1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
|
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Detection of partial matches and unused match cases. *)
open Misc
open Asttypes
open Types
open Typedtree
(*************************************)
(* Utilities for building patterns *)
(*************************************)
let make_pat desc ty tenv =
{pat_desc = desc; pat_loc = Location.none; pat_extra = [];
pat_type = ty ; pat_env = tenv;
pat_attributes = [];
}
let omega = make_pat Tpat_any Ctype.none Env.empty
let extra_pat =
make_pat
(Tpat_var (Ident.create "+", mknoloc "+"))
Ctype.none Env.empty
let rec omegas i =
if i <= 0 then [] else omega :: omegas (i-1)
let omega_list l = List.map (fun _ -> omega) l
let zero = make_pat (Tpat_constant (Const_int 0)) Ctype.none Env.empty
(***********************)
(* Compatibility check *)
(***********************)
(* p and q compatible means, there exists V that matches both *)
let is_absent tag row = Btype.row_field tag !row = Rabsent
let is_absent_pat p = match p.pat_desc with
| Tpat_variant (tag, _, row) -> is_absent tag row
| _ -> false
let const_compare x y =
match x,y with
| Const_float f1, Const_float f2 ->
Pervasives.compare (float_of_string f1) (float_of_string f2)
| Const_string (s1, _), Const_string (s2, _) ->
String.compare s1 s2
| _, _ -> Pervasives.compare x y
let records_args l1 l2 =
(* Invariant: fields are already sorted by Typecore.type_label_a_list *)
let rec combine r1 r2 l1 l2 = match l1,l2 with
| [],[] -> List.rev r1, List.rev r2
| [],(_,_,p2)::rem2 -> combine (omega::r1) (p2::r2) [] rem2
| (_,_,p1)::rem1,[] -> combine (p1::r1) (omega::r2) rem1 []
| (_,lbl1,p1)::rem1, ( _,lbl2,p2)::rem2 ->
if lbl1.lbl_pos < lbl2.lbl_pos then
combine (p1::r1) (omega::r2) rem1 l2
else if lbl1.lbl_pos > lbl2.lbl_pos then
combine (omega::r1) (p2::r2) l1 rem2
else (* same label on both sides *)
combine (p1::r1) (p2::r2) rem1 rem2 in
combine [] [] l1 l2
let rec compat p q =
match p.pat_desc,q.pat_desc with
| Tpat_alias (p,_,_),_ -> compat p q
| _,Tpat_alias (q,_,_) -> compat p q
| (Tpat_any|Tpat_var _),_ -> true
| _,(Tpat_any|Tpat_var _) -> true
| Tpat_or (p1,p2,_),_ -> compat p1 q || compat p2 q
| _,Tpat_or (q1,q2,_) -> compat p q1 || compat p q2
| Tpat_constant c1, Tpat_constant c2 -> const_compare c1 c2 = 0
| Tpat_tuple ps, Tpat_tuple qs -> compats ps qs
| Tpat_lazy p, Tpat_lazy q -> compat p q
| Tpat_construct (_, c1,ps1), Tpat_construct (_, c2,ps2) ->
c1.cstr_tag = c2.cstr_tag && compats ps1 ps2
| Tpat_variant(l1,Some p1, r1), Tpat_variant(l2,Some p2,_) ->
l1=l2 && compat p1 p2
| Tpat_variant (l1,None,r1), Tpat_variant(l2,None,_) ->
l1 = l2
| Tpat_variant (_, None, _), Tpat_variant (_,Some _, _) -> false
| Tpat_variant (_, Some _, _), Tpat_variant (_, None, _) -> false
| Tpat_record (l1,_),Tpat_record (l2,_) ->
let ps,qs = records_args l1 l2 in
compats ps qs
| Tpat_array ps, Tpat_array qs ->
List.length ps = List.length qs &&
compats ps qs
| _,_ ->
assert false
and compats ps qs = match ps,qs with
| [], [] -> true
| p::ps, q::qs -> compat p q && compats ps qs
| _,_ -> assert false
exception Empty (* Empty pattern *)
(****************************************)
(* Utilities for retrieving type paths *)
(****************************************)
(* May need a clean copy, cf. PR#4745 *)
let clean_copy ty =
if ty.level = Btype.generic_level then ty
else Subst.type_expr Subst.identity ty
let get_type_path ty tenv =
let ty = Ctype.repr (Ctype.expand_head tenv (clean_copy ty)) in
match ty.desc with
| Tconstr (path,_,_) -> path
| _ -> fatal_error "Parmatch.get_type_path"
(*************************************)
(* Values as patterns pretty printer *)
(*************************************)
open Format
;;
let is_cons = function
| {cstr_name = "::"} -> true
| _ -> false
let pretty_const c = match c with
| Const_int i -> Printf.sprintf "%d" i
| Const_char c -> Printf.sprintf "%C" c
| Const_string (s, _) -> Printf.sprintf "%S" s
| Const_float f -> Printf.sprintf "%s" f
| Const_int32 i -> Printf.sprintf "%ldl" i
| Const_int64 i -> Printf.sprintf "%LdL" i
| Const_nativeint i -> Printf.sprintf "%ndn" i
let rec pretty_val ppf v =
match v.pat_extra with
(cstr, _loc, _attrs) :: rem ->
begin match cstr with
| Tpat_unpack ->
fprintf ppf "@[(module %a)@]" pretty_val { v with pat_extra = rem }
| Tpat_constraint ctyp ->
fprintf ppf "@[(%a : _)@]" pretty_val { v with pat_extra = rem }
| Tpat_type _ ->
fprintf ppf "@[(# %a)@]" pretty_val { v with pat_extra = rem }
end
| [] ->
match v.pat_desc with
| Tpat_any -> fprintf ppf "_"
| Tpat_var (x,_) -> Ident.print ppf x
| Tpat_constant c -> fprintf ppf "%s" (pretty_const c)
| Tpat_tuple vs ->
fprintf ppf "@[(%a)@]" (pretty_vals ",") vs
| Tpat_construct (_, cstr, []) ->
fprintf ppf "%s" cstr.cstr_name
| Tpat_construct (_, cstr, [w]) ->
fprintf ppf "@[<2>%s@ %a@]" cstr.cstr_name pretty_arg w
| Tpat_construct (_, cstr, vs) ->
let name = cstr.cstr_name in
begin match (name, vs) with
("::", [v1;v2]) ->
fprintf ppf "@[%a::@,%a@]" pretty_car v1 pretty_cdr v2
| _ ->
fprintf ppf "@[<2>%s@ @[(%a)@]@]" name (pretty_vals ",") vs
end
| Tpat_variant (l, None, _) ->
fprintf ppf "`%s" l
| Tpat_variant (l, Some w, _) ->
fprintf ppf "@[<2>`%s@ %a@]" l pretty_arg w
| Tpat_record (lvs,_) ->
fprintf ppf "@[{%a}@]"
pretty_lvals
(List.filter
(function
| (_,_,{pat_desc=Tpat_any}) -> false (* do not show lbl=_ *)
| _ -> true) lvs)
| Tpat_array vs ->
fprintf ppf "@[[| %a |]@]" (pretty_vals " ;") vs
| Tpat_lazy v ->
fprintf ppf "@[<2>lazy@ %a@]" pretty_arg v
| Tpat_alias (v, x,_) ->
