summaryrefslogtreecommitdiff
path: root/typing/typecore.ml
blob: 694c68519efc6bbd57a11abb3d5de4cbbee627e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id$ *)

(* Typechecking for the core language *)

open Misc
open Asttypes
open Parsetree
open Types
open Typedtree
open Btype
open Ctype

type error =
    Unbound_value of Longident.t
  | Unbound_constructor of Longident.t
  | Unbound_label of Longident.t
  | Polymorphic_label of Longident.t
  | Constructor_arity_mismatch of Longident.t * int * int
  | Label_mismatch of Longident.t * (type_expr * type_expr) list
  | Pattern_type_clash of (type_expr * type_expr) list
  | Multiply_bound_variable of string
  | Orpat_vars of Ident.t
  | Expr_type_clash of (type_expr * type_expr) list
  | Apply_non_function of type_expr
  | Apply_wrong_label of label * type_expr
  | Label_multiply_defined of Longident.t
  | Label_missing of string list
  | Label_not_mutable of Longident.t
  | Incomplete_format of string
  | Bad_conversion of string * int * char
  | Undefined_method of type_expr * string
  | Undefined_inherited_method of string
  | Unbound_class of Longident.t
  | Virtual_class of Longident.t
  | Private_type of type_expr
  | Private_label of Longident.t * type_expr
  | Unbound_instance_variable of string
  | Instance_variable_not_mutable of string
  | Not_subtype of (type_expr * type_expr) list * (type_expr * type_expr) list
  | Outside_class
  | Value_multiply_overridden of string
  | Coercion_failure of
      type_expr * type_expr * (type_expr * type_expr) list * bool
  | Too_many_arguments of bool * type_expr
  | Abstract_wrong_label of label * type_expr
  | Scoping_let_module of string * type_expr
  | Masked_instance_variable of Longident.t
  | Not_a_variant_type of Longident.t
  | Incoherent_label_order
  | Less_general of string * (type_expr * type_expr) list
(*> JOCAML *)
  | Expr_as_proc
  | Proc_as_expr
  | Garrigue_illegal of string (* merci Jacques ! *)
  | Vouillon_illegal of string (* merci Jerome ! *)
  | Send_non_channel of type_expr
  | Join_pattern_type_clash of (type_expr * type_expr) list
  | Unbound_continuation of Longident.t
  | DoubleReply of Ident.t * Location.t * Location.t
  | ExtraReply of Ident.t
  | MissingReply of Ident.t

exception Error of Location.t * error

(* Forward declaration, to be filled in by Typemod.type_module *)

let type_module =
  ref ((fun env md -> assert false) :
       Env.t -> Parsetree.module_expr -> Typedtree.module_expr)

(* Forward declaration, to be filled in by Typeclass.class_structure *)
let type_object =
  ref (fun env s -> assert false :
       Env.t -> Location.t -> Parsetree.class_structure ->
         class_structure * class_signature * string list)

(*
  Saving and outputting type information.
  We keep these function names short, because they have to be
  called each time we create a record of type [Typedtree.expression]
  or [Typedtree.pattern] that will end up in the typed AST.
*)
let re node =
  Stypes.record (Stypes.Ti_expr node);
  node
;;
let rp node =
  Stypes.record (Stypes.Ti_pat node);
  node
;;


(* Typing of constants *)

let type_constant = function
    Const_int _ -> instance Predef.type_int
  | Const_char _ -> instance Predef.type_char
  | Const_string _ -> instance Predef.type_string
  | Const_float _ -> instance Predef.type_float
  | Const_int32 _ -> instance Predef.type_int32
  | Const_int64 _ -> instance Predef.type_int64
  | Const_nativeint _ -> instance Predef.type_nativeint

(* Specific version of type_option, using newty rather than newgenty *)

let type_option ty =
  newty (Tconstr(Predef.path_option,[ty], ref Mnil))

let option_none ty loc =
  let cnone = Env.lookup_constructor (Longident.Lident "None") Env.initial in
  { exp_desc = Texp_construct(cnone, []);
    exp_type = ty; exp_loc = loc; exp_env = Env.initial }

let option_some texp =
  let csome = Env.lookup_constructor (Longident.Lident "Some") Env.initial in
  { exp_desc = Texp_construct(csome, [texp]); exp_loc = texp.exp_loc;
    exp_type = type_option texp.exp_type; exp_env = texp.exp_env }

let extract_option_type env ty =
  match expand_head env ty with {desc = Tconstr(path, [ty], _)}
    when Path.same path Predef.path_option -> ty
  | _ -> assert false

let rec extract_label_names sexp env ty =
  let ty = repr ty in
  match ty.desc with
  | Tconstr (path, _, _) ->
      let td = Env.find_type path env in
      begin match td.type_kind with
      | Type_record (fields, _) ->
          List.map (fun (name, _, _) -> name) fields
      | Type_abstract when td.type_manifest <> None ->
          extract_label_names sexp env (expand_head env ty)
      | _ -> assert false
      end
  | _ ->
      assert false

(* Typing of patterns *)

(* Creating new conjunctive types is not allowed when typing patterns *)
let unify_pat env pat expected_ty =
  try
    unify env pat.pat_type expected_ty
  with
    Unify trace ->
      raise(Error(pat.pat_loc, Pattern_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(pat.pat_loc, Typetexp.Variant_tags (l1, l2)))

(* make all Reither present in open variants *)
let finalize_variant pat =
  match pat.pat_desc with
    Tpat_variant(tag, opat, r) ->
      let row =
        match expand_head pat.pat_env pat.pat_type with
          {desc = Tvariant row} -> r := row; row_repr row
        | _ -> assert false
      in
      begin match row_field tag row with
      | Rabsent -> assert false
      | Reither (true, [], _, e) when not row.row_closed ->
          set_row_field e (Rpresent None)
      | Reither (false, ty::tl, _, e) when not row.row_closed ->
          set_row_field e (Rpresent (Some ty));
          begin match opat with None -> assert false
          | Some pat -> List.iter (unify_pat pat.pat_env pat) (ty::tl)
          end
      | Reither (c, l, true, e) when not row.row_fixed ->
          set_row_field e (Reither (c, [], false, ref None))
      | _ -> ()
      end;
      (* Force check of well-formedness   WHY? *)
      (* unify_pat pat.pat_env pat
        (newty(Tvariant{row_fields=[]; row_more=newvar(); row_closed=false;
                        row_bound=(); row_fixed=false; row_name=None})); *)
  | _ -> ()

let rec iter_pattern f p =
  f p;
  iter_pattern_desc (iter_pattern f) p.pat_desc

let has_variants p =
  try
    iter_pattern (function {pat_desc=Tpat_variant _} -> raise Exit | _ -> ())
      p;
    false
  with Exit ->
    true


(* pattern environment *)
let pattern_variables = ref ([]: (Ident.t * type_expr * Location.t) list)
let pattern_force = ref ([] : (unit -> unit) list)
let pattern_scope = ref (None : Annot.ident option);;

let reset_pattern scope =
  pattern_variables := [];
  pattern_force := [];
  pattern_scope := scope;
;;

let enter_variable loc name ty =
  if List.exists (fun (id, _, _) -> Ident.name id = name) !pattern_variables
  then raise(Error(loc, Multiply_bound_variable name));
  let id = Ident.create name in
  pattern_variables := (id, ty, loc) :: !pattern_variables;
  begin match !pattern_scope with
  | None -> ()
  | Some s -> Stypes.record (Stypes.An_ident (loc, name, s));
  end;
  id

let sort_pattern_variables vs =
  List.sort
    (fun (x,_,_) (y,_,_) -> Pervasives.compare (Ident.name x) (Ident.name y))
    vs

let enter_orpat_variables loc env  p1_vs p2_vs =
  (* unify_vars operate on sorted lists *)

  let p1_vs = sort_pattern_variables p1_vs
  and p2_vs = sort_pattern_variables p2_vs in

  let rec unify_vars p1_vs p2_vs = match p1_vs, p2_vs with
      | (x1,t1,l1)::rem1, (x2,t2,l2)::rem2 when Ident.equal x1 x2 ->
          if x1==x2 then
            unify_vars rem1 rem2
          else begin
            begin try
              unify env t1 t2
            with
            | Unify trace ->
                raise(Error(loc, Pattern_type_clash(trace)))
            end ;
          (x2,x1)::unify_vars rem1 rem2
          end
      | [],[] -> []
      | (x,_,_)::_, [] -> raise (Error (loc, Orpat_vars x))
      | [],(x,_,_)::_  -> raise (Error (loc, Orpat_vars x))
      | (x,_,_)::_, (y,_,_)::_ ->
          let min_var =
            if Ident.name x < Ident.name y then x
            else y in
          raise (Error (loc, Orpat_vars min_var)) in
  unify_vars p1_vs p2_vs


let rec build_as_type env p =
  match p.pat_desc with
    Tpat_alias(p1, _) -> build_as_type env p1
  | Tpat_tuple pl ->
      let tyl = List.map (build_as_type env) pl in
      newty (Ttuple tyl)
  | Tpat_construct(cstr, pl) ->
      if cstr.cstr_private = Private then p.pat_type else
      let tyl = List.map (build_as_type env) pl in
      let ty_args, ty_res = instance_constructor cstr in
      List.iter2 (fun (p,ty) -> unify_pat env {p with pat_type = ty})
        (List.combine pl tyl) ty_args;
      ty_res
  | Tpat_variant(l, p', _) ->
      let ty = may_map (build_as_type env) p' in
      newty (Tvariant{row_fields=[l, Rpresent ty]; row_more=newvar();
                      row_bound=(); row_name=None;
                      row_fixed=false; row_closed=false})
  | Tpat_record lpl ->
      let lbl = fst(List.hd lpl) in
      if lbl.lbl_private = Private then p.pat_type else
      let ty = newvar () in
      let ppl = List.map (fun (l,p) -> l.lbl_pos, p) lpl in
      let do_label lbl =
        let _, ty_arg, ty_res = instance_label false lbl in
        unify_pat env {p with pat_type = ty} ty_res;
        let refinable =
          lbl.lbl_mut = Immutable && List.mem_assoc lbl.lbl_pos ppl &&
          match (repr lbl.lbl_arg).desc with Tpoly _ -> false | _ -> true in
        if refinable then begin
          let arg = List.assoc lbl.lbl_pos ppl in
          unify_pat env {arg with pat_type = build_as_type env arg} ty_arg
        end else begin
          let _, ty_arg', ty_res' = instance_label false lbl in
          unify env ty_arg ty_arg';
          unify_pat env p ty_res'
        end in
      Array.iter do_label lbl.lbl_all;
      ty
  | Tpat_or(p1, p2, row) ->
      begin match row with
        None ->
          let ty1 = build_as_type env p1 and ty2 = build_as_type env p2 in
          unify_pat env {p2 with pat_type = ty2} ty1;
          ty1
      | Some row ->
          let row = row_repr row in
          newty (Tvariant{row with row_closed=false; row_more=newvar()})
      end
  | Tpat_any | Tpat_var _ | Tpat_constant _
  | Tpat_array _ | Tpat_lazy _ -> p.pat_type

let build_or_pat env loc lid =
  let path, decl =
    try Env.lookup_type lid env
    with Not_found ->
      raise(Typetexp.Error(loc, Typetexp.Unbound_type_constructor lid))
  in
  let tyl = List.map (fun _ -> newvar()) decl.type_params in
  let row0 =
    let ty = expand_head env (newty(Tconstr(path, tyl, ref Mnil))) in
    match ty.desc with
      Tvariant row when static_row row -> row
    | _ -> raise(Error(loc, Not_a_variant_type lid))
  in
  let pats, fields =
    List.fold_left
      (fun (pats,fields) (l,f) ->
        match row_field_repr f with
          Rpresent None ->
            (l,None) :: pats,
            (l, Reither(true,[], true, ref None)) :: fields
        | Rpresent (Some ty) ->
            (l, Some {pat_desc=Tpat_any; pat_loc=Location.none; pat_env=env;
                      pat_type=ty})
            :: pats,
            (l, Reither(false, [ty], true, ref None)) :: fields
        | _ -> pats, fields)
      ([],[]) (row_repr row0).row_fields in
  let row =
    { row_fields = List.rev fields; row_more = newvar(); row_bound = ();
      row_closed = false; row_fixed = false; row_name = Some (path, tyl) }
  in
  let ty = newty (Tvariant row) in
  let gloc = {loc with Location.loc_ghost=true} in
  let row' = ref {row with row_more=newvar()} in
  let pats =
    List.map (fun (l,p) -> {pat_desc=Tpat_variant(l,p,row'); pat_loc=gloc;
                            pat_env=env; pat_type=ty})
      pats
  in
  match pats with
    [] -> raise(Error(loc, Not_a_variant_type lid))
  | pat :: pats ->
      let r =
        List.fold_left
          (fun pat pat0 -> {pat_desc=Tpat_or(pat0,pat,Some row0);
                            pat_loc=gloc; pat_env=env; pat_type=ty})
          pat pats in
      rp { r with pat_loc = loc }

let rec find_record_qual = function
  | [] -> None
  | (Longident.Ldot (modname, _), _) :: _ -> Some modname
  | _ :: rest -> find_record_qual rest

