summaryrefslogtreecommitdiff
path: root/runtime/extern.c
blob: 17a07981ea5eabd82c5917f0df51924de42b2cd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
/**************************************************************************/
/*                                                                        */
/*                                 OCaml                                  */
/*                                                                        */
/*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           */
/*                                                                        */
/*   Copyright 1996 Institut National de Recherche en Informatique et     */
/*     en Automatique.                                                    */
/*                                                                        */
/*   All rights reserved.  This file is distributed under the terms of    */
/*   the GNU Lesser General Public License version 2.1, with the          */
/*   special exception on linking described in the file LICENSE.          */
/*                                                                        */
/**************************************************************************/

#define CAML_INTERNALS

/* Structured output */

/* The interface of this file is "caml/intext.h" */

#include <string.h>
#include "caml/alloc.h"
#include "caml/codefrag.h"
#include "caml/config.h"
#include "caml/custom.h"
#include "caml/fail.h"
#include "caml/gc.h"
#include "caml/intext.h"
#include "caml/io.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#include "caml/reverse.h"

static uintnat obj_counter;  /* Number of objects emitted so far */
static uintnat size_32;  /* Size in words of 32-bit block for struct. */
static uintnat size_64;  /* Size in words of 64-bit block for struct. */

/* Flags affecting marshaling */

enum {
  NO_SHARING = 1,               /* Flag to ignore sharing */
  CLOSURES = 2,                 /* Flag to allow marshaling code pointers */
  COMPAT_32 = 4                 /* Flag to ensure that output can safely
                                   be read back on a 32-bit platform */
};

static int extern_flags;        /* logical or of some of the flags above */

/* Stack for pending values to marshal */

struct extern_item { value * v; mlsize_t count; };

#define EXTERN_STACK_INIT_SIZE 256
#define EXTERN_STACK_MAX_SIZE (1024*1024*100)

static struct extern_item extern_stack_init[EXTERN_STACK_INIT_SIZE];

static struct extern_item * extern_stack = extern_stack_init;
static struct extern_item * extern_stack_limit = extern_stack_init
                                                   + EXTERN_STACK_INIT_SIZE;

/* Hash table to record already-marshaled objects and their positions */

struct object_position { value obj; uintnat pos; };

/* The hash table uses open addressing, linear probing, and a redundant
   representation:
   - a bitvector [present] records which entries of the table are occupied;
   - an array [entries] records (object, position) pairs for the entries
     that are occupied.
   The bitvector is much smaller than the array (1/128th on 64-bit
   platforms, 1/64th on 32-bit platforms), so it has better locality,
   making it faster to determine that an object is not in the table.
   Also, it makes it faster to empty or initialize a table: only the
   [present] bitvector needs to be filled with zeros, the [entries]
   array can be left uninitialized.
*/

struct position_table {
  int shift;
  mlsize_t size;                    /* size == 1 << (wordsize - shift) */
  mlsize_t mask;                    /* mask == size - 1 */
  mlsize_t threshold;               /* threshold == a fixed fraction of size */
  uintnat * present;                /* [Bitvect_size(size)] */
  struct object_position * entries; /* [size]  */
};

#define Bits_word (8 * sizeof(uintnat))
#define Bitvect_size(n) (((n) + Bits_word - 1) / Bits_word)

#define POS_TABLE_INIT_SIZE_LOG2 8
#define POS_TABLE_INIT_SIZE (1 << POS_TABLE_INIT_SIZE_LOG2)

static uintnat pos_table_present_init[Bitvect_size(POS_TABLE_INIT_SIZE)];
static struct object_position pos_table_entries_init[POS_TABLE_INIT_SIZE];

static struct position_table pos_table;

/* Forward declarations */

CAMLnoreturn_start
static void extern_out_of_memory(void)
CAMLnoreturn_end;

CAMLnoreturn_start
static void extern_invalid_argument(char *msg)
CAMLnoreturn_end;

CAMLnoreturn_start
static void extern_failwith(char *msg)
CAMLnoreturn_end;

CAMLnoreturn_start
static void extern_stack_overflow(void)
CAMLnoreturn_end;

static void free_extern_output(void);

/* Free the extern stack if needed */
static void extern_free_stack(void)
{
  if (extern_stack != extern_stack_init) {
    caml_stat_free(extern_stack);
    /* Reinitialize the globals for next time around */
    extern_stack = extern_stack_init;
    extern_stack_limit = extern_stack + EXTERN_STACK_INIT_SIZE;
  }
}

static struct extern_item * extern_resize_stack(struct extern_item * sp)
{
  asize_t newsize = 2 * (extern_stack_limit - extern_stack);
  asize_t sp_offset = sp - extern_stack;
  struct extern_item * newstack;

  if (newsize >= EXTERN_STACK_MAX_SIZE) extern_stack_overflow();
  if (extern_stack == extern_stack_init) {
    newstack = caml_stat_alloc_noexc(sizeof(struct extern_item) * newsize);
    if (newstack == NULL) extern_stack_overflow();
    memcpy(newstack, extern_stack_init,
           sizeof(struct extern_item) * EXTERN_STACK_INIT_SIZE);
  } else {
    newstack = caml_stat_resize_noexc(extern_stack,
                                      sizeof(struct extern_item) * newsize);
    if (newstack == NULL) extern_stack_overflow();
  }
  extern_stack = newstack;
  extern_stack_limit = newstack + newsize;
  return newstack + sp_offset;
}