fprintf ppf "@[(%a@ as %a)@]" pretty_val v Ident.print x
| Tpat_or (v,w,_) ->
fprintf ppf "@[(%a|@,%a)@]" pretty_or v pretty_or w
and pretty_car ppf v = match v.pat_desc with
| Tpat_construct (_,cstr, [_ ; _])
when is_cons cstr ->
fprintf ppf "(%a)" pretty_val v
| _ -> pretty_val ppf v
and pretty_cdr ppf v = match v.pat_desc with
| Tpat_construct (_,cstr, [v1 ; v2])
when is_cons cstr ->
fprintf ppf "%a::@,%a" pretty_car v1 pretty_cdr v2
| _ -> pretty_val ppf v
and pretty_arg ppf v = match v.pat_desc with
| Tpat_construct (_,_,_::_) -> fprintf ppf "(%a)" pretty_val v
| _ -> pretty_val ppf v
and pretty_or ppf v = match v.pat_desc with
| Tpat_or (v,w,_) ->
fprintf ppf "%a|@,%a" pretty_or v pretty_or w
| _ -> pretty_val ppf v
and pretty_vals sep ppf = function
| [] -> ()
| [v] -> pretty_val ppf v
| v::vs ->
fprintf ppf "%a%s@ %a" pretty_val v sep (pretty_vals sep) vs
and pretty_lvals ppf = function
| [] -> ()
| [_,lbl,v] ->
fprintf ppf "%s=%a" lbl.lbl_name pretty_val v
| (_, lbl,v)::rest ->
fprintf ppf "%s=%a;@ %a"
lbl.lbl_name pretty_val v pretty_lvals rest
let top_pretty ppf v =
fprintf ppf "@[%a@]@?" pretty_val v
let pretty_pat p =
top_pretty Format.str_formatter p ;
prerr_string (Format.flush_str_formatter ())
type matrix = pattern list list
let pretty_line ps =
List.iter
(fun p ->
top_pretty Format.str_formatter p ;
prerr_string " <" ;
prerr_string (Format.flush_str_formatter ()) ;
prerr_string ">")
ps
let pretty_matrix (pss : matrix) =
prerr_endline "begin matrix" ;
List.iter
(fun ps ->
pretty_line ps ;
prerr_endline "")
pss ;
prerr_endline "end matrix"
(****************************)
(* Utilities for matching *)
(****************************)
(* Check top matching *)
let simple_match p1 p2 =
match p1.pat_desc, p2.pat_desc with
| Tpat_construct(_, c1, _), Tpat_construct(_, c2, _) ->
c1.cstr_tag = c2.cstr_tag
| Tpat_variant(l1, _, _), Tpat_variant(l2, _, _) ->
l1 = l2
| Tpat_constant(c1), Tpat_constant(c2) -> const_compare c1 c2 = 0
| Tpat_tuple _, Tpat_tuple _ -> true
| Tpat_lazy _, Tpat_lazy _ -> true
| Tpat_record _ , Tpat_record _ -> true
| Tpat_array p1s, Tpat_array p2s -> List.length p1s = List.length p2s
| _, (Tpat_any | Tpat_var(_)) -> true
| _, _ -> false
(* extract record fields as a whole *)
let record_arg p = match p.pat_desc with
| Tpat_any -> []
| Tpat_record (args,_) -> args
| _ -> fatal_error "Parmatch.as_record"
(* Raise Not_found when pos is not present in arg *)
let get_field pos arg =
let _,_, p = List.find (fun (_,lbl,_) -> pos = lbl.lbl_pos) arg in
p
let extract_fields omegas arg =
List.map
(fun (_,lbl,_) ->
try
get_field lbl.lbl_pos arg
with Not_found -> omega)
omegas
let all_record_args lbls = match lbls with
| (_,{lbl_all=lbl_all},_)::_ ->
let t =
Array.map
(fun lbl -> mknoloc (Longident.Lident "?temp?"), lbl,omega)
lbl_all in
List.iter
(fun ((_, lbl,_) as x) -> t.(lbl.lbl_pos) <- x)
lbls ;
Array.to_list t
| _ -> fatal_error "Parmatch.all_record_args"
(* Build argument list when p2 >= p1, where p1 is a simple pattern *)
let rec simple_match_args p1 p2 = match p2.pat_desc with
| Tpat_alias (p2,_,_) -> simple_match_args p1 p2
| Tpat_construct(_, cstr, args) -> args
| Tpat_variant(lab, Some arg, _) -> [arg]
| Tpat_tuple(args) -> args
| Tpat_record(args,_) -> extract_fields (record_arg p1) args
| Tpat_array(args) -> args
| Tpat_lazy arg -> [arg]
| (Tpat_any | Tpat_var(_)) ->
begin match p1.pat_desc with
Tpat_construct(_, _,args) -> omega_list args
| Tpat_variant(_, Some _, _) -> [omega]
| Tpat_tuple(args) -> omega_list args
| Tpat_record(args,_) -> omega_list args
| Tpat_array(args) -> omega_list args
| Tpat_lazy _ -> [omega]
| _ -> []
end
| _ -> []
(*
Normalize a pattern ->
all arguments are omega (simple pattern) and no more variables
*)
let rec normalize_pat q = match q.pat_desc with
| Tpat_any | Tpat_constant _ -> q
| Tpat_var _ -> make_pat Tpat_any q.pat_type q.pat_env
| Tpat_alias (p,_,_) -> normalize_pat p
| Tpat_tuple (args) ->
make_pat (Tpat_tuple (omega_list args)) q.pat_type q.pat_env
| Tpat_construct (lid, c,args) ->
make_pat
(Tpat_construct (lid, c,omega_list args))
q.pat_type q.pat_env
| Tpat_variant (l, arg, row) ->
make_pat (Tpat_variant (l, may_map (fun _ -> omega) arg, row))
q.pat_type q.pat_env
| Tpat_array (args) ->
make_pat (Tpat_array (omega_list args)) q.pat_type q.pat_env
| Tpat_record (largs, closed) ->
make_pat
(Tpat_record (List.map (fun (lid,lbl,_) ->
lid, lbl,omega) largs, closed))
q.pat_type q.pat_env
| Tpat_lazy _ ->
make_pat (Tpat_lazy omega) q.pat_type q.pat_env
| Tpat_or _ -> fatal_error "Parmatch.normalize_pat"
(*
Build normalized (cf. supra) discriminating pattern,
in the non-data type case
*)
let discr_pat q pss =
let rec acc_pat acc pss = match pss with
({pat_desc = Tpat_alias (p,_,_)}::ps)::pss ->
acc_pat acc ((p::ps)::pss)
| ({pat_desc = Tpat_or (p1,p2,_)}::ps)::pss ->
acc_pat acc ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var _)}::_)::pss ->
acc_pat acc pss
| (({pat_desc = Tpat_tuple _} as p)::_)::_ -> normalize_pat p
| (({pat_desc = Tpat_lazy _} as p)::_)::_ -> normalize_pat p
| (({pat_desc = Tpat_record (largs,closed)} as p)::_)::pss ->
let new_omegas =
List.fold_right
(fun (lid, lbl,_) r ->
try
let _ = get_field lbl.lbl_pos r in
r
with Not_found ->
(lid, lbl,omega)::r)
largs (record_arg acc)
in
acc_pat
(make_pat (Tpat_record (new_omegas, closed)) p.pat_type p.pat_env)
pss
| _ -> acc in
match normalize_pat q with
| {pat_desc= (Tpat_any | Tpat_record _)} as q -> acc_pat q pss
| q -> q
(*
In case a matching value is found, set actual arguments
of the matching pattern.