let type_label_a_list type_lid_a lid_a_list =
  match find_record_qual lid_a_list with
  | None -> List.map type_lid_a lid_a_list
  | Some modname ->
      List.map
        (function
         | (Longident.Lident id), sarg ->
              type_lid_a (Longident.Ldot (modname, id), sarg)
         | lid_a -> type_lid_a lid_a)
        lid_a_list

let rec type_pat env sp =
  match sp.ppat_desc with
    Ppat_any ->
      rp {
        pat_desc = Tpat_any;
        pat_loc = sp.ppat_loc;
        pat_type = newvar();
        pat_env = env }
  | Ppat_var name ->
      let ty = newvar() in
      let id = enter_variable sp.ppat_loc name ty in
      rp {
        pat_desc = Tpat_var id;
        pat_loc = sp.ppat_loc;
        pat_type = ty;
        pat_env = env }
  | Ppat_alias(sq, name) ->
      let q = type_pat env sq in
      begin_def ();
      let ty_var = build_as_type env q in
      end_def ();
      generalize ty_var;
      let id = enter_variable sp.ppat_loc name ty_var in
      rp {
        pat_desc = Tpat_alias(q, id);
        pat_loc = sp.ppat_loc;
        pat_type = q.pat_type;
        pat_env = env }
  | Ppat_constant cst ->
      rp {
        pat_desc = Tpat_constant cst;
        pat_loc = sp.ppat_loc;
        pat_type = type_constant cst;
        pat_env = env }
  | Ppat_tuple spl ->
      let pl = List.map (type_pat env) spl in
      rp {
        pat_desc = Tpat_tuple pl;
        pat_loc = sp.ppat_loc;
        pat_type = newty (Ttuple(List.map (fun p -> p.pat_type) pl));
        pat_env = env }
  | Ppat_construct(lid, sarg, explicit_arity) ->
      let constr =
        try
          Env.lookup_constructor lid env
        with Not_found ->
          raise(Error(sp.ppat_loc, Unbound_constructor lid)) in
      let sargs =
        match sarg with
          None -> []
        | Some {ppat_desc = Ppat_tuple spl} when explicit_arity -> spl
        | Some {ppat_desc = Ppat_tuple spl} when constr.cstr_arity > 1 -> spl
        | Some({ppat_desc = Ppat_any} as sp) when constr.cstr_arity <> 1 ->
            replicate_list sp constr.cstr_arity
        | Some sp -> [sp] in
      if List.length sargs <> constr.cstr_arity then
        raise(Error(sp.ppat_loc, Constructor_arity_mismatch(lid,
                                     constr.cstr_arity, List.length sargs)));
      let args = List.map (type_pat env) sargs in
      let (ty_args, ty_res) = instance_constructor constr in
      List.iter2 (unify_pat env) args ty_args;
      rp {
        pat_desc = Tpat_construct(constr, args);
        pat_loc = sp.ppat_loc;
        pat_type = ty_res;
        pat_env = env }
  | Ppat_variant(l, sarg) ->
      let arg = may_map (type_pat env) sarg in
      let arg_type = match arg with None -> [] | Some arg -> [arg.pat_type]  in
      let row = { row_fields =
                    [l, Reither(arg = None, arg_type, true, ref None)];
                  row_bound = ();
                  row_closed = false;
                  row_more = newvar ();
                  row_fixed = false;
                  row_name = None } in
      rp {
        pat_desc = Tpat_variant(l, arg, ref {row with row_more = newvar()});
        pat_loc = sp.ppat_loc;
        pat_type = newty (Tvariant row);
        pat_env = env }
  | Ppat_record lid_sp_list ->
      let rec check_duplicates = function
        [] -> ()
      | (lid, sarg) :: remainder ->
          if List.mem_assoc lid remainder
          then raise(Error(sp.ppat_loc, Label_multiply_defined lid))
          else check_duplicates remainder in
      check_duplicates lid_sp_list;
      let ty = newvar() in
      let type_label_pat (lid, sarg) =
        let label =
          try
            Env.lookup_label lid env
          with Not_found ->
            raise(Error(sp.ppat_loc, Unbound_label lid)) in
        begin_def ();
        let (vars, ty_arg, ty_res) = instance_label false label in
        if vars = [] then end_def ();
        begin try
          unify env ty_res ty
        with Unify trace ->
          raise(Error(sp.ppat_loc, Label_mismatch(lid, trace)))
        end;
        let arg = type_pat env sarg in
        unify_pat env arg ty_arg;
        if vars <> [] then begin
          end_def ();
          generalize ty_arg;
          List.iter generalize vars;
          let instantiated tv =
            let tv = expand_head env tv in
            tv.desc <> Tvar || tv.level <> generic_level in
          if List.exists instantiated vars then
            raise (Error(sp.ppat_loc, Polymorphic_label lid))
        end;
        (label, arg)
      in
      rp {
        pat_desc = Tpat_record(type_label_a_list type_label_pat lid_sp_list);
        pat_loc = sp.ppat_loc;
        pat_type = ty;
        pat_env = env }
  | Ppat_array spl ->
      let pl = List.map (type_pat env) spl in
      let ty_elt = newvar() in
      List.iter (fun p -> unify_pat env p ty_elt) pl;
      rp {
        pat_desc = Tpat_array pl;
        pat_loc = sp.ppat_loc;
        pat_type = instance (Predef.type_array ty_elt);
        pat_env = env }
  | Ppat_or(sp1, sp2) ->
      let initial_pattern_variables = !pattern_variables in
      let p1 = type_pat env sp1 in
      let p1_variables = !pattern_variables in
      pattern_variables := initial_pattern_variables ;
      let p2 = type_pat env sp2 in
      let p2_variables = !pattern_variables in
      unify_pat env p2 p1.pat_type;
      let alpha_env =
        enter_orpat_variables sp.ppat_loc env p1_variables p2_variables in
      pattern_variables := p1_variables ;
      rp {
        pat_desc = Tpat_or(p1, alpha_pat alpha_env p2, None);
        pat_loc = sp.ppat_loc;
        pat_type = p1.pat_type;
        pat_env = env }
  | Ppat_lazy sp1 ->
      let p1 = type_pat env sp1 in
      rp {
        pat_desc = Tpat_lazy p1;
        pat_loc = sp.ppat_loc;
        pat_type = instance (Predef.type_lazy_t p1.pat_type);
        pat_env = env }
  | Ppat_constraint(sp, sty) ->
      let p = type_pat env sp in
      let ty, force = Typetexp.transl_simple_type_delayed env sty in
      unify_pat env p ty;
      pattern_force := force :: !pattern_force;
      p
  | Ppat_type lid ->
      build_or_pat env sp.ppat_loc lid

let get_ref r =
  let v = !r in r := []; v

let add_pattern_variables env =
  let pv = get_ref pattern_variables in
  List.fold_right
    (fun (id, ty, loc) env ->
       let e1 = Env.add_value id {val_type = ty; val_kind = Val_reg} env in
       Env.add_annot id (Annot.Iref_internal loc) e1;
    )
    pv env

let type_pattern env spat scope =
  reset_pattern scope;
  let pat = type_pat env spat in
  let new_env = add_pattern_variables env in
  (pat, new_env, get_ref pattern_force)

let type_pattern_list env spatl scope =
  reset_pattern scope;
  let patl = List.map (type_pat env) spatl in
  let new_env = add_pattern_variables env in
  (patl, new_env, get_ref pattern_force)

(*> JOCAML *)
(**************************)
(* Collecting port names  *)
(* + linearity is checked *)
(**************************)

(* All identifiers created by a set of join definitions *)
let def_scope = ref (None : Annot.ident option);;
let def_ids = ref []

let reset_def scp =
  def_scope := scp ;
  def_ids := []

(* All channels defined by a join definition *)
let auto_chans = ref ([] : (Ident.t * type_expr * Location.t) list)
let reset_auto () = auto_chans := []


(* All channels occuring in a join-pattern *)
let reaction_chans = ref ([] : string list)

let reset_reaction scp =
  reaction_chans := [] ;
  reset_pattern scp

(* get or create channel identifier *)
let create_channel chan =
  let name =  chan.pjident_desc in
  let rec do_rec = function
    | [] -> (* add a new channel *)
(* Channels must differ from other ids in set of join definitions *)
        let p id = Ident.name id = name in  
        if List.exists p !def_ids then
          raise (Error (chan.pjident_loc, Multiply_bound_variable name)) ;
        let id = Ident.create  chan.pjident_desc
        and ty =  newvar()
	and loc = chan.pjident_loc in
        def_ids := id :: !def_ids ;
        auto_chans := (id, ty, loc) :: !auto_chans ;
	begin
	  let name = chan.pjident_desc in
	  match !def_scope with
	  | None -> ()
	  | Some s -> Stypes.record (Stypes.An_ident (loc, name, s));
	end;
        (id, ty)
    | (id, ty, _)::rem ->
        if Ident.name id = name then
          (id, ty)
        else
          do_rec rem in
  do_rec !auto_chans

let enter_channel chan =
(* Channels must differ from other channels in reaction rule *)
  let name = chan.pjident_desc in
  let p id = id = name in  
  if List.exists p !reaction_chans then
    raise (Error (chan.pjident_loc, Multiply_bound_variable name)) ;
  reaction_chans := name :: !reaction_chans ;
  create_channel chan

let mk_jident id loc ty env =
  {
    jident_desc = id ;
    jident_loc = loc;
    jident_type = ty;
    jident_env = env;
  }

let rec get_type id env = match env with
| [] -> assert false
| (jd,ty,loc)::env ->
    if Ident.same id jd then ty,loc
    else get_type id env

let type_auto_lhs env scope {pjauto_desc=sauto ; pjauto_loc=auto_loc}  =
(* Type patterns *)
  reset_auto () ;
  let auto =
    List.map
      (fun cl ->
        let sjpats, g = cl.pjclause_desc in
        reset_reaction (Some (Annot.Idef g.pexp_loc)) ;
        let jpats =
          List.map
            (fun sjpat ->
              let schan, sarg = sjpat.pjpat_desc in
              let (id, ty) =  enter_channel schan in
              let chan = mk_jident id schan.pjident_loc ty env
              and arg = type_pat env sarg in
              {jpat_desc = chan, arg;
               jpat_kont = ref None ;
               jpat_loc  = sjpat.pjpat_loc;})
            sjpats in
        (cl.pjclause_loc,jpats,g),
        (get_ref pattern_variables, get_ref pattern_force))
      sauto in
(* get orginal channel names now *)
  let env =  get_ref auto_chans in
  let original = List.map (fun (id,_,_) -> id) env in
(* compile algebraic pattern in joinpatterns *)
  let (disps, reacs), new_names = Joinmatching.compile auto_loc auto in
(* collect all names *)
  let env =
    List.fold_right
      (fun (id, ids) r ->
        let ty,loc = get_type id env in
        List.fold_right (fun id r -> (id,ty,loc)::r) ids r)
      new_names env in
(* allocate names for guarded processes *)
  let disps =
    List.map (fun disp -> Ident.create "#d#", disp) disps
  and reacs, fwds = match reacs with
  | [((_,[_],_),_),_ as reac] ->
      [],[Ident.create "#f", reac]
  | _ ->
    List.map (fun reac -> Ident.create "#g#", reac) reacs, [] in

(* collect forwarders *)
  let alone_env =
    List.map (fun (d_id,(id,_,_)) -> id, d_id) disps in
  let alone_env =
    List.fold_right
      (fun fwd r -> match fwd with
      | g_id,(_old,(patss,_gd)) ->
          List.fold_right
            (fun pats r ->
              List.fold_right
                (fun pat r ->
                  let chan,_ = pat.jpat_desc in
                  let id = chan.jident_desc in
                  (id, g_id)::r)
                pats r)
            patss alone_env)
      fwds alone_env in
  
(* automaton structure names *)
  let name = Ident.create "#auto#"
  and name_wrapped = Ident.create "#wrapped#" in
(* Allocate channel slots *)
  let auto_count = ref 0 in
  let chan_names =
    List.map
      (fun (id, ty, _) ->
        try
          let g = List.assoc id alone_env in
          id,(ty, Alone g)
        with Not_found ->
          let num = !auto_count in
          incr auto_count ;
          id, (ty, Chan (name,num)))
      env in
  auto_loc,
  (name, name_wrapped),
  (!auto_count, original, chan_names),
  (disps, reacs, fwds)

let rec do_type_autos_lhs env scope = function
  | [] -> []
  | sauto::rem ->
      let r = type_auto_lhs env scope sauto in
      r::do_type_autos_lhs env scope rem

let type_autos_lhs env autos scope =
  reset_def scope ;
  do_type_autos_lhs env scope autos