/* Multiplicative Fibonacci hashing
   (Knuth, TAOCP vol 3, section 6.4, page 518).
   HASH_FACTOR is (sqrt(5) - 1) / 2 * 2^wordsize. */
#ifdef ARCH_SIXTYFOUR
#define HASH_FACTOR 11400714819323198486UL
#else
#define HASH_FACTOR 2654435769UL
#endif
#define Hash(v) (((uintnat)(v) * HASH_FACTOR) >> pos_table.shift)

/* When the table becomes 2/3 full, its size is increased. */
#define Threshold(sz) (((sz) * 2) / 3)

/* Initialize the position table */

static void extern_init_position_table(void)
{
  if (extern_flags & NO_SHARING) return;
  pos_table.size = POS_TABLE_INIT_SIZE;
  pos_table.shift = 8 * sizeof(value) - POS_TABLE_INIT_SIZE_LOG2;
  pos_table.mask = POS_TABLE_INIT_SIZE - 1;
  pos_table.threshold = Threshold(POS_TABLE_INIT_SIZE);
  pos_table.present = pos_table_present_init;
  pos_table.entries = pos_table_entries_init;
  memset(pos_table_present_init, 0, sizeof(pos_table_present_init));
}

/* Free the position table */

static void extern_free_position_table(void)
{
  if (pos_table.present != pos_table_present_init) {
    caml_stat_free(pos_table.present);
    caml_stat_free(pos_table.entries);
    /* Protect against repeated calls to extern_free_position_table */
    pos_table.present = pos_table_present_init;
  }
}

/* Accessing bitvectors */

Caml_inline uintnat bitvect_test(uintnat * bv, uintnat i)
{
  return bv[i / Bits_word] & ((uintnat) 1 << (i & (Bits_word - 1)));
}

Caml_inline void bitvect_set(uintnat * bv, uintnat i)
{
  bv[i / Bits_word] |= ((uintnat) 1 << (i & (Bits_word - 1)));
}

/* Grow the position table */

static void extern_resize_position_table(void)
{
  mlsize_t new_size, new_byte_size;
  int new_shift;
  uintnat * new_present;
  struct object_position * new_entries;
  uintnat i, h;
  struct position_table old = pos_table;

  /* Grow the table quickly (x 8) up to 10^6 entries,
     more slowly (x 2) afterwards. */
  if (old.size < 1000000) {
    new_size = 8 * old.size;
    new_shift = old.shift - 3;
  } else {
    new_size = 2 * old.size;
    new_shift = old.shift - 1;
  }
  if (new_size == 0
      || caml_umul_overflow(new_size, sizeof(struct object_position),
                            &new_byte_size))
    extern_out_of_memory();
  new_entries = caml_stat_alloc_noexc(new_byte_size);
  if (new_entries == NULL) extern_out_of_memory();
  new_present =
    caml_stat_calloc_noexc(Bitvect_size(new_size), sizeof(uintnat));
  if (new_present == NULL) {
    caml_stat_free(new_entries);
    extern_out_of_memory();
  }
  pos_table.size = new_size;
  pos_table.shift = new_shift;
  pos_table.mask = new_size - 1;
  pos_table.threshold = Threshold(new_size);
  pos_table.present = new_present;
  pos_table.entries = new_entries;

  /* Insert every entry of the old table in the new table */
  for (i = 0; i < old.size; i++) {
    if (! bitvect_test(old.present, i)) continue;
    h = Hash(old.entries[i].obj);
    while (bitvect_test(new_present, h)) {
      h = (h + 1) & pos_table.mask;
    }
    bitvect_set(new_present, h);
    new_entries[h] = old.entries[i];
  }

  /* Free the old tables if not statically allocated */
  if (old.present != pos_table_present_init) {
    caml_stat_free(old.present);
    caml_stat_free(old.entries);
  }
}

/* Determine whether the given object [obj] is in the hash table.
   If so, set [*pos_out] to its position in the output and return 1.
   If not, set [*h_out] to the hash value appropriate for
   [extern_record_location] and return 0. */

Caml_inline int extern_lookup_position(value obj,
                                       uintnat * pos_out, uintnat * h_out)
{
  uintnat h = Hash(obj);
  while (1) {
    if (! bitvect_test(pos_table.present, h)) {
      *h_out = h;
      return 0;
    }
    if (pos_table.entries[h].obj == obj) {
      *pos_out = pos_table.entries[h].pos;
      return 1;
    }
    h = (h + 1) & pos_table.mask;
  }
}