*)
let rec read_args xs r = match xs,r with
| [],_ -> [],r
| _::xs, arg::rest ->
let args,rest = read_args xs rest in
arg::args,rest
| _,_ ->
fatal_error "Parmatch.read_args"
let do_set_args erase_mutable q r = match q with
| {pat_desc = Tpat_tuple omegas} ->
let args,rest = read_args omegas r in
make_pat (Tpat_tuple args) q.pat_type q.pat_env::rest
| {pat_desc = Tpat_record (omegas,closed)} ->
let args,rest = read_args omegas r in
make_pat
(Tpat_record
(List.map2 (fun (lid, lbl,_) arg ->
if
erase_mutable &&
(match lbl.lbl_mut with
| Mutable -> true | Immutable -> false)
then
lid, lbl, omega
else
lid, lbl, arg)
omegas args, closed))
q.pat_type q.pat_env::
rest
| {pat_desc = Tpat_construct (lid, c,omegas)} ->
let args,rest = read_args omegas r in
make_pat
(Tpat_construct (lid, c,args))
q.pat_type q.pat_env::
rest
| {pat_desc = Tpat_variant (l, omega, row)} ->
let arg, rest =
match omega, r with
Some _, a::r -> Some a, r
| None, r -> None, r
| _ -> assert false
in
make_pat
(Tpat_variant (l, arg, row)) q.pat_type q.pat_env::
rest
| {pat_desc = Tpat_lazy omega} ->
begin match r with
arg::rest ->
make_pat (Tpat_lazy arg) q.pat_type q.pat_env::rest
| _ -> fatal_error "Parmatch.do_set_args (lazy)"
end
| {pat_desc = Tpat_array omegas} ->
let args,rest = read_args omegas r in
make_pat
(Tpat_array args) q.pat_type q.pat_env::
rest
| {pat_desc=Tpat_constant _|Tpat_any} ->
q::r (* case any is used in matching.ml *)
| _ -> fatal_error "Parmatch.set_args"
let set_args q r = do_set_args false q r
and set_args_erase_mutable q r = do_set_args true q r
(* filter pss acording to pattern q *)
let filter_one q pss =
let rec filter_rec = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_rec ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_rec ((p1::ps)::(p2::ps)::pss)
| (p::ps)::pss ->
if simple_match q p
then (simple_match_args q p @ ps) :: filter_rec pss
else filter_rec pss
| _ -> [] in
filter_rec pss
(*
Filter pss in the ``extra case''. This applies :
- According to an extra constructor (datatype case, non-complete signature).
- Acordinng to anything (all-variables case).
*)
let filter_extra pss =
let rec filter_rec = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_rec ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_rec ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))} :: qs) :: pss ->
qs :: filter_rec pss
| _::pss -> filter_rec pss
| [] -> [] in
filter_rec pss
(*
Pattern p0 is the discriminating pattern,
returns [(q0,pss0) ; ... ; (qn,pssn)]
where the qi's are simple patterns and the pssi's are
matched matrices.
NOTES
* (qi,[]) is impossible.
* In the case when matching is useless (all-variable case),
returns []
*)
let filter_all pat0 pss =
let rec insert q qs env =
match env with
[] ->
let q0 = normalize_pat q in
[q0, [simple_match_args q0 q @ qs]]
| ((q0,pss) as c)::env ->
if simple_match q0 q
then (q0, ((simple_match_args q0 q @ qs) :: pss)) :: env
else c :: insert q qs env in
let rec filter_rec env = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_rec env ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_rec env ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))}::_)::pss ->
filter_rec env pss
| (p::ps)::pss ->
filter_rec (insert p ps env) pss
| _ -> env
and filter_omega env = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_omega env ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_omega env ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))}::ps)::pss ->
filter_omega
(List.map (fun (q,qss) -> (q,(simple_match_args q omega @ ps) :: qss))
env)
pss
| _::pss -> filter_omega env pss
| [] -> env in
filter_omega
(filter_rec
(match pat0.pat_desc with
(Tpat_record(_) | Tpat_tuple(_) | Tpat_lazy(_)) -> [pat0,[]]
| _ -> [])
pss)
pss
(* Variant related functions *)
let rec set_last a = function
[] -> []
| [_] -> [a]
| x::l -> x :: set_last a l
(* mark constructor lines for failure when they are incomplete *)
let rec mark_partial = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
mark_partial ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
mark_partial ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))} :: _ as ps) :: pss ->
ps :: mark_partial pss
| ps::pss ->
(set_last zero ps) :: mark_partial pss
| [] -> []
let close_variant env row =
let row = Btype.row_repr row in
let nm =
List.fold_left
(fun nm (tag,f) ->
match Btype.row_field_repr f with
| Reither(_, _, false, e) ->
(* m=false means that this tag is not explicitly matched *)
Btype.set_row_field e Rabsent;
None
| Rabsent | Reither (_, _, true, _) | Rpresent _ -> nm)
row.row_name row.row_fields in
if not row.row_closed || nm != row.row_name then begin
(* this unification cannot fail *)
Ctype.unify env row.row_more
(Btype.newgenty
(Tvariant {row with row_fields = []; row_more = Btype.newgenvar();
row_closed = true; row_name = nm}))
end
let row_of_pat pat =
match Ctype.expand_head pat.pat_env pat.pat_type with
{desc = Tvariant row} -> Btype.row_repr row
| _ -> assert false
(*
Check whether the first column of env makes up a complete signature or
not.
*)
let generalized_constructor x =
match x with
({pat_desc = Tpat_construct(_,c,_);pat_env=env},_) ->
c.cstr_generalized
| _ -> assert false
let clean_env env =
let rec loop =
function
| [] -> []
| x :: xs ->
if generalized_constructor x then loop xs else x :: loop xs
in
loop env
let full_match ignore_generalized closing env = match env with
| ({pat_desc = Tpat_construct(_,c,_);pat_type=typ},_) :: _ ->
if c.cstr_consts < 0 then false (* extensions *)
else
if ignore_generalized then
(* remove generalized constructors;
those cases will be handled separately *)
let env = clean_env env in
List.length env = c.cstr_normal
else
List.length env = c.cstr_consts + c.cstr_nonconsts
| ({pat_desc = Tpat_variant _} as p,_) :: _ ->
let fields =
List.map
(function ({pat_desc = Tpat_variant (tag, _, _)}, _) -> tag
| _ -> assert false)
env
in
let row = row_of_pat p in
if closing && not (Btype.row_fixed row) then
(* closing=true, we are considering the variant as closed *)
List.for_all
(fun (tag,f) ->
match Btype.row_field_repr f with
Rabsent | Reither(_, _, false, _) -> true
| Reither (_, _, true, _)
(* m=true, do not discard matched tags, rather warn *)
| Rpresent _ -> List.mem tag fields)
row.row_fields
else
row.row_closed &&
List.for_all
(fun (tag,f) ->
Btype.row_field_repr f = Rabsent || List.mem tag fields)
row.row_fields
| ({pat_desc = Tpat_constant(Const_char _)},_) :: _ ->
List.length env = 256
| ({pat_desc = Tpat_constant(_)},_) :: _ -> false
| ({pat_desc = Tpat_tuple(_)},_) :: _ -> true
| ({pat_desc = Tpat_record(_)},_) :: _ -> true
| ({pat_desc = Tpat_array(_)},_) :: _ -> false
| ({pat_desc = Tpat_lazy(_)},_) :: _ -> true
| _ -> fatal_error "Parmatch.full_match"
let full_match_gadt env = match env with
| ({pat_desc = Tpat_construct(_,c,_);pat_type=typ},_) :: _ ->
List.length env = c.cstr_consts + c.cstr_nonconsts
| _ -> true
let extendable_match env = match env with
| ({pat_desc=Tpat_construct(_,{cstr_tag=(Cstr_constant _|Cstr_block _)},_)}
as p,_) :: _ ->
let path = get_type_path p.pat_type p.pat_env in
not
(Path.same path Predef.path_bool ||
Path.same path Predef.path_list ||
Path.same path Predef.path_option)
| _ -> false
let should_extend ext env = match ext with
| None -> false
| Some ext -> match env with
| ({pat_desc =
Tpat_construct(_, {cstr_tag=(Cstr_constant _|Cstr_block _)},_)}
as p, _) :: _ ->
let path = get_type_path p.pat_type p.pat_env in
Path.same path ext
| _ -> false
(* complement constructor tags *)
let complete_tags nconsts nconstrs tags =
let seen_const = Array.make nconsts false
and seen_constr = Array.make nconstrs false in
List.iter
(function
| Cstr_constant i -> seen_const.(i) <- true
| Cstr_block i -> seen_constr.(i) <- true
| _ -> assert false)
