1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
(* Selection of pseudo-instructions, assignment of pseudo-registers,
sequentialization. *)
open Misc
open Cmm
open Reg
open Mach
(* Infer the type of the result of an operation *)
let oper_result_type = function
Capply ty -> ty
| Cextcall(s, ty, alloc) -> ty
| Cload ty -> ty
| Cloadchunk c -> typ_int
| Calloc -> typ_addr
| Cstore -> typ_void
| Cstorechunk c -> typ_void
| Cmodify -> typ_void
| Caddi | Csubi | Cmuli | Cdivi | Cmodi
| Cand | Cor | Cxor | Clsl | Clsr | Casr
| Ccmpi _ | Ccmpa _ | Ccmpf _ -> typ_int
| Cadda | Csuba -> typ_addr
| Caddf | Csubf | Cmulf | Cdivf -> typ_float
| Cfloatofint -> typ_float
| Cintoffloat -> typ_int
| Craise -> typ_void
| Ccheckbound -> typ_void
| _ -> fatal_error "Selection.oper_result_type"
(* Infer the size in bytes of the result of a simple expression *)
let rec size_expr env = function
Cconst_int _ -> Arch.size_int
| Cconst_symbol _ | Cconst_pointer _ -> Arch.size_addr
| Cconst_float _ -> Arch.size_float
| Cvar v ->
let r =
try
Tbl.find v env
with Not_found ->
fatal_error("Selection.emit_expr: unbound var " ^ Ident.name v) in
size_machtype (Array.map (fun r -> r.typ) r)
| Ctuple el ->
List.fold_right (fun e sz -> size_expr env e + sz) el 0
| Cop(op, args) ->
size_machtype(oper_result_type op)
| _ ->
fatal_error "Selection.size_expr"
(* Says if an operation is "cheap". A "cheap" operation is an operation
without side-effects and whose execution can be delayed until its value
is really needed. In the case of e.g. an [alloc] instruction,
the non-cheap parts of arguments are computed in right-to-left order
first, then the block is allocated, then the cheap parts are evaluated
and stored. *)
let cheap_operation = function
(* The following may have side effects *)
Capply _ | Cextcall(_, _, _) | Calloc | Cstore | Cstorechunk _ |
Cmodify | Craise -> false
(* The following are expensive to compute, better start them early *)
| Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat -> false
(* The remaining operations are cheap *)
| _ -> true
(* Default instruction selection for operators *)
let rec sel_operation op args =
match (op, args) with
(Capply ty, Cconst_symbol s :: rem) -> (Icall_imm s, rem)
| (Capply ty, _) -> (Icall_ind, args)
| (Cextcall(s, ty, alloc), _) -> (Iextcall(s, alloc), args)
| (Cload ty, [arg]) ->
let (addr, eloc) = Proc.select_addressing arg in
(Iload(Word, addr), [eloc])
| (Cloadchunk chunk, [arg]) ->
let (addr, eloc) = Proc.select_addressing arg in
(Iload(chunk, addr), [eloc])
| (Cstore, arg1 :: rem) ->
let (addr, eloc) = Proc.select_addressing arg1 in
(Istore(Word, addr), eloc :: rem)
| (Cstorechunk chunk, arg1 :: rem) ->
let (addr, eloc) = Proc.select_addressing arg1 in
(Istore(chunk, addr), eloc :: rem)
| (Calloc, _) -> (Ialloc 0, args)
| (Cmodify, _) -> (Imodify, args)
| (Caddi, _) -> sel_arith_comm Iadd args
| (Csubi, _) -> sel_arith Isub args
| (Cmuli, _) -> sel_arith_comm Imul args
| (Cdivi, _) -> sel_arith Idiv args
| (Cmodi, _) -> sel_arith_comm Imod args
| (Cand, _) -> sel_arith_comm Iand args
| (Cor, _) -> sel_arith_comm Ior args
| (Cxor, _) -> sel_arith_comm Ixor args
| (Clsl, _) -> sel_arith Ilsl args