(*< JOCAML *)

let type_class_arg_pattern cl_num val_env met_env l spat =
  reset_pattern None;
  let pat = type_pat val_env spat in
  if has_variants pat then begin
    Parmatch.pressure_variants val_env [pat];
    iter_pattern finalize_variant pat
  end;
  List.iter (fun f -> f()) (get_ref pattern_force);
  if is_optional l then unify_pat val_env pat (type_option (newvar ()));
  let (pv, met_env) =
    List.fold_right
      (fun (id, ty, loc) (pv, env) ->
         let id' = Ident.create (Ident.name id) in
         ((id', id, ty)::pv,
          Env.add_value id' {val_type = ty;
                             val_kind = Val_ivar (Immutable, cl_num)}
            env))
      !pattern_variables ([], met_env)
  in
  let val_env = add_pattern_variables val_env in
  (pat, pv, val_env, met_env)

let mkpat d = { ppat_desc = d; ppat_loc = Location.none }

let type_self_pattern cl_num privty val_env met_env par_env spat =
  let spat =
    mkpat (Ppat_alias (mkpat(Ppat_alias (spat, "selfpat-*")),
                       "selfpat-" ^ cl_num))
  in
  reset_pattern None;
  let pat = type_pat val_env spat in
  List.iter (fun f -> f()) (get_ref pattern_force);
  let meths = ref Meths.empty in
  let vars = ref Vars.empty in
  let pv = !pattern_variables in
  pattern_variables := [];
  let (val_env, met_env, par_env) =
    List.fold_right
      (fun (id, ty, loc) (val_env, met_env, par_env) ->
         (Env.add_value id {val_type = ty; val_kind = Val_unbound} val_env,
          Env.add_value id {val_type = ty;
                            val_kind = Val_self (meths, vars, cl_num, privty)}
            met_env,
          Env.add_value id {val_type = ty; val_kind = Val_unbound} par_env))
      pv (val_env, met_env, par_env)
  in
  (pat, meths, vars, val_env, met_env, par_env)

let delayed_checks = ref []
let reset_delayed_checks () = delayed_checks := []
let add_delayed_check f = delayed_checks := f :: !delayed_checks
let force_delayed_checks () =
  (* checks may change type levels *)
  let snap = Btype.snapshot () in
  List.iter (fun f -> f ()) (List.rev !delayed_checks);
  reset_delayed_checks ();
  Btype.backtrack snap


(* Generalization criterion for expressions *)

let rec is_nonexpansive exp =
  match exp.exp_desc with
    Texp_ident(_,_) -> true
  | Texp_constant _ -> true
  | Texp_let(rec_flag, pat_exp_list, body) ->
      List.for_all (fun (pat, exp) -> is_nonexpansive exp) pat_exp_list &&
      is_nonexpansive body
  | Texp_function _ -> true
  | Texp_apply(e, (None,_)::el) ->
      is_nonexpansive e && List.for_all is_nonexpansive_opt (List.map fst el)
  | Texp_tuple el ->
      List.for_all is_nonexpansive el
  | Texp_construct(_, el) ->
      List.for_all is_nonexpansive el
  | Texp_variant(_, arg) -> is_nonexpansive_opt arg
  | Texp_record(lbl_exp_list, opt_init_exp) ->
      List.for_all
        (fun (lbl, exp) -> lbl.lbl_mut = Immutable && is_nonexpansive exp)
        lbl_exp_list
      && is_nonexpansive_opt opt_init_exp
  | Texp_field(exp, lbl) -> is_nonexpansive exp
  | Texp_array [] -> true
  | Texp_ifthenelse(cond, ifso, ifnot) ->
      is_nonexpansive ifso && is_nonexpansive_opt ifnot
  | Texp_sequence (e1, e2) -> is_nonexpansive e2  (* PR#4354 *)
  | Texp_new (_, cl_decl) when Ctype.class_type_arity cl_decl.cty_type > 0 ->
      true
  | Texp_def (_,e) -> is_nonexpansive e
  | Texp_loc (_,e) -> is_nonexpansive e
  (* Note: nonexpansive only means no _observable_ side effects *)
  | Texp_lazy e -> is_nonexpansive e
  | Texp_object ({cl_field=fields}, {cty_vars=vars}, _) ->
      let count = ref 0 in
      List.for_all
        (function
            Cf_meth _ -> true
          | Cf_val (_,_,e,_) -> incr count; is_nonexpansive_opt e
          | Cf_init e -> is_nonexpansive e
          | Cf_inher _ | Cf_let _ -> false)
        fields &&
      Vars.fold (fun _ (mut,_,_) b -> decr count; b && mut = Immutable)
        vars true &&
      !count = 0
  | _ -> false

and is_nonexpansive_opt = function
    None -> true
  | Some e -> is_nonexpansive e

(* Typing of printf formats.
   (Handling of * modifiers contributed by Thorsten Ohl.) *)

external string_to_format :
 string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
external format_to_string :
 ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string = "%identity"

let type_format loc fmt =

  let ty_arrow gty ty = newty (Tarrow ("", instance gty, ty, Cok)) in

  let bad_conversion fmt i c =
    raise (Error (loc, Bad_conversion (fmt, i, c))) in
  let incomplete_format fmt =
    raise (Error (loc, Incomplete_format fmt)) in

  let range_closing_index fmt i =

    let len = String.length fmt in
    let find_closing j =
      if j >= len then incomplete_format fmt else
      try String.index_from fmt j ']' with
      | Not_found -> incomplete_format fmt in
    let skip_pos j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | ']' -> find_closing (j + 1)
      | c -> find_closing j in
    let rec skip_neg j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | '^' -> skip_pos (j + 1)
      | c -> skip_pos j in
    find_closing (skip_neg (i + 1)) in

  let rec type_in_format fmt =

    let len = String.length fmt in

    let ty_input = newvar ()
    and ty_result = newvar ()
    and ty_aresult = newvar ()
    and ty_uresult = newvar () in

    let meta = ref 0 in

    let rec scan_format i =
      if i >= len then
        if !meta = 0
        then ty_uresult, ty_result
        else incomplete_format fmt else
      match fmt.[i] with
      | '%' -> scan_opts i (i + 1)
      | _ -> scan_format (i + 1)
    and scan_opts i j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | '_' -> scan_rest true i (j + 1)
      | _ -> scan_rest false i j
    and scan_rest skip i j =
      let rec scan_flags i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '#' | '0' | '-' | ' ' | '+' -> scan_flags i (j + 1)
        | _ -> scan_width i j
      and scan_width i j = scan_width_or_prec_value scan_precision i j
      and scan_decimal_string scan i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '0' .. '9' -> scan_decimal_string scan i (j + 1)
        | _ -> scan i j
      and scan_width_or_prec_value scan i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '*' ->
          let ty_uresult, ty_result = scan i (j + 1) in
          ty_uresult, ty_arrow Predef.type_int ty_result
        | '-' | '+' -> scan_decimal_string scan i (j + 1)
        | _ -> scan_decimal_string scan i j
      and scan_precision i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '.' -> scan_width_or_prec_value scan_conversion i (j + 1)
        | _ -> scan_conversion i j

      and conversion j ty_arg =
        let ty_uresult, ty_result = scan_format (j + 1) in
        ty_uresult,
        if skip then ty_result else ty_arrow ty_arg ty_result

      and scan_conversion i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '%' | '!' -> scan_format (j + 1)
        | 's' | 'S' -> conversion j Predef.type_string
        | '[' ->
          let j = range_closing_index fmt j in
          conversion j Predef.type_string
        | 'c' | 'C' -> conversion j Predef.type_char
        | 'd' | 'i' | 'o' | 'x' | 'X' | 'u' | 'N' ->
          conversion j Predef.type_int
        | 'f' | 'e' | 'E' | 'g' | 'G' | 'F' -> conversion j Predef.type_float
        | 'B' | 'b' -> conversion j Predef.type_bool
        | 'a' ->
          let ty_arg = newvar () in
          let ty_a = ty_arrow ty_input (ty_arrow ty_arg ty_aresult) in
          let ty_uresult, ty_result = conversion j ty_arg in
          ty_uresult, ty_arrow ty_a ty_result
        | 'r' ->
          let ty_arg = newvar () in
          let ty_r = ty_arrow ty_input ty_arg in
          let ty_uresult, ty_result = conversion j ty_arg in
          ty_arrow ty_r ty_uresult, ty_result
        | 't' -> conversion j (ty_arrow ty_input ty_aresult)
        | 'l' | 'n' | 'L' as c ->
          let j = j + 1 in
          if j >= len then conversion (j - 1) Predef.type_int else begin
            match fmt.[j] with
            | 'd' | 'i' | 'o' | 'x' | 'X' | 'u' ->
              let ty_arg =
                match c with
                | 'l' -> Predef.type_int32
                | 'n' -> Predef.type_nativeint
                | _ -> Predef.type_int64 in
              conversion j ty_arg
            | c -> conversion (j - 1) Predef.type_int
          end
        | '{' | '(' as c ->
          let j = j + 1 in
          if j >= len then incomplete_format fmt else
          let sj =
            Printf.CamlinternalPr.Tformat.sub_format
              (fun fmt -> incomplete_format (format_to_string fmt))
              (fun fmt -> bad_conversion (format_to_string fmt))
              c (string_to_format fmt) j in
          let sfmt = String.sub fmt j (sj - 2 - j) in
          let ty_sfmt = type_in_format sfmt in
          begin match c with
          | '{' -> conversion (sj - 1) ty_sfmt
          | _ -> incr meta; conversion (j - 1) ty_sfmt end
        | ')' when !meta > 0 -> decr meta; scan_format (j + 1)
        | c -> bad_conversion fmt i c in
      scan_flags i j in

    let ty_ureader, ty_args = scan_format 0 in
    newty
      (Tconstr
         (Predef.path_format6,
          [ty_args; ty_input; ty_aresult; ty_ureader; ty_uresult; ty_result],
          ref Mnil)) in

  type_in_format fmt

(* Approximate the type of an expression, for better recursion *)

let rec approx_type env sty =
  match sty.ptyp_desc with
    Ptyp_arrow (p, _, sty) ->
      let ty1 = if is_optional p then type_option (newvar ()) else newvar () in
      newty (Tarrow (p, ty1, approx_type env sty, Cok))
  | Ptyp_tuple args ->
      newty (Ttuple (List.map (approx_type env) args))
  | Ptyp_constr (lid, ctl) ->
      begin try
        let (path, decl) = Env.lookup_type lid env in
        if List.length ctl <> decl.type_arity then raise Not_found;
        let tyl = List.map (approx_type env) ctl in
        newconstr path tyl
      with Not_found -> newvar ()
      end
  | _ -> newvar ()

let rec type_approx env sexp =
  match sexp.pexp_desc with
    Pexp_let (_, _, e) -> type_approx env e
  | Pexp_function (p,_,(_,e)::_) when is_optional p ->
       newty (Tarrow(p, type_option (newvar ()), type_approx env e, Cok))
  | Pexp_function (p,_,(_,e)::_) ->
       newty (Tarrow(p, newvar (), type_approx env e, Cok))
  | Pexp_match (_, (_,e)::_) -> type_approx env e
  | Pexp_try (e, _) -> type_approx env e
  | Pexp_tuple l -> newty (Ttuple(List.map (type_approx env) l))
  | Pexp_ifthenelse (_,e,_) -> type_approx env e
  | Pexp_sequence (_,e) -> type_approx env e
  | Pexp_constraint (e, sty1, sty2) ->
      let approx_ty_opt = function
        | None -> newvar ()
        | Some sty -> approx_type env sty
      in
      let ty = type_approx env e
      and ty1 = approx_ty_opt sty1
      and ty2 = approx_ty_opt sty2 in
      begin try unify env ty ty1 with Unify trace ->
        raise(Error(sexp.pexp_loc, Expr_type_clash trace))
      end;
      if sty2 = None then ty1 else ty2
  | _ -> newvar ()

(* List labels in a function type, and whether return type is a variable *)
let rec list_labels_aux env visited ls ty_fun =
  let ty = expand_head env ty_fun in
  if List.memq ty visited then
    List.rev ls, false
  else match ty.desc with
    Tarrow (l, _, ty_res, _) ->
      list_labels_aux env (ty::visited) (l::ls) ty_res
  | _ ->
      List.rev ls, ty.desc = Tvar

let list_labels env ty = list_labels_aux env [] [] ty

(* Check that all univars are safe in a type *)
let check_univars env kind exp ty_expected vars =
  (* need to expand twice? cf. Ctype.unify2 *)
  let vars = List.map (expand_head env) vars in
  let vars = List.map (expand_head env) vars in
  let vars' =
    List.filter
      (fun t ->
        let t = repr t in
        generalize t;
        if t.desc = Tvar && t.level = generic_level then
          (log_type t; t.desc <- Tunivar; true)
        else false)
      vars in
  if List.length vars = List.length vars' then () else
  let ty = newgenty (Tpoly(repr exp.exp_type, vars'))
  and ty_expected = repr ty_expected in
  raise (Error (exp.exp_loc,
                Less_general(kind, [ty, ty; ty_expected, ty_expected])))

(* Check that a type is not a function *)
let check_application_result env statement exp =
  match (expand_head env exp.exp_type).desc with
  | Tarrow _ ->
      Location.prerr_warning exp.exp_loc Warnings.Partial_application
  | Tvar -> ()
  | Tconstr (p, _, _) when Path.same p Predef.path_unit -> ()
  | _ ->
      if statement then
        Location.prerr_warning exp.exp_loc Warnings.Statement_type

(* Check that a type is generalizable at some level *)
let generalizable level ty =
  let rec check ty =
    let ty = repr ty in
    if ty.level < lowest_level then () else
    if ty.level <= level then raise Exit else
    (mark_type_node ty; iter_type_expr check ty)
  in
  try check ty; unmark_type ty; true
  with Exit -> unmark_type ty; false

(* Hack to allow coercion of self. Will clean-up later. *)
let self_coercion = ref ([] : (Path.t * Location.t list ref) list)