/* Record the output position for the given object [obj]. */
/* The [h] parameter is the index in the hash table where the object
   must be inserted.  It was determined during lookup. */

static void extern_record_location(value obj, uintnat h)
{
  if (extern_flags & NO_SHARING) return;
  bitvect_set(pos_table.present, h);
  pos_table.entries[h].obj = obj;
  pos_table.entries[h].pos = obj_counter;
  obj_counter++;
  if (obj_counter >= pos_table.threshold) extern_resize_position_table();
}

/* To buffer the output */

static char * extern_userprovided_output;
static char * extern_ptr, * extern_limit;

struct output_block {
  struct output_block * next;
  char * end;
  char data[SIZE_EXTERN_OUTPUT_BLOCK];
};

static struct output_block * extern_output_first, * extern_output_block;

static void init_extern_output(void)
{
  extern_userprovided_output = NULL;
  extern_output_first = caml_stat_alloc_noexc(sizeof(struct output_block));
  if (extern_output_first == NULL) caml_raise_out_of_memory();
  extern_output_block = extern_output_first;
  extern_output_block->next = NULL;
  extern_ptr = extern_output_block->data;
  extern_limit = extern_output_block->data + SIZE_EXTERN_OUTPUT_BLOCK;
}

static void close_extern_output(void)
{
  if (extern_userprovided_output == NULL){
    extern_output_block->end = extern_ptr;
  }
}

static void free_extern_output(void)
{
  struct output_block * blk, * nextblk;

  if (extern_userprovided_output == NULL) {
    for (blk = extern_output_first; blk != NULL; blk = nextblk) {
      nextblk = blk->next;
      caml_stat_free(blk);
    }
    extern_output_first = NULL;
  }
  extern_free_stack();
  extern_free_position_table();
}

static void grow_extern_output(intnat required)
{
  struct output_block * blk;
  intnat extra;

  if (extern_userprovided_output != NULL) {
    extern_failwith("Marshal.to_buffer: buffer overflow");
  }
  extern_output_block->end = extern_ptr;
  if (required <= SIZE_EXTERN_OUTPUT_BLOCK / 2)
    extra = 0;
  else
    extra = required;
  blk = caml_stat_alloc_noexc(sizeof(struct output_block) + extra);
  if (blk == NULL) extern_out_of_memory();
  extern_output_block->next = blk;
  extern_output_block = blk;
  extern_output_block->next = NULL;
  extern_ptr = extern_output_block->data;
  extern_limit = extern_output_block->data + SIZE_EXTERN_OUTPUT_BLOCK + extra;
}

static intnat extern_output_length(void)
{
  struct output_block * blk;
  intnat len;

  if (extern_userprovided_output != NULL) {
    return extern_ptr - extern_userprovided_output;
  } else {
    for (len = 0, blk = extern_output_first; blk != NULL; blk = blk->next)
      len += blk->end - blk->data;
    return len;
  }
}

/* Exception raising, with cleanup */

static void extern_out_of_memory(void)
{
  free_extern_output();
  caml_raise_out_of_memory();
}

static void extern_invalid_argument(char *msg)
{
  free_extern_output();
  caml_invalid_argument(msg);
}

static void extern_failwith(char *msg)
{
  free_extern_output();
  caml_failwith(msg);
}

static void extern_stack_overflow(void)
{
  caml_gc_message (0x04, "Stack overflow in marshaling value\n");
  free_extern_output();
  caml_raise_out_of_memory();
}

/* Conversion to big-endian */

Caml_inline void store16(char * dst, int n)
{
  dst[0] = n >> 8;  dst[1] = n;
}

Caml_inline void store32(char * dst, intnat n)
{
  dst[0] = n >> 24;  dst[1] = n >> 16;  dst[2] = n >> 8;  dst[3] = n;
}

Caml_inline void store64(char * dst, int64_t n)
{
  dst[0] = n >> 56;  dst[1] = n >> 48;  dst[2] = n >> 40;  dst[3] = n >> 32;
  dst[4] = n >> 24;  dst[5] = n >> 16;  dst[6] = n >> 8;   dst[7] = n;
}

/* Write characters, integers, and blocks in the output buffer */

Caml_inline void write(int c)
{
  if (extern_ptr >= extern_limit) grow_extern_output(1);
  *extern_ptr++ = c;
}

static void writeblock(const char * data, intnat len)
{
  if (extern_ptr + len > extern_limit) grow_extern_output(len);
  memcpy(extern_ptr, data, len);
  extern_ptr += len;
}