| (Clsr, _) -> sel_arith Ilsr args
| (Casr, _) -> sel_arith Iasr args
| (Ccmpi comp, _) -> sel_arith_comp (Isigned comp) args
| (Cadda, _) -> sel_arith_comm Iadd args
| (Csuba, _) -> sel_arith Isub args
| (Ccmpa comp, _) -> sel_arith_comp (Iunsigned comp) args
| (Caddf, _) -> (Iaddf, args)
| (Csubf, _) -> (Isubf, args)
| (Cmulf, _) -> (Imulf, args)
| (Cdivf, _) -> (Idivf, args)
| (Cfloatofint, _) -> (Ifloatofint, args)
| (Cintoffloat, _) -> (Iintoffloat, args)
| (Ccheckbound, _) -> sel_arith Icheckbound args
| _ -> fatal_error "Selection.sel_oper"
and sel_arith_comm op = function
[arg; Cconst_int n] when Proc.is_immediate n ->
(Iintop_imm(op, n), [arg])
| [arg; Cconst_pointer n] when Proc.is_immediate n ->
(Iintop_imm(op, n), [arg])
| [Cconst_int n; arg] when Proc.is_immediate n ->
(Iintop_imm(op, n), [arg])
| [Cconst_pointer n; arg] when Proc.is_immediate n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
and sel_arith op = function
[arg; Cconst_int n] when Proc.is_immediate n ->
(Iintop_imm(op, n), [arg])
| [arg; Cconst_pointer n] when Proc.is_immediate n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
and sel_arith_comp cmp = function
[arg; Cconst_int n] when Proc.is_immediate n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [arg; Cconst_pointer n] when Proc.is_immediate n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [Cconst_int n; arg] when Proc.is_immediate n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| [Cconst_pointer n; arg] when Proc.is_immediate n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| args ->
(Iintop(Icomp cmp), args)
and swap_intcomp = function
Isigned cmp -> Isigned(swap_comparison cmp)
| Iunsigned cmp -> Iunsigned(swap_comparison cmp)
(* Instruction selection for conditionals *)
let sel_condition = function
Cop(Ccmpi cmp, [arg1; Cconst_int n]) when Proc.is_immediate n ->
(Iinttest_imm(Isigned cmp, n), arg1)
| Cop(Ccmpi cmp, [Cconst_int n; arg2]) when Proc.is_immediate n ->
(Iinttest_imm(Isigned(swap_comparison cmp), n), arg2)
| Cop(Ccmpi cmp, args) ->
(Iinttest(Isigned cmp), Ctuple args)
| Cop(Ccmpa cmp, [arg1; Cconst_pointer n]) when Proc.is_immediate n ->
(Iinttest_imm(Iunsigned cmp, n), arg1)
| Cop(Ccmpa cmp, [Cconst_pointer n; arg2]) when Proc.is_immediate n ->
(Iinttest_imm(Iunsigned(swap_comparison cmp), n), arg2)
| Cop(Ccmpa cmp, args) ->
(Iinttest(Iunsigned cmp), Ctuple args)
| Cop(Ccmpf cmp, args) ->
(Ifloattest cmp, Ctuple args)
| Cop(Cand, [arg; Cconst_int 1]) ->
(Ioddtest, arg)
| arg ->
(Itruetest, arg)
(* Naming of registers *)
let all_regs_anonymous rv =
try
for i = 0 to Array.length rv - 1 do
if String.length rv.(i).name > 0 then raise Exit
done;
true
with Exit ->
false
let name_regs id rv =
if Array.length rv = 1 then
rv.(0).name <- Ident.name id
else
for i = 0 to Array.length rv - 1 do
rv.(i).name <- Ident.name id ^ "#" ^ string_of_int i
done
(* Buffering of instruction sequences *)
type instruction_sequence = instruction ref
let new_sequence() = ref dummy_instr
let insert desc arg res seq =
seq := instr_cons desc arg res !seq
let extract_sequence seq =
let rec extract res i =
if i == dummy_instr
then res
