summaryrefslogtreecommitdiff
path: root/bytecomp/simplif.ml
blob: 8011953fb8bac555f082493b0c08d329b61d15aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* Elimination of useless Llet(Alias) bindings.
   Also transform let-bound references into variables. *)

open Asttypes
open Lambda

(* To transform let-bound references into variables *)

exception Real_reference

let rec eliminate_ref id = function
    Lvar v as lam ->
      if Ident.same v id then raise Real_reference else lam
  | Lconst _ as lam -> lam
  | Lapply ap ->
      Lapply{ap with ap_func = eliminate_ref id ap.ap_func;
                     ap_args = List.map (eliminate_ref id) ap.ap_args}
  | Lfunction _ as lam ->
      if Ident.Set.mem id (free_variables lam)
      then raise Real_reference
      else lam
  | Llet(str, kind, v, e1, e2) ->
      Llet(str, kind, v, eliminate_ref id e1, eliminate_ref id e2)
  | Lletrec(idel, e2) ->
      Lletrec(List.map (fun (v, e) -> (v, eliminate_ref id e)) idel,
              eliminate_ref id e2)
  | Lprim(Pfield 0, [Lvar v], _) when Ident.same v id ->
      Lvar id
  | Lprim(Psetfield(0, _, _), [Lvar v; e], _) when Ident.same v id ->
      Lassign(id, eliminate_ref id e)
  | Lprim(Poffsetref delta, [Lvar v], loc) when Ident.same v id ->
      Lassign(id, Lprim(Poffsetint delta, [Lvar id], loc))
  | Lprim(p, el, loc) ->
      Lprim(p, List.map (eliminate_ref id) el, loc)
  | Lswitch(e, sw, loc) ->
      Lswitch(eliminate_ref id e,
        {sw_numconsts = sw.sw_numconsts;
         sw_consts =
            List.map (fun (n, e) -> (n, eliminate_ref id e)) sw.sw_consts;
         sw_numblocks = sw.sw_numblocks;
         sw_blocks =
            List.map (fun (n, e) -> (n, eliminate_ref id e)) sw.sw_blocks;
         sw_failaction =
            Misc.may_map (eliminate_ref id) sw.sw_failaction; },
        loc)
  | Lstringswitch(e, sw, default, loc) ->
      Lstringswitch
        (eliminate_ref id e,
         List.map (fun (s, e) -> (s, eliminate_ref id e)) sw,
         Misc.may_map (eliminate_ref id) default, loc)
  | Lstaticraise (i,args) ->
      Lstaticraise (i,List.map (eliminate_ref id) args)
  | Lstaticcatch(e1, i, e2) ->
      Lstaticcatch(eliminate_ref id e1, i, eliminate_ref id e2)
  | Ltrywith(e1, v, e2) ->
      Ltrywith(eliminate_ref id e1, v, eliminate_ref id e2)
  | Lifthenelse(e1, e2, e3) ->
      Lifthenelse(eliminate_ref id e1,
                  eliminate_ref id e2,
                  eliminate_ref id e3)
  | Lsequence(e1, e2) ->
      Lsequence(eliminate_ref id e1, eliminate_ref id e2)
  | Lwhile(e1, e2) ->
      Lwhile(eliminate_ref id e1, eliminate_ref id e2)
  | Lfor(v, e1, e2, dir, e3) ->
      Lfor(v, eliminate_ref id e1, eliminate_ref id e2,
           dir, eliminate_ref id e3)
  | Lassign(v, e) ->
      Lassign(v, eliminate_ref id e)
  | Lsend(k, m, o, el, loc) ->
      Lsend(k, eliminate_ref id m, eliminate_ref id o,
            List.map (eliminate_ref id) el, loc)
  | Levent(l, ev) ->
      Levent(eliminate_ref id l, ev)
  | Lifused(v, e) ->
      Lifused(v, eliminate_ref id e)

