summaryrefslogtreecommitdiff
path: root/glance/common/format_inspector.py
blob: 351c300ddbd30ee3d4fe3cdb908b9567aae49a2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# Copyright 2020 Red Hat, Inc
# All Rights Reserved.
#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.

"""
This is a python implementation of virtual disk format inspection routines
gathered from various public specification documents, as well as qemu disk
driver code. It attempts to store and parse the minimum amount of data
required, and in a streaming-friendly manner to collect metadata about
complex-format images.
"""

import struct

from oslo_log import log as logging

LOG = logging.getLogger(__name__)


class CaptureRegion(object):
    """Represents a region of a file we want to capture.

    A region of a file we want to capture requires a byte offset into
    the file and a length. This is expected to be used by a data
    processing loop, calling capture() with the most recently-read
    chunk. This class handles the task of grabbing the desired region
    of data across potentially multiple fractional and unaligned reads.

    :param offset: Byte offset into the file starting the region
    :param length: The length of the region
    """
    def __init__(self, offset, length):
        self.offset = offset
        self.length = length
        self.data = b''

    @property
    def complete(self):
        """Returns True when we have captured the desired data."""
        return self.length == len(self.data)

    def capture(self, chunk, current_position):
        """Process a chunk of data.

        This should be called for each chunk in the read loop, at least
        until complete returns True.

        :param chunk: A chunk of bytes in the file
        :param current_position: The position of the file processed by the
                                 read loop so far. Note that this will be
                                 the position in the file *after* the chunk
                                 being presented.
        """
        read_start = current_position - len(chunk)
        if (read_start <= self.offset <= current_position or
                self.offset <= read_start <= (self.offset + self.length)):
            if read_start < self.offset:
                lead_gap = self.offset - read_start
            else:
                lead_gap = 0
            self.data += chunk[lead_gap:]
            self.data = self.data[:self.length]


class ImageFormatError(Exception):
    """An unrecoverable image format error that aborts the process."""
    pass


class TraceDisabled(object):
    """A logger-like thing that swallows tracing when we do not want it."""
    def debug(self, *a, **k):
        pass

    info = debug
    warning = debug
    error = debug


class FileInspector(object):
    """A stream-based disk image inspector.

    This base class works on raw images and is subclassed for more
    complex types. It is to be presented with the file to be examined
    one chunk at a time, during read processing and will only store
    as much data as necessary to determine required attributes of
    the file.
    """

    def __init__(self, tracing=False):
        self._total_count = 0

        # NOTE(danms): The logging in here is extremely verbose for a reason,
        # but should never really be enabled at that level at runtime. To
        # retain all that work and assist in future debug, we have a separate
        # debug flag that can be passed from a manual tool to turn it on.
        if tracing:
            self._log = logging.getLogger(str(self))
        else:
            self._log = TraceDisabled()
        self._capture_regions = {}

    def _capture(self, chunk, only=None):
        for name, region in self._capture_regions.items():
            if only and name not in only:
                continue
            if not region.complete:
                region.capture(chunk, self._total_count)

    def eat_chunk(self, chunk):
        """Call this to present chunks of the file to the inspector."""
        pre_regions = set(self._capture_regions.keys())

        # Increment our position-in-file counter
        self._total_count += len(chunk)

        # Run through the regions we know of to see if they want this
        # data
        self._capture(chunk)

        # Let the format do some post-read processing of the stream
        self.post_process()

        # Check to see if the post-read processing added new regions
        # which may require the current chunk.
        new_regions = set(self._capture_regions.keys()) - pre_regions
        if new_regions:
            self._capture(chunk, only=new_regions)

    def post_process(self):
        """Post-read hook to process what has been read so far.