tags ;
let r = ref [] in
for i = 0 to nconsts-1 do
if not seen_const.(i) then
r := Cstr_constant i :: !r
done ;
for i = 0 to nconstrs-1 do
if not seen_constr.(i) then
r := Cstr_block i :: !r
done ;
!r
(* build a pattern from a constructor list *)
let pat_of_constr ex_pat cstr =
{ex_pat with pat_desc =
Tpat_construct (mknoloc (Longident.Lident "?pat_of_constr?"),
cstr,omegas cstr.cstr_arity)}
let rec pat_of_constrs ex_pat = function
| [] -> raise Empty
| [cstr] -> pat_of_constr ex_pat cstr
| cstr::rem ->
{ex_pat with
pat_desc=
Tpat_or
(pat_of_constr ex_pat cstr,
pat_of_constrs ex_pat rem, None)}
let rec get_variant_constructors env ty =
match (Ctype.repr ty).desc with
| Tconstr (path,_,_) -> begin
match Env.find_type path env with
| {type_kind=Type_variant _} ->
fst (Env.find_type_descrs path env)
| {type_manifest = Some _} ->
get_variant_constructors env
(Ctype.expand_head_once env (clean_copy ty))
| _ -> fatal_error "Parmatch.get_variant_constructors"
end
| _ -> fatal_error "Parmatch.get_variant_constructors"
let rec map_filter f =
function
[] -> []
| x :: xs ->
match f x with
| None -> map_filter f xs
| Some y -> y :: map_filter f xs
(* Sends back a pattern that complements constructor tags all_tag *)
let complete_constrs p all_tags =
match p.pat_desc with
| Tpat_construct (_,c,_) ->
let not_tags = complete_tags c.cstr_consts c.cstr_nonconsts all_tags in
let constrs = get_variant_constructors p.pat_env c.cstr_res in
map_filter
(fun cnstr ->
if List.mem cnstr.cstr_tag not_tags then Some cnstr else None)
constrs
| _ -> fatal_error "Parmatch.complete_constr"
(* Auxiliary for build_other *)
let build_other_constant proj make first next p env =
let all = List.map (fun (p, _) -> proj p.pat_desc) env in
let rec try_const i =
if List.mem i all
then try_const (next i)
else make_pat (make i) p.pat_type p.pat_env
in try_const first
(*
Builds a pattern that is incompatible with all patterns in
in the first column of env
*)
let build_other ext env = match env with
| ({pat_desc = Tpat_construct (lid,
({cstr_tag=Cstr_extension _} as c),_)},_) :: _ ->
let c = {c with cstr_name = "*extension*"} in
make_pat (Tpat_construct(lid, c, [])) Ctype.none Env.empty
| ({pat_desc = Tpat_construct (_, _,_)} as p,_) :: _ ->
begin match ext with
| Some ext when Path.same ext (get_type_path p.pat_type p.pat_env) ->
extra_pat
| _ ->
let get_tag = function
| {pat_desc = Tpat_construct (_,c,_)} -> c.cstr_tag
| _ -> fatal_error "Parmatch.get_tag" in
let all_tags = List.map (fun (p,_) -> get_tag p) env in
pat_of_constrs p (complete_constrs p all_tags)
end
| ({pat_desc = Tpat_variant (_,_,r)} as p,_) :: _ ->
let tags =
List.map
(function ({pat_desc = Tpat_variant (tag, _, _)}, _) -> tag
| _ -> assert false)
env
in
let row = row_of_pat p in
let make_other_pat tag const =
let arg = if const then None else Some omega in
make_pat (Tpat_variant(tag, arg, r)) p.pat_type p.pat_env in
begin match
List.fold_left
(fun others (tag,f) ->
if List.mem tag tags then others else
match Btype.row_field_repr f with
Rabsent (* | Reither _ *) -> others
(* This one is called after erasing pattern info *)
| Reither (c, _, _, _) -> make_other_pat tag c :: others
| Rpresent arg -> make_other_pat tag (arg = None) :: others)
[] row.row_fields
with
[] ->
make_other_pat "AnyExtraTag" true
| pat::other_pats ->
List.fold_left
(fun p_res pat ->
make_pat (Tpat_or (pat, p_res, None)) p.pat_type p.pat_env)
pat other_pats
end
| ({pat_desc = Tpat_constant(Const_char _)} as p,_) :: _ ->
let all_chars =
List.map
(fun (p,_) -> match p.pat_desc with
| Tpat_constant (Const_char c) -> c
| _ -> assert false)
env in
let rec find_other i imax =
if i > imax then raise Not_found
else
let ci = Char.chr i in
if List.mem ci all_chars then
find_other (i+1) imax
else
make_pat (Tpat_constant (Const_char ci)) p.pat_type p.pat_env in
let rec try_chars = function
| [] -> omega
| (c1,c2) :: rest ->
try
find_other (Char.code c1) (Char.code c2)
with
| Not_found -> try_chars rest in
try_chars
[ 'a', 'z' ; 'A', 'Z' ; '0', '9' ;
' ', '~' ; Char.chr 0 , Char.chr 255]
| ({pat_desc=(Tpat_constant (Const_int _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_int i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_int i))
0 succ p env
| ({pat_desc=(Tpat_constant (Const_int32 _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_int32 i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_int32 i))
0l Int32.succ p env
| ({pat_desc=(Tpat_constant (Const_int64 _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_int64 i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_int64 i))
0L Int64.succ p env
| ({pat_desc=(Tpat_constant (Const_nativeint _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_nativeint i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_nativeint i))
0n Nativeint.succ p env
| ({pat_desc=(Tpat_constant (Const_string _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_string (s, _)) -> String.length s
| _ -> assert false)
(function i -> Tpat_constant(Const_string(String.make i '*', None)))
0 succ p env
| ({pat_desc=(Tpat_constant (Const_float _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_float f) -> float_of_string f
| _ -> assert false)
(function f -> Tpat_constant(Const_float (string_of_float f)))
0.0 (fun f -> f +. 1.0) p env
| ({pat_desc = Tpat_array args} as p,_)::_ ->
let all_lengths =
List.map
(fun (p,_) -> match p.pat_desc with
| Tpat_array args -> List.length args
| _ -> assert false)
env in
let rec try_arrays l =
if List.mem l all_lengths then try_arrays (l+1)
else
make_pat
(Tpat_array (omegas l))
p.pat_type p.pat_env in
try_arrays 0
| [] -> omega
| _ -> omega
let build_other_gadt ext env =
match env with
| ({pat_desc = Tpat_construct _} as p,_) :: _ ->
let get_tag = function
| {pat_desc = Tpat_construct (_,c,_)} -> c.cstr_tag
| _ -> fatal_error "Parmatch.get_tag" in
let all_tags = List.map (fun (p,_) -> get_tag p) env in
let cnstrs = complete_constrs p all_tags in
let pats = List.map (pat_of_constr p) cnstrs in
(* List.iter (Format.eprintf "%a@." top_pretty) pats;
Format.eprintf "@.@."; *)
pats
| _ -> assert false
(*
Core function :
Is the last row of pattern matrix pss + qs satisfiable ?
That is :
Does there exists at least one value vector, es such that :
1- for all ps in pss ps # es (ps and es are not compatible)
2- qs <= es (es matches qs)
*)
let rec has_instance p = match p.pat_desc with
| Tpat_variant (l,_,r) when is_absent l r -> false
| Tpat_any | Tpat_var _ | Tpat_constant _ | Tpat_variant (_,None,_) -> true
| Tpat_alias (p,_,_) | Tpat_variant (_,Some p,_) -> has_instance p
| Tpat_or (p1,p2,_) -> has_instance p1 || has_instance p2
| Tpat_construct (_,_,ps) | Tpat_tuple ps | Tpat_array ps ->
has_instances ps
| Tpat_record (lps,_) -> has_instances (List.map (fun (_,_,x) -> x) lps)
| Tpat_lazy p
-> has_instance p
and has_instances = function
| [] -> true
| q::rem -> has_instance q && has_instances rem
let rec satisfiable pss qs = match pss with
| [] -> has_instances qs
| _ ->
match qs with
| [] -> false
| {pat_desc = Tpat_or(q1,q2,_)}::qs ->
satisfiable pss (q1::qs) || satisfiable pss (q2::qs)
| {pat_desc = Tpat_alias(q,_,_)}::qs ->
satisfiable pss (q::qs)
| {pat_desc = (Tpat_any | Tpat_var(_))}::qs ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] -> satisfiable (filter_extra pss) qs
| constrs ->
if full_match false false constrs then
List.exists
(fun (p,pss) ->
not (is_absent_pat p) &&
satisfiable pss (simple_match_args p omega @ qs))
constrs
else
satisfiable (filter_extra pss) qs
end
| {pat_desc=Tpat_variant (l,_,r)}::_ when is_absent l r -> false
| q::qs ->
let q0 = discr_pat q pss in
satisfiable (filter_one q0 pss) (simple_match_args q0 q @ qs)
(*
Now another satisfiable function that additionally
supplies an example of a matching value.