(* Simplification of exits *)

type exit = {
  mutable count: int;
  mutable max_depth: int;
}

let simplify_exits lam =

  (* Count occurrences of (exit n ...) statements *)
  let exits = Hashtbl.create 17 in

  let try_depth = ref 0 in

  let get_exit i =
    try Hashtbl.find exits i
    with Not_found -> {count = 0; max_depth = 0}

  and incr_exit i nb d =
    match Hashtbl.find_opt exits i with
    | Some r ->
        r.count <- r.count + nb;
        r.max_depth <- max r.max_depth d
    | None ->
        let r = {count = nb; max_depth = d} in
        Hashtbl.add exits i r
  in

  let rec count = function
  | (Lvar _| Lconst _) -> ()
  | Lapply ap -> count ap.ap_func; List.iter count ap.ap_args
  | Lfunction {body} -> count body
  | Llet(_str, _kind, _v, l1, l2) ->
      count l2; count l1
  | Lletrec(bindings, body) ->
      List.iter (fun (_v, l) -> count l) bindings;
      count body
  | Lprim(_p, ll, _) -> List.iter count ll
  | Lswitch(l, sw, _loc) ->
      count_default sw ;
      count l;
      List.iter (fun (_, l) -> count l) sw.sw_consts;
      List.iter (fun (_, l) -> count l) sw.sw_blocks
  | Lstringswitch(l, sw, d, _) ->
      count l;
      List.iter (fun (_, l) -> count l) sw;
      begin match  d with
      | None -> ()
      | Some d -> match sw with
        | []|[_] -> count d
        | _ -> count d; count d (* default will get replicated *)
      end
  | Lstaticraise (i,ls) -> incr_exit i 1 !try_depth; List.iter count ls
  | Lstaticcatch (l1,(i,[]),Lstaticraise (j,[])) ->
      (* i will be replaced by j in l1, so each occurrence of i in l1
         increases j's ref count *)
      count l1 ;
      let ic = get_exit i in
      incr_exit j ic.count (max !try_depth ic.max_depth)
  | Lstaticcatch(l1, (i,_), l2) ->
      count l1;
      (* If l1 does not contain (exit i),
         l2 will be removed, so don't count its exits *)
      if (get_exit i).count > 0 then
        count l2
  | Ltrywith(l1, _v, l2) -> incr try_depth; count l1; decr try_depth; count l2
  | Lifthenelse(l1, l2, l3) -> count l1; count l2; count l3
  | Lsequence(l1, l2) -> count l1; count l2
  | Lwhile(l1, l2) -> count l1; count l2
  | Lfor(_, l1, l2, _dir, l3) -> count l1; count l2; count l3
  | Lassign(_v, l) -> count l
  | Lsend(_k, m, o, ll, _) -> List.iter count (m::o::ll)
  | Levent(l, _) -> count l
  | Lifused(_v, l) -> count l

  and count_default sw = match sw.sw_failaction with
  | None -> ()
  | Some al ->
      let nconsts = List.length sw.sw_consts
      and nblocks = List.length sw.sw_blocks in
      if
        nconsts < sw.sw_numconsts && nblocks < sw.sw_numblocks
      then begin (* default action will occur twice in native code *)
        count al ; count al
      end else begin (* default action will occur once *)
        assert (nconsts < sw.sw_numconsts || nblocks < sw.sw_numblocks) ;
        count al
      end
  in
  count lam;
  assert(!try_depth = 0);

  (*
     Second pass simplify  ``catch body with (i ...) handler''
      - if (exit i ...) does not occur in body, suppress catch
      - if (exit i ...) occurs exactly once in body,
        substitute it with handler
      - If handler is a single variable, replace (exit i ..) with it
   Note:
    In ``catch body with (i x1 .. xn) handler''
     Substituted expression is
      let y1 = x1 and ... yn = xn in
      handler[x1 <- y1 ; ... ; xn <- yn]
     For the sake of preserving the uniqueness  of bound variables.
     (No alpha conversion of ``handler'' is presently needed, since
     substitution of several ``(exit i ...)''
     occurs only when ``handler'' is a variable.)
  *)

  let subst = Hashtbl.create 17 in

  let rec simplif = function
  | (Lvar _|Lconst _) as l -> l
  | Lapply ap ->
      Lapply{ap with ap_func = simplif ap.ap_func;
                     ap_args = List.map simplif ap.ap_args}
  | Lfunction{kind; params; return; body = l; attr; loc} ->
     Lfunction{kind; params; return; body = simplif l; attr; loc}
  | Llet(str, kind, v, l1, l2) -> Llet(str, kind, v, simplif l1, simplif l2)
  | Lletrec(bindings, body) ->
      Lletrec(List.map (fun (v, l) -> (v, simplif l)) bindings, simplif body)
  | Lprim(p, ll, loc) -> begin
    let ll = List.map simplif ll in
    match p, ll with
        (* Simplify %revapply, for n-ary functions with n > 1 *)
      | Prevapply, [x; Lapply ap]
      | Prevapply, [x; Levent (Lapply ap,_)] ->
        Lapply {ap with ap_args = ap.ap_args @ [x]; ap_loc = loc}
      | Prevapply, [x; f] -> Lapply {ap_should_be_tailcall=false;
                                     ap_loc=loc;
                                     ap_func=f;
                                     ap_args=[x];
                                     ap_inlined=Default_inline;
                                     ap_specialised=Default_specialise}

