_label = 0 then call_gc_label := new_label();
        `	addi    31, 31, {emit_int(-n)}\n`;
        `	{emit_string cmplg}	31, 30\n`;
        `	addi	{emit_reg i.res.(0)}, 31, {emit_int size_addr}\n`;
        `	bltl	{emit_label !call_gc_label}\n`;
        (* Exactly 4 instructions after the beginning of the alloc sequence *)
        record_frame i.live Debuginfo.none
    | Lop(Ispecific(Ialloc_far n)) ->
        if !call_gc_label = 0 then call_gc_label := new_label();
        let lbl = new_label() in
        `	addi    31, 31, {emit_int(-n)}\n`;
        `	{emit_string cmplg}	31, 30\n`;
        `	bge	{emit_label lbl}\n`;
        `	bl	{emit_label !call_gc_label}\n`;
        (* Exactly 4 instructions after the beginning of the alloc sequence *)
        record_frame i.live Debuginfo.none;
        `{emit_label lbl}:	addi	{emit_reg i.res.(0)}, 31, {emit_int size_addr}\n`
    | Lop(Iintop Isub) ->               (* subfc has swapped arguments *)
        `	subfc	{emit_reg i.res.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`
    | Lop(Iintop Imod) ->
        `	{emit_string divg}	0, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
        `	{emit_string mullg}	0, 0, {emit_reg i.arg.(1)}\n`;
        `	subfc	{emit_reg i.res.(0)}, 0, {emit_reg i.arg.(0)}\n`
    | Lop(Iintop(Icomp cmp)) ->
        begin match cmp with
          Isigned c ->
            `	{emit_string cmpg}	{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
            emit_set_comp c i.res.(0)
        | Iunsigned c ->
            `	{emit_string cmplg}	{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
            emit_set_comp c i.res.(0)
        end
    | Lop(Iintop Icheckbound) ->
        if !Clflags.debug then
          record_frame Reg.Set.empty i.dbg;
        `	{emit_string tglle}   {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
    | Lop(Iintop op) ->
        let instr = name_for_intop op in
        `	{emit_string instr}	{emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
    | Lop(Iintop_imm(Isub, n)) ->
        `	addi	{emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int(-n)}\n`
    | Lop(Iintop_imm(Icomp cmp, n)) ->
        begin match cmp with
          Isigned c ->
            `	{emit_string cmpg}i	{emit_reg i.arg.(0)}, {emit_int n}\n`;
            emit_set_comp c i.res.(0)
        | Iunsigned c ->
            `	{emit_string cmplg}i	{emit_reg i.arg.(0)}, {emit_int n}\n`;
            emit_set_comp c i.res.(0)
        end
    | Lop(Iintop_imm(Icheckbound, n)) ->
        if !Clflags.debug then
          record_frame Reg.Set.empty i.dbg;
        `	{emit_string tglle}i   {emit_reg i.arg.(0)}, {emit_int n}\n`
    | Lop(Iintop_imm(op, n)) ->
        let instr = name_for_intop_imm op in
        `	{emit_string instr}	{emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int n}\n`
    | Lop(Inegf | Iabsf as op) ->
        let instr = name_for_floatop1 op in
        `	{emit_string instr}	{emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
    | Lop(Iaddf | Isubf | Imulf | Idivf as op) ->
        let instr = name_for_floatop2 op in
        `	{emit_string instr}	{emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
    | Lop(Ifloatofint) ->
	if ppc64 then begin
          (* Can use protected zone (288 bytes below r1 *)
	  `	std	{emit_reg i.arg.(0)}, -16(1)\n`;
          `	lfd	{emit_reg i.res.(0)}, -16(1)\n`;
          `	fcfid	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
	end else begin
          let lbl = new_label() in
          float_literals := (0x4330000080000000L, lbl) :: !float_literals;
          `	addis	11, 0, {emit_upper emit_label lbl}\n`;
          `	lfd	0, {emit_lower emit_label lbl}(11)\n`;
          `	lis	0, 0x4330\n`;
          `	stwu	0, -16(1)\n`;
          `	xoris	0, {emit_reg i.arg.(0)}, 0x8000\n`;
          `	stw	0, 4(1)\n`;
          `	lfd	{emit_reg i.res.(0)}, 0(1)\n`;
          `	addi	1, 1, 16\n`;
          `	fsub	{emit_reg i.res.(0)}, {emit_reg i.res.(0)}, 0\n`
	end
    | Lop(Iintoffloat) ->
        if ppc64 then begin
          (* Can use protected zone (288 bytes below r1 *)
          `	fctidz	0, {emit_reg i.arg.(0)}\n`;
          `	stfd	0, -16(1)\n`;
          `	ld	{emit_reg i.res.(0)}, -16(1)\n`
        end else begin
          `	fctiwz	0, {emit_reg i.arg.(0)}\n`;
          `	stfdu	0, -16(1)\n`;
          `	lwz	{emit_reg i.res.(0)}, 4(1)\n`;
          `	addi	1, 1, 16\n`
        end
    | Lop(Ispecific sop) ->
        let instr = name_for_specific sop in
        `	{emit_string instr}	{emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(2)}\n`
    | Lreloadretaddr ->
        `	{emit_string lg}	11, {emit_int(retaddr_offset())}(1)\n`;
        `	mtlr	11\n`
    | Lreturn ->
        emit_free_frame();
        `	blr\n`
    | Llabel lbl ->
        `{emit_label lbl}:\n`
    | Lbranch lbl ->
        `	b	{emit_label lbl}\n`