(* Typing of expressions *)

let unify_exp env exp expected_ty =
  (* Format.eprintf "@[%a@ %a@]@." Printtyp.raw_type_expr exp.exp_type
    Printtyp.raw_type_expr expected_ty; *)
  try
    unify env exp.exp_type expected_ty
  with
    Unify trace ->
      raise(Error(exp.exp_loc, Expr_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(exp.exp_loc, Typetexp.Variant_tags (l1, l2)))

(* split n-1 first arguments / last argument *)
let rec last_arg = function
  | [] -> assert false
  | [x] -> [],x
  | x::rem ->
      let r,last = last_arg rem in
      x::r, last

(* Build a new application *)

let rec get_loc_end = function
  | [] -> assert false
  | [_, x] -> x.pexp_loc.Location.loc_end
  | _::rem -> get_loc_end rem

let mk_sapp f args = match args with
| [] -> f
| _  ->
   let loc_app = {f.pexp_loc with Location.loc_end = get_loc_end args} in
   {
     pexp_desc = Pexp_apply (f, args) ;
     pexp_loc = loc_app
   } 

(*>JOCAML*)
type ctx = E | P (* Expression or Process *)

(* Check the expression/process nature of parsed expressions *)
let check_expression ctx sexp = match ctx with
| E -> ()
| P ->  raise (Error (sexp.pexp_loc, Expr_as_proc))

and check_process ctx sexp = match ctx with
| E ->  raise (Error (sexp.pexp_loc, Proc_as_expr))
| P -> ()
(*<JOCAML*)

(* Plain caml function for typing expressions *)
let rec type_exp  env sexp = do_type_exp E env sexp

