summaryrefslogtreecommitdiff
path: root/bytecomp/translcore.ml
blob: 084e7e7b03aff28a6bbe9f64c088515675d56f36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id$ *)

(* Translation from typed abstract syntax to lambda terms,
   for the core language *)

open Misc
open Asttypes
open Primitive
open Path
open Types
open Typedtree
open Typeopt
open Lambda
open Format

type error =
    Illegal_letrec_pat
  | Illegal_letrec_expr
  | Free_super_var
  | Illegal_tuple_expr
  | Illegal_contracted_expr

exception Error of Location.t * error

(* Forward declaration -- to be filled in by Translmod.transl_module *)
let transl_module =
  ref((fun cc rootpath modl -> assert false) :
      module_coercion -> Path.t option -> module_expr -> lambda)

let transl_object =
  ref (fun id s cl -> assert false :
       Ident.t -> string list -> class_expr -> lambda)

(* Translation of primitives *)

let comparisons_table = create_hashtable 11 [
  "%equal",
      (Pccall{prim_name = "caml_equal"; prim_arity = 2; prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pintcomp Ceq,
       Pfloatcomp Ceq,
       Pccall{prim_name = "caml_string_equal"; prim_arity = 2;
              prim_alloc = false;
              prim_native_name = ""; prim_native_float = false},
       Pbintcomp(Pnativeint, Ceq),
       Pbintcomp(Pint32, Ceq),
       Pbintcomp(Pint64, Ceq),
       true);
  "%notequal",
      (Pccall{prim_name = "caml_notequal"; prim_arity = 2; prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pintcomp Cneq,
       Pfloatcomp Cneq,
       Pccall{prim_name = "caml_string_notequal"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pbintcomp(Pnativeint, Cneq),
       Pbintcomp(Pint32, Cneq),
       Pbintcomp(Pint64, Cneq),
       true);
  "%lessthan",
      (Pccall{prim_name = "caml_lessthan"; prim_arity = 2; prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pintcomp Clt,
       Pfloatcomp Clt,
       Pccall{prim_name = "caml_string_lessthan"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pbintcomp(Pnativeint, Clt),
       Pbintcomp(Pint32, Clt),
       Pbintcomp(Pint64, Clt),
       false);
  "%greaterthan",
      (Pccall{prim_name = "caml_greaterthan"; prim_arity = 2; prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pintcomp Cgt,
       Pfloatcomp Cgt,
       Pccall{prim_name = "caml_string_greaterthan"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pbintcomp(Pnativeint, Cgt),
       Pbintcomp(Pint32, Cgt),
       Pbintcomp(Pint64, Cgt),
       false);
  "%lessequal",
      (Pccall{prim_name = "caml_lessequal"; prim_arity = 2; prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pintcomp Cle,
       Pfloatcomp Cle,
       Pccall{prim_name = "caml_string_lessequal"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pbintcomp(Pnativeint, Cle),
       Pbintcomp(Pint32, Cle),
       Pbintcomp(Pint64, Cle),
       false);
  "%greaterequal",
      (Pccall{prim_name = "caml_greaterequal"; prim_arity = 2;
              prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pintcomp Cge,
       Pfloatcomp Cge,
       Pccall{prim_name = "caml_string_greaterequal"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pbintcomp(Pnativeint, Cge),
       Pbintcomp(Pint32, Cge),
       Pbintcomp(Pint64, Cge),
       false);
  "%compare",
      (Pccall{prim_name = "caml_compare"; prim_arity = 2; prim_alloc = true;
              prim_native_name = ""; prim_native_float = false},
       Pccall{prim_name = "caml_int_compare"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pccall{prim_name = "caml_float_compare"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pccall{prim_name = "caml_string_compare"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pccall{prim_name = "caml_nativeint_compare"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pccall{prim_name = "caml_int32_compare"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       Pccall{prim_name = "caml_int64_compare"; prim_arity = 2;
              prim_alloc = false; prim_native_name = "";
              prim_native_float = false},
       false)
]