    | Lcondbranch(tst, lbl) ->
        begin match tst with
          Itruetest ->
            `	{emit_string cmpg}i	{emit_reg i.arg.(0)}, 0\n`;
            `	bne	{emit_label lbl}\n`
        | Ifalsetest ->
            `	{emit_string cmpg}i	{emit_reg i.arg.(0)}, 0\n`;
            `	beq	{emit_label lbl}\n`
        | Iinttest cmp ->
            let (comp, branch) = name_for_int_comparison cmp in
            `	{emit_string comp}	{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
            `	{emit_string branch}	{emit_label lbl}\n`
        | Iinttest_imm(cmp, n) ->
            let (comp, branch) = name_for_int_comparison cmp in
            `	{emit_string comp}i	{emit_reg i.arg.(0)}, {emit_int n}\n`;
            `	{emit_string branch}	{emit_label lbl}\n`
        | Ifloattest(cmp, neg) ->
            `	fcmpu	0, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
            (* bit 0 = lt, bit 1 = gt, bit 2 = eq *)
            let (bitnum, negtst) =
              match cmp with
                Ceq -> (2, neg)
              | Cne -> (2, not neg)
              | Cle -> `	cror	3, 0, 2\n`; (* lt or eq *)
                       (3, neg)
              | Cgt -> (1, neg)
              | Cge -> `	cror	3, 1, 2\n`; (* gt or eq *)
                       (3, neg)
              | Clt -> (0, neg) in
            if negtst
            then `	bf	{emit_int bitnum}, {emit_label lbl}\n`
            else `	bt	{emit_int bitnum}, {emit_label lbl}\n`
        | Ioddtest ->
            `	andi.	0, {emit_reg i.arg.(0)}, 1\n`;
            `	bne	{emit_label lbl}\n`
        | Ieventest ->
            `	andi.	0, {emit_reg i.arg.(0)}, 1\n`;
            `	beq	{emit_label lbl}\n`
        end
    | Lcondbranch3(lbl0, lbl1, lbl2) ->
        `	{emit_string cmpg}i	{emit_reg i.arg.(0)}, 1\n`;
        begin match lbl0 with
          None -> ()
        | Some lbl -> `	blt	{emit_label lbl}\n`
        end;
        begin match lbl1 with
          None -> ()
        | Some lbl -> `	beq	{emit_label lbl}\n`
        end;
        begin match lbl2 with
          None -> ()
        | Some lbl -> `	bgt	{emit_label lbl}\n`
        end
    | Lswitch jumptbl ->
        let lbl = new_label() in
        if ppc64 then begin
          if !jumptables_lbl < 0 then jumptables_lbl := lbl;
          let start = List.length !jumptables in
          let (start_lo, start_hi) = low_high_s start in
          emit_tocload emit_gpr 11 (TocLabel !jumptables_lbl);
          `	addi	12, {emit_reg i.arg.(0)}, {emit_int start_lo}\n`;
          if start_hi <> 0 then
            `	addis	12, 12, {emit_int start_hi}\n`;
          `	sldi	12, 12, 2\n`
        end else begin
          `	addis	11, 0, {emit_upper emit_label lbl}\n`;
          `	addi	11, 11, {emit_lower emit_label lbl}\n`;
          `	slwi	12, {emit_reg i.arg.(0)}, 2\n`
        end;
        `	{emit_string lwa}x	0, 11, 12\n`;
        `	add	0, 11, 0\n`;
        `	mtctr	0\n`;
        `	bctr\n`;
        if ppc64 then begin
          jumptables := List.rev_append (Array.to_list jumptbl) !jumptables
        end else begin
          emit_string rodata_space;
          `{emit_label lbl}:`;
          for i = 0 to Array.length jumptbl - 1 do
            `	.long	{emit_label jumptbl.(i)} - {emit_label lbl}\n`
          done;
          emit_string code_space
        end
    | Lsetuptrap lbl ->
        `	bl	{emit_label lbl}\n`;
        begin match abi with
        | ELF32 -> ()
        | ELF64v1 | ELF64v2 -> emit_reload_toc()
        end
    | Lpushtrap ->
        begin match abi with
        | ELF32 ->
          `	mflr	0\n`;
          `	stwu    0, -16(1)\n`;
          adjust_stack_offset 16;
          `	stw	29, 4(1)\n`;
          `	mr	29, 1\n`
        | ELF64v1 | ELF64v2 ->
          `	mflr	0\n`;
          `	addi	1, 1, -32\n`;
          adjust_stack_offset 32;
          `	std     0, {emit_int trap_handler_offset}(1)\n`;
          `	std	29, {emit_int trap_previous_offset}(1)\n`;
          `	mr	29, 1\n`
          end        
    | Lpoptrap ->
        `	{emit_string lg}	29, {emit_int trap_previous_offset}(1)\n`;
        `	addi	1, 1, {emit_int trap_size}\n`;
        adjust_stack_offset (-trap_size)
    | Lraise k ->
        begin match !Clflags.debug, k with
        | true, Lambda.Raise_regular ->
            emit_call "caml_raise_exn";
            record_frame Reg.Set.empty i.dbg;
            emit_call_nop()
        | true, Lambda.Raise_reraise ->
            emit_call "caml_reraise_exn";
            record_frame Reg.Set.empty i.dbg;
            emit_call_nop()
        | false, _
        | true, Lambda.Raise_notrace ->
            `	{emit_string lg}	0, {emit_int trap_handler_offset}(29)\n`;
            `	mr	1, 29\n`;
            `	mtctr   0\n`;
            `	{emit_string lg}	29, {emit_int trap_previous_offset}(1)\n`;
            `	addi	1, 1, {emit_int trap_size}\n`;
            `	bctr\n`
        end