and type_proc env sexp = do_type_exp P env sexp 

and do_type_exp ctx env sexp =
  match sexp.pexp_desc with
  | Pexp_ident lid ->
      check_expression ctx sexp ;
      begin try
        if !Clflags.annotations then begin
          try let (path, annot) = Env.lookup_annot lid env in
              Stypes.record (Stypes.An_ident (sexp.pexp_loc, Path.name path,
                                              annot));
          with _ -> ()
        end;
        let (path, desc) = Env.lookup_value lid env in
        re {
          exp_desc =
            begin match desc.val_kind with
              Val_ivar (_, cl_num) ->
                let (self_path, _) =
                  Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
                in
                Texp_instvar(self_path, path)
            | Val_self (_, _, cl_num, _) ->
                let (path, _) =
                  Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
                in
                Texp_ident(path, desc)
            | Val_unbound ->
                raise(Error(sexp.pexp_loc, Masked_instance_variable lid))
            | _ ->
                Texp_ident(path, desc)
            end;
          exp_loc = sexp.pexp_loc;
          exp_type = instance desc.val_type;
          exp_env = env }
      with Not_found ->
        raise(Error(sexp.pexp_loc, Unbound_value lid))
      end
  | Pexp_constant (Const_int 0) when ctx=P ->
      re {
        exp_desc = Texp_null;
        exp_loc = sexp.pexp_loc;
        exp_type =  Predef.type_process [];
        exp_env = env; }
  | Pexp_constant cst ->
      check_expression ctx sexp ;
      re {
        exp_desc = Texp_constant cst;
        exp_loc = sexp.pexp_loc;
        exp_type = type_constant cst;
        exp_env = env; }
  | Pexp_let(rec_flag, spat_sexp_list, sbody) ->
      let scp =
        match rec_flag with
        | Recursive -> Some (Annot.Idef sexp.pexp_loc)
        | Nonrecursive -> Some (Annot.Idef sbody.pexp_loc)
        | Default -> None in 
      let (pat_exp_list, new_env) = type_let env rec_flag spat_sexp_list scp in
      let body = do_type_exp ctx new_env sbody in
      re {
        exp_desc = Texp_let(rec_flag, pat_exp_list, body);
        exp_loc = sexp.pexp_loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_function _ ->     (* defined in type_expect *)
      check_expression ctx sexp ;
      type_expect env sexp (newvar())
  | Pexp_apply(sfunct, sargs) ->
      begin match ctx with
      | E ->
          begin_def (); (* one more level for non-returning functions *)
          if !Clflags.principal then begin_def ();
          let funct = type_exp env sfunct in
          if !Clflags.principal then begin
            end_def ();
            generalize_structure funct.exp_type
          end;
          let rec lower_args seen ty_fun =
            let ty = expand_head env ty_fun in
            if List.memq ty seen then () else
            match ty.desc with
              Tarrow (l, ty, ty_fun, com) ->
                unify_var env (newvar()) ty;
                lower_args (ty::seen) ty_fun
            | _ -> ()
          in
          let ty = instance funct.exp_type in
          end_def ();
          lower_args [] ty;
          begin_def ();
          let (args, ty_res) = type_application env funct sargs in
          end_def ();
          unify_var env (newvar()) funct.exp_type;
          re {
          exp_desc = Texp_apply(funct, args);
          exp_loc = sexp.pexp_loc;
          exp_type = ty_res;
          exp_env = env }
      | P ->
          let spref, sarg = last_arg sargs in
          let sfunct = mk_sapp sfunct spref in
          if !Clflags.principal then begin_def ();
          let funct = type_exp env sfunct in
          if !Clflags.principal then begin
            end_def ();
            generalize_structure funct.exp_type
          end;
          let ty =
            try
              filter_channel env funct.exp_type
            with
            | Unify _ ->
                raise
                  (Error
                     (sfunct.pexp_loc, Send_non_channel funct.exp_type)) in
          let arg = 
            type_expect env
              (match sarg with
              | "",sarg -> sarg
              | _, sarg ->
                  raise
                    (Error
                       (sarg.pexp_loc, Garrigue_illegal "message")))
              ty in
          re { exp_desc = Texp_asyncsend (funct, arg);
            exp_loc = sexp.pexp_loc;
            exp_type = Predef.type_process [] ;
            exp_env = env }
      end
  | Pexp_match(sarg, caselist) ->
      let arg = type_exp env sarg in
      let ty_res = newvar() in
      let cases, partial, reps =
        type_cases ctx env arg.exp_type ty_res (Some sexp.pexp_loc) caselist
      in
      begin match ctx with
      | E ->
        re {
          exp_desc = Texp_match(arg, cases, partial);
          exp_loc = sexp.pexp_loc;
          exp_type = ty_res;
          exp_env = env }
      | P ->
        re {
          exp_desc = Texp_match(arg, cases, partial);
          exp_loc = sexp.pexp_loc;
          exp_type = Predef.type_process reps ;
          exp_env = env }
      end
  | Pexp_try(sbody, caselist) ->
      check_expression ctx sexp ;
      let body = do_type_exp ctx env sbody in
      let cases, _, _ =
        type_cases E env (instance Predef.type_exn) body.exp_type None
          caselist in
      re {
        exp_desc = Texp_try(body, cases);
        exp_loc = sexp.pexp_loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_tuple sexpl ->
      check_expression ctx sexp ;
      let expl = List.map (type_exp env) sexpl in
      re {
        exp_desc = Texp_tuple expl;
        exp_loc = sexp.pexp_loc;
        exp_type = newty (Ttuple(List.map (fun exp -> exp.exp_type) expl));
        exp_env = env }
  | Pexp_construct(lid, sarg, explicit_arity) ->
      check_expression ctx sexp ;
      type_construct env sexp.pexp_loc lid sarg explicit_arity (newvar ())
  | Pexp_variant(l, sarg) ->
      check_expression ctx sexp ;
      let arg = may_map (do_type_exp E env) sarg in
      let arg_type = may_map (fun arg -> arg.exp_type) arg in
      re {
        exp_desc = Texp_variant(l, arg);
        exp_loc = sexp.pexp_loc;
        exp_type= newty (Tvariant{row_fields = [l, Rpresent arg_type];
                                  row_more = newvar ();
                                  row_bound = ();
                                  row_closed = false;
                                  row_fixed = false;
                                  row_name = None});
        exp_env = env }
  | Pexp_record(lid_sexp_list, opt_sexp) ->
      check_expression ctx sexp ;
      let ty = newvar() in
      let num_fields = ref 0 in
      let type_label_exp (lid, sarg) =
        let label =
          try
            Env.lookup_label lid env
          with Not_found ->
            raise(Error(sexp.pexp_loc, Unbound_label lid)) in
        begin_def ();
        if !Clflags.principal then begin_def ();
        let (vars, ty_arg, ty_res) = instance_label true label in
        if !Clflags.principal then begin
          end_def ();
          generalize_structure ty_arg;
          generalize_structure ty_res
        end;
        begin try
          unify env (instance ty_res) ty
        with Unify trace ->
          raise(Error(sexp.pexp_loc, Label_mismatch(lid, trace)))
        end;
        let arg = type_argument env sarg ty_arg in
        end_def ();
        if vars <> [] && not (is_nonexpansive arg) then
          generalize_expansive env arg.exp_type;
        check_univars env "field value" arg label.lbl_arg vars;
        num_fields := Array.length label.lbl_all;
        if label.lbl_private = Private then
          raise(Error(sexp.pexp_loc, Private_type ty));
        (label, {arg with exp_type = instance arg.exp_type}) in
      let lbl_exp_list = type_label_a_list type_label_exp lid_sexp_list in
      let rec check_duplicates seen_pos lid_sexp lbl_exp =
        match (lid_sexp, lbl_exp) with
          ((lid, _) :: rem1, (lbl, _) :: rem2) ->
            if List.mem lbl.lbl_pos seen_pos
            then raise(Error(sexp.pexp_loc, Label_multiply_defined lid))
            else check_duplicates (lbl.lbl_pos :: seen_pos) rem1 rem2
        | (_, _) -> () in
      check_duplicates [] lid_sexp_list lbl_exp_list;
      let opt_exp =
        match opt_sexp, lbl_exp_list with
          None, _ -> None
        | Some sexp, (lbl, _) :: _ ->
            let ty_exp = newvar () in
            let unify_kept lbl =
              if List.for_all (fun (lbl',_) -> lbl'.lbl_pos <> lbl.lbl_pos)
                  lbl_exp_list
              then begin
                let _, ty_arg1, ty_res1 = instance_label false lbl
                and _, ty_arg2, ty_res2 = instance_label false lbl in
                unify env ty_exp ty_res1;
                unify env ty ty_res2;
                unify env ty_arg1 ty_arg2
              end in
            Array.iter unify_kept lbl.lbl_all;
            Some(type_expect env sexp ty_exp)
        | _ -> assert false
      in
      if opt_sexp = None && List.length lid_sexp_list <> !num_fields then begin
        let present_indices =
          List.map (fun (lbl, _) -> lbl.lbl_pos) lbl_exp_list in
        let label_names = extract_label_names sexp env ty in
        let rec missing_labels n = function
            [] -> []
          | lbl :: rem ->
              if List.mem n present_indices then missing_labels (n + 1) rem
              else lbl :: missing_labels (n + 1) rem
        in
        let missing = missing_labels 0 label_names in
        raise(Error(sexp.pexp_loc, Label_missing missing))
      end
      else if opt_sexp <> None && List.length lid_sexp_list = !num_fields then
        Location.prerr_warning sexp.pexp_loc Warnings.Useless_record_with;
      re {
        exp_desc = Texp_record(lbl_exp_list, opt_exp);
        exp_loc = sexp.pexp_loc;
        exp_type = ty;
        exp_env = env }
  | Pexp_field(sarg, lid) ->
      check_expression ctx sexp ;
      let arg = do_type_exp E env sarg in
      let label =
        try
          Env.lookup_label lid env
        with Not_found ->
          raise(Error(sexp.pexp_loc, Unbound_label lid)) in
      let (_, ty_arg, ty_res) = instance_label false label in
      unify_exp env arg ty_res;
      re {
        exp_desc = Texp_field(arg, label);
        exp_loc = sexp.pexp_loc;
        exp_type = ty_arg;
        exp_env = env }
  | Pexp_setfield(srecord, lid, snewval) ->
      check_expression ctx sexp ;
      let record = do_type_exp E env srecord in
      let label =
        try
          Env.lookup_label lid env
        with Not_found ->
          raise(Error(sexp.pexp_loc, Unbound_label lid)) in
      if label.lbl_mut = Immutable then
        raise(Error(sexp.pexp_loc, Label_not_mutable lid));
      begin_def ();
      let (vars, ty_arg, ty_res) = instance_label true label in
      unify_exp env record ty_res;
      let newval = type_expect env snewval ty_arg in
      end_def ();
      if vars <> [] && not (is_nonexpansive newval) then
        generalize_expansive env newval.exp_type;
      check_univars env "field value" newval label.lbl_arg vars;
      if label.lbl_private = Private then
        raise(Error(sexp.pexp_loc, Private_label(lid, ty_res)));
      re {
        exp_desc = Texp_setfield(record, label, newval);
        exp_loc = sexp.pexp_loc;
        exp_type = instance Predef.type_unit;
        exp_env = env }
  | Pexp_array(sargl) ->
      check_expression ctx sexp ;
      let ty = newvar() in
      let argl = List.map (fun sarg -> type_expect env sarg ty) sargl in
      re {
        exp_desc = Texp_array argl;
        exp_loc = sexp.pexp_loc;
        exp_type = instance (Predef.type_array ty);
        exp_env = env }
  | Pexp_ifthenelse(scond, sifso, sifnot) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      begin match ctx with
      | E ->
          begin match sifnot with
            None ->
              let ifso = type_expect env sifso (instance Predef.type_unit) in
              re {
                exp_desc = Texp_ifthenelse(cond, ifso, None);
                exp_loc = sexp.pexp_loc;
                exp_type = instance Predef.type_unit;
                exp_env = env }
          | Some sifnot ->
              let ifso = type_exp env sifso in
              let ifnot = type_expect env sifnot ifso.exp_type in
              re {
                exp_desc = Texp_ifthenelse(cond, ifso, Some ifnot);
                exp_loc = sexp.pexp_loc;
                exp_type = ifso.exp_type;
                exp_env = env }
          end
      | P ->
          begin match sifnot with
          | None ->
              let ifso = type_proc env sifso in
              begin try
                let rep1 = Typejoin.get_replies ifso in
                re {
                  exp_desc = Texp_ifthenelse(cond, ifso, None);
                  exp_loc = sexp.pexp_loc;
                  exp_type =
                    Predef.type_process
                     (Typejoin.inter  sexp.pexp_loc rep1 []);
                  exp_env = env }
              with Typejoin.MissingRight id ->
                raise (Error (sifso.pexp_loc, ExtraReply id))
              end
          | Some sifnot ->
              let ifso = type_proc env sifso in
              let ifnot = type_proc env sifnot in
              begin try
                let repso = Typejoin.get_replies ifso
                and repnot = Typejoin.get_replies ifnot in
                re {
                  exp_desc = Texp_ifthenelse(cond, ifso, Some ifnot);
                  exp_loc = sexp.pexp_loc;
                  exp_type =
                    Predef.type_process
                     (Typejoin.inter sexp.pexp_loc repso repnot) ;
                  exp_env = env }
              with
              | Typejoin.MissingRight id ->
                  raise (Error (sifnot.pexp_loc, MissingReply id))
              | Typejoin.MissingLeft id ->
                  raise (Error (sifso.pexp_loc, MissingReply id))
              end
          end  
      end
  | Pexp_sequence(sexp1, sexp2) ->
      let exp1 =
        match ctx with
        | E -> type_statement env sexp1
        | P -> type_expect env sexp1 (instance Predef.type_unit) in
      let exp2 = do_type_exp ctx env sexp2 in
      re {
        exp_desc = Texp_sequence(exp1, exp2);
        exp_loc = sexp.pexp_loc;
        exp_type = exp2.exp_type;
        exp_env = env }
  | Pexp_while(scond, sbody) ->
      check_expression ctx sexp;
      let cond = type_expect env scond (instance Predef.type_bool) in
      let body = type_statement env sbody in
      re {
        exp_desc = Texp_while(cond, body);
        exp_loc = sexp.pexp_loc;
        exp_type = instance Predef.type_unit;
        exp_env = env }
  | Pexp_for(param, slow, shigh, dir, sbody) ->
      let low = type_expect env slow (instance Predef.type_int) in
      let high = type_expect env shigh (instance Predef.type_int) in
      let (id, new_env) =
        Env.enter_value param {val_type = instance Predef.type_int;
                                val_kind = Val_reg} env in
      begin match ctx with
      | E ->
          let body = type_statement new_env sbody in
          re {
            exp_desc = Texp_for(id, low, high, dir, body);
            exp_loc = sexp.pexp_loc;
            exp_type = instance Predef.type_unit;
            exp_env = env }
      | P ->
(* Remove continuation, so as to statically enforce unique replies *)
          let new_env = Env.remove_continuations new_env in
          let body = do_type_exp  ctx new_env sbody in
          re {
            exp_desc = Texp_for(id, low, high, dir, body);
            exp_loc = sexp.pexp_loc;
            exp_type = Predef.type_process [] ;
            exp_env = env }
      end
  | Pexp_constraint(sarg, sty, sty') ->
      check_expression ctx sexp;
      let (arg, ty') =
        match (sty, sty') with
          (None, None) ->               (* Case actually unused *)
            let arg = type_exp env sarg in
            (arg, arg.exp_type)
        | (Some sty, None) ->
            if !Clflags.principal then begin_def ();
            let ty = Typetexp.transl_simple_type env false sty in
            if !Clflags.principal then begin
              end_def ();
              generalize_structure ty;
              let ty1 = instance ty and ty2 = instance ty in
              (type_expect env sarg ty1, ty2)
            end else
              (type_expect env sarg ty, ty)
        | (None, Some sty') ->
            let (ty', force) =
              Typetexp.transl_simple_type_delayed env sty'
            in
            if !Clflags.principal then begin_def ();
            let arg = type_exp env sarg in
            let gen =
              if !Clflags.principal then begin
                end_def ();
                let tv = newvar () in
                let gen = generalizable tv.level arg.exp_type in
                unify_var env tv arg.exp_type;
                gen
              end else true
            in
            begin match arg.exp_desc, !self_coercion, (repr ty').desc with
              Texp_ident(_, {val_kind=Val_self _}), (path,r) :: _,
              Tconstr(path',_,_) when Path.same path path' ->
                (* prerr_endline "self coercion"; *)
                r := sexp.pexp_loc :: !r;
                force ()
            | _ when free_variables ~env arg.exp_type = []
                  && free_variables ~env ty' = [] ->
                if not gen && (* first try a single coercion *)
                  let snap = snapshot () in
                  let ty, b = enlarge_type env ty' in
                  try
                    force (); Ctype.unify env arg.exp_type ty; true
                  with Unify _ ->
                    backtrack snap; false
                then ()
                else begin try
                  let force' = subtype env arg.exp_type ty' in
                  force (); force' ();
                  if not gen then
                    Location.prerr_warning sexp.pexp_loc
                      (Warnings.Not_principal "this ground coercion");
                with Subtype (tr1, tr2) ->
                  (* prerr_endline "coercion failed"; *)
                  raise(Error(sexp.pexp_loc, Not_subtype(tr1, tr2)))
                end;
            | _ ->
                let ty, b = enlarge_type env ty' in
                force ();
                begin try Ctype.unify env arg.exp_type ty with Unify trace ->
                  raise(Error(sarg.pexp_loc,
                        Coercion_failure(ty', full_expand env ty', trace, b)))
                end
            end;
            (arg, ty')
        | (Some sty, Some sty') ->
            let (ty, force) =
              Typetexp.transl_simple_type_delayed env sty
            and (ty', force') =
              Typetexp.transl_simple_type_delayed env sty'
            in
            begin try
              let force'' = subtype env ty ty' in
              force (); force' (); force'' ()
            with Subtype (tr1, tr2) ->
              raise(Error(sexp.pexp_loc, Not_subtype(tr1, tr2)))
            end;
            (type_expect env sarg ty, ty')
      in
      re {
        exp_desc = arg.exp_desc;
        exp_loc = arg.exp_loc;
        exp_type = ty';
        exp_env = env }
  | Pexp_when(scond, sbody) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      let body = do_type_exp ctx env sbody in
      re {
        exp_desc = Texp_when(cond, body);
        exp_loc = sexp.pexp_loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_send (e, met) ->
      check_expression ctx sexp ;
      if !Clflags.principal then begin_def ();
      let obj = type_exp env e in
      begin try
        let (exp, typ) =
          match obj.exp_desc with
            Texp_ident(path, {val_kind = Val_self (meths, _, _, privty)}) ->
              let (id, typ) =
                filter_self_method env met Private meths privty
              in
              if (repr typ).desc = Tvar then
                Location.prerr_warning sexp.pexp_loc
                  (Warnings.Undeclared_virtual_method met);
              (Texp_send(obj, Tmeth_val id), typ)
          | Texp_ident(path, {val_kind = Val_anc (methods, cl_num)}) ->
              let method_id =
                begin try List.assoc met methods with Not_found ->
                  raise(Error(e.pexp_loc, Undefined_inherited_method met))
                end
              in
              begin match
                Env.lookup_value (Longident.Lident ("selfpat-" ^ cl_num)) env,
                Env.lookup_value (Longident.Lident ("self-" ^cl_num)) env
              with
                (_, ({val_kind = Val_self (meths, _, _, privty)} as desc)),
                (path, _) ->
                  let (_, typ) =
                    filter_self_method env met Private meths privty
                  in
                  let method_type = newvar () in
                  let (obj_ty, res_ty) = filter_arrow env method_type "" in
                  unify env obj_ty desc.val_type;
                  unify env res_ty (instance typ);
                  (Texp_apply({ exp_desc = Texp_ident(Path.Pident method_id,
                                                     {val_type = method_type;
                                                       val_kind = Val_reg});
                                exp_loc = sexp.pexp_loc;
                                exp_type = method_type;
                                exp_env = env },
                              [Some {exp_desc = Texp_ident(path, desc);
                                     exp_loc = obj.exp_loc;
                                     exp_type = desc.val_type;
                                     exp_env = env },
                               Required]),
                   typ)
              |  _ ->
                  assert false
              end
          | _ ->
              (Texp_send(obj, Tmeth_name met),
               filter_method env met Public obj.exp_type)
        in
        if !Clflags.principal then begin
          end_def ();
          generalize_structure typ;
        end;
        let typ =
          match repr typ with
            {desc = Tpoly (ty, [])} ->
              instance ty
          | {desc = Tpoly (ty, tl); level = l} ->
              if !Clflags.principal && l <> generic_level then
                Location.prerr_warning sexp.pexp_loc
                  (Warnings.Not_principal "this use of a polymorphic method");
              snd (instance_poly false tl ty)
          | {desc = Tvar} as ty ->
              let ty' = newvar () in
              unify env (instance ty) (newty(Tpoly(ty',[])));
              (* if not !Clflags.nolabels then
                 Location.prerr_warning loc (Warnings.Unknown_method met); *)
              ty'
          | _ ->
              assert false
        in
          re {
            exp_desc = exp;
            exp_loc = sexp.pexp_loc;
            exp_type = typ;
            exp_env = env }
      with Unify _ ->
        raise(Error(e.pexp_loc, Undefined_method (obj.exp_type, met)))
      end
  | Pexp_new cl ->
      check_expression ctx sexp ;
      let (cl_path, cl_decl) =
        try Env.lookup_class cl env with Not_found ->
          raise(Error(sexp.pexp_loc, Unbound_class cl))
      in
        begin match cl_decl.cty_new with
          None ->
            raise(Error(sexp.pexp_loc, Virtual_class cl))
        | Some ty ->
            re {
              exp_desc = Texp_new (cl_path, cl_decl);
              exp_loc = sexp.pexp_loc;
              exp_type = instance ty;
              exp_env = env }
        end
  | Pexp_setinstvar (lab, snewval) ->
      check_expression ctx sexp ;
      begin try
        let (path, desc) = Env.lookup_value (Longident.Lident lab) env in
        match desc.val_kind with
          Val_ivar (Mutable, cl_num) ->
            let newval = type_expect env snewval (instance desc.val_type) in
            let (path_self, _) =
              Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
            in
            re {
              exp_desc = Texp_setinstvar(path_self, path, newval);
              exp_loc = sexp.pexp_loc;
              exp_type = instance Predef.type_unit;
              exp_env = env }
        | Val_ivar _ ->
            raise(Error(sexp.pexp_loc, Instance_variable_not_mutable lab))
        | _ ->
            raise(Error(sexp.pexp_loc, Unbound_instance_variable lab))
      with
        Not_found ->
          raise(Error(sexp.pexp_loc, Unbound_instance_variable lab))
      end
  | Pexp_override lst ->
      check_expression ctx sexp ;
      let _ = 
       List.fold_right
        (fun (lab, _) l ->
           if List.exists ((=) lab) l then
             raise(Error(sexp.pexp_loc,
                         Value_multiply_overridden lab));
           lab::l)
        lst
        [] in
      begin match
        try
          Env.lookup_value (Longident.Lident "selfpat-*") env,
          Env.lookup_value (Longident.Lident "self-*") env
        with Not_found ->
          raise(Error(sexp.pexp_loc, Outside_class))
      with
        (_, {val_type = self_ty; val_kind = Val_self (_, vars, _, _)}),
        (path_self, _) ->
          let type_override (lab, snewval) =
            begin try
              let (id, _, _, ty) = Vars.find lab !vars in
              (Path.Pident id, type_expect env snewval (instance ty))
            with
              Not_found ->
                raise(Error(sexp.pexp_loc, Unbound_instance_variable lab))
            end
          in
          let modifs = List.map type_override lst in
          re {
            exp_desc = Texp_override(path_self, modifs);
            exp_loc = sexp.pexp_loc;
            exp_type = self_ty;
            exp_env = env }
      | _ ->
          assert false
      end
  | Pexp_letmodule(name, smodl, sbody) ->
      let ty = newvar() in
      Ident.set_current_time ty.level;
      let context = Typetexp.narrow () in
      let modl = !type_module env smodl in
      let (id, new_env) = Env.enter_module name modl.mod_type env in
      Ctype.init_def(Ident.current_time());
      Typetexp.widen context;
      let body = do_type_exp ctx new_env sbody in
      (* Unification of body.exp_type with the fresh variable ty
         fails if and only if the prefix condition is violated,
         i.e. if generative types rooted at id show up in the
         type body.exp_type.  Thus, this unification enforces the
         scoping condition on "let module". *)
      begin try
        Ctype.unify new_env body.exp_type ty
      with Unify _ ->
        raise(Error(sexp.pexp_loc, Scoping_let_module(name, body.exp_type)))
      end;
      re {
        exp_desc = Texp_letmodule(id, modl, body);
        exp_loc = sexp.pexp_loc;
        exp_type = ty;
        exp_env = env }
  | Pexp_assert (e) ->
      check_expression ctx sexp ;
       let cond = type_expect env e (instance Predef.type_bool) in
       re {
         exp_desc = Texp_assert (cond);
         exp_loc = sexp.pexp_loc;
         exp_type = instance Predef.type_unit;
         exp_env = env;
       }
  | Pexp_assertfalse ->
      check_expression ctx sexp ;
      re {
         exp_desc = Texp_assertfalse;
         exp_loc = sexp.pexp_loc;
         exp_type = newvar ();
         exp_env = env;
       }