        This will be called after each chunk is read and potentially captured
        by the defined regions. If any regions are defined by this call,
        those regions will be presented with the current chunk in case it
        is within one of the new regions.
        """
        pass

    def region(self, name):
        """Get a CaptureRegion by name."""
        return self._capture_regions[name]

    def new_region(self, name, region):
        """Add a new CaptureRegion by name."""
        if self.has_region(name):
            # This is a bug, we tried to add the same region twice
            raise ImageFormatError('Inspector re-added region %s' % name)
        self._capture_regions[name] = region

    def has_region(self, name):
        """Returns True if named region has been defined."""
        return name in self._capture_regions

    @property
    def format_match(self):
        """Returns True if the file appears to be the expected format."""
        return True

    @property
    def virtual_size(self):
        """Returns the virtual size of the disk image, or zero if unknown."""
        return self._total_count

    @property
    def actual_size(self):
        """Returns the total size of the file, usually smaller than
        virtual_size.
        """
        return self._total_count

    def __str__(self):
        """The string name of this file format."""
        return 'raw'

    @property
    def context_info(self):
        """Return info on amount of data held in memory for auditing.

        This is a dict of region:sizeinbytes items that the inspector
        uses to examine the file.
        """
        return {name: len(region.data) for name, region in
                self._capture_regions.items()}


# The qcow2 format consists of a big-endian 72-byte header, of which
# only a small portion has information we care about:
#
# Dec   Hex   Name
#   0  0x00   Magic 4-bytes 'QFI\xfb'
#   4  0x04   Version (uint32_t, should always be 2 for modern files)
#  . . .
#  24  0x18   Size in bytes (unint64_t)
#
# https://people.gnome.org/~markmc/qcow-image-format.html
class QcowInspector(FileInspector):
    """QEMU QCOW2 Format

    This should only require about 32 bytes of the beginning of the file
    to determine the virtual size.
    """
    def __init__(self, *a, **k):
        super(QcowInspector, self).__init__(*a, **k)
        self.new_region('header', CaptureRegion(0, 512))

    def _qcow_header_data(self):
        magic, version, bf_offset, bf_sz, cluster_bits, size = (
            struct.unpack('>4sIQIIQ', self.region('header').data[:32]))
        return magic, size

    @property
    def virtual_size(self):
        if not self.region('header').complete:
            return 0
        if not self.format_match:
            return 0
        magic, size = self._qcow_header_data()
        return size

    @property
    def format_match(self):
        if not self.region('header').complete:
            return False
        magic, size = self._qcow_header_data()
        return magic == b'QFI\xFB'

    def __str__(self):
        return 'qcow2'


# The VHD (or VPC as QEMU calls it) format consists of a big-endian
# 512-byte "footer" at the beginning of the file with various
# information, most of which does not matter to us:
#
# Dec   Hex   Name
#   0  0x00   Magic string (8-bytes, always 'conectix')
#  40  0x28   Disk size (uint64_t)
#
# https://github.com/qemu/qemu/blob/master/block/vpc.c
class VHDInspector(FileInspector):
    """Connectix/MS VPC VHD Format

    This should only require about 512 bytes of the beginning of the file
    to determine the virtual size.
    """
    def __init__(self, *a, **k):
        super(VHDInspector, self).__init__(*a, **k)
        self.new_region('header', CaptureRegion(0, 512))

    @property
    def format_match(self):
        return self.region('header').data.startswith(b'conectix')

    @property
    def virtual_size(self):
        if not self.region('header').complete:
            return 0

        if not self.format_match:
            return 0

        return struct.unpack('>Q', self.region('header').data[40:48])[0]

    def __str__(self):
        return 'vhd'