        (* Simplify %apply, for n-ary functions with n > 1 *)
      | Pdirapply, [Lapply ap; x]
      | Pdirapply, [Levent (Lapply ap,_); x] ->
        Lapply {ap with ap_args = ap.ap_args @ [x]; ap_loc = loc}
      | Pdirapply, [f; x] -> Lapply {ap_should_be_tailcall=false;
                                     ap_loc=loc;
                                     ap_func=f;
                                     ap_args=[x];
                                     ap_inlined=Default_inline;
                                     ap_specialised=Default_specialise}

      | _ -> Lprim(p, ll, loc)
     end
  | Lswitch(l, sw, loc) ->
      let new_l = simplif l
      and new_consts =  List.map (fun (n, e) -> (n, simplif e)) sw.sw_consts
      and new_blocks =  List.map (fun (n, e) -> (n, simplif e)) sw.sw_blocks
      and new_fail = Misc.may_map simplif sw.sw_failaction in
      Lswitch
        (new_l,
         {sw with sw_consts = new_consts ; sw_blocks = new_blocks;
                  sw_failaction = new_fail},
         loc)
  | Lstringswitch(l,sw,d,loc) ->
      Lstringswitch
        (simplif l,List.map (fun (s,l) -> s,simplif l) sw,
         Misc.may_map simplif d,loc)
  | Lstaticraise (i,[]) as l ->
      begin try
        let _,handler =  Hashtbl.find subst i in
        handler
      with
      | Not_found -> l
      end
  | Lstaticraise (i,ls) ->
      let ls = List.map simplif ls in
      begin try
        let xs,handler =  Hashtbl.find subst i in
        let ys = List.map (fun (x, k) -> Ident.rename x, k) xs in
        let env =
          List.fold_right2
            (fun (x, _) (y, _) env -> Ident.Map.add x y env)
            xs ys Ident.Map.empty
        in
        List.fold_right2
          (fun (y, kind) l r -> Llet (Alias, kind, y, l, r))
          ys ls (Lambda.rename env handler)
      with
      | Not_found -> Lstaticraise (i,ls)
      end
  | Lstaticcatch (l1,(i,[]),(Lstaticraise (_j,[]) as l2)) ->
      Hashtbl.add subst i ([],simplif l2) ;
      simplif l1
  | Lstaticcatch (l1,(i,xs),l2) ->
      let {count; max_depth} = get_exit i in
      if count = 0 then
        (* Discard staticcatch: not matching exit *)
        simplif l1
      else if count = 1 && max_depth <= !try_depth then begin
        (* Inline handler if there is a single occurrence and it is not
           nested within an inner try..with *)
        assert(max_depth = !try_depth);
        Hashtbl.add subst i (xs,simplif l2);
        simplif l1
      end else
        Lstaticcatch (simplif l1, (i,xs), simplif l2)
  | Ltrywith(l1, v, l2) ->
      incr try_depth;
      let l1 = simplif l1 in
      decr try_depth;
      Ltrywith(l1, v, simplif l2)
  | Lifthenelse(l1, l2, l3) -> Lifthenelse(simplif l1, simplif l2, simplif l3)
  | Lsequence(l1, l2) -> Lsequence(simplif l1, simplif l2)
  | Lwhile(l1, l2) -> Lwhile(simplif l1, simplif l2)
  | Lfor(v, l1, l2, dir, l3) ->
      Lfor(v, simplif l1, simplif l2, dir, simplif l3)
  | Lassign(v, l) -> Lassign(v, simplif l)
  | Lsend(k, m, o, ll, loc) ->
      Lsend(k, simplif m, simplif o, List.map simplif ll, loc)
  | Levent(l, ev) -> Levent(simplif l, ev)
  | Lifused(v, l) -> Lifused (v,simplif l)
  in
  simplif lam