This function should be called for exhaustiveness check only.
*)
type 'a result =
| Rnone (* No matching value *)
| Rsome of 'a (* This matching value *)
let rec orify_many =
let orify x y =
make_pat (Tpat_or (x, y, None)) x.pat_type x.pat_env
in
function
| [] -> assert false
| [x] -> x
| x :: xs -> orify x (orify_many xs)
let rec try_many f = function
| [] -> Rnone
| (p,pss)::rest ->
match f (p,pss) with
| Rnone -> try_many f rest
| r -> r
let rappend r1 r2 =
match r1, r2 with
| Rnone, _ -> r2
| _, Rnone -> r1
| Rsome l1, Rsome l2 -> Rsome (l1 @ l2)
let rec try_many_gadt f = function
| [] -> Rnone
| (p,pss)::rest ->
rappend (f (p, pss)) (try_many_gadt f rest)
let rec exhaust ext pss n = match pss with
| [] -> Rsome (omegas n)
| []::_ -> Rnone
| pss ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] ->
begin match exhaust ext (filter_extra pss) (n-1) with
| Rsome r -> Rsome (q0::r)
| r -> r
end
| constrs ->
let try_non_omega (p,pss) =
if is_absent_pat p then
Rnone
else
match
exhaust
ext pss (List.length (simple_match_args p omega) + n - 1)
with
| Rsome r -> Rsome (set_args p r)
| r -> r in
if
full_match true false constrs && not (should_extend ext constrs)
then
try_many try_non_omega constrs
else
(*
D = filter_extra pss is the default matrix
as it is included in pss, one can avoid
recursive calls on specialized matrices,
Essentially :
* D exhaustive => pss exhaustive
* D non-exhaustive => we have a non-filtered value
*)
let r = exhaust ext (filter_extra pss) (n-1) in
match r with
| Rnone -> Rnone
| Rsome r ->
try
Rsome (build_other ext constrs::r)
with
(* cannot occur, since constructors don't make a full signature *)
| Empty -> fatal_error "Parmatch.exhaust"
end
let combinations f lst lst' =
let rec iter2 x =
function
[] -> []
| y :: ys ->
f x y :: iter2 x ys
in
let rec iter =
function
[] -> []
| x :: xs -> iter2 x lst' @ iter xs
in
iter lst
(*
let print_pat pat =
let rec string_of_pat pat =
match pat.pat_desc with
Tpat_var _ -> "v"
| Tpat_any -> "_"
| Tpat_alias (p, x) -> Printf.sprintf "(%s) as ?" (string_of_pat p)
| Tpat_constant n -> "0"
| Tpat_construct (_, lid, _) ->
Printf.sprintf "%s" (String.concat "." (Longident.flatten lid.txt))
| Tpat_lazy p ->
Printf.sprintf "(lazy %s)" (string_of_pat p)
| Tpat_or (p1,p2,_) ->
Printf.sprintf "(%s | %s)" (string_of_pat p1) (string_of_pat p2)
| Tpat_tuple list ->
Printf.sprintf "(%s)" (String.concat "," (List.map string_of_pat list))
| Tpat_variant (_, _, _) -> "variant"
| Tpat_record (_, _) -> "record"
| Tpat_array _ -> "array"
in
Printf.fprintf stderr "PAT[%s]\n%!" (string_of_pat pat)
*)
(* strictly more powerful than exhaust; however, exhaust
was kept for backwards compatibility *)
let rec exhaust_gadt (ext:Path.t option) pss n = match pss with
| [] -> Rsome [omegas n]
| []::_ -> Rnone
| pss ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] ->
begin match exhaust_gadt ext (filter_extra pss) (n-1) with
| Rsome r -> Rsome (List.map (fun row -> q0::row) r)
| r -> r
end
| constrs ->
let try_non_omega (p,pss) =
if is_absent_pat p then
Rnone
else
match
exhaust_gadt
ext pss (List.length (simple_match_args p omega) + n - 1)
with
| Rsome r -> Rsome (List.map (fun row -> (set_args p row)) r)
| r -> r in
let before = try_many_gadt try_non_omega constrs in
if
full_match_gadt constrs && not (should_extend ext constrs)
then
before
else
(*
D = filter_extra pss is the default matrix
as it is included in pss, one can avoid
recursive calls on specialized matrices,
Essentially :
* D exhaustive => pss exhaustive
* D non-exhaustive => we have a non-filtered value
*)
let r = exhaust_gadt ext (filter_extra pss) (n-1) in
match r with
| Rnone -> before
| Rsome r ->
try
let missing_trailing = build_other_gadt ext constrs in
let dug =
combinations
(fun head tail -> head :: tail)
missing_trailing
r
in
match before with
| Rnone -> Rsome dug
| Rsome x -> Rsome (x @ dug)
with
(* cannot occur, since constructors don't make a full signature *)
| Empty -> fatal_error "Parmatch.exhaust"
end
let exhaust_gadt ext pss n =
let ret = exhaust_gadt ext pss n in
match ret with
Rnone -> Rnone
| Rsome lst ->
(* The following line is needed to compile stdlib/printf.ml *)
if lst = [] then Rsome (omegas n) else
let singletons =
List.map
(function
[x] -> x
| _ -> assert false)
lst
in
Rsome [orify_many singletons]
(*
Another exhaustiveness check, enforcing variant typing.
Note that it does not check exact exhaustiveness, but whether a
matching could be made exhaustive by closing all variant types.
When this is true of all other columns, the current column is left
open (even if it means that the whole matching is not exhaustive as
a result).
When this is false for the matrix minus the current column, and the
current column is composed of variant tags, we close the variant
(even if it doesn't help in making the matching exhaustive).
*)
let rec pressure_variants tdefs = function
| [] -> false
| []::_ -> true
| pss ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
[] -> pressure_variants tdefs (filter_extra pss)
| constrs ->
let rec try_non_omega = function
(p,pss) :: rem ->
let ok = pressure_variants tdefs pss in
try_non_omega rem && ok
| [] -> true
in
if full_match true (tdefs=None) constrs then
try_non_omega constrs
else if tdefs = None then
pressure_variants None (filter_extra pss)
else
let full = full_match true true constrs in
let ok =
if full then try_non_omega constrs
else try_non_omega (filter_all q0 (mark_partial pss))
in
begin match constrs, tdefs with
({pat_desc=Tpat_variant _} as p,_):: _, Some env ->
let row = row_of_pat p in
if Btype.row_fixed row
|| pressure_variants None (filter_extra pss) then ()
else close_variant env row
| _ -> ()
end;
ok
end
(* Yet another satisfiable fonction *)
(*
This time every_satisfiable pss qs checks the
utility of every expansion of qs.