let primitives_table = create_hashtable 57 [
  "%identity", Pidentity;
  "%ignore", Pignore;
  "%field0", Pfield 0;
  "%field1", Pfield 1;
  "%setfield0", Psetfield(0, true);
  "%makeblock", Pmakeblock(0, Immutable);
  "%makemutable", Pmakeblock(0, Mutable);
  "%raise", Praise;
  "%sequand", Psequand;
  "%sequor", Psequor;
  "%boolnot", Pnot;
  "%negint", Pnegint;
  "%succint", Poffsetint 1;
  "%predint", Poffsetint(-1);
  "%addint", Paddint;
  "%subint", Psubint;
  "%mulint", Pmulint;
  "%divint", Pdivint;
  "%modint", Pmodint;
  "%andint", Pandint;
  "%orint", Porint;
  "%xorint", Pxorint;
  "%lslint", Plslint;
  "%lsrint", Plsrint;
  "%asrint", Pasrint;
  "%eq", Pintcomp Ceq;
  "%noteq", Pintcomp Cneq;
  "%ltint", Pintcomp Clt;
  "%leint", Pintcomp Cle;
  "%gtint", Pintcomp Cgt;
  "%geint", Pintcomp Cge;
  "%incr", Poffsetref(1);
  "%decr", Poffsetref(-1);
  "%intoffloat", Pintoffloat;
  "%floatofint", Pfloatofint;
  "%negfloat", Pnegfloat;
  "%absfloat", Pabsfloat;
  "%addfloat", Paddfloat;
  "%subfloat", Psubfloat;
  "%mulfloat", Pmulfloat;
  "%divfloat", Pdivfloat;
  "%eqfloat", Pfloatcomp Ceq;
  "%noteqfloat", Pfloatcomp Cneq;
  "%ltfloat", Pfloatcomp Clt;
  "%lefloat", Pfloatcomp Cle;
  "%gtfloat", Pfloatcomp Cgt;
  "%gefloat", Pfloatcomp Cge;
  "%string_length", Pstringlength;
  "%string_safe_get", Pstringrefs;
  "%string_safe_set", Pstringsets;
  "%string_unsafe_get", Pstringrefu;
  "%string_unsafe_set", Pstringsetu;
  "%array_length", Parraylength Pgenarray;
  "%array_safe_get", Parrayrefs Pgenarray;
  "%array_safe_set", Parraysets Pgenarray;
  "%array_unsafe_get", Parrayrefu Pgenarray;
  "%array_unsafe_set", Parraysetu Pgenarray;
  "%obj_size", Parraylength Pgenarray;
  "%obj_field", Parrayrefu Pgenarray;
  "%obj_set_field", Parraysetu Pgenarray;
  "%obj_is_int", Pisint;
  "%lazy_force", Plazyforce;
  "%nativeint_of_int", Pbintofint Pnativeint;
  "%nativeint_to_int", Pintofbint Pnativeint;
  "%nativeint_neg", Pnegbint Pnativeint;
  "%nativeint_add", Paddbint Pnativeint;
  "%nativeint_sub", Psubbint Pnativeint;
  "%nativeint_mul", Pmulbint Pnativeint;
  "%nativeint_div", Pdivbint Pnativeint;
  "%nativeint_mod", Pmodbint Pnativeint;
  "%nativeint_and", Pandbint Pnativeint;
  "%nativeint_or",  Porbint Pnativeint;
  "%nativeint_xor", Pxorbint Pnativeint;
  "%nativeint_lsl", Plslbint Pnativeint;
  "%nativeint_lsr", Plsrbint Pnativeint;
  "%nativeint_asr", Pasrbint Pnativeint;
  "%int32_of_int", Pbintofint Pint32;
  "%int32_to_int", Pintofbint Pint32;
  "%int32_neg", Pnegbint Pint32;
  "%int32_add", Paddbint Pint32;
  "%int32_sub", Psubbint Pint32;
  "%int32_mul", Pmulbint Pint32;
  "%int32_div", Pdivbint Pint32;
  "%int32_mod", Pmodbint Pint32;
  "%int32_and", Pandbint Pint32;
  "%int32_or",  Porbint Pint32;
  "%int32_xor", Pxorbint Pint32;
  "%int32_lsl", Plslbint Pint32;
  "%int32_lsr", Plsrbint Pint32;
  "%int32_asr", Pasrbint Pint32;
  "%int64_of_int", Pbintofint Pint64;
  "%int64_to_int", Pintofbint Pint64;
  "%int64_neg", Pnegbint Pint64;
  "%int64_add", Paddbint Pint64;
  "%int64_sub", Psubbint Pint64;
  "%int64_mul", Pmulbint Pint64;
  "%int64_div", Pdivbint Pint64;
  "%int64_mod", Pmodbint Pint64;
  "%int64_and", Pandbint Pint64;
  "%int64_or",  Porbint Pint64;
  "%int64_xor", Pxorbint Pint64;
  "%int64_lsl", Plslbint Pint64;
  "%int64_lsr", Plsrbint Pint64;
  "%int64_asr", Pasrbint Pint64;
  "%nativeint_of_int32", Pcvtbint(Pint32, Pnativeint);
  "%nativeint_to_int32", Pcvtbint(Pnativeint, Pint32);
  "%int64_of_int32", Pcvtbint(Pint32, Pint64);
  "%int64_to_int32", Pcvtbint(Pint64, Pint32);
  "%int64_of_nativeint", Pcvtbint(Pnativeint, Pint64);
  "%int64_to_nativeint", Pcvtbint(Pint64, Pnativeint);
  "%caml_ba_ref_1",
    Pbigarrayref(false, 1, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_ref_2",
    Pbigarrayref(false, 2, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_ref_3",
    Pbigarrayref(false, 3, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_set_1",
    Pbigarrayset(false, 1, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_set_2",
    Pbigarrayset(false, 2, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_set_3",
    Pbigarrayset(false, 3, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_unsafe_ref_1",
    Pbigarrayref(true, 1, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_unsafe_ref_2",
    Pbigarrayref(true, 2, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_unsafe_ref_3",
    Pbigarrayref(true, 3, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_unsafe_set_1",
    Pbigarrayset(true, 1, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_unsafe_set_2",
    Pbigarrayset(true, 2, Pbigarray_unknown, Pbigarray_unknown_layout);
  "%caml_ba_unsafe_set_3",
    Pbigarrayset(true, 3, Pbigarray_unknown, Pbigarray_unknown_layout)
]

let prim_makearray =
  { prim_name = "caml_make_vect"; prim_arity = 2; prim_alloc = true;
    prim_native_name = ""; prim_native_float = false }

let prim_obj_dup =
  { prim_name = "caml_obj_dup"; prim_arity = 1; prim_alloc = true;
    prim_native_name = ""; prim_native_float = false }

let transl_prim prim args =
  try
    let (gencomp, intcomp, floatcomp, stringcomp,
         nativeintcomp, int32comp, int64comp,
         simplify_constant_constructor) =
      Hashtbl.find comparisons_table prim.prim_name in
    begin match args with
      [arg1; {exp_desc = Texp_construct(_, {cstr_tag = Cstr_constant _}, _)}]
      when simplify_constant_constructor ->
        intcomp
    | [{exp_desc = Texp_construct(_, {cstr_tag = Cstr_constant _}, _)}; arg2]
      when simplify_constant_constructor ->
        intcomp
    | [arg1; {exp_desc = Texp_variant(_, None)}]
      when simplify_constant_constructor ->
        intcomp
    | [{exp_desc = Texp_variant(_, None)}; exp2]
      when simplify_constant_constructor ->
        intcomp
    | [arg1; arg2] when has_base_type arg1 Predef.path_int
                     || has_base_type arg1 Predef.path_char ->
        intcomp
    | [arg1; arg2] when has_base_type arg1 Predef.path_float ->
        floatcomp
    | [arg1; arg2] when has_base_type arg1 Predef.path_string ->
        stringcomp
    | [arg1; arg2] when has_base_type arg1 Predef.path_nativeint ->
        nativeintcomp
    | [arg1; arg2] when has_base_type arg1 Predef.path_int32 ->
        int32comp
    | [arg1; arg2] when has_base_type arg1 Predef.path_int64 ->
        int64comp
    | _ ->
        gencomp
    end
  with Not_found ->
  try
    let p = Hashtbl.find primitives_table prim.prim_name in
    (* Try strength reduction based on the type of the argument *)
    begin match (p, args) with
        (Psetfield(n, _), [arg1; arg2]) -> Psetfield(n, maybe_pointer arg2)
      | (Parraylength Pgenarray, [arg])   -> Parraylength(array_kind arg)
      | (Parrayrefu Pgenarray, arg1 :: _) -> Parrayrefu(array_kind arg1)
      | (Parraysetu Pgenarray, arg1 :: _) -> Parraysetu(array_kind arg1)
      | (Parrayrefs Pgenarray, arg1 :: _) -> Parrayrefs(array_kind arg1)
      | (Parraysets Pgenarray, arg1 :: _) -> Parraysets(array_kind arg1)
      | (Pbigarrayref(unsafe, n, Pbigarray_unknown, Pbigarray_unknown_layout),
                      arg1 :: _) ->
            let (k, l) = bigarray_kind_and_layout arg1 in
            Pbigarrayref(unsafe, n, k, l)
      | (Pbigarrayset(unsafe, n, Pbigarray_unknown, Pbigarray_unknown_layout),
                      arg1 :: _) ->
            let (k, l) = bigarray_kind_and_layout arg1 in
            Pbigarrayset(unsafe, n, k, l)
      | _ -> p
    end
  with Not_found ->
    Pccall prim