(* Emit a sequence of instructions *)

let rec emit_all i =
  match i.desc with
  | Lend -> ()
  |  _   -> emit_instr i; emit_all i.next

(* Emission of the profiling prelude *)

let emit_profile () =
  match abi with
  | ELF32 ->
      `	mflr    0\n`;
      `	addi	1, 1, -16\n`;
      `	stw	0, 4(1)\n`;
      (* _mcount preserves the registers used for parameter passing *)
      (* when it returns, lr contains the original return address *)
      `	bl	{emit_symbol "_mcount"}\n`;
      `	addi	1, 1, 16\n`
  | ELF64v1 | ELF64v2 ->
      `	mflr	0\n`;
      (* save the registers used for parameter passing *)
      `	bl	{emit_symbol "caml_before_mcount"}\n`;
      `	bl	{emit_symbol "_mcount"}\n`;
      `	nop\n`;
      (* restore the registers used for parameter passing *)
      `	bl	{emit_symbol "caml_after_mcount"}\n`;
      `	mtlr	0\n`

(* Emission of a function declaration *)

let fundecl fundecl =
  function_name := fundecl.fun_name;
  tailrec_entry_point := new_label();
  stack_offset := 0;
  call_gc_label := 0;
  float_literals := [];
  jumptables := []; jumptables_lbl := -1;
  begin match abi with
  | ELF32 ->
    emit_string code_space;
    `	.globl	{emit_symbol fundecl.fun_name}\n`;
    `	.type	{emit_symbol fundecl.fun_name}, @function\n`;
    `	.align	2\n`;
    `{emit_symbol fundecl.fun_name}:\n`
  | ELF64v1 ->  
    emit_string function_descr_space;
    `	.align 3\n`;
    `	.globl	{emit_symbol fundecl.fun_name}\n`;
    `	.type   {emit_symbol fundecl.fun_name}, @function\n`;
    `{emit_symbol fundecl.fun_name}:\n`;
    `	.quad .L.{emit_symbol fundecl.fun_name}, .TOC.@tocbase\n`;
    emit_string code_space;
    `	.align  2\n`;
    `.L.{emit_symbol fundecl.fun_name}:\n`
  | ELF64v2 ->
    emit_string code_space;
    `	.globl	{emit_symbol fundecl.fun_name}\n`;
    `	.type	{emit_symbol fundecl.fun_name}, @function\n`;
    `	.align	2\n`;
    `{emit_symbol fundecl.fun_name}:\n`;
    `0:	addis	2, 12, (.TOC. - 0b)@ha\n`;
    `	addi	2, 2, (.TOC. - 0b)@l\n`; 
    `	.localentry {emit_symbol fundecl.fun_name}, . - 0b\n`
  end;
  emit_debug_info fundecl.fun_dbg;
  cfi_startproc();
  if !Clflags.gprofile then emit_profile();
  let n = frame_size() in
  if n > 0 then begin
    `	addi	1, 1, {emit_int(-n)}\n`;
    cfi_adjust_cfa_offset n
  end;
  if !contains_calls then begin
    let ra = retaddr_offset() in
    `	mflr	0\n`;
    `	{emit_string stg}	0, {emit_int ra}(1)\n`;
    cfi_offset ~reg: 65 (* LR *) ~offset: (ra - n);
    match abi with
    | ELF32 -> ()
    | ELF64v1 | ELF64v2 ->
      `	std	2, {emit_int(toc_save_offset())}(1)\n`
  end;
  `{emit_label !tailrec_entry_point}:\n`;
  (* On this target, there is at most one "out of line" code block per
     function: a single "call GC" point.  It comes immediately after the