Caml_inline void writeblock_float8(const double * data, intnat ndoubles)
{
#if ARCH_FLOAT_ENDIANNESS == 0x01234567 || ARCH_FLOAT_ENDIANNESS == 0x76543210
  writeblock((const char *) data, ndoubles * 8);
#else
  caml_serialize_block_float_8(data, ndoubles);
#endif
}

static void writecode8(int code, intnat val)
{
  if (extern_ptr + 2 > extern_limit) grow_extern_output(2);
  extern_ptr[0] = code;
  extern_ptr[1] = val;
  extern_ptr += 2;
}

static void writecode16(int code, intnat val)
{
  if (extern_ptr + 3 > extern_limit) grow_extern_output(3);
  extern_ptr[0] = code;
  store16(extern_ptr + 1, (int) val);
  extern_ptr += 3;
}

static void writecode32(int code, intnat val)
{
  if (extern_ptr + 5 > extern_limit) grow_extern_output(5);
  extern_ptr[0] = code;
  store32(extern_ptr + 1, val);
  extern_ptr += 5;
}

#ifdef ARCH_SIXTYFOUR
static void writecode64(int code, intnat val)
{
  if (extern_ptr + 9 > extern_limit) grow_extern_output(9);
  extern_ptr[0] = code;
  store64(extern_ptr + 1, val);
  extern_ptr += 9;
}
#endif

/* Marshaling integers */

Caml_inline void extern_int(intnat n)
{
  if (n >= 0 && n < 0x40) {
    write(PREFIX_SMALL_INT + n);
  } else if (n >= -(1 << 7) && n < (1 << 7)) {
    writecode8(CODE_INT8, n);
  } else if (n >= -(1 << 15) && n < (1 << 15)) {
    writecode16(CODE_INT16, n);
#ifdef ARCH_SIXTYFOUR
  } else if (n < -((intnat)1 << 30) || n >= ((intnat)1 << 30)) {
      if (extern_flags & COMPAT_32)
        extern_failwith("output_value: integer cannot be read back on "
                        "32-bit platform");
      writecode64(CODE_INT64, n);
#endif
  } else {
    writecode32(CODE_INT32, n);
  }
}

/* Marshaling references to previously-marshaled blocks */

Caml_inline void extern_shared_reference(uintnat d)
{
  if (d < 0x100) {
    writecode8(CODE_SHARED8, d);
  } else if (d < 0x10000) {
    writecode16(CODE_SHARED16, d);
#ifdef ARCH_SIXTYFOUR
  } else if (d >= (uintnat)1 << 32) {
    writecode64(CODE_SHARED64, d);
#endif
  } else {
    writecode32(CODE_SHARED32, d);
  }
}

/* Marshaling block headers */

Caml_inline void extern_header(mlsize_t sz, tag_t tag)
{
  if (tag < 16 && sz < 8) {
    write(PREFIX_SMALL_BLOCK + tag + (sz << 4));
  } else {
    header_t hd = Make_header(sz, tag, Caml_white);
#ifdef ARCH_SIXTYFOUR
    if (sz > 0x3FFFFF && (extern_flags & COMPAT_32))
      extern_failwith("output_value: array cannot be read back on "
                      "32-bit platform");
    if (hd < (uintnat)1 << 32)
      writecode32(CODE_BLOCK32, hd);
    else
      writecode64(CODE_BLOCK64, hd);
#else
    writecode32(CODE_BLOCK32, hd);
#endif
  }
}

/* Marshaling strings */

Caml_inline void extern_string(value v, mlsize_t len)
{
  if (len < 0x20) {
    write(PREFIX_SMALL_STRING + len);
  } else if (len < 0x100) {
    writecode8(CODE_STRING8, len);
  } else {
#ifdef ARCH_SIXTYFOUR
    if (len > 0xFFFFFB && (extern_flags & COMPAT_32))
      extern_failwith("output_value: string cannot be read back on "
                      "32-bit platform");
    if (len < (uintnat)1 << 32)
      writecode32(CODE_STRING32, len);
    else
      writecode64(CODE_STRING64, len);
#else
    writecode32(CODE_STRING32, len);
#endif
  }
  writeblock(String_val(v), len);
}

/* Marshaling FP numbers */

Caml_inline void extern_double(value v)
{
  write(CODE_DOUBLE_NATIVE);
  writeblock_float8((double *) v, 1);
}

/* Marshaling FP arrays */

Caml_inline void extern_double_array(value v, mlsize_t nfloats)
{
  if (nfloats < 0x100) {
    writecode8(CODE_DOUBLE_ARRAY8_NATIVE, nfloats);
  } else {
#ifdef ARCH_SIXTYFOUR
    if (nfloats > 0x1FFFFF && (extern_flags & COMPAT_32))
      extern_failwith("output_value: float array cannot be read back on "
                      "32-bit platform");
    if (nfloats < (uintnat) 1 << 32)
      writecode32(CODE_DOUBLE_ARRAY32_NATIVE, nfloats);
    else
      writecode64(CODE_DOUBLE_ARRAY64_NATIVE, nfloats);
#else
    writecode32(CODE_DOUBLE_ARRAY32_NATIVE, nfloats);
#endif
  }
  writeblock_float8((double *) v, nfloats);
}