# The VHDX format consists of a complex dynamic little-endian
# structure with multiple regions of metadata and data, linked by
# offsets with in the file (and within regions), identified by MSFT
# GUID strings. The header is a 320KiB structure, only a few pieces of
# which we actually need to capture and interpret:
#
#     Dec    Hex  Name
#      0 0x00000  Identity (Technically 9-bytes, padded to 64KiB, the first
#                 8 bytes of which are 'vhdxfile')
# 196608 0x30000  The Region table (64KiB of a 32-byte header, followed
#                 by up to 2047 36-byte region table entry structures)
#
# The region table header includes two items we need to read and parse,
# which are:
#
# 196608 0x30000  4-byte signature ('regi')
# 196616 0x30008  Entry count (uint32-t)
#
# The region table entries follow the region table header immediately
# and are identified by a 16-byte GUID, and provide an offset of the
# start of that region. We care about the "metadata region", identified
# by the METAREGION class variable. The region table entry is (offsets
# from the beginning of the entry, since it could be in multiple places):
#
#      0 0x00000 16-byte MSFT GUID
#     16 0x00010 Offset of the actual metadata region (uint64_t)
#
# When we find the METAREGION table entry, we need to grab that offset
# and start examining the region structure at that point. That
# consists of a metadata table of structures, which point to places in
# the data in an unstructured space that follows. The header is
# (offsets relative to the region start):
#
#      0 0x00000 8-byte signature ('metadata')
#      . . .
#     16 0x00010 2-byte entry count (up to 2047 entries max)
#
# This header is followed by the specified number of metadata entry
# structures, identified by GUID:
#
#      0 0x00000 16-byte MSFT GUID
#     16 0x00010 4-byte offset (uint32_t, relative to the beginning of
#                the metadata region)
#
# We need to find the "Virtual Disk Size" metadata item, identified by
# the GUID in the VIRTUAL_DISK_SIZE class variable, grab the offset,
# add it to the offset of the metadata region, and examine that 8-byte
# chunk of data that follows.
#
# The "Virtual Disk Size" is a naked uint64_t which contains the size
# of the virtual disk, and is our ultimate target here.
#
# https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-vhdx/83e061f8-f6e2-4de1-91bd-5d518a43d477
class VHDXInspector(FileInspector):
    """MS VHDX Format

    This requires some complex parsing of the stream. The first 256KiB
    of the image is stored to get the header and region information,
    and then we capture the first metadata region to read those
    records, find the location of the virtual size data and parse
    it. This needs to store the metadata table entries up until the
    VDS record, which may consist of up to 2047 32-byte entries at
    max.  Finally, it must store a chunk of data at the offset of the
    actual VDS uint64.

    """
    METAREGION = '8B7CA206-4790-4B9A-B8FE-575F050F886E'
    VIRTUAL_DISK_SIZE = '2FA54224-CD1B-4876-B211-5DBED83BF4B8'

    def __init__(self, *a, **k):
        super(VHDXInspector, self).__init__(*a, **k)
        self.new_region('ident', CaptureRegion(0, 32))
        self.new_region('header', CaptureRegion(192 * 1024, 64 * 1024))

    def post_process(self):
        # After reading a chunk, we may have the following conditions:
        #
        # 1. We may have just completed the header region, and if so,
        #    we need to immediately read and calculate the location of
        #    the metadata region, as it may be starting in the same
        #    read we just did.
        # 2. We may have just completed the metadata region, and if so,
        #    we need to immediately calculate the location of the
        #    "virtual disk size" record, as it may be starting in the
        #    same read we just did.
        if self.region('header').complete and not self.has_region('metadata'):
            region = self._find_meta_region()
            if region:
                self.new_region('metadata', region)
        elif self.has_region('metadata') and not self.has_region('vds'):
            region = self._find_meta_entry(self.VIRTUAL_DISK_SIZE)
            if region:
                self.new_region('vds', region)

    @property
    def format_match(self):
        return self.region('ident').data.startswith(b'vhdxfile')

    @staticmethod
    def _guid(buf):
        """Format a MSFT GUID from the 16-byte input buffer."""
        guid_format = '<IHHBBBBBBBB'
        return '%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X' % (
            struct.unpack(guid_format, buf))

    def _find_meta_region(self):
        # The region table entries start after a 16-byte table header
        region_entry_first = 16

        # Parse the region table header to find the number of regions
        regi, cksum, count, reserved = struct.unpack(
            '<IIII', self.region('header').data[:16])
        if regi != 0x69676572:
            raise ImageFormatError('Region signature not found at %x' % (
                self.region('header').offset))

        if count >= 2048:
            raise ImageFormatError('Region count is %i (limit 2047)' % count)

        # Process the regions until we find the metadata one; grab the
        # offset and return
        self._log.debug('Region entry first is %x', region_entry_first)
        self._log.debug('Region entries %i', count)
        meta_offset = 0
        for i in range(0, count):
            entry_start = region_entry_first + (i * 32)
            entry_end = entry_start + 32
            entry = self.region('header').data[entry_start:entry_end]
            self._log.debug('Entry offset is %x', entry_start)