(* Eta-expand a primitive without knowing the types of its arguments *)

let transl_primitive p =
  let prim =
    try
      let (gencomp, _, _, _, _, _, _, _) =
        Hashtbl.find comparisons_table p.prim_name in
      gencomp
    with Not_found ->
    try
      Hashtbl.find primitives_table p.prim_name
    with Not_found ->
      Pccall p in
  match prim with
    Plazyforce ->
      let parm = Ident.create "prim" in
      Lfunction(Curried, [parm], Matching.inline_lazy_force (Lvar parm) Location.none)
  | _ ->
      let rec make_params n =
        if n <= 0 then [] else Ident.create "prim" :: make_params (n-1) in
      let params = make_params p.prim_arity in
      Lfunction(Curried, params, Lprim(prim, List.map (fun id -> Lvar id) params))

(* To check the well-formedness of r.h.s. of "let rec" definitions *)

let check_recursive_lambda idlist lam =
  let rec check_top idlist = function
    | Lvar v -> not (List.mem v idlist)
    | Llet (_, _, _, _) as lam when check_recursive_recordwith idlist lam ->
        true
    | Llet(str, id, arg, body) ->
        check idlist arg && check_top (add_let id arg idlist) body
    | Lletrec(bindings, body) ->
        let idlist' = add_letrec bindings idlist in
        List.for_all (fun (id, arg) -> check idlist' arg) bindings &&
        check_top idlist' body
    | Lsequence (lam1, lam2) -> check idlist lam1 && check_top idlist lam2
    | Levent (lam, _) -> check_top idlist lam
    | lam -> check idlist lam

  and check idlist = function
    | Lvar _ -> true
    | Lfunction(kind, params, body) -> true
    | Llet (_, _, _, _) as lam when check_recursive_recordwith idlist lam ->
        true
    | Llet(str, id, arg, body) ->
        check idlist arg && check (add_let id arg idlist) body
    | Lletrec(bindings, body) ->
        let idlist' = add_letrec bindings idlist in
        List.for_all (fun (id, arg) -> check idlist' arg) bindings &&
        check idlist' body
    | Lprim(Pmakeblock(tag, mut), args) ->
        List.for_all (check idlist) args
    | Lprim(Pmakearray(Paddrarray|Pintarray), args) ->
        List.for_all (check idlist) args
    | Lprim (Pmakearray (Pgenarray), args) -> false
    | Lsequence (lam1, lam2) -> check idlist lam1 && check idlist lam2
    | Levent (lam, _) -> check idlist lam
    | lam ->
        let fv = free_variables lam in
        not (List.exists (fun id -> IdentSet.mem id fv) idlist)

  and add_let id arg idlist =
    let fv = free_variables arg in
    if List.exists (fun id -> IdentSet.mem id fv) idlist
    then id :: idlist
    else idlist

  and add_letrec bindings idlist =
    List.fold_right (fun (id, arg) idl -> add_let id arg idl)
                    bindings idlist

  (* reverse-engineering the code generated by transl_record case 2 *)
  (* If you change this, you probably need to change Bytegen.size_of_lambda. *)
  and check_recursive_recordwith idlist = function
    | Llet (Strict, id1, Lprim (Pduprecord _, [e1]), body) ->
       check_top idlist e1
       && check_recordwith_updates idlist id1 body
    | _ -> false

  and check_recordwith_updates idlist id1 = function
    | Lsequence (Lprim ((Psetfield _ | Psetfloatfield _), [Lvar id2; e1]), cont)
        -> id2 = id1 && check idlist e1
           && check_recordwith_updates idlist id1 cont
    | Lvar id2 -> id2 = id1
    | _ -> false

  in check_top idlist lam

(* To propagate structured constants *)

exception Not_constant

let extract_constant = function
    Lconst sc -> sc
  | _ -> raise Not_constant

let extract_float = function
    Const_base(Const_float f) -> f
  | _ -> fatal_error "Translcore.extract_float"

(* To find reasonable names for let-bound and lambda-bound idents *)

let rec name_pattern default = function
    [] -> Ident.create default
  | (p, e) :: rem ->
      match p.pat_desc with
        Tpat_var id -> id
      | Tpat_alias(p, id) -> id
      | _ -> name_pattern default rem

(* Push the default values under the functional abstractions *)

let rec push_defaults loc bindings pat_expr_list partial =
  match pat_expr_list with
    [pat, ({exp_desc = Texp_function(pl,partial)} as exp)] ->
      let pl = push_defaults exp.exp_loc bindings pl partial in
      [pat, {exp with exp_desc = Texp_function(pl, partial)}]
  | [pat, {exp_desc = Texp_let
             (Default, cases, ({exp_desc = Texp_function _} as e2))}] ->
      push_defaults loc (cases :: bindings) [pat, e2] partial
  | [pat, exp] ->
      let exp =
        List.fold_left
          (fun exp cases ->
            {exp with exp_desc = Texp_let(Nonrecursive, cases, exp)})
          exp bindings
      in
      [pat, exp]
  | (pat, exp) :: _ when bindings <> [] ->
      let param = name_pattern "param" pat_expr_list in
      let exp =
        { exp with exp_loc = loc; exp_desc =
          Texp_match
            ({exp with exp_type = pat.pat_type; exp_desc =
              Texp_ident (Path.Pident param,
                          {val_type = pat.pat_type; val_kind = Val_reg})},
             pat_expr_list, partial) }
      in
      push_defaults loc bindings
        [{pat with pat_desc = Tpat_var param}, exp] Total
  | _ ->
      pat_expr_list