  | Pexp_spawn (sarg) ->
       check_expression ctx sexp ;
(*
  Continuation scope is restricted to P in
   P & P, let D in P, match E (| p -> P)+, if e then P (else P)?
   def D in P.
   To achieve this it suffices to remove continuations from typing env
   for typing D in def D in _, and for E in spawn E only.
*)
       let arg = type_proc (Env.remove_continuations env) sarg in
       re {
          exp_desc = Texp_spawn arg;
          exp_loc = sexp.pexp_loc;
          exp_type = instance Predef.type_unit;
          exp_env = env; } 
  | Pexp_par (se1, se2) ->
      let e1 = type_proc env se1
      and e2 = type_proc env se2 in
      check_process ctx sexp ;
      begin try
        let konts1 = Typejoin.get_replies e1
        and konts2 = Typejoin.get_replies e2 in
        re {
          exp_desc = Texp_par (e1, e2);
          exp_loc = sexp.pexp_loc;
          exp_type = Predef.type_process (Typejoin.delta konts1 konts2) ;
          exp_env = env; } 
      with Typejoin.Double (id, loc1, loc2) ->
        raise (Error (sexp.pexp_loc, DoubleReply (id, loc1, loc2)))
      end
  | Pexp_reply (sres, jid) ->
      check_process ctx sexp ;
      let lid = Longident.parse jid.pjident_desc in
      let path,ty =
        try
          let path,desc = Env.lookup_continuation lid env in
          desc.continuation_kind <- true ;
          path, desc.continuation_type
        with Not_found ->
          raise(Error(jid.pjident_loc, Unbound_continuation lid)) in
      let res = type_expect env sres ty in
      let kid = match path with Path.Pident r -> r | _ -> assert false in
      re {
        exp_desc = Texp_reply (res, kid) ;
        exp_loc  = sexp.pexp_loc;
        exp_type = Predef.type_process [kid, sexp.pexp_loc];
        exp_env  = env; }
  | Pexp_def (sautos, sbody) ->
      (* À l'imitation du let *)
      let scp = Some (Annot.Idef sexp.pexp_loc) in
      let (autos, new_env) = type_def false env sautos scp in
      let body = do_type_exp ctx new_env sbody in
      re {
        exp_desc = Texp_def (autos, body);
        exp_loc  = sexp.pexp_loc;
        exp_type = body.exp_type;
        exp_env  = env } 
(*< JOCAML *)
  | Pexp_lazy (e) ->
      check_expression ctx sexp ;
       let arg = type_exp env e in
       re {
         exp_desc = Texp_lazy arg;
         exp_loc = sexp.pexp_loc;
         exp_type = instance (Predef.type_lazy_t arg.exp_type);
         exp_env = env;
       }
  | Pexp_object s ->
      check_expression ctx sexp ;
      let desc, sign, meths = !type_object env sexp.pexp_loc s in
      re {
        exp_desc = Texp_object (desc, sign, meths);
        exp_loc = sexp.pexp_loc;
        exp_type = sign.cty_self;
        exp_env = env;
      }
  | Pexp_poly _ ->
      assert false

and type_argument env sarg ty_expected' =
  (* ty_expected' may be generic *)
  let no_labels ty =
    let ls, tvar = list_labels env ty in
    not tvar && List.for_all ((=) "") ls
  in
  let ty_expected = instance ty_expected' in
  match expand_head env ty_expected', sarg with
  | _, {pexp_desc = Pexp_function(l,_,_)} when not (is_optional l) ->
      type_expect env sarg ty_expected
  | {desc = Tarrow("",ty_arg,ty_res,_); level = lv}, _ ->
      (* apply optional arguments when expected type is "" *)
      (* we must be very careful about not breaking the semantics *)
      if !Clflags.principal then begin_def ();
      let texp = type_exp env sarg in
      if !Clflags.principal then begin
        end_def ();
        generalize_structure texp.exp_type
      end;
      let rec make_args args ty_fun =
        match (expand_head env ty_fun).desc with
        | Tarrow (l,ty_arg,ty_fun,_) when is_optional l ->
            make_args
              ((Some(option_none (instance ty_arg) sarg.pexp_loc), Optional)
               :: args)
              ty_fun
        | Tarrow (l,_,ty_res',_) when l = "" || !Clflags.classic ->
            args, ty_fun, no_labels ty_res'
        | Tvar ->  args, ty_fun, false
        |  _ -> [], texp.exp_type, false
      in
      let args, ty_fun', simple_res = make_args [] texp.exp_type in
      let warn = !Clflags.principal &&
        (lv <> generic_level || (repr ty_fun').level <> generic_level)
      and texp = {texp with exp_type = instance texp.exp_type}
      and ty_fun = instance ty_fun' in
      if not (simple_res || no_labels ty_res) then begin
        unify_exp env texp ty_expected;
        texp
      end else begin
      unify_exp env {texp with exp_type = ty_fun} ty_expected;
      if args = [] then texp else
      (* eta-expand to avoid side effects *)
      let var_pair name ty =
        let id = Ident.create name in
        {pat_desc = Tpat_var id; pat_type = ty;
         pat_loc = Location.none; pat_env = env},
        {exp_type = ty; exp_loc = Location.none; exp_env = env; exp_desc =
         Texp_ident(Path.Pident id,{val_type = ty; val_kind = Val_reg})}
      in
      let eta_pat, eta_var = var_pair "eta" ty_arg in
      let func texp =
        { texp with exp_type = ty_fun; exp_desc =
          Texp_function([eta_pat, {texp with exp_type = ty_res; exp_desc =
                                   Texp_apply (texp, args@
                                               [Some eta_var, Required])}],
                        Total) } in
      if warn then Location.prerr_warning texp.exp_loc
          (Warnings.Without_principality "eliminated optional argument");
      if is_nonexpansive texp then func texp else
      (* let-expand to have side effects *)
      let let_pat, let_var = var_pair "let" texp.exp_type in
      re { texp with exp_type = ty_fun; exp_desc =
           Texp_let (Nonrecursive, [let_pat, texp], func let_var) }
      end
  | _ ->
      type_expect env sarg ty_expected

and type_application env funct sargs =
  (* funct.exp_type may be generic *)
  let result_type omitted ty_fun =
    List.fold_left
      (fun ty_fun (l,ty,lv) -> newty2 lv (Tarrow(l,ty,ty_fun,Cok)))
      ty_fun omitted
  in
  let has_label l ty_fun =
    let ls, tvar = list_labels env ty_fun in
    tvar || List.mem l ls
  in
  let ignored = ref [] in
  let rec type_unknown_args args omitted ty_fun = function
      [] ->
        (List.map
           (function None, x -> None, x | Some f, x -> Some (f ()), x)
           (List.rev args),
         instance (result_type omitted ty_fun))
    | (l1, sarg1) :: sargl ->
        let (ty1, ty2) =
          let ty_fun = expand_head env ty_fun in
          match ty_fun.desc with
            Tvar ->
              let t1 = newvar () and t2 = newvar () in
              let not_identity = function
                  Texp_ident(_,{val_kind=Val_prim
                                  {Primitive.prim_name="%identity"}}) ->
                    false
                | _ -> true
              in
              if ty_fun.level >= t1.level && not_identity funct.exp_desc then
                Location.prerr_warning sarg1.pexp_loc Warnings.Unused_argument;
              unify env ty_fun (newty (Tarrow(l1,t1,t2,Clink(ref Cunknown))));
              (t1, t2)
          | Tarrow (l,t1,t2,_) when l = l1
            || !Clflags.classic && l1 = "" && not (is_optional l) ->
              (t1, t2)
          | td ->
              let ty_fun =
                match td with Tarrow _ -> newty td | _ -> ty_fun in
              let ty_res = result_type (omitted @ !ignored) ty_fun in
              match ty_res.desc with
                Tarrow _ ->
                  if (!Clflags.classic || not (has_label l1 ty_fun)) then
                    raise(Error(sarg1.pexp_loc, Apply_wrong_label(l1, ty_res)))
                  else
                    raise(Error(funct.exp_loc, Incoherent_label_order))
              | _ ->
                  raise(Error(funct.exp_loc, Apply_non_function
                                (expand_head env funct.exp_type)))
        in
        let optional = if is_optional l1 then Optional else Required in
        let arg1 () =
          let arg1 = type_expect env sarg1 ty1 in
          if optional = Optional then
            unify_exp env arg1 (type_option(newvar()));
          arg1
        in
        type_unknown_args ((Some arg1, optional) :: args) omitted ty2 sargl
  in
  let ignore_labels =
    !Clflags.classic ||
    begin
      let ls, tvar = list_labels env funct.exp_type in
      not tvar &&
      let labels = List.filter (fun l -> not (is_optional l)) ls in
      List.length labels = List.length sargs &&
      List.for_all (fun (l,_) -> l = "") sargs &&
      List.exists (fun l -> l <> "") labels &&
      (Location.prerr_warning funct.exp_loc Warnings.Labels_omitted;
       true)
    end
  in
  let warned = ref false in
  let rec type_args args omitted ty_fun ty_old sargs more_sargs =
    match expand_head env ty_fun with
      {desc=Tarrow (l, ty, ty_fun, com); level=lv} as ty_fun'
      when (sargs <> [] || more_sargs <> []) && commu_repr com = Cok ->
        let may_warn loc w =
          if not !warned && !Clflags.principal && lv <> generic_level
          then begin
            warned := true;
            Location.prerr_warning loc w
          end
        in
        let name = label_name l
        and optional = if is_optional l then Optional else Required in
        let sargs, more_sargs, arg =
          if ignore_labels && not (is_optional l) then begin
            (* In classic mode, omitted = [] *)
            match sargs, more_sargs with
              (l', sarg0) :: _, _ ->
                raise(Error(sarg0.pexp_loc, Apply_wrong_label(l', ty_old)))
            | _, (l', sarg0) :: more_sargs ->
                if l <> l' && l' <> "" then
                  raise(Error(sarg0.pexp_loc, Apply_wrong_label(l', ty_fun')))
                else
                  ([], more_sargs, Some (fun () -> type_argument env sarg0 ty))
            | _ ->
                assert false
          end else try
            let (l', sarg0, sargs, more_sargs) =
              try
                let (l', sarg0, sargs1, sargs2) = extract_label name sargs in
                if sargs1 <> [] then
                  may_warn sarg0.pexp_loc
                    (Warnings.Not_principal "commuting this argument");
                (l', sarg0, sargs1 @ sargs2, more_sargs)
              with Not_found ->
                let (l', sarg0, sargs1, sargs2) =
                  extract_label name more_sargs in
                if sargs1 <> [] || sargs <> [] then
                  may_warn sarg0.pexp_loc
                    (Warnings.Not_principal "commuting this argument");
                (l', sarg0, sargs @ sargs1, sargs2)
            in
            sargs, more_sargs,
            if optional = Required || is_optional l' then
              Some (fun () -> type_argument env sarg0 ty)
            else begin
              may_warn sarg0.pexp_loc
                (Warnings.Not_principal "using an optional argument here");
              Some (fun () -> option_some (type_argument env sarg0
                                             (extract_option_type env ty)))
            end
          with Not_found ->
            sargs, more_sargs,
            if optional = Optional &&
              (List.mem_assoc "" sargs || List.mem_assoc "" more_sargs)
            then begin
              may_warn funct.exp_loc
                (Warnings.Without_principality "eliminated optional argument");
              ignored := (l,ty,lv) :: !ignored;
              Some (fun () -> option_none (instance ty) Location.none)
            end else begin
              may_warn funct.exp_loc
                (Warnings.Without_principality "commuted an argument");
              None
            end
        in
        let omitted =
          if arg = None then (l,ty,lv) :: omitted else omitted in
        let ty_old = if sargs = [] then ty_fun else ty_old in
        type_args ((arg,optional)::args) omitted ty_fun ty_old sargs more_sargs
    | _ ->
        match sargs with
          (l, sarg0) :: _ when ignore_labels ->
            raise(Error(sarg0.pexp_loc, Apply_wrong_label(l, ty_old)))
        | _ ->
            type_unknown_args args omitted (instance ty_fun)
              (sargs @ more_sargs)
  in
  match funct.exp_desc, sargs with
    (* Special case for ignore: avoid discarding warning *)
    Texp_ident (_, {val_kind=Val_prim{Primitive.prim_name="%ignore"}}),
    ["", sarg] ->
      let ty_arg, ty_res = filter_arrow env (instance funct.exp_type) "" in
      let exp = type_expect env sarg ty_arg in
      begin match (expand_head env exp.exp_type).desc with
      | Tarrow _ ->
          Location.prerr_warning exp.exp_loc Warnings.Partial_application
      | Tvar ->
          add_delayed_check (fun () -> check_application_result env false exp)
      | _ -> ()
      end;
      ([Some exp, Required], ty_res)
  | _ ->
      let ty = funct.exp_type in
      if ignore_labels then
        type_args [] [] ty ty [] sargs
      else
        type_args [] [] ty ty sargs []

and type_construct env loc lid sarg explicit_arity ty_expected =
  let constr =
    try
      Env.lookup_constructor lid env
    with Not_found ->
      raise(Error(loc, Unbound_constructor lid)) in
  let sargs =
    match sarg with
      None -> []
    | Some {pexp_desc = Pexp_tuple sel} when explicit_arity -> sel
    | Some {pexp_desc = Pexp_tuple sel} when constr.cstr_arity > 1 -> sel
    | Some se -> [se] in
  if List.length sargs <> constr.cstr_arity then
    raise(Error(loc, Constructor_arity_mismatch
                  (lid, constr.cstr_arity, List.length sargs)));
  if !Clflags.principal then begin_def ();
  let (ty_args, ty_res) = instance_constructor constr in
  if !Clflags.principal then begin
    end_def ();
    List.iter generalize_structure ty_args;
    generalize_structure ty_res
  end;
  let texp =
    re {
      exp_desc = Texp_construct(constr, []);
      exp_loc = loc;
      exp_type = instance ty_res;
      exp_env = env } in
  unify_exp env texp ty_expected;
  let args = List.map2 (type_argument env) sargs ty_args in
  if constr.cstr_private = Private then
    raise(Error(loc, Private_type ty_res));
  { texp with exp_desc = Texp_construct(constr, args) }

