summaryrefslogtreecommitdiff
path: root/ceilometer/transformer/conversions.py
blob: 44f563b64204c2beddef508226467257ee767fb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- encoding: utf-8 -*-
#
# Copyright © 2013 Red Hat, Inc
#
# Author: Eoghan Glynn <eglynn@redhat.com>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import collections
import re

from ceilometer.openstack.common.gettextutils import _
from ceilometer.openstack.common import log
from ceilometer.openstack.common import timeutils
from ceilometer import sample
from ceilometer import transformer

LOG = log.getLogger(__name__)


class Namespace(object):
    """Encapsulates the namespace wrapping the evaluation of the
       configured scale factor. This allows nested dicts to be
       accessed in the attribute style, and missing attributes
       to yield false when used in a boolean expression.
    """
    def __init__(self, seed):
        self.__dict__ = collections.defaultdict(lambda: Namespace({}))
        self.__dict__.update(seed)
        for k, v in self.__dict__.iteritems():
            if isinstance(v, dict):
                self.__dict__[k] = Namespace(v)

    def __getattr__(self, attr):
        return self.__dict__[attr]

    def __getitem__(self, key):
        return self.__dict__[key]

    def __nonzero__(self):
        return len(self.__dict__) > 0


class ScalingTransformer(transformer.TransformerBase):
    """Transformer to apply a scaling conversion.
    """

    def __init__(self, source=None, target=None, **kwargs):
        """Initialize transformer with configured parameters.

        :param source: dict containing source sample unit
        :param target: dict containing target sample name, type,
                       unit and scaling factor (a missing value
                       connotes no change)
        """
        source = source or {}
        target = target or {}
        self.source = source
        self.target = target
        self.scale = target.get('scale')
        LOG.debug(_('scaling conversion transformer with source:'
                    ' %(source)s target: %(target)s:')
                  % {'source': source,
                     'target': target})
        super(ScalingTransformer, self).__init__(**kwargs)

    def _scale(self, s):
        """Apply the scaling factor (either a straight multiplicative
           factor or else a string to be eval'd).
        """
        ns = Namespace(s.as_dict())

        scale = self.scale
        return ((eval(scale, {}, ns) if isinstance(scale, basestring)
                 else s.volume * scale) if scale else s.volume)

    def _map(self, s, attr):
        """Apply the name or unit mapping if configured.
        """
        mapped = None
        from_ = self.source.get('map_from')
        to_ = self.target.get('map_to')
        if from_ and to_:
            if from_.get(attr) and to_.get(attr):
                try:
                    mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
                except Exception:
                    pass
        return mapped or self.target.get(attr, getattr(s, attr))

    def _convert(self, s, growth=1):
        """Transform the appropriate sample fields.
        """
        return sample.Sample(
            name=self._map(s, 'name'),
            unit=self._map(s, 'unit'),
            type=self.target.get('type', s.type),
            volume=self._scale(s) * growth,
            user_id=s.user_id,
            project_id=s.project_id,
            resource_id=s.resource_id,
            timestamp=s.timestamp,
            resource_metadata=s.resource_metadata
        )

    def handle_sample(self, context, s):
        """Handle a sample, converting if necessary."""
        LOG.debug(_('handling sample %s'), (s,))
        if (self.source.get('unit', s.unit) == s.unit):
            s = self._convert(s)
            LOG.debug(_('converted to: %s'), (s,))
        return s


class RateOfChangeTransformer(ScalingTransformer):
    """Transformer based on the rate of change of a sample volume,
       for example taking the current and previous volumes of a
       cumulative sample and producing a gauge value based on the
       proportion of some maximum used.
    """

    def __init__(self, **kwargs):
        """Initialize transformer with configured parameters.
        """
        super(RateOfChangeTransformer, self).__init__(**kwargs)
        self.cache = {}
        self.scale = self.scale or '1'

    def handle_sample(self, context, s):
        """Handle a sample, converting if necessary."""
        LOG.debug(_('handling sample %s'), (s,))
        key = s.name + s.resource_id
        prev = self.cache.get(key)
        timestamp = timeutils.parse_isotime(s.timestamp)
        self.cache[key] = (s.volume, timestamp)

        if prev:
            prev_volume = prev[0]
            prev_timestamp = prev[1]
            time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
            # we only allow negative deltas for noncumulative samples, whereas
            # for cumulative we assume that a reset has occurred in the interim
            # so that the current volume gives a lower bound on growth
            volume_delta = (s.volume - prev_volume
                            if (prev_volume <= s.volume or
                                s.type != sample.TYPE_CUMULATIVE)
                            else s.volume)
            rate_of_change = ((1.0 * volume_delta / time_delta)
                              if time_delta else 0.0)

            s = self._convert(s, rate_of_change)
            LOG.debug(_('converted to: %s'), (s,))
        else:
            LOG.warn(_('dropping sample with no predecessor: %s'),
                     (s,))
            s = None
        return s


class AggregatorTransformer(ScalingTransformer):
    """Transformer that aggregate sample until a threshold or/and a
    retention_time, and then flush them out in the wild.

    Example:
      To aggregate sample by resource_metadata and keep the
      resource_metadata of the latest received sample;

        AggregatorTransformer(retention_time=60, resource_metadata='last')

      To aggregate sample by user_id and resource_metadata and keep the
      user_id of the first received sample and drop the resource_metadata.

        AggregatorTransformer(size=15, user_id='first',
                              resource_metadata='drop')

    """

    def __init__(self, size=1, retention_time=None,
                 project_id=None, user_id=None, resource_metadata="last",
                 **kwargs):
        super(AggregatorTransformer, self).__init__(**kwargs)
        self.samples = {}
        self.size = size
        self.retention_time = retention_time
        self.initial_timestamp = None
        self.aggregated_samples = 0

        self.key_attributes = []
        self.merged_attribute_policy = {}

        self._init_attribute('project_id', project_id)
        self._init_attribute('user_id', user_id)
        self._init_attribute('resource_metadata', resource_metadata,
                             is_droppable=True, mandatory=True)

    def _init_attribute(self, name, value, is_droppable=False,
                        mandatory=False):
        drop = ['drop'] if is_droppable else []
        if value or mandatory:
            if value not in ['last', 'first'] + drop:
                LOG.warn('%s is unknown (%s), using last' % (name, value))
                value = 'last'
            self.merged_attribute_policy[name] = value
        else:
            self.key_attributes.append(name)

    def _get_unique_key(self, s):
        non_aggregated_keys = "-".join([getattr(s, field)
                                        for field in self.key_attributes])
        #NOTE(sileht): it assumes, a meter always have the same unit/type
        return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)

    def handle_sample(self, context, sample):
        if not self.initial_timestamp:
            self.initial_timestamp = timeutils.parse_strtime(
                sample.timestamp)

        self.aggregated_samples += 1
        key = self._get_unique_key(sample)
        if key not in self.samples:
            self.samples[key] = self._convert(sample)
            if self.merged_attribute_policy[
                    'resource_metadata'] == 'drop':
                self.samples[key].resource_metadata = {}
        else:
            self.samples[key].volume += self._scale(sample)
            for field in self.merged_attribute_policy:
                if self.merged_attribute_policy[field] == 'last':
                    setattr(self.samples[key], field,
                            getattr(sample, field))

    def flush(self, context):
        expired = self.retention_time and \
            timeutils.is_older_than(self.initial_timestamp,
                                    self.retention_time)
        full = self.aggregated_samples >= self.size
        if full or expired:
            x = self.samples.values()
            self.samples = {}
            self.aggregated_samples = 0
            self.initial_timestamp = None
            return x
        return []