Expansion means expansion of or-patterns inside qs
*)
type answer =
| Used (* Useful pattern *)
| Unused (* Useless pattern *)
| Upartial of Typedtree.pattern list (* Mixed, with list of useless ones *)
(* this row type enable column processing inside the matrix
- left -> elements not to be processed,
- right -> elements to be processed
*)
type 'a row = {no_ors : 'a list ; ors : 'a list ; active : 'a list}
let pretty_row {ors=ors ; no_ors=no_ors; active=active} =
pretty_line ors ; prerr_string " *" ;
pretty_line no_ors ; prerr_string " *" ;
pretty_line active
let pretty_rows rs =
prerr_endline "begin matrix" ;
List.iter
(fun r ->
pretty_row r ;
prerr_endline "")
rs ;
prerr_endline "end matrix"
(* Initial build *)
let make_row ps = {ors=[] ; no_ors=[]; active=ps}
let make_rows pss = List.map make_row pss
(* Useful to detect and expand or pats inside as pats *)
let rec unalias p = match p.pat_desc with
| Tpat_alias (p,_,_) -> unalias p
| _ -> p
let is_var p = match (unalias p).pat_desc with
| Tpat_any|Tpat_var _ -> true
| _ -> false
let is_var_column rs =
List.for_all
(fun r -> match r.active with
| p::_ -> is_var p
| [] -> assert false)
rs
(* Standard or-args for left-to-right matching *)
let rec or_args p = match p.pat_desc with
| Tpat_or (p1,p2,_) -> p1,p2
| Tpat_alias (p,_,_) -> or_args p
| _ -> assert false
(* Just remove current column *)
let remove r = match r.active with
| _::rem -> {r with active=rem}
| [] -> assert false
let remove_column rs = List.map remove rs
(* Current column has been processed *)
let push_no_or r = match r.active with
| p::rem -> { r with no_ors = p::r.no_ors ; active=rem}
| [] -> assert false
let push_or r = match r.active with
| p::rem -> { r with ors = p::r.ors ; active=rem}
| [] -> assert false
let push_or_column rs = List.map push_or rs
and push_no_or_column rs = List.map push_no_or rs
(* Those are adaptations of the previous homonymous functions that
work on the current column, instead of the first column
*)
let discr_pat q rs =
discr_pat q (List.map (fun r -> r.active) rs)
let filter_one q rs =
let rec filter_rec rs = match rs with
| [] -> []
| r::rem ->
match r.active with
| [] -> assert false
| {pat_desc = Tpat_alias(p,_,_)}::ps ->
filter_rec ({r with active = p::ps}::rem)
| {pat_desc = Tpat_or(p1,p2,_)}::ps ->
filter_rec
({r with active = p1::ps}::
{r with active = p2::ps}::
rem)
| p::ps ->
if simple_match q p then
{r with active=simple_match_args q p @ ps} :: filter_rec rem
else
filter_rec rem in
filter_rec rs
(* Back to normal matrices *)
let make_vector r = r.no_ors
let make_matrix rs = List.map make_vector rs
(* Standard union on answers *)
let union_res r1 r2 = match r1, r2 with
| (Unused,_)
| (_, Unused) -> Unused
| Used,_ -> r2
| _, Used -> r1
| Upartial u1, Upartial u2 -> Upartial (u1@u2)
(* propose or pats for expansion *)
let extract_elements qs =
let rec do_rec seen = function
| [] -> []
| q::rem ->
{no_ors= List.rev_append seen rem @ qs.no_ors ;
ors=[] ;
active = [q]}::
do_rec (q::seen) rem in
do_rec [] qs.ors
(* idem for matrices *)
let transpose rs = match rs with
| [] -> assert false
| r::rem ->
let i = List.map (fun x -> [x]) r in
List.fold_left
(List.map2 (fun r x -> x::r))
i rem
let extract_columns pss qs = match pss with
| [] -> List.map (fun _ -> []) qs.ors
| _ ->
let rows = List.map extract_elements pss in
transpose rows
(* Core function
The idea is to first look for or patterns (recursive case), then
check or-patterns argument usefulness (terminal case)
*)
let rec every_satisfiables pss qs = match qs.active with
| [] ->
(* qs is now partitionned, check usefulness *)
begin match qs.ors with
| [] -> (* no or-patterns *)
if satisfiable (make_matrix pss) (make_vector qs) then
Used
else
Unused
| _ -> (* n or-patterns -> 2n expansions *)
List.fold_right2
(fun pss qs r -> match r with
| Unused -> Unused
| _ ->
match qs.active with
| [q] ->
let q1,q2 = or_args q in
let r_loc = every_both pss qs q1 q2 in
union_res r r_loc
| _ -> assert false)
(extract_columns pss qs) (extract_elements qs)
Used
end
| q::rem ->
let uq = unalias q in
begin match uq.pat_desc with
| Tpat_any | Tpat_var _ ->
if is_var_column pss then
(* forget about ``all-variable'' columns now *)
every_satisfiables (remove_column pss) (remove qs)
else
(* otherwise this is direct food for satisfiable *)
every_satisfiables (push_no_or_column pss) (push_no_or qs)
| Tpat_or (q1,q2,_) ->
if
q1.pat_loc.Location.loc_ghost &&
q2.pat_loc.Location.loc_ghost
then
(* syntactically generated or-pats should not be expanded *)
every_satisfiables (push_no_or_column pss) (push_no_or qs)
else
(* this is a real or-pattern *)
every_satisfiables (push_or_column pss) (push_or qs)
| Tpat_variant (l,_,r) when is_absent l r -> (* Ah Jacques... *)
Unused
| _ ->
(* standard case, filter matrix *)
let q0 = discr_pat q pss in
every_satisfiables
(filter_one q0 pss)
{qs with active=simple_match_args q0 q @ rem}
end
(*
This function ``every_both'' performs the usefulness check
of or-pat q1|q2.
The trick is to call every_satisfied twice with
current active columns restricted to q1 and q2,
That way,
- others orpats in qs.ors will not get expanded.
- all matching work performed on qs.no_ors is not performed again.