(* Compile-time beta-reduction of functions immediately applied:
      Lapply(Lfunction(Curried, params, body), args, loc) ->
        let paramN = argN in ... let param1 = arg1 in body
      Lapply(Lfunction(Tupled, params, body), [Lprim(Pmakeblock(args))], loc) ->
        let paramN = argN in ... let param1 = arg1 in body
   Assumes |args| = |params|.
*)

let beta_reduce params body args =
  List.fold_left2 (fun l (param, kind) arg -> Llet(Strict, kind, param, arg, l))
                  body params args

(* Simplification of lets *)

let simplify_lets lam =

  (* Disable optimisations for bytecode compilation with -g flag *)
  let optimize = !Clflags.native_code || not !Clflags.debug in

  (* First pass: count the occurrences of all let-bound identifiers *)

  let occ = (Hashtbl.create 83: (Ident.t, int ref) Hashtbl.t) in
  (* The global table [occ] associates to each let-bound identifier
     the number of its uses (as a reference):
     - 0 if never used
     - 1 if used exactly once in and not under a lambda or within a loop
     - > 1 if used several times or under a lambda or within a loop.
     The local table [bv] associates to each locally-let-bound variable
     its reference count, as above.  [bv] is enriched at let bindings
     but emptied when crossing lambdas and loops. *)

  (* Current use count of a variable. *)
  let count_var v =
    try
      !(Hashtbl.find occ v)
    with Not_found ->
      0

  (* Entering a [let].  Returns updated [bv]. *)
  and bind_var bv v =
    let r = ref 0 in
    Hashtbl.add occ v r;
    Ident.Map.add v r bv

  (* Record a use of a variable *)
  and use_var bv v n =
    try
      let r = Ident.Map.find v bv in r := !r + n
    with Not_found ->
      (* v is not locally bound, therefore this is a use under a lambda
         or within a loop.  Increase use count by 2 -- enough so
         that single-use optimizations will not apply. *)
    try
      let r = Hashtbl.find occ v in r := !r + 2
    with Not_found ->
      (* Not a let-bound variable, ignore *)
      () in

  let rec count bv = function
  | Lconst _ -> ()
  | Lvar v ->
      use_var bv v 1
  | Lapply{ap_func = Lfunction{kind = Curried; params; body}; ap_args = args}
    when optimize && List.length params = List.length args ->
      count bv (beta_reduce params body args)
  | Lapply{ap_func = Lfunction{kind = Tupled; params; body};
           ap_args = [Lprim(Pmakeblock _, args, _)]}
    when optimize && List.length params = List.length args ->
      count bv (beta_reduce params body args)
  | Lapply{ap_func = l1; ap_args = ll} ->
      count bv l1; List.iter (count bv) ll
  | Lfunction {body} ->
      count Ident.Map.empty body
  | Llet(_str, _k, v, Lvar w, l2) when optimize ->
      (* v will be replaced by w in l2, so each occurrence of v in l2
         increases w's refcount *)
      count (bind_var bv v) l2;
      use_var bv w (count_var v)
  | Llet(str, _kind, v, l1, l2) ->
      count (bind_var bv v) l2;
      (* If v is unused, l1 will be removed, so don't count its variables *)
      if str = Strict || count_var v > 0 then count bv l1
  | Lletrec(bindings, body) ->
      List.iter (fun (_v, l) -> count bv l) bindings;
      count bv body
  | Lprim(_p, ll, _) -> List.iter (count bv) ll
  | Lswitch(l, sw, _loc) ->
      count_default bv sw ;
      count bv l;
      List.iter (fun (_, l) -> count bv l) sw.sw_consts;
      List.iter (fun (_, l) -> count bv l) sw.sw_blocks
  | Lstringswitch(l, sw, d, _) ->
      count bv l ;
      List.iter (fun (_, l) -> count bv l) sw ;
      begin match d with
      | Some d ->
          begin match sw with
          | []|[_] -> count bv d
          | _ -> count bv d ; count bv d
          end
      | None -> ()
      end
  | Lstaticraise (_i,ls) -> List.iter (count bv) ls
  | Lstaticcatch(l1, _, l2) -> count bv l1; count bv l2
  | Ltrywith(l1, _v, l2) -> count bv l1; count bv l2
  | Lifthenelse(l1, l2, l3) -> count bv l1; count bv l2; count bv l3
  | Lsequence(l1, l2) -> count bv l1; count bv l2
  | Lwhile(l1, l2) -> count Ident.Map.empty l1; count Ident.Map.empty l2
  | Lfor(_, l1, l2, _dir, l3) ->
      count bv l1; count bv l2; count Ident.Map.empty l3
  | Lassign(_v, l) ->
      (* Lalias-bound variables are never assigned, so don't increase
         v's refcount *)
      count bv l
  | Lsend(_, m, o, ll, _) -> List.iter (count bv) (m::o::ll)
  | Levent(l, _) -> count bv l
  | Lifused(v, l) ->
      if count_var v > 0 then count bv l