/* Marshaling custom blocks */

Caml_inline void extern_custom(value v,
                               /*out*/ uintnat * sz_32,
                               /*out*/ uintnat * sz_64)
{
  char * size_header;
  char const * ident = Custom_ops_val(v)->identifier;
  void (*serialize)(value v, uintnat * bsize_32, uintnat * bsize_64)
        = Custom_ops_val(v)->serialize;
  const struct custom_fixed_length* fixed_length
        = Custom_ops_val(v)->fixed_length;
  if (serialize == NULL)
    extern_invalid_argument("output_value: abstract value (Custom)");
  if (fixed_length == NULL) {
    write(CODE_CUSTOM_LEN);
    writeblock(ident, strlen(ident) + 1);
    /* Reserve 12 bytes for the lengths (sz_32 and sz_64). */
    if (extern_ptr + 12 >= extern_limit) grow_extern_output(12);
    size_header = extern_ptr;
    extern_ptr += 12;
    serialize(v, sz_32, sz_64);
    /* Store length before serialized block */
    store32(size_header, *sz_32);
    store64(size_header + 4, *sz_64);
  } else {
    write(CODE_CUSTOM_FIXED);
    writeblock(ident, strlen(ident) + 1);
    serialize(v, sz_32, sz_64);
        if (*sz_32 != fixed_length->bsize_32 ||
            *sz_64 != fixed_length->bsize_64)
          caml_fatal_error(
            "output_value: incorrect fixed sizes specified by %s",
            ident);
  }
}

/* Marshaling code pointers */

static void extern_code_pointer(char * codeptr)
{
  struct code_fragment * cf;
  const char * digest;

  cf = caml_find_code_fragment_by_pc(codeptr);
  if (cf != NULL) {
    if ((extern_flags & CLOSURES) == 0)
      extern_invalid_argument("output_value: functional value");
    digest = (const char *) caml_digest_of_code_fragment(cf);
    if (digest == NULL)
      extern_invalid_argument("output_value: private function");
    writecode32(CODE_CODEPOINTER, codeptr - cf->code_start);
    writeblock(digest, 16);
  } else {
    extern_invalid_argument("output_value: abstract value (outside heap)");
  }
}

/* Marshaling the non-environment part of closures */

#ifdef NO_NAKED_POINTERS
Caml_inline mlsize_t extern_closure_up_to_env(value v)
{
  mlsize_t startenv, i;
  value info;

  startenv = Start_env_closinfo(Closinfo_val(v));
  i = 0;
  do {
    /* The infix header */
    if (i > 0) extern_int(Long_val(Field(v, i++)));
    /* The default entry point */
    extern_code_pointer((char *) Field(v, i++));
    /* The closure info. */
    info = Field(v, i++);
    extern_int(Long_val(info));
    /* The direct entry point if arity is neither 0 nor 1 */
    if (Arity_closinfo(info) != 0 && Arity_closinfo(info) != 1) {
      extern_code_pointer((char *) Field(v, i++));
    }
  } while (i < startenv);
  CAMLassert(i == startenv);
  return startenv;
}
#endif

/* Marshal the given value in the output buffer */

static void extern_rec(value v)
{
  struct extern_item * sp;
  uintnat h = 0;
  uintnat pos = 0;

  extern_init_position_table();
  sp = extern_stack;

  while(1) {
  if (Is_long(v)) {
    extern_int(Long_val(v));
  }
  else if (! (Is_in_value_area(v))) {
    /* Naked pointer outside the heap: try to marshal it as a code pointer,
       otherwise fail. */
    extern_code_pointer((char *) v);
  }
  else {
    header_t hd = Hd_val(v);
    tag_t tag = Tag_hd(hd);
    mlsize_t sz = Wosize_hd(hd);

