From 874d77bb134a21a5cf625956b60173376a993ba8 Mon Sep 17 00:00:00 2001 From: Damien Miller Date: Sat, 14 Oct 2000 16:23:11 +1100 Subject: - (djm) Big OpenBSD sync: - markus@cvs.openbsd.org 2000/09/30 10:27:44 [log.c] allow loglevel debug - markus@cvs.openbsd.org 2000/10/03 11:59:57 [packet.c] hmac->mac - markus@cvs.openbsd.org 2000/10/03 12:03:03 [auth-krb4.c auth-passwd.c auth-rh-rsa.c auth-rhosts.c auth-rsa.c auth1.c] move fake-auth from auth1.c to individual auth methods, disables s/key in debug-msg - markus@cvs.openbsd.org 2000/10/03 12:16:48 ssh.c do not resolve canonname, i have no idea why this was added oin ossh - markus@cvs.openbsd.org 2000/10/09 15:30:44 ssh-keygen.1 ssh-keygen.c -X now reads private ssh.com DSA keys, too. - markus@cvs.openbsd.org 2000/10/09 15:32:34 auth-options.c clear options on every call. - markus@cvs.openbsd.org 2000/10/09 15:51:00 authfd.c authfd.h interop with ssh-agent2, from - markus@cvs.openbsd.org 2000/10/10 14:20:45 compat.c use rexexp for version string matching - provos@cvs.openbsd.org 2000/10/10 22:02:18 [kex.c kex.h myproposal.h ssh.h ssh2.h sshconnect2.c sshd.c dh.c dh.h] First rough implementation of the diffie-hellman group exchange. The client can ask the server for bigger groups to perform the diffie-hellman in, thus increasing the attack complexity when using ciphers with longer keys. University of Windsor provided network, T the company. - markus@cvs.openbsd.org 2000/10/11 13:59:52 [auth-rsa.c auth2.c] clear auth options unless auth sucessfull - markus@cvs.openbsd.org 2000/10/11 14:00:27 [auth-options.h] clear auth options unless auth sucessfull - markus@cvs.openbsd.org 2000/10/11 14:03:27 [scp.1 scp.c] support 'scp -o' with help from mouring@pconline.com - markus@cvs.openbsd.org 2000/10/11 14:11:35 [dh.c] Wall - markus@cvs.openbsd.org 2000/10/11 14:14:40 [auth.h auth2.c readconf.c readconf.h readpass.c servconf.c servconf.h] [ssh.h sshconnect2.c sshd_config auth2-skey.c cli.c cli.h] add support for s/key (kbd-interactive) to ssh2, based on work by mkiernan@avantgo.com and me - markus@cvs.openbsd.org 2000/10/11 14:27:24 [auth.c auth1.c auth2.c authfile.c cipher.c cipher.h kex.c kex.h] [myproposal.h packet.c readconf.c session.c ssh.c ssh.h sshconnect1.c] [sshconnect2.c sshd.c] new cipher framework - markus@cvs.openbsd.org 2000/10/11 14:45:21 [cipher.c] remove DES - markus@cvs.openbsd.org 2000/10/12 03:59:20 [cipher.c cipher.h sshconnect1.c sshconnect2.c sshd.c] enable DES in SSH-1 clients only - markus@cvs.openbsd.org 2000/10/12 08:21:13 [kex.h packet.c] remove unused - markus@cvs.openbsd.org 2000/10/13 12:34:46 [sshd.c] Kludge for F-Secure Macintosh < 1.0.2; appro@fy.chalmers.se - markus@cvs.openbsd.org 2000/10/13 12:59:15 [cipher.c cipher.h myproposal.h rijndael.c rijndael.h] rijndael/aes support - markus@cvs.openbsd.org 2000/10/13 13:10:54 [sshd.8] more info about -V - markus@cvs.openbsd.org 2000/10/13 13:12:02 [myproposal.h] prefer no compression --- rijndael.c | 493 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 493 insertions(+) create mode 100644 rijndael.c (limited to 'rijndael.c') diff --git a/rijndael.c b/rijndael.c new file mode 100644 index 00000000..bb592bc2 --- /dev/null +++ b/rijndael.c @@ -0,0 +1,493 @@ +/* $OpenBSD: rijndael.c,v 1.1 2000/10/13 18:59:14 markus Exp $ */ + +/* This is an independent implementation of the encryption algorithm: */ +/* */ +/* RIJNDAEL by Joan Daemen and Vincent Rijmen */ +/* */ +/* which is a candidate algorithm in the Advanced Encryption Standard */ +/* programme of the US National Institute of Standards and Technology. */ +/* */ +/* Copyright in this implementation is held by Dr B R Gladman but I */ +/* hereby give permission for its free direct or derivative use subject */ +/* to acknowledgment of its origin and compliance with any conditions */ +/* that the originators of the algorithm place on its exploitation. */ +/* */ +/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */ + +/* Timing data for Rijndael (rijndael.c) + +Algorithm: rijndael (rijndael.c) + +128 bit key: +Key Setup: 305/1389 cycles (encrypt/decrypt) +Encrypt: 374 cycles = 68.4 mbits/sec +Decrypt: 352 cycles = 72.7 mbits/sec +Mean: 363 cycles = 70.5 mbits/sec + +192 bit key: +Key Setup: 277/1595 cycles (encrypt/decrypt) +Encrypt: 439 cycles = 58.3 mbits/sec +Decrypt: 425 cycles = 60.2 mbits/sec +Mean: 432 cycles = 59.3 mbits/sec + +256 bit key: +Key Setup: 374/1960 cycles (encrypt/decrypt) +Encrypt: 502 cycles = 51.0 mbits/sec +Decrypt: 498 cycles = 51.4 mbits/sec +Mean: 500 cycles = 51.2 mbits/sec + +*/ + +#include +#include "rijndael.h" + +void gen_tabs __P((void)); + +/* 3. Basic macros for speeding up generic operations */ + +/* Circular rotate of 32 bit values */ + +#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n)))) +#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n)))) + +/* Invert byte order in a 32 bit variable */ + +#define bswap(x) (rotl(x, 8) & 0x00ff00ff | rotr(x, 8) & 0xff00ff00) + +/* Extract byte from a 32 bit quantity (little endian notation) */ + +#define byte(x,n) ((u1byte)((x) >> (8 * n))) + +#if BYTE_ORDER != LITTLE_ENDIAN +#define BLOCK_SWAP +#endif + +/* For inverting byte order in input/output 32 bit words if needed */ + +#ifdef BLOCK_SWAP +#define BYTE_SWAP +#define WORD_SWAP +#endif + +#ifdef BYTE_SWAP +#define io_swap(x) bswap(x) +#else +#define io_swap(x) (x) +#endif + +/* For inverting the byte order of input/output blocks if needed */ + +#ifdef WORD_SWAP + +#define get_block(x) \ + ((u4byte*)(x))[0] = io_swap(in_blk[3]); \ + ((u4byte*)(x))[1] = io_swap(in_blk[2]); \ + ((u4byte*)(x))[2] = io_swap(in_blk[1]); \ + ((u4byte*)(x))[3] = io_swap(in_blk[0]) + +#define put_block(x) \ + out_blk[3] = io_swap(((u4byte*)(x))[0]); \ + out_blk[2] = io_swap(((u4byte*)(x))[1]); \ + out_blk[1] = io_swap(((u4byte*)(x))[2]); \ + out_blk[0] = io_swap(((u4byte*)(x))[3]) + +#define get_key(x,len) \ + ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \ + ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \ + switch((((len) + 63) / 64)) { \ + case 2: \ + ((u4byte*)(x))[0] = io_swap(in_key[3]); \ + ((u4byte*)(x))[1] = io_swap(in_key[2]); \ + ((u4byte*)(x))[2] = io_swap(in_key[1]); \ + ((u4byte*)(x))[3] = io_swap(in_key[0]); \ + break; \ + case 3: \ + ((u4byte*)(x))[0] = io_swap(in_key[5]); \ + ((u4byte*)(x))[1] = io_swap(in_key[4]); \ + ((u4byte*)(x))[2] = io_swap(in_key[3]); \ + ((u4byte*)(x))[3] = io_swap(in_key[2]); \ + ((u4byte*)(x))[4] = io_swap(in_key[1]); \ + ((u4byte*)(x))[5] = io_swap(in_key[0]); \ + break; \ + case 4: \ + ((u4byte*)(x))[0] = io_swap(in_key[7]); \ + ((u4byte*)(x))[1] = io_swap(in_key[6]); \ + ((u4byte*)(x))[2] = io_swap(in_key[5]); \ + ((u4byte*)(x))[3] = io_swap(in_key[4]); \ + ((u4byte*)(x))[4] = io_swap(in_key[3]); \ + ((u4byte*)(x))[5] = io_swap(in_key[2]); \ + ((u4byte*)(x))[6] = io_swap(in_key[1]); \ + ((u4byte*)(x))[7] = io_swap(in_key[0]); \ + } + +#else + +#define get_block(x) \ + ((u4byte*)(x))[0] = io_swap(in_blk[0]); \ + ((u4byte*)(x))[1] = io_swap(in_blk[1]); \ + ((u4byte*)(x))[2] = io_swap(in_blk[2]); \ + ((u4byte*)(x))[3] = io_swap(in_blk[3]) + +#define put_block(x) \ + out_blk[0] = io_swap(((u4byte*)(x))[0]); \ + out_blk[1] = io_swap(((u4byte*)(x))[1]); \ + out_blk[2] = io_swap(((u4byte*)(x))[2]); \ + out_blk[3] = io_swap(((u4byte*)(x))[3]) + +#define get_key(x,len) \ + ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \ + ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \ + switch((((len) + 63) / 64)) { \ + case 4: \ + ((u4byte*)(x))[6] = io_swap(in_key[6]); \ + ((u4byte*)(x))[7] = io_swap(in_key[7]); \ + case 3: \ + ((u4byte*)(x))[4] = io_swap(in_key[4]); \ + ((u4byte*)(x))[5] = io_swap(in_key[5]); \ + case 2: \ + ((u4byte*)(x))[0] = io_swap(in_key[0]); \ + ((u4byte*)(x))[1] = io_swap(in_key[1]); \ + ((u4byte*)(x))[2] = io_swap(in_key[2]); \ + ((u4byte*)(x))[3] = io_swap(in_key[3]); \ + } + +#endif + +#define LARGE_TABLES + +u1byte pow_tab[256]; +u1byte log_tab[256]; +u1byte sbx_tab[256]; +u1byte isb_tab[256]; +u4byte rco_tab[ 10]; +u4byte ft_tab[4][256]; +u4byte it_tab[4][256]; + +#ifdef LARGE_TABLES + u4byte fl_tab[4][256]; + u4byte il_tab[4][256]; +#endif + +u4byte tab_gen = 0; + +#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0) + +#define f_rn(bo, bi, n, k) \ + bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ + ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ + ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ + ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) + +#define i_rn(bo, bi, n, k) \ + bo[n] = it_tab[0][byte(bi[n],0)] ^ \ + it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ + it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ + it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) + +#ifdef LARGE_TABLES + +#define ls_box(x) \ + ( fl_tab[0][byte(x, 0)] ^ \ + fl_tab[1][byte(x, 1)] ^ \ + fl_tab[2][byte(x, 2)] ^ \ + fl_tab[3][byte(x, 3)] ) + +#define f_rl(bo, bi, n, k) \ + bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ + fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ + fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ + fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) + +#define i_rl(bo, bi, n, k) \ + bo[n] = il_tab[0][byte(bi[n],0)] ^ \ + il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ + il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ + il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) + +#else + +#define ls_box(x) \ + ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \ + ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \ + ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \ + ((u4byte)sbx_tab[byte(x, 3)] << 24) + +#define f_rl(bo, bi, n, k) \ + bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \ + rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \ + rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ + rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n) + +#define i_rl(bo, bi, n, k) \ + bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \ + rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \ + rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \ + rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n) + +#endif + +void +gen_tabs(void) +{ + u4byte i, t; + u1byte p, q; + + /* log and power tables for GF(2**8) finite field with */ + /* 0x11b as modular polynomial - the simplest prmitive */ + /* root is 0x11, used here to generate the tables */ + + for(i = 0,p = 1; i < 256; ++i) { + pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i; + + p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0); + } + + log_tab[1] = 0; p = 1; + + for(i = 0; i < 10; ++i) { + rco_tab[i] = p; + + p = (p << 1) ^ (p & 0x80 ? 0x1b : 0); + } + + /* note that the affine byte transformation matrix in */ + /* rijndael specification is in big endian format with */ + /* bit 0 as the most significant bit. In the remainder */ + /* of the specification the bits are numbered from the */ + /* least significant end of a byte. */ + + for(i = 0; i < 256; ++i) { + p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p; + q = (q >> 7) | (q << 1); p ^= q; + q = (q >> 7) | (q << 1); p ^= q; + q = (q >> 7) | (q << 1); p ^= q; + q = (q >> 7) | (q << 1); p ^= q ^ 0x63; + sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i; + } + + for(i = 0; i < 256; ++i) { + p = sbx_tab[i]; + +#ifdef LARGE_TABLES + + t = p; fl_tab[0][i] = t; + fl_tab[1][i] = rotl(t, 8); + fl_tab[2][i] = rotl(t, 16); + fl_tab[3][i] = rotl(t, 24); +#endif + t = ((u4byte)ff_mult(2, p)) | + ((u4byte)p << 8) | + ((u4byte)p << 16) | + ((u4byte)ff_mult(3, p) << 24); + + ft_tab[0][i] = t; + ft_tab[1][i] = rotl(t, 8); + ft_tab[2][i] = rotl(t, 16); + ft_tab[3][i] = rotl(t, 24); + + p = isb_tab[i]; + +#ifdef LARGE_TABLES + + t = p; il_tab[0][i] = t; + il_tab[1][i] = rotl(t, 8); + il_tab[2][i] = rotl(t, 16); + il_tab[3][i] = rotl(t, 24); +#endif + t = ((u4byte)ff_mult(14, p)) | + ((u4byte)ff_mult( 9, p) << 8) | + ((u4byte)ff_mult(13, p) << 16) | + ((u4byte)ff_mult(11, p) << 24); + + it_tab[0][i] = t; + it_tab[1][i] = rotl(t, 8); + it_tab[2][i] = rotl(t, 16); + it_tab[3][i] = rotl(t, 24); + } + + tab_gen = 1; +}; + +#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) + +#define imix_col(y,x) \ + u = star_x(x); \ + v = star_x(u); \ + w = star_x(v); \ + t = w ^ (x); \ + (y) = u ^ v ^ w; \ + (y) ^= rotr(u ^ t, 8) ^ \ + rotr(v ^ t, 16) ^ \ + rotr(t,24) + +/* initialise the key schedule from the user supplied key */ + +#define loop4(i) \ +{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ + t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \ + t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \ + t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \ + t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \ +} + +#define loop6(i) \ +{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ + t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \ + t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \ + t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \ + t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \ + t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \ + t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \ +} + +#define loop8(i) \ +{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ + t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \ + t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \ + t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \ + t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \ + t = e_key[8 * i + 4] ^ ls_box(t); \ + e_key[8 * i + 12] = t; \ + t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \ + t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \ + t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \ +} + +rijndael_ctx * +rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len, + int encrypt) +{ + u4byte i, t, u, v, w; + u4byte *e_key = ctx->e_key; + u4byte *d_key = ctx->d_key; + + ctx->decrypt = !encrypt; + + if(!tab_gen) + gen_tabs(); + + ctx->k_len = (key_len + 31) / 32; + + e_key[0] = in_key[0]; e_key[1] = in_key[1]; + e_key[2] = in_key[2]; e_key[3] = in_key[3]; + + switch(ctx->k_len) { + case 4: t = e_key[3]; + for(i = 0; i < 10; ++i) + loop4(i); + break; + + case 6: e_key[4] = in_key[4]; t = e_key[5] = in_key[5]; + for(i = 0; i < 8; ++i) + loop6(i); + break; + + case 8: e_key[4] = in_key[4]; e_key[5] = in_key[5]; + e_key[6] = in_key[6]; t = e_key[7] = in_key[7]; + for(i = 0; i < 7; ++i) + loop8(i); + break; + } + + if (!encrypt) { + d_key[0] = e_key[0]; d_key[1] = e_key[1]; + d_key[2] = e_key[2]; d_key[3] = e_key[3]; + + for(i = 4; i < 4 * ctx->k_len + 24; ++i) { + imix_col(d_key[i], e_key[i]); + } + } + + return ctx; +}; + +/* encrypt a block of text */ + +#define f_nround(bo, bi, k) \ + f_rn(bo, bi, 0, k); \ + f_rn(bo, bi, 1, k); \ + f_rn(bo, bi, 2, k); \ + f_rn(bo, bi, 3, k); \ + k += 4 + +#define f_lround(bo, bi, k) \ + f_rl(bo, bi, 0, k); \ + f_rl(bo, bi, 1, k); \ + f_rl(bo, bi, 2, k); \ + f_rl(bo, bi, 3, k) + +void +rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) +{ + u4byte k_len = ctx->k_len; + u4byte *e_key = ctx->e_key; + u4byte b0[4], b1[4], *kp; + + b0[0] = in_blk[0] ^ e_key[0]; b0[1] = in_blk[1] ^ e_key[1]; + b0[2] = in_blk[2] ^ e_key[2]; b0[3] = in_blk[3] ^ e_key[3]; + + kp = e_key + 4; + + if(k_len > 6) { + f_nround(b1, b0, kp); f_nround(b0, b1, kp); + } + + if(k_len > 4) { + f_nround(b1, b0, kp); f_nround(b0, b1, kp); + } + + f_nround(b1, b0, kp); f_nround(b0, b1, kp); + f_nround(b1, b0, kp); f_nround(b0, b1, kp); + f_nround(b1, b0, kp); f_nround(b0, b1, kp); + f_nround(b1, b0, kp); f_nround(b0, b1, kp); + f_nround(b1, b0, kp); f_lround(b0, b1, kp); + + out_blk[0] = b0[0]; out_blk[1] = b0[1]; + out_blk[2] = b0[2]; out_blk[3] = b0[3]; +}; + +/* decrypt a block of text */ + +#define i_nround(bo, bi, k) \ + i_rn(bo, bi, 0, k); \ + i_rn(bo, bi, 1, k); \ + i_rn(bo, bi, 2, k); \ + i_rn(bo, bi, 3, k); \ + k -= 4 + +#define i_lround(bo, bi, k) \ + i_rl(bo, bi, 0, k); \ + i_rl(bo, bi, 1, k); \ + i_rl(bo, bi, 2, k); \ + i_rl(bo, bi, 3, k) + +void +rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk) +{ + u4byte b0[4], b1[4], *kp; + u4byte k_len = ctx->k_len; + u4byte *e_key = ctx->e_key; + u4byte *d_key = ctx->d_key; + + b0[0] = in_blk[0] ^ e_key[4 * k_len + 24]; b0[1] = in_blk[1] ^ e_key[4 * k_len + 25]; + b0[2] = in_blk[2] ^ e_key[4 * k_len + 26]; b0[3] = in_blk[3] ^ e_key[4 * k_len + 27]; + + kp = d_key + 4 * (k_len + 5); + + if(k_len > 6) { + i_nround(b1, b0, kp); i_nround(b0, b1, kp); + } + + if(k_len > 4) { + i_nround(b1, b0, kp); i_nround(b0, b1, kp); + } + + i_nround(b1, b0, kp); i_nround(b0, b1, kp); + i_nround(b1, b0, kp); i_nround(b0, b1, kp); + i_nround(b1, b0, kp); i_nround(b0, b1, kp); + i_nround(b1, b0, kp); i_nround(b0, b1, kp); + i_nround(b1, b0, kp); i_lround(b0, b1, kp); + + out_blk[0] = b0[0]; out_blk[1] = b0[1]; + out_blk[2] = b0[2]; out_blk[3] = b0[3]; +}; -- cgit v1.2.1