  and count_default bv sw = match sw.sw_failaction with
  | None -> ()
  | Some al ->
      let nconsts = List.length sw.sw_consts
      and nblocks = List.length sw.sw_blocks in
      if
        nconsts < sw.sw_numconsts && nblocks < sw.sw_numblocks
      then begin (* default action will occur twice in native code *)
        count bv al ; count bv al
      end else begin (* default action will occur once *)
        assert (nconsts < sw.sw_numconsts || nblocks < sw.sw_numblocks) ;
        count bv al
      end
  in
  count Ident.Map.empty lam;

  (* Second pass: remove Lalias bindings of unused variables,
     and substitute the bindings of variables used exactly once. *)

  let subst = Hashtbl.create 83 in

(* This (small)  optimisation is always legal, it may uncover some
   tail call later on. *)

  let mklet str kind v e1 e2  = match e2 with
  | Lvar w when optimize && Ident.same v w -> e1
  | _ -> Llet (str, kind,v,e1,e2) in


  let rec simplif = function
    Lvar v as l ->
      begin try
        Hashtbl.find subst v
      with Not_found ->
        l
      end
  | Lconst _ as l -> l
  | Lapply{ap_func = Lfunction{kind = Curried; params; body}; ap_args = args}
    when optimize && List.length params = List.length args ->
      simplif (beta_reduce params body args)
  | Lapply{ap_func = Lfunction{kind = Tupled; params; body};
           ap_args = [Lprim(Pmakeblock _, args, _)]}
    when optimize && List.length params = List.length args ->
      simplif (beta_reduce params body args)
  | Lapply ap -> Lapply {ap with ap_func = simplif ap.ap_func;
                                 ap_args = List.map simplif ap.ap_args}
  | Lfunction{kind; params; return=return1; body = l; attr; loc} ->
      begin match simplif l with
        Lfunction{kind=Curried; params=params'; return=return2; body; attr; loc}
        when kind = Curried && optimize ->
          (* The return type is the type of the value returned after
             applying all the parameters to the function. The return
             type of the merged function taking [params @ params'] as
             parameters is the type returned after applying [params']. *)
          let return = return2 in
          Lfunction{kind; params = params @ params'; return; body; attr; loc}
      | body ->
          Lfunction{kind; params; return = return1; body; attr; loc}
      end
  | Llet(_str, _k, v, Lvar w, l2) when optimize ->
      Hashtbl.add subst v (simplif (Lvar w));
      simplif l2
  | Llet(Strict, kind, v,
         Lprim(Pmakeblock(0, Mutable, kind_ref) as prim, [linit], loc), lbody)
    when optimize ->
      let slinit = simplif linit in
      let slbody = simplif lbody in
      begin try
        let kind = match kind_ref with
          | None -> Pgenval
          | Some [field_kind] -> field_kind
          | Some _ -> assert false
        in
        mklet Variable kind v slinit (eliminate_ref v slbody)
      with Real_reference ->
        mklet Strict kind v (Lprim(prim, [slinit], loc)) slbody
      end
  | Llet(Alias, kind, v, l1, l2) ->
      begin match count_var v with
        0 -> simplif l2
      | 1 when optimize -> Hashtbl.add subst v (simplif l1); simplif l2
      | _ -> Llet(Alias, kind, v, simplif l1, simplif l2)
      end
  | Llet(StrictOpt, kind, v, l1, l2) ->
      begin match count_var v with
        0 -> simplif l2
      | _ -> mklet StrictOpt kind v (simplif l1) (simplif l2)
      end
  | Llet(str, kind, v, l1, l2) -> mklet str kind v (simplif l1) (simplif l2)
  | Lletrec(bindings, body) ->
      Lletrec(List.map (fun (v, l) -> (v, simplif l)) bindings, simplif body)
  | Lprim(p, ll, loc) -> Lprim(p, List.map simplif ll, loc)
  | Lswitch(l, sw, loc) ->
      let new_l = simplif l
      and new_consts =  List.map (fun (n, e) -> (n, simplif e)) sw.sw_consts
      and new_blocks =  List.map (fun (n, e) -> (n, simplif e)) sw.sw_blocks
      and new_fail = Misc.may_map simplif sw.sw_failaction in
      Lswitch
        (new_l,
         {sw with sw_consts = new_consts ; sw_blocks = new_blocks;
                  sw_failaction = new_fail},
         loc)
  | Lstringswitch (l,sw,d,loc) ->
      Lstringswitch
        (simplif l,List.map (fun (s,l) -> s,simplif l) sw,
         Misc.may_map simplif d,loc)
  | Lstaticraise (i,ls) ->
      Lstaticraise (i, List.map simplif ls)
  | Lstaticcatch(l1, (i,args), l2) ->
      Lstaticcatch (simplif l1, (i,args), simplif l2)
  | Ltrywith(l1, v, l2) -> Ltrywith(simplif l1, v, simplif l2)
  | Lifthenelse(l1, l2, l3) -> Lifthenelse(simplif l1, simplif l2, simplif l3)
  | Lsequence(Lifused(v, l1), l2) ->
      if count_var v > 0
      then Lsequence(simplif l1, simplif l2)
      else simplif l2
  | Lsequence(l1, l2) -> Lsequence(simplif l1, simplif l2)
  | Lwhile(l1, l2) -> Lwhile(simplif l1, simplif l2)
  | Lfor(v, l1, l2, dir, l3) ->
      Lfor(v, simplif l1, simplif l2, dir, simplif l3)
  | Lassign(v, l) -> Lassign(v, simplif l)
  | Lsend(k, m, o, ll, loc) ->
      Lsend(k, simplif m, simplif o, List.map simplif ll, loc)
  | Levent(l, ev) -> Levent(simplif l, ev)
  | Lifused(v, l) ->
      if count_var v > 0 then simplif l else lambda_unit
  in
  simplif lam