    if (tag == Forward_tag) {
      value f = Forward_val (v);
      if (Is_block (f)
          && (!Is_in_value_area(f) || Tag_val (f) == Forward_tag
              || Tag_val (f) == Lazy_tag
#ifdef FLAT_FLOAT_ARRAY
              || Tag_val (f) == Double_tag
#endif
              )){
        /* Do not short-circuit the pointer. */
      }else{
        v = f;
        continue;
      }
    }
    /* Atoms are treated specially for two reasons: they are not allocated
       in the externed block, and they are automatically shared. */
    if (sz == 0) {
      extern_header(0, tag);
      goto next_item;
    }
    /* Check if object already seen */
    if (! (extern_flags & NO_SHARING)) {
      if (extern_lookup_position(v, &pos, &h)) {
        extern_shared_reference(obj_counter - pos);
        goto next_item;
      }
    }
    /* Output the contents of the object */
    switch(tag) {
    case String_tag: {
      mlsize_t len = caml_string_length(v);
      extern_string(v, len);
      size_32 += 1 + (len + 4) / 4;
      size_64 += 1 + (len + 8) / 8;
      extern_record_location(v, h);
      break;
    }
    case Double_tag: {
      CAMLassert(sizeof(double) == 8);
      extern_double(v);
      size_32 += 1 + 2;
      size_64 += 1 + 1;
      extern_record_location(v, h);
      break;
    }
    case Double_array_tag: {
      mlsize_t nfloats;
      CAMLassert(sizeof(double) == 8);
      nfloats = Wosize_val(v) / Double_wosize;
      extern_double_array(v, nfloats);
      size_32 += 1 + nfloats * 2;
      size_64 += 1 + nfloats;
      extern_record_location(v, h);
      break;
    }
    case Abstract_tag:
      extern_invalid_argument("output_value: abstract value (Abstract)");
      break;
    case Infix_tag:
      writecode32(CODE_INFIXPOINTER, Infix_offset_hd(hd));
      v = v - Infix_offset_hd(hd); /* PR#5772 */
      continue;
    case Custom_tag: {
      uintnat sz_32, sz_64;
      extern_custom(v, &sz_32, &sz_64);
      size_32 += 2 + ((sz_32 + 3) >> 2);  /* header + ops + data */
      size_64 += 2 + ((sz_64 + 7) >> 3);
      extern_record_location(v, h);
      break;
    }
#ifdef NO_NAKED_POINTERS
    case Closure_tag: {
      mlsize_t i;
      extern_header(sz, tag);
      size_32 += 1 + sz;
      size_64 += 1 + sz;
      extern_record_location(v, h);
      i = extern_closure_up_to_env(v);
      if (i >= sz) goto next_item;
      /* Remember that we still have to serialize fields i + 1 ... sz - 1 */
      if (i < sz - 1) {
        sp++;
        if (sp >= extern_stack_limit) sp = extern_resize_stack(sp);
        sp->v = &Field(v, i + 1);
        sp->count = sz - i - 1;
      }
      /* Continue serialization with the first environment field */
      v = Field(v, i);
      continue;
    }
#endif
    default: {
      extern_header(sz, tag);
      size_32 += 1 + sz;
      size_64 += 1 + sz;
      extern_record_location(v, h);
      /* Remember that we still have to serialize fields 1 ... sz - 1 */
      if (sz > 1) {
        sp++;
        if (sp >= extern_stack_limit) sp = extern_resize_stack(sp);
        sp->v = &Field(v, 1);
        sp->count = sz - 1;
      }
      /* Continue serialization with the first field */
      v = Field(v, 0);
      continue;
    }
    }
  }
  next_item:
    /* Pop one more item to marshal, if any */
    if (sp == extern_stack) {
        /* We are done.   Cleanup the stack and leave the function */
        extern_free_stack();
        extern_free_position_table();
        return;
    }
    v = *((sp->v)++);
    if (--(sp->count) == 0) sp--;
  }
  /* Never reached as function leaves with return */
}

static int extern_flag_values[] = { NO_SHARING, CLOSURES, COMPAT_32 };

static intnat extern_value(value v, value flags,
                           /*out*/ char header[32],
                           /*out*/ int * header_len)
{
  intnat res_len;
  /* Parse flag list */
  extern_flags = caml_convert_flag_list(flags, extern_flag_values);
  /* Initializations */
  obj_counter = 0;
  size_32 = 0;
  size_64 = 0;
  /* Marshal the object */
  extern_rec(v);
  /* Record end of output */
  close_extern_output();
  /* Write the header */
  res_len = extern_output_length();
#ifdef ARCH_SIXTYFOUR
  if (res_len >= ((intnat)1 << 32) ||
      size_32 >= ((intnat)1 << 32) || size_64 >= ((intnat)1 << 32)) {
    /* The object is too big for the small header format.
       Fail if we are in compat32 mode, or use big header. */
    if (extern_flags & COMPAT_32) {
      free_extern_output();
      caml_failwith("output_value: object too big to be read back on "
                    "32-bit platform");
    }
    store32(header, Intext_magic_number_big);
    store32(header + 4, 0);
    store64(header + 8, res_len);
    store64(header + 16, obj_counter);
    store64(header + 24, size_64);
    *header_len = 32;
    return res_len;
  }
#endif
  /* Use the small header format */
  store32(header, Intext_magic_number_small);
  store32(header + 4, res_len);
  store32(header + 8, obj_counter);
  store32(header + 12, size_32);
  store32(header + 16, size_64);
  *header_len = 20;
  return res_len;
}

void caml_output_val(struct channel *chan, value v, value flags)
{
  char header[32];
  int header_len;
  struct output_block * blk, * nextblk;

  if (! caml_channel_binary_mode(chan))
    caml_failwith("output_value: not a binary channel");
  init_extern_output();
  extern_value(v, flags, header, &header_len);
  /* During [caml_really_putblock], concurrent [caml_output_val] operations
     can take place (via signal handlers or context switching in systhreads),
     and [extern_output_first] may change. So, save it in a local variable. */
  blk = extern_output_first;
  caml_really_putblock(chan, header, header_len);
  while (blk != NULL) {
    caml_really_putblock(chan, blk->data, blk->end - blk->data);
    nextblk = blk->next;
    caml_stat_free(blk);
    blk = nextblk;
  }
  Flush_if_unbuffered(chan);
}