(* Insertion of debugging events *)

let event_before exp lam = match lam with
| Lstaticraise (_,_) -> lam
| _ ->
  if !Clflags.debug
  then Levent(lam, {lev_loc = exp.exp_loc;
                    lev_kind = Lev_before;
                    lev_repr = None;
                    lev_env = Env.summary exp.exp_env})
  else lam

let event_after exp lam =
  if !Clflags.debug
  then Levent(lam, {lev_loc = exp.exp_loc;
                    lev_kind = Lev_after exp.exp_type;
                    lev_repr = None;
                    lev_env = Env.summary exp.exp_env})
  else lam

let event_function exp lam =
  if !Clflags.debug then
    let repr = Some (ref 0) in
    let (info, body) = lam repr in
    (info,
     Levent(body, {lev_loc = exp.exp_loc;
                   lev_kind = Lev_function;
                   lev_repr = repr;
                   lev_env = Env.summary exp.exp_env}))
  else
    lam None

let primitive_is_ccall = function
  (* Determine if a primitive is a Pccall or will be turned later into
     a C function call that may raise an exception *)
  | Pccall _ | Pstringrefs | Pstringsets | Parrayrefs _ | Parraysets _ |
    Pbigarrayref _ | Pbigarrayset _ | Pduprecord _ -> true
  | _ -> false

(* Contracts *)
let contract_failed loc pathop = 
  (* [Location.get_pos_info] is too expensive 
     Code below modifies assert_failed by adding one more field to blame func_name *)
  let filename = match loc.Location.loc_start.Lexing.pos_fname with
              | "" -> !Location.input_name
              | x -> x
  in
  let func_name = match pathop with
                  | Some path -> (Path.name path)      
                  | None ->  "_"
  in 
  let pos = loc.Location.loc_start in
  let line = pos.Lexing.pos_lnum in
  let char = pos.Lexing.pos_cnum - pos.Lexing.pos_bol in
  Lprim(Praise, [Lprim(Pmakeblock(0, Immutable),
                      [transl_path Predef.path_contract_failure;
	    	       Lconst(Const_block(0,
			[Const_base(Const_string filename);
			 Const_base(Const_int line);
			 Const_base(Const_int char);
                         Const_base(Const_string ("Blame: " ^ func_name))]))])])

(* Assertions *)

let assert_failed loc =
  (* [Location.get_pos_info] is too expensive *)
  let fname = match loc.Location.loc_start.Lexing.pos_fname with
              | "" -> !Location.input_name
              | x -> x
  in
  let pos = loc.Location.loc_start in
  let line = pos.Lexing.pos_lnum in
  let char = pos.Lexing.pos_cnum - pos.Lexing.pos_bol in
  Lprim(Praise, [Lprim(Pmakeblock(0, Immutable),
          [transl_path Predef.path_assert_failure;
           Lconst(Const_block(0,
              [Const_base(Const_string fname);
               Const_base(Const_int line);
               Const_base(Const_int char)]))])])
;;

let rec cut n l =
  if n = 0 then ([],l) else
  match l with [] -> failwith "Translcore.cut"
  | a::l -> let (l1,l2) = cut (n-1) l in (a::l1,l2)

(* Translation of expressions *)

let rec transl_exp e =
  let eval_once =
    (* Whether classes for immediate objects must be cached *)
    match e.exp_desc with
      Texp_function _ | Texp_for _ | Texp_while _ -> false
    | _ -> true
  in
  if eval_once then transl_exp0 e else
  Translobj.oo_wrap e.exp_env true transl_exp0 e