(* Tail call info in annotation files *)

let is_tail_native_heuristic : (int -> bool) ref =
  ref (fun _ -> true)

let rec emit_tail_infos is_tail lambda =
  let call_kind args =
    if is_tail
    && ((not !Clflags.native_code)
        || (!is_tail_native_heuristic (List.length args)))
   then Annot.Tail
   else Annot.Stack in
  match lambda with
  | Lvar _ -> ()
  | Lconst _ -> ()
  | Lapply ap ->
      if ap.ap_should_be_tailcall
      && not is_tail
      && Warnings.is_active Warnings.Expect_tailcall
        then Location.prerr_warning ap.ap_loc Warnings.Expect_tailcall;
      emit_tail_infos false ap.ap_func;
      list_emit_tail_infos false ap.ap_args;
      if !Clflags.annotations then
        Stypes.record (Stypes.An_call (ap.ap_loc, call_kind ap.ap_args))
  | Lfunction {body = lam} ->
      emit_tail_infos true lam
  | Llet (_str, _k, _, lam, body) ->
      emit_tail_infos false lam;
      emit_tail_infos is_tail body
  | Lletrec (bindings, body) ->
      List.iter (fun (_, lam) -> emit_tail_infos false lam) bindings;
      emit_tail_infos is_tail body
  | Lprim (Pidentity, [arg], _) ->
      emit_tail_infos is_tail arg
  | Lprim ((Pbytes_to_string | Pbytes_of_string), [arg], _) ->
      emit_tail_infos is_tail arg
  | Lprim (Psequand, [arg1; arg2], _)
  | Lprim (Psequor, [arg1; arg2], _) ->
      emit_tail_infos false arg1;
      emit_tail_infos is_tail arg2
  | Lprim (_, l, _) ->
      list_emit_tail_infos false l
  | Lswitch (lam, sw, _loc) ->
      emit_tail_infos false lam;
      list_emit_tail_infos_fun snd is_tail sw.sw_consts;
      list_emit_tail_infos_fun snd is_tail sw.sw_blocks;
      Misc.may  (emit_tail_infos is_tail) sw.sw_failaction
  | Lstringswitch (lam, sw, d, _) ->
      emit_tail_infos false lam;
      List.iter
        (fun (_,lam) ->  emit_tail_infos is_tail lam)
        sw ;
      Misc.may (emit_tail_infos is_tail) d
  | Lstaticraise (_, l) ->
      list_emit_tail_infos false l
  | Lstaticcatch (body, _, handler) ->
      emit_tail_infos is_tail body;
      emit_tail_infos is_tail handler
  | Ltrywith (body, _, handler) ->
      emit_tail_infos false body;
      emit_tail_infos is_tail handler
  | Lifthenelse (cond, ifso, ifno) ->
      emit_tail_infos false cond;
      emit_tail_infos is_tail ifso;
      emit_tail_infos is_tail ifno
  | Lsequence (lam1, lam2) ->
      emit_tail_infos false lam1;
      emit_tail_infos is_tail lam2
  | Lwhile (cond, body) ->
      emit_tail_infos false cond;
      emit_tail_infos false body
  | Lfor (_, low, high, _, body) ->
      emit_tail_infos false low;
      emit_tail_infos false high;
      emit_tail_infos false body
  | Lassign (_, lam) ->
      emit_tail_infos false lam
  | Lsend (_, meth, obj, args, loc) ->
      emit_tail_infos false meth;
      emit_tail_infos false obj;
      list_emit_tail_infos false args;
      if !Clflags.annotations then
        Stypes.record (Stypes.An_call (loc, call_kind (obj :: args)));
  | Levent (lam, _) ->
      emit_tail_infos is_tail lam
  | Lifused (_, lam) ->
      emit_tail_infos is_tail lam
and list_emit_tail_infos_fun f is_tail =
  List.iter (fun x -> emit_tail_infos is_tail (f x))
and list_emit_tail_infos is_tail =
  List.iter (emit_tail_infos is_tail)