CAMLprim value caml_output_value(value vchan, value v, value flags)
{
  CAMLparam3 (vchan, v, flags);
  struct channel * channel = Channel(vchan);

  Lock(channel);
  caml_output_val(channel, v, flags);
  Unlock(channel);
  CAMLreturn (Val_unit);
}

CAMLprim value caml_output_value_to_bytes(value v, value flags)
{
  char header[32];
  int header_len;
  intnat data_len, ofs;
  value res;
  struct output_block * blk, * nextblk;

  init_extern_output();
  data_len = extern_value(v, flags, header, &header_len);
  /* PR#4030: it is prudent to save extern_output_first before allocating
     the result, as in caml_output_val */
  blk = extern_output_first;
  res = caml_alloc_string(header_len + data_len);
  ofs = 0;
  memcpy(&Byte(res, ofs), header, header_len);
  ofs += header_len;
  while (blk != NULL) {
    intnat n = blk->end - blk->data;
    memcpy(&Byte(res, ofs), blk->data, n);
    ofs += n;
    nextblk = blk->next;
    caml_stat_free(blk);
    blk = nextblk;
  }
  return res;
}

CAMLprim value caml_output_value_to_string(value v, value flags)
{
  return caml_output_value_to_bytes(v,flags);
}

CAMLexport intnat caml_output_value_to_block(value v, value flags,
                                             char * buf, intnat len)
{
  char header[32];
  int header_len;
  intnat data_len;
  /* At this point we don't know the size of the header.
     Guess that it is small, and fix up later if not. */
  extern_userprovided_output = buf + 20;
  extern_ptr = extern_userprovided_output;
  extern_limit = buf + len;
  data_len = extern_value(v, flags, header, &header_len);
  if (header_len != 20) {
    /* Bad guess!  Need to shift the output to make room for big header.
       Make sure there is room. */
    if (header_len + data_len > len)
      caml_failwith("Marshal.to_buffer: buffer overflow");
    memmove(buf + header_len, buf + 20, data_len);
  }
  memcpy(buf, header, header_len);
  return header_len + data_len;
}

CAMLprim value caml_output_value_to_buffer(value buf, value ofs, value len,
                                           value v, value flags)
{
  intnat l =
    caml_output_value_to_block(v, flags,
                               &Byte(buf, Long_val(ofs)), Long_val(len));
  return Val_long(l);
}

CAMLexport void caml_output_value_to_malloc(value v, value flags,
                                            /*out*/ char ** buf,
                                            /*out*/ intnat * len)
{
  char header[32];
  int header_len;
  intnat data_len;
  char * res;
  struct output_block * blk, * nextblk;

  init_extern_output();
  data_len = extern_value(v, flags, header, &header_len);
  res = caml_stat_alloc_noexc(header_len + data_len);
  if (res == NULL) extern_out_of_memory();
  *buf = res;
  *len = header_len + data_len;
  memcpy(res, header, header_len);
  res += header_len;
  for (blk = extern_output_first; blk != NULL; blk = nextblk) {
    intnat n = blk->end - blk->data;
    memcpy(res, blk->data, n);
    res += n;
    nextblk = blk->next;
    caml_stat_free(blk);
  }
}

/* Functions for writing user-defined marshallers */

CAMLexport void caml_serialize_int_1(int i)
{
  if (extern_ptr + 1 > extern_limit) grow_extern_output(1);
  extern_ptr[0] = i;
  extern_ptr += 1;
}

CAMLexport void caml_serialize_int_2(int i)
{
  if (extern_ptr + 2 > extern_limit) grow_extern_output(2);
  store16(extern_ptr, i);
  extern_ptr += 2;
}

CAMLexport void caml_serialize_int_4(int32_t i)
{
  if (extern_ptr + 4 > extern_limit) grow_extern_output(4);
  store32(extern_ptr, i);
  extern_ptr += 4;
}

CAMLexport void caml_serialize_int_8(int64_t i)
{
  if (extern_ptr + 8 > extern_limit) grow_extern_output(8);
  store64(extern_ptr, i);
  extern_ptr += 8;
}

CAMLexport void caml_serialize_float_4(float f)
{
  caml_serialize_block_4(&f, 1);
}

CAMLexport void caml_serialize_float_8(double f)
{
  caml_serialize_block_float_8(&f, 1);
}