and transl_exp0 e =
  match e.exp_desc with
    Texp_ident(path, {val_kind = Val_prim p}) ->
      let public_send = p.prim_name = "%send" in
      if public_send || p.prim_name = "%sendself" then
        let kind = if public_send then Public else Self in
        let obj = Ident.create "obj" and meth = Ident.create "meth" in
        Lfunction(Curried, [obj; meth], Lsend(kind, Lvar meth, Lvar obj, []))
      else if p.prim_name = "%sendcache" then
        let obj = Ident.create "obj" and meth = Ident.create "meth" in
        let cache = Ident.create "cache" and pos = Ident.create "pos" in
        Lfunction(Curried, [obj; meth; cache; pos],
                  Lsend(Cached, Lvar meth, Lvar obj, [Lvar cache; Lvar pos]))
      else
        transl_primitive p
  | Texp_ident(path, {val_kind = Val_anc _}) ->
      raise(Error(e.exp_loc, Free_super_var))
  | Texp_ident(path, {val_kind = Val_reg | Val_self _}) ->
      transl_path path
  | Texp_ident _ -> fatal_error "Translcore.transl_exp: bad Texp_ident"
  | Texp_constant cst ->
      Lconst(Const_base cst)
  | Texp_let(rec_flag, pat_expr_list, body) ->
      transl_let rec_flag pat_expr_list (event_before body (transl_exp body))
  | Texp_function (pat_expr_list, partial) ->
      let ((kind, params), body) =
        event_function e
          (function repr ->
            let pl = push_defaults e.exp_loc [] pat_expr_list partial in
            transl_function e.exp_loc !Clflags.native_code repr partial pl)
      in
      Lfunction(kind, params, body)
  | Texp_apply({exp_desc = Texp_ident(path, {val_kind = Val_prim p})}, oargs)
    when List.length oargs >= p.prim_arity
    && List.for_all (fun (arg,_) -> arg <> None) oargs ->
      let args, args' = cut p.prim_arity oargs in
      let wrap f =
        if args' = []
        then event_after e f
        else event_after e (transl_apply f args' e.exp_loc)
      in
      let wrap0 f =
        if args' = [] then f else wrap f in
      let args = List.map (function Some x, _ -> x | _ -> assert false) args in
      let argl = transl_list args in
      let public_send = p.prim_name = "%send"
        || not !Clflags.native_code && p.prim_name = "%sendcache"in
      if public_send || p.prim_name = "%sendself" then
        let kind = if public_send then Public else Self in
        let obj = List.hd argl in
        wrap (Lsend (kind, List.nth argl 1, obj, []))
      else if p.prim_name = "%sendcache" then
        match argl with [obj; meth; cache; pos] ->
          wrap (Lsend(Cached, meth, obj, [cache; pos]))
        | _ -> assert false
      else begin
        let prim = transl_prim p args in
        match (prim, args) with
          (Praise, [arg1]) ->
            wrap0 (Lprim(Praise, [event_after arg1 (List.hd argl)]))
        | (_, _) ->
            begin match (prim, argl) with
            | (Plazyforce, [a]) ->
                wrap (Matching.inline_lazy_force a e.exp_loc)
            | (Plazyforce, _) -> assert false
            |_ -> let p = Lprim(prim, argl) in
               if primitive_is_ccall prim then wrap p else wrap0 p
            end
      end
  | Texp_apply(funct, oargs) ->
      event_after e (transl_apply (transl_exp funct) oargs e.exp_loc)
  | Texp_match({exp_desc = Texp_tuple argl}, pat_expr_list, partial) ->
      Matching.for_multiple_match e.exp_loc
        (transl_list argl) (transl_cases pat_expr_list) partial
  | Texp_match(arg, pat_expr_list, partial) ->
      Matching.for_function e.exp_loc None
        (transl_exp arg) (transl_cases pat_expr_list) partial
  | Texp_try(body, pat_expr_list) ->
      let id = name_pattern "exn" pat_expr_list in
      Ltrywith(transl_exp body, id,
               Matching.for_trywith (Lvar id) (transl_cases pat_expr_list))
  | Texp_tuple el ->
      let ll = transl_list el in
      begin try
        Lconst(Const_block(0, List.map extract_constant ll))
      with Not_constant ->
        Lprim(Pmakeblock(0, Immutable), ll)
      end
  | Texp_construct(_, cstr, args) ->
      let ll = transl_list args in
      begin match cstr.cstr_tag with
        Cstr_constant n ->
          Lconst(Const_pointer n)
      | Cstr_block n ->
          begin try
            Lconst(Const_block(n, List.map extract_constant ll))
          with Not_constant ->
            Lprim(Pmakeblock(n, Immutable), ll)
          end
      | Cstr_exception path ->
          Lprim(Pmakeblock(0, Immutable), transl_path path :: ll)
      end
  | Texp_variant(l, arg) ->
      let tag = Btype.hash_variant l in
      begin match arg with
        None -> Lconst(Const_pointer tag)
      | Some arg ->
          let lam = transl_exp arg in
          try
            Lconst(Const_block(0, [Const_base(Const_int tag);
                                   extract_constant lam]))
          with Not_constant ->
            Lprim(Pmakeblock(0, Immutable),
                  [Lconst(Const_base(Const_int tag)); lam])
      end
  | Texp_record ((lbl1, _) :: _ as lbl_expr_list, opt_init_expr) ->
      transl_record lbl1.lbl_all lbl1.lbl_repres lbl_expr_list opt_init_expr
  | Texp_record ([], _) ->
      fatal_error "Translcore.transl_exp: bad Texp_record"
  | Texp_field(arg, lbl) ->
      let access =
        match lbl.lbl_repres with
          Record_regular -> Pfield lbl.lbl_pos
        | Record_float -> Pfloatfield lbl.lbl_pos in
      Lprim(access, [transl_exp arg])
  | Texp_setfield(arg, lbl, newval) ->
      let access =
        match lbl.lbl_repres with
          Record_regular -> Psetfield(lbl.lbl_pos, maybe_pointer newval)
        | Record_float -> Psetfloatfield lbl.lbl_pos in
      Lprim(access, [transl_exp arg; transl_exp newval])
  | Texp_array expr_list ->
      let kind = array_kind e in
      let ll = transl_list expr_list in
      begin try
        (* Deactivate constant optimization if array is small enough *)
        if List.length ll <= 4 then raise Not_constant;
        let cl = List.map extract_constant ll in