(* Split a function with default parameters into a wrapper and an
   inner function.  The wrapper fills in missing optional parameters
   with their default value and tail-calls the inner function.  The
   wrapper can then hopefully be inlined on most call sites to avoid
   the overhead associated with boxing an optional argument with a
   'Some' constructor, only to deconstruct it immediately in the
   function's body. *)

let split_default_wrapper ~id:fun_id ~kind ~params ~return ~body ~attr ~loc =
  let rec aux map = function
    | Llet(Strict, k, id, (Lifthenelse(Lvar optparam, _, _) as def), rest) when
        Ident.name optparam = "*opt*" && List.mem_assoc optparam params
          && not (List.mem_assoc optparam map)
      ->
        let wrapper_body, inner = aux ((optparam, id) :: map) rest in
        Llet(Strict, k, id, def, wrapper_body), inner
    | _ when map = [] -> raise Exit
    | body ->
        (* Check that those *opt* identifiers don't appear in the remaining
           body. This should not appear, but let's be on the safe side. *)
        let fv = Lambda.free_variables body in
        List.iter (fun (id, _) -> if Ident.Set.mem id fv then raise Exit) map;

        let inner_id = Ident.create_local (Ident.name fun_id ^ "_inner") in
        let map_param p = try List.assoc p map with Not_found -> p in
        let args = List.map (fun (p, _) -> Lvar (map_param p)) params in
        let wrapper_body =
          Lapply {
            ap_func = Lvar inner_id;
            ap_args = args;
            ap_loc = Location.none;
            ap_should_be_tailcall = false;
            ap_inlined = Default_inline;
            ap_specialised = Default_specialise;
          }
        in
        let inner_params = List.map map_param (List.map fst params) in
        let new_ids = List.map Ident.rename inner_params in
        let subst =
          List.fold_left2 (fun s id new_id ->
            Ident.Map.add id new_id s
          ) Ident.Map.empty inner_params new_ids
        in
        let body = Lambda.rename subst body in
        let inner_fun =
          Lfunction { kind = Curried;
            params = List.map (fun id -> id, Pgenval) new_ids;
            return; body; attr; loc; }
        in
        (wrapper_body, (inner_id, inner_fun))
  in
  try
    let body, inner = aux [] body in
    let attr = default_stub_attribute in
    [(fun_id, Lfunction{kind; params; return; body; attr; loc}); inner]
  with Exit ->
    [(fun_id, Lfunction{kind; params; return; body; attr; loc})]

module Hooks = Misc.MakeHooks(struct
    type t = lambda
  end)

(* Simplify local let-bound functions: if all occurrences are
   fully-applied function calls in the same "tail scope", replace the
   function by a staticcatch handler (on that scope).