*)
and every_both pss qs q1 q2 =
let qs1 = {qs with active=[q1]}
and qs2 = {qs with active=[q2]} in
let r1 = every_satisfiables pss qs1
and r2 = every_satisfiables (if compat q1 q2 then qs1::pss else pss) qs2 in
match r1 with
| Unused ->
begin match r2 with
| Unused -> Unused
| Used -> Upartial [q1]
| Upartial u2 -> Upartial (q1::u2)
end
| Used ->
begin match r2 with
| Unused -> Upartial [q2]
| _ -> r2
end
| Upartial u1 ->
begin match r2 with
| Unused -> Upartial (u1@[q2])
| Used -> r1
| Upartial u2 -> Upartial (u1 @ u2)
end
(* le_pat p q means, forall V, V matches q implies V matches p *)
let rec le_pat p q =
match (p.pat_desc, q.pat_desc) with
| (Tpat_var _|Tpat_any),_ -> true
| Tpat_alias(p,_,_), _ -> le_pat p q
| _, Tpat_alias(q,_,_) -> le_pat p q
| Tpat_constant(c1), Tpat_constant(c2) -> const_compare c1 c2 = 0
| Tpat_construct(_,c1,ps), Tpat_construct(_,c2,qs) ->
c1.cstr_tag = c2.cstr_tag && le_pats ps qs
| Tpat_variant(l1,Some p1,_), Tpat_variant(l2,Some p2,_) ->
(l1 = l2 && le_pat p1 p2)
| Tpat_variant(l1,None,r1), Tpat_variant(l2,None,_) ->
l1 = l2
| Tpat_variant(_,_,_), Tpat_variant(_,_,_) -> false
| Tpat_tuple(ps), Tpat_tuple(qs) -> le_pats ps qs
| Tpat_lazy p, Tpat_lazy q -> le_pat p q
| Tpat_record (l1,_), Tpat_record (l2,_) ->
let ps,qs = records_args l1 l2 in
le_pats ps qs
| Tpat_array(ps), Tpat_array(qs) ->
List.length ps = List.length qs && le_pats ps qs
(* In all other cases, enumeration is performed *)
| _,_ -> not (satisfiable [[p]] [q])
and le_pats ps qs =
match ps,qs with
p::ps, q::qs -> le_pat p q && le_pats ps qs
| _, _ -> true
let get_mins le ps =
let rec select_rec r = function
[] -> r
| p::ps ->
if List.exists (fun p0 -> le p0 p) ps
then select_rec r ps
else select_rec (p::r) ps in
select_rec [] (select_rec [] ps)
(*
lub p q is a pattern that matches all values matched by p and q
may raise Empty, when p and q and not compatible
*)
let rec lub p q = match p.pat_desc,q.pat_desc with
| Tpat_alias (p,_,_),_ -> lub p q
| _,Tpat_alias (q,_,_) -> lub p q
| (Tpat_any|Tpat_var _),_ -> q
| _,(Tpat_any|Tpat_var _) -> p
| Tpat_or (p1,p2,_),_ -> orlub p1 p2 q
| _,Tpat_or (q1,q2,_) -> orlub q1 q2 p (* Thanks god, lub is commutative *)
| Tpat_constant c1, Tpat_constant c2 when const_compare c1 c2 = 0 -> p
| Tpat_tuple ps, Tpat_tuple qs ->
let rs = lubs ps qs in
make_pat (Tpat_tuple rs) p.pat_type p.pat_env
| Tpat_lazy p, Tpat_lazy q ->
let r = lub p q in
make_pat (Tpat_lazy r) p.pat_type p.pat_env
| Tpat_construct (lid, c1,ps1), Tpat_construct (_,c2,ps2)
when c1.cstr_tag = c2.cstr_tag ->
let rs = lubs ps1 ps2 in
make_pat (Tpat_construct (lid, c1,rs))
p.pat_type p.pat_env
| Tpat_variant(l1,Some p1,row), Tpat_variant(l2,Some p2,_)
when l1=l2 ->
let r=lub p1 p2 in
make_pat (Tpat_variant (l1,Some r,row)) p.pat_type p.pat_env
| Tpat_variant (l1,None,row), Tpat_variant(l2,None,_)
when l1 = l2 -> p
| Tpat_record (l1,closed),Tpat_record (l2,_) ->
let rs = record_lubs l1 l2 in
make_pat (Tpat_record (rs, closed)) p.pat_type p.pat_env
| Tpat_array ps, Tpat_array qs
when List.length ps = List.length qs ->
let rs = lubs ps qs in
make_pat (Tpat_array rs) p.pat_type p.pat_env
| _,_ ->
raise Empty
and orlub p1 p2 q =
try
let r1 = lub p1 q in
try
{q with pat_desc=(Tpat_or (r1,lub p2 q,None))}
with
| Empty -> r1
with
| Empty -> lub p2 q
and record_lubs l1 l2 =
let rec lub_rec l1 l2 = match l1,l2 with
| [],_ -> l2
| _,[] -> l1
| (lid1, lbl1,p1)::rem1, (lid2, lbl2,p2)::rem2 ->
if lbl1.lbl_pos < lbl2.lbl_pos then
(lid1, lbl1,p1)::lub_rec rem1 l2
else if lbl2.lbl_pos < lbl1.lbl_pos then
(lid2, lbl2,p2)::lub_rec l1 rem2
else
(lid1, lbl1,lub p1 p2)::lub_rec rem1 rem2 in
lub_rec l1 l2
and lubs ps qs = match ps,qs with
| p::ps, q::qs -> lub p q :: lubs ps qs
| _,_ -> []
(******************************)
(* Exported variant closing *)
(******************************)
(* Apply pressure to variants *)
let pressure_variants tdefs patl =
let pss = List.map (fun p -> [p;omega]) patl in
ignore (pressure_variants (Some tdefs) pss)
(*****************************)
(* Utilities for diagnostics *)
(*****************************)
(*
Build up a working pattern matrix by forgetting
about guarded patterns
*)
let rec initial_matrix = function
[] -> []
| {c_guard=Some _} :: rem -> initial_matrix rem
| {c_guard=None; c_lhs=p} :: rem -> [p] :: initial_matrix rem
(******************************************)
(* Look for a row that matches some value *)
(******************************************)
(*
Useful for seeing if the example of
non-matched value can indeed be matched
(by a guarded clause)
*)
exception NoGuard
let rec initial_all no_guard = function
| [] ->
if no_guard then
raise NoGuard
else
[]
| {c_lhs=pat; c_guard; _} :: rem ->
([pat], pat.pat_loc) :: initial_all (no_guard && c_guard = None) rem
let rec do_filter_var = function
| (_::ps,loc)::rem -> (ps,loc)::do_filter_var rem
| _ -> []
let do_filter_one q pss =
let rec filter_rec = function
| ({pat_desc = Tpat_alias(p,_,_)}::ps,loc)::pss ->
filter_rec ((p::ps,loc)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps,loc)::pss ->
filter_rec ((p1::ps,loc)::(p2::ps,loc)::pss)
| (p::ps,loc)::pss ->
if simple_match q p
then (simple_match_args q p @ ps, loc) :: filter_rec pss
else filter_rec pss
| _ -> [] in
filter_rec pss
let rec do_match pss qs = match qs with
| [] ->
begin match pss with
| ([],loc)::_ -> Some loc
| _ -> None
end
| q::qs -> match q with
| {pat_desc = Tpat_or (q1,q2,_)} ->
begin match do_match pss (q1::qs) with
| None -> do_match pss (q2::qs)
| r -> r
end
| {pat_desc = Tpat_any} ->
do_match (do_filter_var pss) qs
| _ ->
let q0 = normalize_pat q in
do_match (do_filter_one q0 pss) (simple_match_args q0 q @ qs)
let check_partial_all v casel =
try
let pss = initial_all true casel in
do_match pss [v]
with
| NoGuard -> None
(************************)
(* Exhaustiveness check *)
(************************)
let rec get_first f =
function
| [] -> None
| x :: xs ->
match f x with
| None -> get_first f xs
| x -> x
(* conversion from Typedtree.pattern to Parsetree.pattern list *)
module Conv = struct
open Parsetree
let mkpat desc = Ast_helper.Pat.mk desc
let rec select : 'a list list -> 'a list list =
function
| xs :: [] -> List.map (fun y -> [y]) xs
| (x::xs)::ys ->
List.map
(fun lst -> x :: lst)
(select ys)
@
select (xs::ys)
| _ -> []
let name_counter = ref 0
let fresh name =
let current = !name_counter in
name_counter := !name_counter + 1;
"#$" ^ name ^ string_of_int current
let conv (typed: Typedtree.pattern) :
Parsetree.pattern list *
(string, Types.constructor_description) Hashtbl.t *
(string, Types.label_description) Hashtbl.t
=
let constrs = Hashtbl.create 0 in
let labels = Hashtbl.create 0 in
let rec loop pat =
match pat.pat_desc with
Tpat_or (a,b,_) ->
loop a @ loop b
| Tpat_any | Tpat_constant _ | Tpat_var _ ->
[mkpat Ppat_any]
| Tpat_alias (p,_,_) -> loop p
| Tpat_tuple lst ->
let results = select (List.map loop lst) in
List.map
(fun lst -> mkpat (Ppat_tuple lst))
results
| Tpat_construct (cstr_lid, cstr,lst) ->
let id = fresh cstr.cstr_name in
let lid = { cstr_lid with txt = Longident.Lident id } in
Hashtbl.add constrs id cstr;
let results = select (List.map loop lst) in
begin match lst with
[] ->
[mkpat (Ppat_construct(lid, None))]
| _ ->
List.map
(fun lst ->
let arg =
match lst with
[] -> assert false
| [x] -> Some x
| _ -> Some (mkpat (Ppat_tuple lst))
in
mkpat (Ppat_construct(lid, arg)))
results
end
| Tpat_variant(label,p_opt,row_desc) ->
begin match p_opt with
| None ->
[mkpat (Ppat_variant(label, None))]
| Some p ->
let results = loop p in
List.map
(fun p ->
mkpat (Ppat_variant(label, Some p)))
results
end
| Tpat_record (subpatterns, _closed_flag) ->
let pats =
select
(List.map (fun (_,_,x) -> loop x) subpatterns)
in
let label_idents =
List.map
(fun (_,lbl,_) ->
let id = fresh lbl.lbl_name in
Hashtbl.add labels id lbl;
Longident.Lident id)
subpatterns
in
List.map
(fun lst ->
let lst = List.map2 (fun lid pat ->
(mknoloc lid, pat)
) label_idents lst in
mkpat (Ppat_record (lst, Open)))
pats
| Tpat_array lst ->
let results = select (List.map loop lst) in
List.map (fun lst -> mkpat (Ppat_array lst)) results
| Tpat_lazy p ->
let results = loop p in
List.map (fun p -> mkpat (Ppat_lazy p)) results
in
let ps = loop typed in
(ps, constrs, labels)
end
let do_check_partial ?pred exhaust loc casel pss = match pss with
| [] ->
(*
This can occur
- For empty matches generated by ocamlp4 (no warning)
- when all patterns have guards (then, casel <> [])
(specific warning)
Then match MUST be considered non-exhaustive,
otherwise compilation of PM is broken.