        let master =
          match kind with
          | Paddrarray | Pintarray ->
              Lconst(Const_block(0, cl))
          | Pfloatarray ->
              Lconst(Const_float_array(List.map extract_float cl))
          | Pgenarray ->
              raise Not_constant in             (* can this really happen? *)
        Lprim(Pccall prim_obj_dup, [master])
      with Not_constant ->
        Lprim(Pmakearray kind, ll)
      end
  | Texp_ifthenelse(cond, ifso, Some ifnot) ->
      Lifthenelse(transl_exp cond,
                  event_before ifso (transl_exp ifso),
                  event_before ifnot (transl_exp ifnot))
  | Texp_ifthenelse(cond, ifso, None) ->
      Lifthenelse(transl_exp cond,
                  event_before ifso (transl_exp ifso),
                  lambda_unit)
  | Texp_sequence(expr1, expr2) ->
      Lsequence(transl_exp expr1, event_before expr2 (transl_exp expr2))
  | Texp_while(cond, body) ->
      Lwhile(transl_exp cond, event_before body (transl_exp body))
  | Texp_for(param, low, high, dir, body) ->
      Lfor(param, transl_exp low, transl_exp high, dir,
           event_before body (transl_exp body))
  | Texp_when(cond, body) ->
      event_before cond
        (Lifthenelse(transl_exp cond, event_before body (transl_exp body),
                     staticfail))
  | Texp_send(expr, met) ->
      let obj = transl_exp expr in
      let lam =
        match met with
          Tmeth_val id -> Lsend (Self, Lvar id, obj, [])
        | Tmeth_name nm ->
            let (tag, cache) = Translobj.meth obj nm in
            let kind = if cache = [] then Public else Cached in
            Lsend (kind, tag, obj, cache)
      in
      event_after e lam
  | Texp_new (cl, _) ->
      Lapply(Lprim(Pfield 0, [transl_path cl]), [lambda_unit], Location.none)
  | Texp_instvar(path_self, path) ->
      Lprim(Parrayrefu Paddrarray, [transl_path path_self; transl_path path])
  | Texp_setinstvar(path_self, path, expr) ->
      transl_setinstvar (transl_path path_self) path expr
  | Texp_override(path_self, modifs) ->
      let cpy = Ident.create "copy" in
      Llet(Strict, cpy,
           Lapply(Translobj.oo_prim "copy", [transl_path path_self],
                  Location.none),
           List.fold_right
             (fun (path, expr) rem ->
                Lsequence(transl_setinstvar (Lvar cpy) path expr, rem))
             modifs
             (Lvar cpy))
  | Texp_letmodule(id, modl, body) ->
      Llet(Strict, id, !transl_module Tcoerce_none None modl, transl_exp body)
  | Texp_assert (cond) ->
      if !Clflags.noassert
      then lambda_unit
      else Lifthenelse (transl_exp cond, lambda_unit, assert_failed e.exp_loc)
  | Texp_assertfalse -> assert_failed e.exp_loc
  | Texp_lazy e ->
      (* when e needs no computation (constants, identifiers, ...), we
         optimize the translation just as Lazy.lazy_from_val would
         do *)
      begin match e.exp_desc with
        (* a constant expr of type <> float gets compiled as itself *)
      | Texp_constant
          ( Const_int _ | Const_char _ | Const_string _
          | Const_int32 _ | Const_int64 _ | Const_nativeint _ )
      | Texp_function(_, _)
      | Texp_construct (_, {cstr_arity = 0}, _)
        -> transl_exp e
      | Texp_constant(Const_float _) ->
          Lprim(Pmakeblock(Obj.forward_tag, Immutable), [transl_exp e])
      | Texp_ident(_, _) -> (* according to the type *)
          begin match e.exp_type.desc with
          (* the following may represent a float/forward/lazy: need a
             forward_tag *)
          | Tvar | Tlink _ | Tsubst _ | Tunivar
          | Tpoly(_,_) | Tfield(_,_,_,_) ->
              Lprim(Pmakeblock(Obj.forward_tag, Immutable), [transl_exp e])
          (* the following cannot be represented as float/forward/lazy:
             optimize *)
          | Tarrow(_,_,_,_) | Ttuple _ | Tobject(_,_) | Tnil | Tvariant _
              -> transl_exp e
          (* optimize predefined types (excepted float) *)
          | Tconstr(_,_,_) ->
              if has_base_type e Predef.path_int
                || has_base_type e Predef.path_char
                || has_base_type e Predef.path_string
                || has_base_type e Predef.path_bool
                || has_base_type e Predef.path_unit
                || has_base_type e Predef.path_exn
                || has_base_type e Predef.path_array
                || has_base_type e Predef.path_list
                || has_base_type e Predef.path_format6
                || has_base_type e Predef.path_option
                || has_base_type e Predef.path_nativeint
                || has_base_type e Predef.path_int32
                || has_base_type e Predef.path_int64
              then transl_exp e
              else
                Lprim(Pmakeblock(Obj.forward_tag, Immutable), [transl_exp e])
          end
      (* other cases compile to a lazy block holding a function *)
      | _ ->
          let fn = Lfunction (Curried, [Ident.create "param"], transl_exp e) in
          Lprim(Pmakeblock(Config.lazy_tag, Immutable), [fn])
      end
  | Texp_object (cs, cty, meths) ->
      let cl = Ident.create "class" in
      !transl_object cl meths
        { cl_desc = Tclass_structure cs;
          cl_loc = e.exp_loc;
          cl_type = Tcty_signature cty;
          cl_env = e.exp_env }
  | Texp_contract (c, e, callee, caller) -> 
    (* This branch should not be reached as we expand e |><| c with
       deep_transl_contract in transmod.ml. The purpose of doing this expansion 
       at transmod is to expand it only once and send the result tree to 
       a static contract checker (followed by/or) a dynamic contract checker. For 
       static contract checking, it basically checks the reachability of Texp_bad. *)   
      raise(Error(e.exp_loc,Illegal_contracted_expr)) 
  | Texp_bad bl -> transl_blame bl
  | Texp_unr bl -> transl_blame bl