else extract (instr_cons i.desc i.arg i.res res) i.next in
extract (end_instr()) !seq
(* Insert a sequence of moves from one pseudoreg set to another. *)
let insert_move src dst seq =
if src.stamp <> dst.stamp then
insert (Iop Imove) [|src|] [|dst|] seq
let insert_moves src dst seq =
for i = 0 to Array.length src - 1 do
insert_move src.(i) dst.(i) seq
done
(* Insert moves and stack offsets for function arguments and results *)
let insert_move_args arg loc stacksize seq =
if stacksize <> 0 then insert (Iop(Istackoffset stacksize)) [||] [||] seq;
insert_moves arg loc seq
let insert_move_results loc res stacksize seq =
if stacksize <> 0 then insert(Iop(Istackoffset(-stacksize))) [||] [||] seq;
insert_moves loc res seq
(* "Join" two instruction sequences, making sure they return their results
in the same registers. *)
let join r1 seq1 r2 seq2 =
let l1 = Array.length r1 and l2 = Array.length r2 in
if l1 = 0 then r2
else if l2 = 0 then r1
else begin
let r = Array.new l1 Reg.dummy in
for i = 0 to l1-1 do
if String.length r1.(i).name = 0 then begin
r.(i) <- r1.(i);
insert_move r2.(i) r1.(i) seq2
end else if String.length r2.(i).name = 0 then begin
r.(i) <- r2.(i);
insert_move r1.(i) r2.(i) seq1
end else begin
r.(i) <- Reg.new r1.(i).typ;
insert_move r1.(i) r.(i) seq1;
insert_move r2.(i) r.(i) seq2
end
done;
r
end
(* Same, for N branches *)
let join_array rs =
let some_res = ref [||] in
for i = 0 to Array.length rs - 1 do
let (r, s) = rs.(i) in
if Array.length r > 0 then some_res := r
done;
let size_res = Array.length !some_res in
if size_res = 0 then [||] else begin
let res = Array.new size_res Reg.dummy in
for i = 0 to size_res - 1 do
res.(i) <- Reg.new (!some_res).(i).typ
done;
for i = 0 to Array.length rs - 1 do
let (r, s) = rs.(i) in
if Array.length r > 0 then insert_moves r res s
done;
res
end
(* Add the instructions for the given expression
at the end of the given sequence *)
let rec emit_expr env exp seq =
match exp with
Cconst_int n ->
let r = Reg.newv typ_int in
insert (Iop(Iconst_int n)) [||] r seq;
r
| Cconst_float n ->
let r = Reg.newv typ_float in
insert (Iop(Iconst_float n)) [||] r seq;
r
| Cconst_symbol n ->
let r = Reg.newv typ_addr in
insert (Iop(Iconst_symbol n)) [||] r seq;
r
| Cconst_pointer n ->
let r = Reg.newv typ_addr in
insert (Iop(Iconst_int n)) [||] r seq;
r
| Cvar v ->
begin try
Tbl.find v env
with Not_found ->
fatal_error("Selection.emit_expr: unbound var " ^ Ident.name v)
end
| Clet(v, e1, e2) ->
emit_expr (emit_let env v e1 seq) e2 seq
| Cassign(v, e1) ->
let rv =
try
Tbl.find v env
with Not_found ->
fatal_error ("Selection.emit_expr: unbound var " ^ Ident.name v) in
let r1 = emit_expr env e1 seq in
insert_moves r1 rv seq;
[||]
| Ctuple exp_list ->
let (simple_list, ext_env) = emit_parts_list env exp_list seq in
emit_tuple ext_env simple_list seq
| Cop(Cproj(ofs, len), [Cop(Cload ty, [arg])]) ->
let byte_offset = size_machtype(Array.sub ty 0 ofs) in
emit_expr env
(Cop(Cload(Array.sub ty ofs len),
[Cop(Cadda, [arg; Cconst_int byte_offset])])) seq
| Cop(Cproj(ofs, len), [arg]) ->
let r = emit_expr env arg seq in
Array.sub r ofs len
| Cop(Craise, [arg]) ->
let r1 = emit_expr env arg seq in
let rd = [|Proc.loc_exn_bucket|] in