            # GUID is the first 16 bytes
            guid = self._guid(entry[:16])
            if guid == self.METAREGION:
                # This entry is the metadata region entry
                meta_offset, meta_len, meta_req = struct.unpack(
                    '<QII', entry[16:])
                self._log.debug('Meta entry %i specifies offset: %x',
                                i, meta_offset)
                # NOTE(danms): The meta_len in the region descriptor is the
                # entire size of the metadata table and data. This can be
                # very large, so we should only capture the size required
                # for the maximum length of the table, which is one 32-byte
                # table header, plus up to 2047 32-byte entries.
                meta_len = 2048 * 32
                return CaptureRegion(meta_offset, meta_len)

        self._log.warning('Did not find metadata region')
        return None

    def _find_meta_entry(self, desired_guid):
        meta_buffer = self.region('metadata').data
        if len(meta_buffer) < 32:
            # Not enough data yet for full header
            return None

        # Make sure we found the metadata region by checking the signature
        sig, reserved, count = struct.unpack('<8sHH', meta_buffer[:12])
        if sig != b'metadata':
            raise ImageFormatError(
                'Invalid signature for metadata region: %r' % sig)

        entries_size = 32 + (count * 32)
        if len(meta_buffer) < entries_size:
            # Not enough data yet for all metadata entries. This is not
            # strictly necessary as we could process whatever we have until
            # we find the V-D-S one, but there are only 2047 32-byte
            # entries max (~64k).
            return None

        if count >= 2048:
            raise ImageFormatError(
                'Metadata item count is %i (limit 2047)' % count)

        for i in range(0, count):
            entry_offset = 32 + (i * 32)
            guid = self._guid(meta_buffer[entry_offset:entry_offset + 16])
            if guid == desired_guid:
                # Found the item we are looking for by id.
                # Stop our region from capturing
                item_offset, item_length, _reserved = struct.unpack(
                    '<III',
                    meta_buffer[entry_offset + 16:entry_offset + 28])
                self.region('metadata').length = len(meta_buffer)
                self._log.debug('Found entry at offset %x', item_offset)
                # Metadata item offset is from the beginning of the metadata
                # region, not the file.
                return CaptureRegion(
                    self.region('metadata').offset + item_offset,
                    item_length)

        self._log.warning('Did not find guid %s', desired_guid)
        return None

    @property
    def virtual_size(self):
        # Until we have found the offset and have enough metadata buffered
        # to read it, return "unknown"
        if not self.has_region('vds') or not self.region('vds').complete:
            return 0

        size, = struct.unpack('<Q', self.region('vds').data)
        return size

    def __str__(self):
        return 'vhdx'


# The VMDK format comes in a large number of variations, but the
# single-file 'monolithicSparse' version 4 one is mostly what we care
# about. It contains a 512-byte little-endian header, followed by a
# variable-length "descriptor" region of text. The header looks like:
#
#   Dec  Hex  Name
#     0 0x00  4-byte magic string 'KDMV'
#     4 0x04  Version (uint32_t)
#     8 0x08  Flags (uint32_t, unused by us)
#    16 0x10  Number of 512 byte sectors in the disk (uint64_t)
#    24 0x18  Granularity (uint64_t, unused by us)
#    32 0x20  Descriptor offset in 512-byte sectors (uint64_t)
#    40 0x28  Descriptor size in 512-byte sectors (uint64_t)
#
# After we have the header, we need to find the descriptor region,
# which starts at the sector identified in the "descriptor offset"
# field, and is "descriptor size" 512-byte sectors long. Once we have
# that region, we need to parse it as text, looking for the
# createType=XXX line that specifies the mechanism by which the data
# extents are stored in this file. We only support the
# "monolithicSparse" format, so we just need to confirm that this file
# contains that specifier.
#
# https://www.vmware.com/app/vmdk/?src=vmdk
class VMDKInspector(FileInspector):
    """vmware VMDK format (monolithicSparse variant only)

    This needs to store the 512 byte header and the descriptor region
    which should be just after that. The descriptor region is some
    variable number of 512 byte sectors, but is just text defining the
    layout of the disk.
    """
    def __init__(self, *a, **k):
        super(VMDKInspector, self).__init__(*a, **k)
        self.new_region('header', CaptureRegion(0, 512))

    def post_process(self):
        # If we have just completed the header region, we need to calculate
        # the location and length of the descriptor, which should immediately
        # follow and may have been partially-read in this read.
        if not self.region('header').complete:
            return

        sig, ver, _flags, _sectors, _grain, desc_sec, desc_num = struct.unpack(
            '<4sIIQQQQ', self.region('header').data[:44])

        if sig != b'KDMV':
            raise ImageFormatError('Signature KDMV not found: %r' % sig)
            return

        if ver not in (1, 2, 3):
            raise ImageFormatError('Unsupported format version %i' % ver)
            return

        if not self.has_region('descriptor'):
            self.new_region('descriptor', CaptureRegion(
                desc_sec * 512, desc_num * 512))