(* Typing of an expression with an expected type.
   Some constructs are treated specially to provide better error messages. *)

and type_expect ?in_function env sexp ty_expected =
  match sexp.pexp_desc with
    Pexp_constant(Const_string s as cst) ->
      let exp =
        re {
          exp_desc = Texp_constant cst;
          exp_loc = sexp.pexp_loc;
          exp_type =
            (* Terrible hack for format strings *)
            begin match (repr (expand_head env ty_expected)).desc with
              Tconstr(path, _, _) when Path.same path Predef.path_format6 ->
                type_format sexp.pexp_loc s
            | _ -> instance Predef.type_string
            end;
          exp_env = env } in
      unify_exp env exp ty_expected;
      exp
  | Pexp_construct(lid, sarg, explicit_arity) ->
      type_construct env sexp.pexp_loc lid sarg explicit_arity ty_expected
  | Pexp_let(rec_flag, spat_sexp_list, sbody) ->
      let (pat_exp_list, new_env) = type_let env rec_flag spat_sexp_list None in
      let body = type_expect new_env sbody ty_expected in
      re {
        exp_desc = Texp_let(rec_flag, pat_exp_list, body);
        exp_loc = sexp.pexp_loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_sequence(sexp1, sexp2) ->
      let exp1 = type_statement env sexp1 in
      let exp2 = type_expect env sexp2 ty_expected in
      re {
        exp_desc = Texp_sequence(exp1, exp2);
        exp_loc = sexp.pexp_loc;
        exp_type = exp2.exp_type;
        exp_env = env }
  | Pexp_function (l, Some default, [spat, sbody]) ->
      let loc = default.pexp_loc in
      let scases =
        [{ppat_loc = loc; ppat_desc =
          Ppat_construct(Longident.Lident"Some",
                         Some{ppat_loc = loc; ppat_desc = Ppat_var"*sth*"},
                         false)},
         {pexp_loc = loc; pexp_desc = Pexp_ident(Longident.Lident"*sth*")};
         {ppat_loc = loc; ppat_desc =
          Ppat_construct(Longident.Lident"None", None, false)},
         default] in
      let smatch =
        {pexp_loc = loc; pexp_desc =
         Pexp_match({pexp_loc = loc; pexp_desc =
                     Pexp_ident(Longident.Lident"*opt*")},
                    scases)} in
      let sfun =
        {pexp_loc = sexp.pexp_loc; pexp_desc =
         Pexp_function(l, None,[{ppat_loc = loc; ppat_desc = Ppat_var"*opt*"},
                                {pexp_loc = sexp.pexp_loc; pexp_desc =
                                 Pexp_let(Default, [spat, smatch], sbody)}])}
      in
      type_expect ?in_function env sfun ty_expected
  | Pexp_function (l, _, caselist) ->
      let (loc, ty_fun) =
        match in_function with Some p -> p
        | None -> (sexp.pexp_loc, ty_expected)
      in
      let (ty_arg, ty_res) =
        try filter_arrow env ty_expected l
        with Unify _ ->
          match expand_head env ty_expected with
            {desc = Tarrow _} as ty ->
              raise(Error(sexp.pexp_loc, Abstract_wrong_label(l, ty)))
          | _ ->
              raise(Error(loc,
                          Too_many_arguments (in_function <> None, ty_fun)))
      in
      let ty_arg =
        if is_optional l then
          let tv = newvar() in
          begin
            try unify env ty_arg (type_option tv)
            with Unify _ -> assert false
          end;
          type_option tv
        else ty_arg
      in
      let cases, partial,_  =
        type_cases ~in_function:(loc,ty_fun) E env ty_arg ty_res
          (Some sexp.pexp_loc) caselist in
      let not_function ty =
        let ls, tvar = list_labels env ty in
        ls = [] && not tvar
      in
      if is_optional l && not_function ty_res then
        Location.prerr_warning (fst (List.hd cases)).pat_loc
          Warnings.Unerasable_optional_argument;
      re {
        exp_desc = Texp_function(cases, partial);
        exp_loc = sexp.pexp_loc;
        exp_type = newty (Tarrow(l, ty_arg, ty_res, Cok));
        exp_env = env }
  | Pexp_when(scond, sbody) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      let body = type_expect env sbody ty_expected in
      re {
        exp_desc = Texp_when(cond, body);
        exp_loc = sexp.pexp_loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_poly(sbody, sty) ->
      let ty =
        match sty with None -> repr ty_expected
        | Some sty ->
            let ty = Typetexp.transl_simple_type env false sty in
            repr ty
      in
      let set_type ty =
        unify_exp env
          { exp_desc = Texp_tuple []; exp_loc = sexp.pexp_loc;
            exp_type = ty; exp_env = env } ty_expected in
      begin
        match ty.desc with
          Tpoly (ty', []) ->
            if sty <> None then set_type ty;
            let exp = type_expect env sbody ty' in
            re { exp with exp_type = ty }
        | Tpoly (ty', tl) ->
            if sty <> None then set_type ty;
            (* One more level to generalize locally *)
            begin_def ();
            let vars, ty'' = instance_poly true tl ty' in
            let exp = type_expect env sbody ty'' in
            end_def ();
            check_univars env "method" exp ty_expected vars;
            re { exp with exp_type = ty }
        | _ -> assert false
      end
  | _ ->
      let exp = type_exp env sexp in
      unify_exp env exp ty_expected;
      exp

(* Typing of statements (expressions whose values are discarded) *)

and type_statement env sexp =
  begin_def();
  let exp = type_exp env sexp in
  end_def();
  let ty = expand_head env exp.exp_type and tv = newvar() in
  begin match ty.desc with
  | Tarrow _ ->
      Location.prerr_warning sexp.pexp_loc Warnings.Partial_application
  | Tconstr (p, _, _) when Path.same p Predef.path_unit -> ()
  | Tvar when ty.level > tv.level ->
      Location.prerr_warning sexp.pexp_loc Warnings.Nonreturning_statement
  | Tvar ->
      add_delayed_check (fun () -> check_application_result env true exp)
  | _ ->
      Location.prerr_warning sexp.pexp_loc Warnings.Statement_type
  end;
  unify_var env tv ty;
  exp

(* Typing of match cases *)
(* Argument ty_res is unused when ctx is P,
   instead the list of names replied to is returned,
   as an additional 'reps' in typed_cases, partial, reps *)
and type_cases ?in_function ctx env ty_arg ty_res partial_loc caselist =
  let ty_arg' = newvar () in
  let pattern_force = ref [] in
  let pat_env_list =
    List.map
      (fun (spat, sexp) ->
        if !Clflags.principal then begin_def ();
        let scope = Some (Annot.Idef sexp.pexp_loc) in
        let (pat, ext_env, force) = type_pattern env spat scope in
        pattern_force := force @ !pattern_force;
        let pat =
          if !Clflags.principal then begin
            end_def ();
            iter_pattern (fun {pat_type=t} -> generalize_structure t) pat;
            { pat with pat_type = instance pat.pat_type }
          end else pat
        in
        unify_pat env pat ty_arg';
        (pat, ext_env))
      caselist in
  (* Check for polymorphic variants to close *)
  let patl = List.map fst pat_env_list in
  if List.exists has_variants patl then begin
    Parmatch.pressure_variants env patl;
    List.iter (iter_pattern finalize_variant) patl
  end;
  (* `Contaminating' unifications start here *)
  List.iter (fun f -> f()) !pattern_force;
  begin match pat_env_list with [] -> ()
  | (pat, _) :: _ -> unify_pat env pat ty_arg
  end;
  let in_function = if List.length caselist = 1 then in_function else None in
  let cases, reps = match ctx with
  | E ->
      List.map2
        (fun (pat, ext_env) (_, sexp) ->
          let exp = type_expect ?in_function ext_env sexp ty_res in
          (pat, exp))
        pat_env_list caselist, []
  | P ->
      let cases =
        List.map2
          (fun (pat, ext_env) (_, sexp) ->
            let exp =  type_proc ext_env sexp in
            (pat, exp))
          pat_env_list caselist in
      let reps = match cases with
        | (_,fst)::rem ->
            let reps = Typejoin.get_replies fst in
            List.iter
              (fun (_, exp) ->
                try
                  ignore
                    (Typejoin.inter exp.exp_loc reps
                       (Typejoin.get_replies exp))
                with
                | Typejoin.MissingLeft id ->
                  raise (Error (exp.exp_loc, ExtraReply id))
                | Typejoin.MissingRight id ->
                  raise (Error (exp.exp_loc, MissingReply id)))
              rem ;
            reps
        | [] -> [] in
      cases, reps
  in
  let partial =
    match partial_loc with None -> Partial
    | Some loc -> Parmatch.check_partial loc cases
  in
  add_delayed_check (fun () -> Parmatch.check_unused env cases);
  cases, partial, reps

(* Typing of let bindings *)

and type_let env rec_flag spat_sexp_list scope =
  begin_def();
  if !Clflags.principal then begin_def ();
  let spatl = List.map (fun (spat, sexp) -> spat) spat_sexp_list in
  let (pat_list, new_env, force) = type_pattern_list env spatl scope in
  if rec_flag = Recursive then
    List.iter2
      (fun pat (_, sexp) -> unify_pat env pat (type_approx env sexp))
      pat_list spat_sexp_list;
  let pat_list =
    if !Clflags.principal then begin
      end_def ();
      List.map
        (fun pat ->
          iter_pattern (fun pat -> generalize_structure pat.pat_type) pat;
          {pat with pat_type = instance pat.pat_type})
        pat_list
    end else pat_list in
  (* Polymoprhic variant processing *)
  List.iter
    (fun pat ->
      if has_variants pat then begin
        Parmatch.pressure_variants env [pat];
        iter_pattern finalize_variant pat
      end)
    pat_list;
  (* Only bind pattern variables after generalizing *)
  List.iter (fun f -> f()) force;
  let exp_env = match rec_flag with
      | Nonrecursive | Default -> env
      | Recursive -> new_env in
  let exp_list =
    List.map2
      (fun (spat, sexp) pat -> type_expect exp_env sexp pat.pat_type)
      spat_sexp_list pat_list in
  List.iter2
    (fun pat exp -> ignore(Parmatch.check_partial pat.pat_loc [pat, exp]))
    pat_list exp_list;
  end_def();
  List.iter2
    (fun pat exp ->
       if not (is_nonexpansive exp) then
         iter_pattern (fun pat -> generalize_expansive env pat.pat_type) pat)
    pat_list exp_list;
  List.iter
    (fun pat -> iter_pattern (fun pat -> generalize pat.pat_type) pat)
    pat_list;
  (List.combine pat_list exp_list, new_env)

(*> JOCAML *)

and type_dispatcher names disp =
  let d_id,(chan_id, cls, par) = disp in

  let find_channel id =
    try List.assoc id names
    with Not_found -> assert false in

  let chan = find_channel chan_id
  and cls =
    List.map (fun (p,id) -> p, find_channel id) cls in
  Disp (d_id, chan, cls, par)
    
and type_clause env names reac =
   let g_id,(old,(actual_pats, gd)) = reac in
   let (loc_clause,jpats,sexp),(pat_vars,pat_force) = old in

(* First build environment for guarded process *)
  let conts = ref [] in
  let add_kont jpat env =
    let chan,arg = jpat.jpat_desc in
    let kid = chan.jident_desc
    and kdesc =
      {continuation_type = newvar();
       continuation_kind = false;} in
    conts := kdesc :: !conts;
    Env.add_continuation kid kdesc env

  and add_pat_var (id, ty, loc) env =
    let e1 = Env.add_value id {val_type = ty; val_kind = Val_reg} env in
    Env.add_annot id (Annot.Iref_internal loc) e1 in

  let new_env = List.fold_right add_kont jpats env in
  let new_env = List.fold_right add_pat_var pat_vars new_env in