insert (Iop Imove) r1 rd seq;
insert Iraise rd [||] seq;
[||]
| Cop(Ccmpf comp, args) ->
emit_expr env (Cifthenelse(exp, Cconst_int 1, Cconst_int 0)) seq
| Cop(op, args) ->
let (simple_args, env) = emit_parts_list env args seq in
let ty = oper_result_type op in
let (new_op, new_args) =
try
Proc.select_oper op simple_args
with Proc.Use_default ->
sel_operation op simple_args in
begin match new_op with
Icall_ind ->
Proc.contains_calls := true;
let r1 = emit_tuple env new_args seq in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let rd = Reg.newv ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in
let loc_res = Proc.loc_results rd in
insert_move_args rarg loc_arg stack_ofs seq;
insert (Iop Icall_ind) (Array.append [|r1.(0)|] loc_arg) loc_res seq;
insert_move_results loc_res rd stack_ofs seq;
rd
| Icall_imm lbl ->
Proc.contains_calls := true;
let r1 = emit_tuple env new_args seq in
let rd = Reg.newv ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in
let loc_res = Proc.loc_results rd in
insert_move_args r1 loc_arg stack_ofs seq;
insert (Iop(Icall_imm lbl)) loc_arg loc_res seq;
insert_move_results loc_res rd stack_ofs seq;
rd
| Iextcall(lbl, alloc) ->
Proc.contains_calls := true;
let r1 = emit_tuple env new_args seq in
let rd = Reg.newv ty in
let (loc_arg, stack_ofs) = Proc.loc_external_arguments r1 in
let loc_res = Proc.loc_external_results rd in
insert_move_args r1 loc_arg stack_ofs seq;
insert (Iop(Iextcall(lbl, alloc))) loc_arg loc_res seq;
insert_move_results loc_res rd stack_ofs seq;
rd
| Iload(Word, addr) ->
let r1 = emit_tuple env new_args seq in
let rd = Reg.newv ty in
let a = ref addr in
for i = 0 to Array.length ty - 1 do
insert(Iop(Iload(Word, !a))) r1 [|rd.(i)|] seq;
a := Arch.offset_addressing !a (size_component ty.(i))
done;
rd
| Istore(Word, addr) ->
begin match new_args with
[] -> fatal_error "Selection.Istore"
| arg_addr :: args_data ->
let ra = emit_expr env arg_addr seq in
emit_stores env args_data seq ra addr;
[||]
end
| Istore(chunk, addr) ->
begin match new_args with
[arg_addr; arg_data] ->
let ra = emit_expr env arg_addr seq in
let rd = emit_expr env arg_data seq in
insert (Iop(Istore(chunk, addr))) (Array.append rd ra) [||] seq;
[||]
| _ -> fatal_error "Selection.Istorechunk"
end
| Ialloc _ ->
Proc.contains_calls := true;
let rd = Reg.newv typ_addr in
let size = size_expr env (Ctuple new_args) in
insert (Iop(Ialloc size)) [||] rd seq;
emit_stores env new_args seq rd
(Arch.offset_addressing Arch.identity_addressing (-Arch.size_int));
rd
| op ->
if op = Imodify then Proc.contains_calls := true;
let r1 = emit_tuple env new_args seq in
let rd = Reg.newv ty in
begin try
(* Offer the processor description an opportunity to insert moves
before and after the operation, i.e. for two-address
instructions, or instructions using dedicated registers. *)
let (rsrc, rdst) = Proc.pseudoregs_for_operation op r1 rd in
insert_moves r1 rsrc seq;
insert (Iop op) rsrc rdst seq;
insert_moves rdst rd seq
with Proc.Use_default ->
(* Assume no constraints on arg and res registers *)
insert (Iop op) r1 rd seq
end;
rd
end
| Csequence(e1, e2) ->
emit_expr env e1 seq;
emit_expr env e2 seq