and transl_blame bl = 
   match bl with
   | Blame (loc, pathop) -> contract_failed loc pathop
   | UnknownBlame -> lambda_unit

(* We expand the wrapped expression (e |><| c) at typedtree level, then do overall
translation to lambda.
val transl_contract: Typedtree.expression_desc ->  Typedtree.expression
*)

and transl_contract cntr e callee caller =
  let cty  = e.exp_type in
  let mkpat desc ty = { pat_desc =  desc; 
                    pat_loc  = e.exp_loc;
                    pat_type = ty;
                    pat_env  = e.exp_env } in
  let mkexp ed ty = {e with exp_desc = ed ; exp_type = ty} in
  let mkident i ty = Texp_ident (Pident i , { val_type = ty;
                                              val_kind = Val_reg}) in
  let ce:expression_desc = match cntr.contract_desc with
     | Tctr_pred (x, p) -> 
       (* e |>r1,r2<| {x | p} =  let x = e in if p then x else r1 
          This forces evaluation of e, that is, if e diverges, RHS diverges;
          if e crashes, RHS crashes 
       *) 
        let xe = Texp_ident (Pident x, {val_type = cty; val_kind = Val_reg}) in
        let cond = Texp_ifthenelse (p, mkexp xe cty, Some callee) in
	Texp_let (Nonrecursive, [(mkpat (Tpat_var x) cty, e)], mkexp cond cty) 
       (* e |>r1,r2<| {x | p} = if (try let x = e in p
                                    with user_defined_exn -> false
                                         others -> raise others)
                                then e else r1
          This forces evaluation of e, that is, if e diverges, RHS diverges;
          However, if e throws an exception, we still test p[e/x], which may 
          allow certain exceptions. If p[e/x] throws exceptions, we treat it
          as false, thus raise exception r1.
        *)
      (*
        let iexp i ty = Texp_ident (Pident i, 
                         {val_type = ty; val_kind = Val_reg}) in       
	let letexp = Texp_let (Nonrecursive, [(mkpat (Tpat_var x) cty, e)], p) in
        let cexn_path = Predef.path_contract_failure in
        let cexn_ctag = Cstr_exception(cexn_path) in
        (* This is to make up a pattern Contract(loc, pathop). Since contract checking 
         is done after type checking, we leave cstr_args as []. *)
        let cexn_cdesc = { cstr_res = Predef.type_exn;
                           cstr_args = []; 
                           cstr_arity = 2;
                           cstr_tag = cexn_ctag;
                           cstr_consts = 2;
                           cstr_nonconsts = 0;
                           cstr_private = Asttypes.Public } in
        let dummy_type_expr = { desc = Tvar; level = 0; id =0 } in
        let loc_id = Ident.create "l" in
        let pathop_id = Ident.create "p" in 
        let cpat = Tpat_construct(cexn_path, cexn_cdesc, 
                   [mkpat (Tpat_var loc_id) dummy_type_expr; 
                    mkpat (Tpat_var pathop_id) dummy_type_expr]) in
        let bad_exp = Texp_bad(Blame(iexp loc_id dummy_type_expr, 
                           iexp pathop_id dummy_type_expr)) in
        let trycond = Texp_try(mkexp letexp Predef.type_bool,
	    [(mkpat cpat Predef.type_exn,
              mkexp bad_exp Predef.type_exn);
             (mkpat Tpat_any Predef.type_exn, 
              mkexp (Texp_constant(Const_int 0)) Predef.type_bool)]) in
        Texp_ifthenelse (mkexp trycond Predef.type_bool, e, Some callee) 
*)
      | Tctr_arrow (xop, c1, c2) -> 
      (* picky version:
         <<x:c1 -> c2>> e = \x. (<<c2[(<<c1>> x)/x]>> (e (<<c1>> x)))
         lax version: 
         <<x:c1 -> c2>> e = \x. (<<c2>> (e (<<c1>> x))) 
         we are implementing the picky version. *)      
         let c1_type = c1.contract_type in
         let c2_type = c2.contract_type in
         let res = match xop with
         | Some x -> 
	     let xvar = mkexp (mkident x c1_type) c1_type in
             let c1x = transl_contract c1 xvar caller callee in
	     let resarg = Texp_apply (e, [(Some c1x, Required)]) in
              (* e.g. x:({a | a > 0} -> {b | true}) -> {c | x 0 > c} 
                 we want to blame the x in {c | x 0 > c} 
  	      *)
	     let blame_x = mkexp (Texp_bad (Blame (c2.contract_loc, None))) cty in
	     let c1x_picky = transl_contract c1 xvar caller blame_x in
	     let c2subst = subst_contract x c1x_picky c2 in 
	     let resfun = transl_contract c2subst (mkexp resarg c2_type) callee caller in
	     Texp_function ([(mkpat (Tpat_var x) c1_type, resfun)], Partial)
         | None -> 
	     let x = Ident.create "c" in
             let xvar = mkexp (mkident x c1_type) c1_type in
             let c1x = transl_contract c1 xvar caller callee in
   	     let resarg = Texp_apply (e, [(Some c1x, Required)]) in
             let resfun = transl_contract c2 (mkexp resarg c2_type) callee caller in
             Texp_function ([(mkpat (Tpat_var x) c1_type, resfun)], Partial)
         in res
     | Tctr_tuple cs -> 
      (* <<(c1, c2)>> e = match e with 
                           (x1, x2) -> (<<c1>> x1, <<c2>> x2)  *)
       begin 	
	  let new_ids =  (Ident.create_idents "x" (List.length cs))  in
          let typs = match (Ctype.repr cty).desc with
                         | Ttuple ts -> ts
                         | _ -> raise(Error(e.exp_loc,Illegal_tuple_expr)) in
          let (ps, es) = List.split (List.map (fun (i, t) -> 
                                let vd = {val_type = t; val_kind = Val_reg} in
				let exp = { exp_desc = Texp_ident (Pident i, vd);
					    exp_loc = e.exp_loc;
                                            exp_type = t;
					    exp_env = e.exp_env
					      } in
		   	        (mkpat (Tpat_var i) t, exp))
                            (List.combine new_ids typs)) in
          let ces = List.map (fun (c, ei) -> transl_contract c ei callee caller) 
			    (List.combine cs es) in
          let newpat = { pat_desc = Tpat_tuple ps;
                         pat_loc = e.exp_loc;
                         pat_type = cty;
                         pat_env = e.exp_env } in
          Texp_match (e, [(newpat, mkexp (Texp_tuple ces) cty)], Total)
       end
  in mkexp ce cty

(* Given x:t1 -> t2, the subst_contract computes t2[(v |><| t1)/x] *)
and subst_contract v e cntr = 
  let mkpat var = { pat_desc = Tpat_var var; 
                    pat_loc  = e.exp_loc;
                    pat_type = e.exp_type;
                    pat_env  = e.exp_env } in
  let sc = match cntr.contract_desc with
             Tctr_pred (x, p) -> 
               (* {x | p} [e/v]   is expressed as  {x | let v = e in p} *) 
               let sp = Texp_let (Nonrecursive, [(mkpat v, e)], p) in
               Tctr_pred (x, { e with exp_desc = sp }) 
           | Tctr_arrow (xop, c1, c2) -> 
               let sc1 = subst_contract v e c1 in
               let sc2 = subst_contract v e c2 in
               Tctr_arrow (xop, sc1, sc2)
           | Tctr_tuple cs -> Tctr_tuple (List.map (subst_contract v e) cs)
  in { cntr with contract_desc = sc }

(* deep_transl_contract takes e and expands all ei |><| ci in e *)
and deep_transl_contract expr = 
      Typedtree.map_expression (fun ei -> match ei.exp_desc with
          | Texp_contract (c, e, r1, r2) -> transl_contract c e r1 r2
          | _ -> ei) expr
   

and transl_list expr_list =
  List.map transl_exp expr_list

and transl_cases pat_expr_list =
  List.map
    (fun (pat, expr) -> (pat, event_before expr (transl_exp expr)))
    pat_expr_list

and transl_tupled_cases patl_expr_list =
  List.map (fun (patl, expr) -> (patl, transl_exp expr)) patl_expr_list

and transl_apply lam sargs loc =
  let lapply funct args =
    match funct with
      Lsend(k, lmet, lobj, largs) ->
        Lsend(k, lmet, lobj, largs @ args)
    | Levent(Lsend(k, lmet, lobj, largs), _) ->
        Lsend(k, lmet, lobj, largs @ args)
    | Lapply(lexp, largs, _) ->
        Lapply(lexp, largs @ args, loc)
    | lexp ->
        Lapply(lexp, args, loc)
  in
  let rec build_apply lam args = function
      (None, optional) :: l ->
        let defs = ref [] in
        let protect name lam =
          match lam with
            Lvar _ | Lconst _ -> lam
          | _ ->
              let id = Ident.create name in
              defs := (id, lam) :: !defs;
              Lvar id
        in
        let args, args' =
          if List.for_all (fun (_,opt) -> opt = Optional) args then [], args
          else args, [] in
        let lam =
          if args = [] then lam else lapply lam (List.rev_map fst args) in
        let handle = protect "func" lam
        and l = List.map (fun (arg, opt) -> may_map (protect "arg") arg, opt) l
        and id_arg = Ident.create "param" in
        let body =
          match build_apply handle ((Lvar id_arg, optional)::args') l with
            Lfunction(Curried, ids, lam) ->
              Lfunction(Curried, id_arg::ids, lam)
          | Levent(Lfunction(Curried, ids, lam), _) ->
              Lfunction(Curried, id_arg::ids, lam)
          | lam ->
              Lfunction(Curried, [id_arg], lam)
        in
        List.fold_left
          (fun body (id, lam) -> Llet(Strict, id, lam, body))
          body !defs
    | (Some arg, optional) :: l ->
        build_apply lam ((arg, optional) :: args) l
    | [] ->
        lapply lam (List.rev_map fst args)
  in
  build_apply lam [] (List.map (fun (x,o) -> may_map transl_exp x, o) sargs)