     function's body. *)
  BR.relax fundecl.fun_body ~max_out_of_line_code_offset:0;
  emit_all fundecl.fun_body;
  (* Emit the glue code to call the GC *)
  if !call_gc_label > 0 then begin
    `{emit_label !call_gc_label}:\n`;
    match abi with
    | ELF32 ->
      `	b	{emit_symbol "caml_call_gc"}\n`
    | ELF64v1 ->
      `	std	2, 40(1)\n`;
             (* save our TOC, will be restored by caml_call_gc *)
      emit_tocload emit_gpr 11 (TocSym "caml_call_gc");
      `	ld	0, 0(11)\n`;
      `	mtctr	0\n`;
      `	ld	2, 8(11)\n`;
      `	bctr\n`
    | ELF64v2 ->
      `	std	2, 24(1)\n`;
             (* save our TOC, will be restored by caml_call_gc *)
      emit_tocload emit_gpr 12 (TocSym "caml_call_gc");
      `	mtctr	12\n`;
      `	bctr\n`
  end;
  cfi_endproc();
  begin match abi with
  | ELF32 | ELF64v2 ->
    `	.size	{emit_symbol fundecl.fun_name}, . - {emit_symbol fundecl.fun_name}\n`
  | ELF64v1 ->
    `	.size	{emit_symbol fundecl.fun_name}, . - .L.{emit_symbol fundecl.fun_name}\n`
  end;
  (* Emit the numeric literals *)
  if !float_literals <> [] then begin
    emit_string rodata_space;
    `	.align	3\n`;
    List.iter
      (fun (f, lbl) ->
        `{emit_label lbl}:`;
        emit_float64_split_directive ".long" f)
      !float_literals
  end;
  (* Emit the jump tables *)
  if !jumptables <> [] then begin
    emit_string rodata_space;
    `	.align	2\n`;
    `{emit_label !jumptables_lbl}:`;
    List.iter 
      (fun  lbl ->
          `	.long	{emit_label lbl} - {emit_label !jumptables_lbl}\n`)
      (List.rev !jumptables)
  end

(* Emission of data *)

let declare_global_data s =
  `	.globl	{emit_symbol s}\n`;
  `	.type	{emit_symbol s}, @object\n`

let emit_item = function
    Cglobal_symbol s ->
      declare_global_data s
  | Cdefine_symbol s ->
      `{emit_symbol s}:\n`;
  | Cdefine_label lbl ->
      `{emit_data_label lbl}:\n`
  | Cint8 n ->
      `	.byte	{emit_int n}\n`
  | Cint16 n ->
      `	.short	{emit_int n}\n`
  | Cint32 n ->
      `	.long	{emit_nativeint n}\n`
  | Cint n ->
      `	{emit_string datag}	{emit_nativeint n}\n`
  | Csingle f ->
      emit_float32_directive ".long" (Int32.bits_of_float f)
  | Cdouble f ->
      if ppc64
      then emit_float64_directive ".quad" (Int64.bits_of_float f)
      else emit_float64_split_directive ".long" (Int64.bits_of_float f)
  | Csymbol_address s ->
      `	{emit_string datag}	{emit_symbol s}\n`
  | Clabel_address lbl ->
      `	{emit_string datag}	{emit_data_label lbl}\n`
  | Cstring s ->
      emit_bytes_directive "	.byte	" s
  | Cskip n ->
      if n > 0 then `	.space	{emit_int n}\n`
  | Calign n ->
      `	.align	{emit_int (Misc.log2 n)}\n`

let data l =
  emit_string data_space;
  `    .align  {emit_int (if ppc64 then 3 else 2)}\n`;
  List.iter emit_item l