| Cifthenelse(econd, eif, eelse) ->
let (cond, earg) = sel_condition econd in
let rarg = emit_expr env earg seq in
let (rif, sif) = emit_sequence env eif in
let (relse, selse) = emit_sequence env eelse in
let r = join rif sif relse selse in
insert (Iifthenelse(cond, extract_sequence sif, extract_sequence selse))
rarg [||] seq;
r
| Cswitch(esel, index, ecases) ->
let rsel = emit_expr env esel seq in
let rscases = Array.map (emit_sequence env) ecases in
let r = join_array rscases in
insert (Iswitch(index,
Array.map (fun (r, s) -> extract_sequence s) rscases))
rsel [||] seq;
r
| Cloop(ebody) ->
let (rarg, sbody) = emit_sequence env ebody in
insert (Iloop(extract_sequence sbody)) [||] [||] seq;
[||]
| Ccatch(e1, e2) ->
let (r1, s1) = emit_sequence env e1 in
let (r2, s2) = emit_sequence env e2 in
let r = join r1 s1 r2 s2 in
insert (Icatch(extract_sequence s1, extract_sequence s2)) [||] [||] seq;
r
| Cexit ->
insert Iexit [||] [||] seq;
[||]
| Ctrywith(e1, v, e2) ->
Proc.contains_calls := true;
let (r1, s1) = emit_sequence env e1 in
let rv = Reg.newv typ_addr in
let (r2, s2) = emit_sequence (Tbl.add v rv env) e2 in
let r = join r1 s1 r2 s2 in
insert
(Itrywith(extract_sequence s1,
instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv
(extract_sequence s2)))
[||] [||] seq;
r
and emit_sequence env exp =
let seq = new_sequence() in
let r = emit_expr env exp seq in
(r, seq)
and emit_let env v e1 seq =
let r1 = emit_expr env e1 seq in
if all_regs_anonymous r1 then begin
name_regs v r1;
Tbl.add v r1 env
end else begin
let rv = Array.new (Array.length r1) Reg.dummy in
for i = 0 to Array.length r1 - 1 do rv.(i) <- Reg.new r1.(i).typ done;
name_regs v rv;
insert_moves r1 rv seq;
Tbl.add v rv env
end
and emit_parts env exp seq =
match exp with
Cconst_int _ | Cconst_float _ | Cconst_symbol _ | Cconst_pointer _ |
Cvar _ ->
(exp, env)
| Ctuple el ->
let (explist, env) = emit_parts_list env el seq in
(Ctuple explist, env)
| Clet(id, arg, body) ->
emit_parts (emit_let env id arg seq) body seq
| Cop(op, args) when cheap_operation op ->
let (new_args, new_env) = emit_parts_list env args seq in
(Cop(op, new_args), new_env)
| _ ->
let r = emit_expr env exp seq in
if Array.length r = 0 then
(Ctuple [], env)
else begin
let id = Ident.new "bind" in
(Cvar id, Tbl.add id r env)
end
and emit_parts_list env exp_list seq =
match exp_list with
[] -> ([], env)
| exp :: rem ->
(* This ensures right-to-left evaluation, consistent with the
bytecode compiler *)
let (new_rem, new_env) = emit_parts_list env rem seq in
let (new_exp, fin_env) = emit_parts new_env exp seq in
(new_exp :: new_rem, fin_env)
and emit_tuple env exp_list seq =
Array.concat(List.map (fun e -> emit_expr env e seq) exp_list)
and emit_stores env data seq regs_addr addr =
let a = ref addr in
List.iter
(fun e ->
try
(* Offer the machine description an opportunity to optimize
the store, e.g. if constant -> memory or memory -> memory
moves are available *)
let (op, arg) = Proc.select_store !a e in
let r = emit_expr env arg seq in
insert (Iop op) (Array.append r regs_addr) [||] seq;
a := Arch.offset_addressing !a (size_expr env e)
with Proc.Use_default ->
let r = emit_expr env e seq in