    @property
    def format_match(self):
        return self.region('header').data.startswith(b'KDMV')

    @property
    def virtual_size(self):
        if not self.has_region('descriptor'):
            # Not enough data yet
            return 0

        descriptor_rgn = self.region('descriptor')
        if not descriptor_rgn.complete:
            # Not enough data yet
            return 0

        descriptor = descriptor_rgn.data
        type_idx = descriptor.index(b'createType="') + len(b'createType="')
        type_end = descriptor.find(b'"', type_idx)
        # Make sure we don't grab and log a huge chunk of data in a
        # maliciously-formatted descriptor region
        if type_end - type_idx < 64:
            vmdktype = descriptor[type_idx:type_end]
        else:
            vmdktype = b'formatnotfound'
        if vmdktype != b'monolithicSparse':
            LOG.warning('Unsupported VMDK format %s', vmdktype)
            return 0

        # If we have the descriptor, we definitely have the header
        _sig, _ver, _flags, sectors, _grain, _desc_sec, _desc_num = (
            struct.unpack('<IIIQQQQ', self.region('header').data[:44]))

        return sectors * 512

    def __str__(self):
        return 'vmdk'


# The VirtualBox VDI format consists of a 512-byte little-endian
# header, some of which we care about:
#
#  Dec   Hex  Name
#   64  0x40  4-byte Magic (0xbeda107f)
#   . . .
#  368 0x170  Size in bytes (uint64_t)
#
# https://github.com/qemu/qemu/blob/master/block/vdi.c
class VDIInspector(FileInspector):
    """VirtualBox VDI format

    This only needs to store the first 512 bytes of the image.
    """
    def __init__(self, *a, **k):
        super(VDIInspector, self).__init__(*a, **k)
        self.new_region('header', CaptureRegion(0, 512))

    @property
    def format_match(self):
        if not self.region('header').complete:
            return False

        signature, = struct.unpack('<I', self.region('header').data[0x40:0x44])
        return signature == 0xbeda107f

    @property
    def virtual_size(self):
        if not self.region('header').complete:
            return 0
        if not self.format_match:
            return 0

        size, = struct.unpack('<Q', self.region('header').data[0x170:0x178])
        return size

    def __str__(self):
        return 'vdi'


class InfoWrapper(object):
    """A file-like object that wraps another and updates a format inspector.

    This passes chunks to the format inspector while reading. If the inspector
    fails, it logs the error and stops calling it, but continues proxying data
    from the source to its user.
    """
    def __init__(self, source, fmt):
        self._source = source
        self._format = fmt
        self._error = False

    def __iter__(self):
        return self

    def _process_chunk(self, chunk):
        if not self._error:
            try:
                self._format.eat_chunk(chunk)
            except Exception as e:
                # Absolutely do not allow the format inspector to break
                # our streaming of the image. If we failed, just stop
                # trying, log and keep going.
                LOG.error('Format inspector failed, aborting: %s', e)
                self._error = True

    def __next__(self):
        try:
            chunk = next(self._source)
        except StopIteration:
            raise
        self._process_chunk(chunk)
        return chunk

    def read(self, size):
        chunk = self._source.read(size)
        self._process_chunk(chunk)
        return chunk

    def close(self):
        if hasattr(self._source, 'close'):
            self._source.close()


def get_inspector(format_name):
    """Returns a FormatInspector class based on the given name.

    :param format_name: The name of the disk_format (raw, qcow2, etc).
    :returns: A FormatInspector or None if unsupported.
    """
    formats = {
        'raw': FileInspector,
        'qcow2': QcowInspector,
        'vhd': VHDInspector,
        'vhdx': VHDXInspector,
        'vmdk': VMDKInspector,
        'vdi': VDIInspector,
    }

    return formats.get(format_name)