   This handles as a special case functions used exactly once (in any
   scope) for a full application.
*)

type slot =
  {
    nargs: int;
    mutable scope: lambda option;
  }

module LamTbl = Hashtbl.Make(struct
    type t = lambda
    let equal = (==)
    let hash = Hashtbl.hash
  end)

let simplify_local_functions lam =
  let slots = Hashtbl.create 16 in
  let static_id = Hashtbl.create 16 in (* function id -> static id *)
  let static = LamTbl.create 16 in (* scope -> static function on that scope *)
  (* We keep track of the current "tail scope", identified
     by the outermost lambda for which the the current lambda
     is in tail position. *)
  let current_scope = ref lam in
  let check_static lf =
    if lf.attr.local = Always_local then
      Location.prerr_warning lf.loc
        (Warnings.Inlining_impossible
           "This function cannot be compiled into a static continuation")
  in
  let enabled = function
    | {local = Always_local; _}
    | {local = Default_local; inline = (Never_inline | Default_inline); _}
      -> true
    | {local = Default_local; inline = (Always_inline | Unroll _); _}
    | {local = Never_local; _}
      -> false
  in
  let rec tail = function
    | Llet (_str, _kind, id, Lfunction lf, cont) when enabled lf.attr ->
        let r = {nargs=List.length lf.params; scope=None} in
        Hashtbl.add slots id r;
        tail cont;
        begin match Hashtbl.find_opt slots id with
        | Some {scope = Some scope; _} ->
            let st = next_raise_count () in
            let sc =
              (* Do not move higher than current lambda *)
              if scope == !current_scope then cont
              else scope
            in
            Hashtbl.add static_id id st;
            LamTbl.add static sc (st, lf);
            (* The body of the function will become an handler
               in that "scope". *)
            with_scope ~scope lf.body
        | _ ->
            check_static lf;
            (* note: if scope = None, the function is unused *)
            non_tail lf.body
        end
    | Lapply {ap_func = Lvar id; ap_args; _} ->
        begin match Hashtbl.find_opt slots id with
        | Some {nargs; _} when nargs <> List.length ap_args ->
            (* Wrong arity *)
            Hashtbl.remove slots id
        | Some {scope = Some scope; _} when scope != !current_scope ->
            (* Different "tail scope" *)
            Hashtbl.remove slots id
        | Some ({scope = None; _} as slot) ->
            (* First use of the function: remember the current tail scope *)
            slot.scope <- Some !current_scope
        | _ ->
            ()
        end;
        List.iter non_tail ap_args
    | Lvar id ->
        Hashtbl.remove slots id
    | Lfunction lf as lam ->
        check_static lf;
        Lambda.shallow_iter ~tail ~non_tail lam
    | lam ->
        Lambda.shallow_iter ~tail ~non_tail lam
  and non_tail lam =
    with_scope ~scope:lam lam
  and with_scope ~scope lam =
    let old_scope = !current_scope in
    current_scope := scope;
    tail lam;
    current_scope := old_scope
  in
  tail lam;
  let rec rewrite lam0 =
    let lam =
      match lam0 with
      | Llet (_, _, id, _, cont) when Hashtbl.mem static_id id ->
          rewrite cont
      | Lapply {ap_func = Lvar id; ap_args; _} when Hashtbl.mem static_id id ->
          Lstaticraise (Hashtbl.find static_id id, List.map rewrite ap_args)
      | lam ->
          Lambda.shallow_map rewrite lam
    in
    List.fold_right
      (fun (st, lf) lam ->
         Lstaticcatch (lam, (st, lf.params), rewrite lf.body)
      )
      (LamTbl.find_all static lam0)
      lam
  in
  if LamTbl.length static = 0 then
    lam
  else
    rewrite lam

(* The entry point:
   simplification + emission of tailcall annotations, if needed. *)

let simplify_lambda sourcefile lam =
  let lam =
    lam
    |> (if !Clflags.native_code || not !Clflags.debug
        then simplify_local_functions else Fun.id
       )
    |> simplify_exits
    |> simplify_lets
    |> Hooks.apply_hooks { Misc.sourcefile }
  in
  if !Clflags.annotations || Warnings.is_active Warnings.Expect_tailcall
    then emit_tail_infos true lam;
  lam