(* Beginning / end of an assembly file *)

let begin_assembly() =
  begin match abi with
  | ELF64v2 -> `	.abiversion 2\n`
  | _ -> ()
  end;
  Hashtbl.clear tocref_entries;
  (* Emit the beginning of the segments *)
  let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
  emit_string data_space;
  declare_global_data lbl_begin;
  `{emit_symbol lbl_begin}:\n`;
  let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
  emit_string function_descr_space;
  (* For the ELF64v1 ABI, we must make sure that the .opd and .data
     sections are in different pages.  .opd comes after .data,
     so aligning .opd is enough.  To save space, we do it only
     for the startup file, not for every OCaml compilation unit. *)
  let c = Compilenv.current_unit_name() in
  if abi = ELF64v1 && (c = "_startup" || c = "_shared_startup") then begin
    `	.p2align	12\n`
  end;
  declare_global_data lbl_begin;
  `{emit_symbol lbl_begin}:\n`

let end_assembly() =
  (* In profiling mode, for ELF64, emit the helper functions
     for register saving and restoring.  We put one copy of these
     functions in every generated file, instead of defining
     them once in asmrun/power.S, so that we can call them
     without risking to save r2 in the wrong place. *)
  if ppc64 && !Clflags.gprofile then begin
    let save_area = reserved_stack_space + (if abi = ELF64v1 then 8*8 else 0) in
    let stacksize = save_area + 8*8 in
    emit_string code_space;
    `	.align	2\n`;
    `{emit_symbol "caml_before_mcount"}:\n`;
    `	stdu	1, {emit_int (-stacksize)}(1)\n`;
    `	std	0, {emit_int (16 + stacksize)}(1)\n`;
    for i = 3 to 10 do
    `	std	{emit_gpr i}, {emit_int (save_area + (i - 3) * 8)}(1)\n`
    done;
    `	blr\n`;
    `{emit_symbol "caml_after_mcount"}:\n`;
    `	ld	0, {emit_int (16 + stacksize)}(1)\n`;
    for i = 3 to 10 do
    `	ld	{emit_gpr i}, {emit_int (save_area + (i - 3) * 8)}(1)\n`
    done;
    `	addi	1, 1, {emit_int stacksize}\n`;
    `	blr\n`
  end;
  (* Emit the end of the segments *)
  emit_string function_descr_space;
  let lbl_end = Compilenv.make_symbol (Some "code_end") in
  declare_global_data lbl_end;
  `{emit_symbol lbl_end}:\n`;
  if abi <> ELF64v1 then `	.long	0\n`;
  emit_string data_space;
  let lbl_end = Compilenv.make_symbol (Some "data_end") in
  declare_global_data lbl_end;
  `{emit_symbol lbl_end}:\n`;
  `	{emit_string datag}	0\n`;
  (* Emit the frame descriptors *)
  emit_string rodata_space;
  let lbl = Compilenv.make_symbol (Some "frametable") in
  declare_global_data lbl;
  `{emit_symbol lbl}:\n`;
  emit_frames
    { efa_label = (fun l -> `	{emit_string datag}	{emit_label l}\n`);
      efa_16 = (fun n -> `	.short	{emit_int n}\n`);
      efa_32 = (fun n -> `	.long	{emit_int32 n}\n`);
      efa_word = (fun n -> `	{emit_string datag}	{emit_int n}\n`);
      efa_align = (fun n -> `	.balign	{emit_int n}\n`);
      efa_label_rel = (fun lbl ofs ->
                           `	.long	({emit_label lbl} - .) + {emit_int32 ofs}\n`);
      efa_def_label = (fun l -> `{emit_label l}:\n`);
      efa_string = (fun s -> emit_bytes_directive "	.byte	" (s ^ "\000"))
     };
  (* Emit the TOC entries *)
  begin match abi with
  | ELF32 -> ()
  | ELF64v1 | ELF64v2 ->
      emit_string toc_space;
      emit_toctable();
      Hashtbl.clear tocref_entries
  end;
  `	.section .note.GNU-stack,\"\",%progbits\n`