for i = 0 to Array.length r - 1 do
insert (Iop(Istore(Word, !a)))
(Array.append [|r.(i)|] regs_addr) [||] seq;
a := Arch.offset_addressing !a (size_component r.(i).typ)
done)
data
(* Same, but in tail position *)
let emit_return env exp seq =
let r = emit_expr env exp seq in
let loc = Proc.loc_results r in
insert_moves r loc seq;
insert Ireturn loc [||] seq
let rec emit_tail env exp seq =
match exp with
Clet(v, e1, e2) ->
emit_tail (emit_let env v e1 seq) e2 seq
| Cop(Capply ty as op, args) ->
let (simple_args, env) = emit_parts_list env args seq in
let (new_op, new_args) = sel_operation op simple_args in
begin match new_op with
Icall_ind ->
let r1 = emit_tuple env new_args seq in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in
if stack_ofs = 0 then begin
insert_moves rarg loc_arg seq;
insert (Iop Itailcall_ind)
(Array.append [|r1.(0)|] loc_arg) [||] seq
end else begin
Proc.contains_calls := true;
let rd = Reg.newv ty in
let loc_res = Proc.loc_results rd in
insert_move_args rarg loc_arg stack_ofs seq;
insert (Iop Icall_ind)
(Array.append [|r1.(0)|] loc_arg) loc_res seq;
insert(Iop(Istackoffset(-stack_ofs))) [||] [||] seq;
insert Ireturn loc_res [||] seq
end
| Icall_imm lbl ->
let r1 = emit_tuple env new_args seq in
let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in
if stack_ofs = 0 then begin
insert_moves r1 loc_arg seq;
insert (Iop(Itailcall_imm lbl)) loc_arg [||] seq
end else begin
Proc.contains_calls := true;
let rd = Reg.newv ty in
let loc_res = Proc.loc_results rd in
insert_move_args r1 loc_arg stack_ofs seq;
insert (Iop(Icall_imm lbl)) loc_arg loc_res seq;
insert(Iop(Istackoffset(-stack_ofs))) [||] [||] seq;
insert Ireturn loc_res [||] seq
end
| _ -> fatal_error "Selection.emit_tail"
end
| Cop(Craise, [e1]) ->
let r1 = emit_expr env e1 seq in
let rd = [|Proc.loc_exn_bucket|] in
insert (Iop Imove) r1 rd seq;
insert Iraise rd [||] seq
| Csequence(e1, e2) ->
emit_expr env e1 seq;
emit_tail env e2 seq
| Cifthenelse(econd, eif, eelse) ->
let (cond, earg) = sel_condition econd in
let rarg = emit_expr env earg seq in
insert (Iifthenelse(cond, emit_tail_sequence env eif,
emit_tail_sequence env eelse))
rarg [||] seq
| Cswitch(esel, index, ecases) ->
let rsel = emit_expr env esel seq in
insert (Iswitch(index, Array.map (emit_tail_sequence env) ecases))
rsel [||] seq
| Ccatch(e1, e2) ->
insert (Icatch(emit_tail_sequence env e1, emit_tail_sequence env e2))
[||] [||] seq
| Cexit ->
insert Iexit [||] [||] seq
| _ ->
emit_return env exp seq
and emit_tail_sequence env exp =
let seq = new_sequence() in
emit_tail env exp seq;
extract_sequence seq
(* Sequentialization of a function definition *)
let fundecl f =
Proc.contains_calls := false;
let rargs =
List.map
(fun (id, ty) -> let r = Reg.newv ty in name_regs id r; r)
f.Cmm.fun_args in
let rarg = Array.concat rargs in
let loc_arg = Proc.loc_parameters rarg in
let env =
List.fold_right2
(fun (id, ty) r env -> Tbl.add id r env)
f.Cmm.fun_args rargs Tbl.empty in
let seq = new_sequence() in
insert_moves loc_arg rarg seq;
emit_tail env f.Cmm.fun_body seq;
{ fun_name = f.Cmm.fun_name;
fun_args = loc_arg;
fun_body = extract_sequence seq;
fun_fast = f.Cmm.fun_fast }
|