and transl_function loc untuplify_fn repr partial pat_expr_list =
  match pat_expr_list with
    [pat, ({exp_desc = Texp_function(pl,partial')} as exp)]
    when Parmatch.fluid pat ->
      let param = name_pattern "param" pat_expr_list in
      let ((_, params), body) =
        transl_function exp.exp_loc false repr partial' pl in
      ((Curried, param :: params),
       Matching.for_function loc None (Lvar param) [pat, body] partial)
  | ({pat_desc = Tpat_tuple pl}, _) :: _ when untuplify_fn ->
      begin try
        let size = List.length pl in
        let pats_expr_list =
          List.map
            (fun (pat, expr) -> (Matching.flatten_pattern size pat, expr))
            pat_expr_list in
        let params = List.map (fun p -> Ident.create "param") pl in
        ((Tupled, params),
         Matching.for_tupled_function loc params
           (transl_tupled_cases pats_expr_list) partial)
      with Matching.Cannot_flatten ->
        let param = name_pattern "param" pat_expr_list in
        ((Curried, [param]),
         Matching.for_function loc repr (Lvar param)
           (transl_cases pat_expr_list) partial)
      end
  | _ ->
      let param = name_pattern "param" pat_expr_list in
      ((Curried, [param]),
       Matching.for_function loc repr (Lvar param)
         (transl_cases pat_expr_list) partial)

and transl_let rec_flag pat_expr_list body =
  match rec_flag with
    Nonrecursive | Default ->
      let rec transl = function
        [] ->
          body
      | (pat, expr) :: rem ->
          Matching.for_let pat.pat_loc (transl_exp expr) pat (transl rem)
      in transl pat_expr_list
  | Recursive ->
      let idlist =
        List.map
          (fun (pat, expr) ->
            match pat.pat_desc with
              Tpat_var id -> id
            | _ -> raise(Error(pat.pat_loc, Illegal_letrec_pat)))
        pat_expr_list in
      let transl_case (pat, expr) id =
        let lam = transl_exp expr in
        if not (check_recursive_lambda idlist lam) then
          raise(Error(expr.exp_loc, Illegal_letrec_expr));
        (id, lam) in
      Lletrec(List.map2 transl_case pat_expr_list idlist, body)

and transl_setinstvar self var expr =
  Lprim(Parraysetu (if maybe_pointer expr then Paddrarray else Pintarray),
                    [self; transl_path var; transl_exp expr])

and transl_record all_labels repres lbl_expr_list opt_init_expr =
  let size = Array.length all_labels in
  (* Determine if there are "enough" new fields *)
  if 3 + 2 * List.length lbl_expr_list >= size
  then begin
    (* Allocate new record with given fields (and remaining fields
       taken from init_expr if any *)
    let lv = Array.create (Array.length all_labels) staticfail in
    let init_id = Ident.create "init" in
    begin match opt_init_expr with
      None -> ()
    | Some init_expr ->
        for i = 0 to Array.length all_labels - 1 do
          let access =
            match all_labels.(i).lbl_repres with
              Record_regular -> Pfield i
            | Record_float -> Pfloatfield i in
          lv.(i) <- Lprim(access, [Lvar init_id])
        done
    end;
    List.iter
      (fun (lbl, expr) -> lv.(lbl.lbl_pos) <- transl_exp expr)
      lbl_expr_list;
    let ll = Array.to_list lv in
    let mut =
      if List.exists (fun (lbl, expr) -> lbl.lbl_mut = Mutable) lbl_expr_list
      then Mutable
      else Immutable in
    let lam =
      try
        if mut = Mutable then raise Not_constant;
        let cl = List.map extract_constant ll in
        match repres with
          Record_regular -> Lconst(Const_block(0, cl))
        | Record_float ->
            Lconst(Const_float_array(List.map extract_float cl))
      with Not_constant ->
        match repres with
          Record_regular -> Lprim(Pmakeblock(0, mut), ll)
        | Record_float -> Lprim(Pmakearray Pfloatarray, ll) in
    begin match opt_init_expr with
      None -> lam
    | Some init_expr -> Llet(Strict, init_id, transl_exp init_expr, lam)
    end
  end else begin
    (* Take a shallow copy of the init record, then mutate the fields
       of the copy *)
    (* If you change anything here, you will likely have to change
       [check_recursive_recordwith] in this file. *)
    let copy_id = Ident.create "newrecord" in
    let rec update_field (lbl, expr) cont =
      let upd =
        match lbl.lbl_repres with
          Record_regular -> Psetfield(lbl.lbl_pos, maybe_pointer expr)
        | Record_float -> Psetfloatfield lbl.lbl_pos in
      Lsequence(Lprim(upd, [Lvar copy_id; transl_exp expr]), cont) in
    begin match opt_init_expr with
      None -> assert false
    | Some init_expr ->
        Llet(Strict, copy_id,
             Lprim(Pduprecord (repres, size), [transl_exp init_expr]),
             List.fold_right update_field lbl_expr_list (Lvar copy_id))
    end
  end

(* Wrapper for class compilation *)

(*
let transl_exp = transl_exp_wrap

let transl_let rec_flag pat_expr_list body =
  match pat_expr_list with
    [] -> body
  | (_, expr) :: _ ->
      Translobj.oo_wrap expr.exp_env false
        (transl_let rec_flag pat_expr_list) body
*)

(* Compile an exception definition *)

let transl_exception id path decl =
  let name =
    match path with
      None -> Ident.name id
    | Some p -> Path.name p in
  Lprim(Pmakeblock(0, Immutable), [Lconst(Const_base(Const_string name))])

(* Error report *)

(* open Format *)

let report_error ppf = function
  | Illegal_letrec_pat ->
      fprintf ppf
        "Only variables are allowed as left-hand side of `let rec'"
  | Illegal_letrec_expr ->
      fprintf ppf
        "This kind of expression is not allowed as right-hand side of `let rec'"
  | Free_super_var ->
      fprintf ppf
        "Ancestor names can only be used to select inherited methods"
  | Illegal_tuple_expr -> 
      fprintf ppf
        "This expression is not of type tuple"
  | Illegal_contracted_expr -> 
      fprintf ppf
        "Illegal contracted expr: please report this as a bug"