  (* Let us do this now..., it may be too soon, but well,
     at least all jpats in reaction rule are processed *)
  List.iter (fun f -> f()) pat_force ;
  (* And type guarded process *)
  let exp = type_proc new_env sexp in

  (* Now type defined names, continuations variables are added to patterns,
     notice that this impact actual_pats, since jpat_kont
     is a shared reference *)
  List.iter2
    (fun jpat kdesc ->
      let chan, arg = jpat.jpat_desc in
      let tchan =
        try
          let (ty,_) = List.assoc chan.jident_desc names in
          ty
        with Not_found -> assert false in
      let targ = arg.pat_type in
      let otchan,is_sync =
        match kdesc with
        | {continuation_kind=false} -> Ctype.make_channel env targ, false
        | {continuation_type=tres}  ->
            newty (Tarrow ("", targ, tres, Cok)), true in
      begin try
        unify env otchan tchan
      with Unify trace ->
        raise(Error(jpat.jpat_loc, Join_pattern_type_clash(trace)))
      end ;
      if is_sync then
        let cont_id =
          try
            match
              Env.lookup_continuation
                (Longident.parse (Ident.name chan.jident_desc)) new_env
            with
            | (Path.Pident id,_) -> id
            | _ -> assert false
          with Not_found -> assert false in
        jpat.jpat_kont := Some cont_id)
    jpats !conts ;
  g_id, jpats, actual_pats, gd, exp

and type_reac env names reac = Reac (type_clause env names reac)

and type_fwd env names reac = Fwd (type_clause env names reac)

and type_auto env
  (my_loc, my_names,
   (nchans, original, def_names),
   (disps,reacs,fwds)) =
  let env = Env.remove_continuations env in
  let reacs = List.map (type_reac env def_names) reacs
  and fwds =  List.map (type_fwd env def_names) fwds in
  let def_names =
    List.map
      (fun (chan, (ty, id)) ->
        match (expand_head env ty).desc with
        | Tarrow (_, _, _, _) ->
            chan, {jchannel_sync=true; jchannel_env=env ;
                   jchannel_ident=chan ;
                   jchannel_type=ty ; jchannel_id=id}
        | Tconstr (p, _, _) (* when Path.same p Predef.path_channel *) ->
            chan, {jchannel_sync=false; jchannel_env=env ;
                   jchannel_ident=chan ;
                   jchannel_type=ty; jchannel_id=id}
        | _ -> assert false)
      def_names in
(* type dispacher second, it needs the new def_name *)
  let disps = List.map (type_dispatcher def_names) disps in

  {jauto_desc = (disps, reacs, fwds);
   jauto_name = my_names ;
   jauto_nchans = nchans ;
   jauto_names =  def_names;
   jauto_original = original ;
   jauto_loc = my_loc }

and generalize_auto env auto =
  let _,reacs,fwds = auto.jauto_desc in
  List.iter
    (fun reac ->
      let _,jpats,_,_,_ = reac in
      let tys = ref [] in
      List.iter
        (fun jpat ->
          let chan,_ = jpat.jpat_desc in
          let newtys = ref [] in
          let rec f ty =
            if List.memq ty !tys then
              make_nongen ty
            else if not (List.memq ty !newtys) then begin
              newtys := ty :: !newtys ;
              iter_type_expr f ty
            end in
          iter_type_expr f chan.jident_type ;
          tys := !newtys @ !tys)
        jpats)
    (List.map (fun (Fwd r) -> r) fwds @
     List.map (fun (Reac r) -> r) reacs) ;
  List.iter
    (fun (id,chan) -> generalize chan.jchannel_type)
    auto.jauto_names

and add_auto_names p env names =
   List.fold_left
     (fun env (id,(ty,nat)) ->
       if p id then
         let kind = match nat with
         | Chan (name,num)-> Val_channel (name,num)
         | Alone g  -> Val_alone g in
         Env.add_value id
           {val_type = ty; val_kind = kind} env
       else env)         
      env names

and add_auto_names_as_regular p env names =
  List.fold_left
    (fun env (id,(ty,_)) ->
      if p id then 
        Env.add_value id {val_type = ty; val_kind = Val_reg} env
      else env)
    env names

(* Argument toplevel below characterize toplevel definitions *)

and type_def toplevel env sautos scope =
  begin_def ();
  let names_lhs_list = type_autos_lhs env sautos scope in
  let new_env =
    List.fold_left
      (fun env (_, _ , (_,_,names), _) ->
        add_auto_names (fun _ -> true) env names)
      env names_lhs_list in
  let autos =
    List.map (type_auto new_env) names_lhs_list in
  end_def () ;

(* Generalization *)
  List.iter (generalize_auto env) autos ;

(* For toplevel def, should change the bindings of channels,
   so as to avoid internal automaton name escaping *)
  let final_env = 
    if toplevel then
      List.fold_left
        (fun env (_ , _, (_,original,names), _) ->
          let p id = List.mem id original in
          add_auto_names_as_regular p env names)
      env names_lhs_list
    else
      List.fold_left
        (fun env (_ , _, (_,original,names), _) ->
          let p id = List.mem id original in
          add_auto_names p env names)
      env names_lhs_list in
  autos, final_env
and type_loc toplevel env sdefs = assert false
(* Typing of toplevel bindings *)

let type_binding env rec_flag spat_sexp_list scope =
  Typetexp.reset_type_variables();
  type_let env rec_flag spat_sexp_list scope

(* Typing of toplevel expressions *)

let type_expression env sexp =
  Typetexp.reset_type_variables();
  begin_def();
  let exp = type_exp env sexp in
  end_def();
  if is_nonexpansive exp then generalize exp.exp_type
  else generalize_expansive env exp.exp_type;
  exp

(*> JOCAML *)
(* Typing of toplevel join-definition *)
let type_joindefinition env d scope =
  Typetexp.reset_type_variables();
  type_def true env d scope
(*< JOCAML *)

(* Error report *)

open Format
open Printtyp

let report_error ppf = function
  | Unbound_value lid ->
      fprintf ppf "Unbound value %a" longident lid
  | Unbound_constructor lid ->
      fprintf ppf "Unbound constructor %a" longident lid
  | Unbound_label lid ->
      fprintf ppf "Unbound record field label %a" longident lid
  | Polymorphic_label lid ->
      fprintf ppf "@[The record field label %a is polymorphic.@ %s@]"
        longident lid "You cannot instantiate it in a pattern."
  | Constructor_arity_mismatch(lid, expected, provided) ->
      fprintf ppf
       "@[The constructor %a@ expects %i argument(s),@ \
        but is applied here to %i argument(s)@]"
       longident lid expected provided
  | Label_mismatch(lid, trace) ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "The record field label %a@ belongs to the type"
                   longident lid)
        (function ppf ->
           fprintf ppf "but is mixed here with labels of type")
  | Pattern_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This pattern matches values of type")
        (function ppf ->
           fprintf ppf "but a pattern was expected which matches values of type")
  | Multiply_bound_variable name ->
      fprintf ppf "Variable %s is bound several times in this matching" name
  | Orpat_vars id ->
      fprintf ppf "Variable %s must occur on both sides of this | pattern"
        (Ident.name id)
  | Expr_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This expression has type")
        (function ppf ->
           fprintf ppf "but an expression was expected of type")
  | Apply_non_function typ ->
      begin match (repr typ).desc with
        Tarrow _ ->
          fprintf ppf "This function is applied to too many arguments;@ ";
          fprintf ppf "maybe you forgot a `;'"
      | _ ->
          fprintf ppf
            "This expression is not a function; it cannot be applied"
      end
  | Apply_wrong_label (l, ty) ->
      let print_label ppf = function
        | "" -> fprintf ppf "without label"
        | l ->
            fprintf ppf "with label %s%s" (if is_optional l then "" else "~") l
      in
      reset_and_mark_loops ty;
      fprintf ppf
        "@[<v>@[<2>The function applied to this argument has type@ %a@]@.\
          This argument cannot be applied %a@]"
        type_expr ty print_label l
  | Label_multiply_defined lid ->
      fprintf ppf "The record field label %a is defined several times"
              longident lid
  | Label_missing labels ->
      let print_labels ppf = List.iter (fun lbl -> fprintf ppf "@ %s" lbl) in
      fprintf ppf "@[<hov>Some record field labels are undefined:%a@]"
        print_labels labels
  | Label_not_mutable lid ->
      fprintf ppf "The record field label %a is not mutable" longident lid
  | Incomplete_format s ->
      fprintf ppf "Premature end of format string ``%S''" s
  | Bad_conversion (fmt, i, c) ->
      fprintf ppf
        "Bad conversion %%%c, at char number %d \
         in format string ``%s''" c i fmt
  | Undefined_method (ty, me) ->
      reset_and_mark_loops ty;
      fprintf ppf
        "@[<v>@[This expression has type@;<1 2>%a@]@,\
         It has no method %s@]" type_expr ty me
  | Undefined_inherited_method me ->
      fprintf ppf "This expression has no method %s" me
  | Unbound_class cl ->
      fprintf ppf "Unbound class %a" longident cl
  | Virtual_class cl ->
      fprintf ppf "Cannot instantiate the virtual class %a"
        longident cl
  | Unbound_instance_variable v ->
      fprintf ppf "Unbound instance variable %s" v
  | Instance_variable_not_mutable v ->
      fprintf ppf "The instance variable %s is not mutable" v
  | Not_subtype(tr1, tr2) ->
      report_subtyping_error ppf tr1 "is not a subtype of" tr2
  | Outside_class ->
      fprintf ppf "This object duplication occurs outside a method definition"
  | Value_multiply_overridden v ->
      fprintf ppf "The instance variable %s is overridden several times" v
  | Coercion_failure (ty, ty', trace, b) ->
      report_unification_error ppf trace
        (function ppf ->
           let ty, ty' = prepare_expansion (ty, ty') in
           fprintf ppf
             "This expression cannot be coerced to type@;<1 2>%a;@ it has type"
           (type_expansion ty) ty')
        (function ppf ->
           fprintf ppf "but is here used with type");
      if b then
        fprintf ppf ".@.@[<hov>%s@ %s@]"
          "This simple coercion was not fully general."
          "Consider using a double coercion."
  | Too_many_arguments (in_function, ty) ->
      reset_and_mark_loops ty;
      if in_function then begin
        fprintf ppf "This function expects too many arguments,@ ";
        fprintf ppf "it should have type@ %a"
          type_expr ty
      end else begin
        fprintf ppf "This expression should not be a function,@ ";
        fprintf ppf "the expected type is@ %a"
          type_expr ty
      end
  | Abstract_wrong_label (l, ty) ->
      let label_mark = function
        | "" -> "but its first argument is not labelled"
        |  l -> sprintf "but its first argument is labelled ~%s" l in
      reset_and_mark_loops ty;
      fprintf ppf "@[<v>@[<2>This function should have type@ %a@]@,%s@]"
      type_expr ty (label_mark l)
  | Scoping_let_module(id, ty) ->
      reset_and_mark_loops ty;
      fprintf ppf
       "This `let module' expression has type@ %a@ " type_expr ty;
      fprintf ppf
       "In this type, the locally bound module name %s escapes its scope" id
  | Masked_instance_variable lid ->
      fprintf ppf
        "The instance variable %a@ \
         cannot be accessed from the definition of another instance variable"
        longident lid
  | Private_type ty ->
      fprintf ppf "Cannot create values of the private type %a" type_expr ty
  | Private_label (lid, ty) ->
      fprintf ppf "Cannot assign field %a of the private type %a"
        longident lid type_expr ty
  | Not_a_variant_type lid ->
      fprintf ppf "The type %a@ is not a variant type" longident lid
  | Incoherent_label_order ->
      fprintf ppf "This function is applied to arguments@ ";
      fprintf ppf "in an order different from other calls.@ ";
      fprintf ppf "This is only allowed when the real type is known."
(*> JOCAML *)
  | Expr_as_proc ->
      fprintf ppf "This expression is used in process context"
  | Proc_as_expr ->
      fprintf ppf "This process is used in expression context"
  | Garrigue_illegal msg ->
      fprintf ppf "Illegal label in jocaml: %s" msg
  | Vouillon_illegal msg ->
      fprintf ppf "Illegal object in jocaml: %s" msg
  | Send_non_channel typ ->
      fprintf ppf "This expression is not a channel"
  | Join_pattern_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This join-pattern defines a channel of type")
        (function ppf ->
           fprintf ppf "but the channel is used with type")
  | Unbound_continuation _ ->
      fprintf ppf "This continuation is undefined here"
  | DoubleReply (id, _, _) ->
      fprintf ppf "Double reply to: %s" (Ident.name id)
  | ExtraReply id ->
      fprintf ppf
        "Reply to %s cannot occur here, it is missing in some other place"
        (Ident.name id)
  | MissingReply id ->
      fprintf ppf
        "Reply to %s is missing here"
        (Ident.name id)
(*< JOCAML *)      
  | Less_general (kind, trace) ->
      report_unification_error ppf trace
        (fun ppf -> fprintf ppf "This %s has type" kind)
        (fun ppf -> fprintf ppf "which is less general than")