*)
begin match casel with
| [] -> ()
| _ -> Location.prerr_warning loc Warnings.All_clauses_guarded
end ;
Partial
| ps::_ ->
begin match exhaust None pss (List.length ps) with
| Rnone -> Total
| Rsome [u] ->
let v =
match pred with
| Some pred ->
let (patterns,constrs,labels) = Conv.conv u in
(* Hashtbl.iter (fun s (path, _) ->
Printf.fprintf stderr "CONV: %s -> %s \n%!" s (Path.name path))
constrs
; *)
get_first (pred constrs labels) patterns
| None -> Some u
in
begin match v with
None -> Total
| Some v ->
let errmsg =
match v.pat_desc with
Tpat_construct (_, {cstr_name="*extension*"}, _) ->
"_\nMatching over values of open types must include\n\
a wild card pattern in order to be exhaustive."
| _ -> try
let buf = Buffer.create 16 in
let fmt = formatter_of_buffer buf in
top_pretty fmt v;
begin match check_partial_all v casel with
| None -> ()
| Some _ ->
(* This is 'Some loc', where loc is the location of
a possibly matching clause.
Forget about loc, because printing two locations
is a pain in the top-level *)
Buffer.add_string buf
"\n(However, some guarded clause may match this value.)"
end ;
Buffer.contents buf
with _ ->
""
in
Location.prerr_warning loc (Warnings.Partial_match errmsg) ;
Partial
end
| _ ->
fatal_error "Parmatch.check_partial"
end
let do_check_partial_normal loc casel pss =
do_check_partial exhaust loc casel pss
let do_check_partial_gadt pred loc casel pss =
do_check_partial ~pred exhaust_gadt loc casel pss
(*****************)
(* Fragile check *)
(*****************)
(* Collect all data types in a pattern *)
let rec add_path path = function
| [] -> [path]
| x::rem as paths ->
if Path.same path x then paths
else x::add_path path rem
let extendable_path path =
not
(Path.same path Predef.path_bool ||
Path.same path Predef.path_list ||
Path.same path Predef.path_unit ||
Path.same path Predef.path_option)
let rec collect_paths_from_pat r p = match p.pat_desc with
| Tpat_construct(_, {cstr_tag=(Cstr_constant _|Cstr_block _)},ps) ->
let path = get_type_path p.pat_type p.pat_env in
List.fold_left
collect_paths_from_pat
(if extendable_path path then add_path path r else r)
ps
| Tpat_any|Tpat_var _|Tpat_constant _| Tpat_variant (_,None,_) -> r
| Tpat_tuple ps | Tpat_array ps
| Tpat_construct (_, {cstr_tag=Cstr_extension _}, ps)->
List.fold_left collect_paths_from_pat r ps
| Tpat_record (lps,_) ->
List.fold_left
(fun r (_, _, p) -> collect_paths_from_pat r p)
r lps
| Tpat_variant (_, Some p, _) | Tpat_alias (p,_,_) -> collect_paths_from_pat r p
| Tpat_or (p1,p2,_) ->
collect_paths_from_pat (collect_paths_from_pat r p1) p2
| Tpat_lazy p
->
collect_paths_from_pat r p
(*
Actual fragile check
1. Collect data types in the patterns of the match.
2. One exhautivity check per datatype, considering that
the type is extended.
*)
let do_check_fragile_param exhaust loc casel pss =
let exts =
List.fold_left
(fun r c -> collect_paths_from_pat r c.c_lhs)
[] casel in
match exts with
| [] -> ()
| _ -> match pss with
| [] -> ()
| ps::_ ->
List.iter
(fun ext ->
match exhaust (Some ext) pss (List.length ps) with
| Rnone ->
Location.prerr_warning
loc
(Warnings.Fragile_match (Path.name ext))
| Rsome _ -> ())
exts
let do_check_fragile_normal = do_check_fragile_param exhaust
let do_check_fragile_gadt = do_check_fragile_param exhaust_gadt
(********************************)
(* Exported unused clause check *)
(********************************)
let check_unused tdefs casel =
if Warnings.is_active Warnings.Unused_match then
let rec do_rec pref = function
| [] -> ()
| {c_lhs=q; c_guard} :: rem ->
let qs = [q] in
begin try
let pss =
get_mins le_pats (List.filter (compats qs) pref) in
let r = every_satisfiables (make_rows pss) (make_row qs) in
match r with
| Unused ->
Location.prerr_warning
q.pat_loc Warnings.Unused_match
| Upartial ps ->
List.iter
(fun p ->
Location.prerr_warning
p.pat_loc Warnings.Unused_pat)
ps
| Used -> ()
with Empty | Not_found | NoGuard -> assert false
end ;
if c_guard <> None then
do_rec pref rem
else
do_rec ([q]::pref) rem in
do_rec [] casel
(*********************************)
(* Exported irrefutability tests *)
(*********************************)
let irrefutable pat = le_pat pat omega
(* An inactive pattern is a pattern whose matching needs only
trivial computations (tag/equality tests).
Patterns containing (lazy _) subpatterns are active. *)
let rec inactive pat = match pat with
| Tpat_lazy _ ->
false
| Tpat_any | Tpat_var _ | Tpat_constant _ | Tpat_variant (_, None, _) ->
true
| Tpat_tuple ps | Tpat_construct (_, _, ps) | Tpat_array ps ->
List.for_all (fun p -> inactive p.pat_desc) ps
| Tpat_alias (p,_,_) | Tpat_variant (_, Some p, _) ->
inactive p.pat_desc
| Tpat_record (ldps,_) ->
List.exists (fun (_, _, p) -> inactive p.pat_desc) ldps
| Tpat_or (p,q,_) ->
inactive p.pat_desc && inactive q.pat_desc
(* A `fluid' pattern is both irrefutable and inactive *)
let fluid pat = irrefutable pat && inactive pat.pat_desc
(********************************)
(* Exported exhustiveness check *)
(********************************)
(*
Fragile check is performed when required and
on exhaustive matches only.
*)
let check_partial_param do_check_partial do_check_fragile loc casel =
if Warnings.is_active (Warnings.Partial_match "") then begin
let pss = initial_matrix casel in
let pss = get_mins le_pats pss in
let total = do_check_partial loc casel pss in
if
total = Total && Warnings.is_active (Warnings.Fragile_match "")
then begin
do_check_fragile loc casel pss
end ;
total
end else
Partial
let check_partial =
check_partial_param
do_check_partial_normal
do_check_fragile_normal
let check_partial_gadt pred loc casel =
(*ignores GADT constructors *)
let first_check = check_partial loc casel in
match first_check with
| Partial -> Partial
| Total ->
(* checks for missing GADT constructors *)
(* let casel =
match casel with [] -> [] | a :: l -> a :: l @ [a] in *)
check_partial_param (do_check_partial_gadt pred)
do_check_fragile_gadt loc casel
|