CAMLexport void caml_serialize_block_1(void * data, intnat len)
{
  if (extern_ptr + len > extern_limit) grow_extern_output(len);
  memcpy(extern_ptr, data, len);
  extern_ptr += len;
}

CAMLexport void caml_serialize_block_2(void * data, intnat len)
{
  if (extern_ptr + 2 * len > extern_limit) grow_extern_output(2 * len);
#ifndef ARCH_BIG_ENDIAN
  {
    unsigned char * p;
    char * q;
    for (p = data, q = extern_ptr; len > 0; len--, p += 2, q += 2)
      Reverse_16(q, p);
    extern_ptr = q;
  }
#else
  memcpy(extern_ptr, data, len * 2);
  extern_ptr += len * 2;
#endif
}

CAMLexport void caml_serialize_block_4(void * data, intnat len)
{
  if (extern_ptr + 4 * len > extern_limit) grow_extern_output(4 * len);
#ifndef ARCH_BIG_ENDIAN
  {
    unsigned char * p;
    char * q;
    for (p = data, q = extern_ptr; len > 0; len--, p += 4, q += 4)
      Reverse_32(q, p);
    extern_ptr = q;
  }
#else
  memcpy(extern_ptr, data, len * 4);
  extern_ptr += len * 4;
#endif
}

CAMLexport void caml_serialize_block_8(void * data, intnat len)
{
  if (extern_ptr + 8 * len > extern_limit) grow_extern_output(8 * len);
#ifndef ARCH_BIG_ENDIAN
  {
    unsigned char * p;
    char * q;
    for (p = data, q = extern_ptr; len > 0; len--, p += 8, q += 8)
      Reverse_64(q, p);
    extern_ptr = q;
  }
#else
  memcpy(extern_ptr, data, len * 8);
  extern_ptr += len * 8;
#endif
}

CAMLexport void caml_serialize_block_float_8(void * data, intnat len)
{
  if (extern_ptr + 8 * len > extern_limit) grow_extern_output(8 * len);
#if ARCH_FLOAT_ENDIANNESS == 0x01234567
  memcpy(extern_ptr, data, len * 8);
  extern_ptr += len * 8;
#elif ARCH_FLOAT_ENDIANNESS == 0x76543210
  {
    unsigned char * p;
    char * q;
    for (p = data, q = extern_ptr; len > 0; len--, p += 8, q += 8)
      Reverse_64(q, p);
    extern_ptr = q;
  }
#else
  {
    unsigned char * p;
    char * q;
    for (p = data, q = extern_ptr; len > 0; len--, p += 8, q += 8)
      Permute_64(q, 0x01234567, p, ARCH_FLOAT_ENDIANNESS);
    extern_ptr = q;
  }
#endif
}

CAMLprim value caml_obj_reachable_words(value v)
{
  intnat size;
  struct extern_item * sp;
  uintnat h = 0;
  uintnat pos;

  extern_init_position_table();
  sp = extern_stack;
  size = 0;
  while (1) {
    if (Is_long(v)) {
      /* Tagged integers contribute 0 to the size, nothing to do */
    } else if (! Is_in_heap_or_young(v)) {
      /* Out-of-heap blocks contribute 0 to the size, nothing to do */
      /* However, in no-naked-pointers mode, we don't distinguish
         between major heap blocks and out-of-heap blocks,
         and the test above is always false,
         so we end up counting out-of-heap blocks too. */
    } else if (extern_lookup_position(v, &pos, &h)) {
      /* Already seen and counted, nothing to do */
    } else {
      header_t hd = Hd_val(v);
      tag_t tag = Tag_hd(hd);
      mlsize_t sz = Wosize_hd(hd);
      /* Infix pointer: go back to containing closure */
      if (tag == Infix_tag) {
        v = v - Infix_offset_hd(hd);
        continue;
      }
      /* Remember that we've visited this block */
      extern_record_location(v, h);
      /* The block contributes to the total size */
      size += 1 + sz;           /* header word included */
      if (tag < No_scan_tag) {
        /* i is the position of the first field to traverse recursively */
        uintnat i =
          tag == Closure_tag ? Start_env_closinfo(Closinfo_val(v)) : 0;
        if (i < sz) {
          if (i < sz - 1) {
            /* Remember that we need to count fields i + 1 ... sz - 1 */
            sp++;
            if (sp >= extern_stack_limit) sp = extern_resize_stack(sp);
            sp->v = &Field(v, i + 1);
            sp->count = sz - i - 1;
          }
          /* Continue with field i */
          v = Field(v, i);
          continue;
        }
      }
    }
    /* Pop one more item to traverse, if any */
    if (sp == extern_stack) break;
    v = *((sp->v)++);
    if (--(sp->count) == 0) sp--;
  }
  extern_free_stack();
  extern_free_position_table();
  return Val_long(size);
}