# Copyright (c) 2013 Intel, Inc. # Copyright (c) 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import copy import typing as ty from oslo_config import cfg from oslo_log import log as logging from oslo_utils import strutils from nova import exception from nova import objects from nova.objects import fields from nova.objects import pci_device_pool from nova.pci.request import PCI_REMOTE_MANAGED_TAG from nova.pci import utils from nova.pci import whitelist CONF = cfg.CONF LOG = logging.getLogger(__name__) # TODO(stephenfin): We might want to use TypedDict here. Refer to # https://mypy.readthedocs.io/en/latest/kinds_of_types.html#typeddict for # more information. Pool = ty.Dict[str, ty.Any] class PciDeviceStats(object): """PCI devices summary information. According to the PCI SR-IOV spec, a PCI physical function can have up to 256 PCI virtual functions, thus the number of assignable PCI functions in a cloud can be big. The scheduler needs to know all device availability information in order to determine which compute hosts can support a PCI request. Passing individual virtual device information to the scheduler does not scale, so we provide summary information. Usually the virtual functions provided by a host PCI device have the same value for most properties, like vendor_id, product_id and class type. The PCI stats class summarizes this information for the scheduler. The pci stats information is maintained exclusively by compute node resource tracker and updated to database. The scheduler fetches the information and selects the compute node accordingly. If a compute node is selected, the resource tracker allocates the devices to the instance and updates the pci stats information. This summary information will be helpful for cloud management also. """ pool_keys = ['product_id', 'vendor_id', 'numa_node', 'dev_type'] # these can be specified in the [pci]device_spec and can be requested via # the PCI alias, but they are matched by the placement # allocation_candidates query, so we can ignore them during pool creation # and during filtering here ignored_spec_tags = ignored_pool_tags = ['resource_class', 'traits'] # this is a metadata key in the spec that is matched # specially in _filter_pools_based_on_placement_allocation. So we can # ignore them in the general matching logic. ignored_spec_tags += ['rp_uuids'] # this is a metadata key in the pool that is matched # specially in _filter_pools_based_on_placement_allocation. So we can # ignore them in the general matching logic. ignored_pool_tags += ['rp_uuid'] def __init__( self, numa_topology: 'objects.NUMATopology', stats: 'objects.PCIDevicePoolList' = None, dev_filter: ty.Optional[whitelist.Whitelist] = None, ) -> None: self.numa_topology = numa_topology self.pools = ( [pci_pool.to_dict() for pci_pool in stats] if stats else [] ) self.pools.sort(key=lambda item: len(item)) self.dev_filter = dev_filter or whitelist.Whitelist( CONF.pci.device_spec) def _equal_properties( self, dev: Pool, entry: Pool, matching_keys: ty.List[str], ) -> bool: return all(dev.get(prop) == entry.get(prop) for prop in matching_keys) def _find_pool(self, dev_pool: Pool) -> ty.Optional[Pool]: """Return the first pool that matches dev.""" for pool in self.pools: pool_keys = pool.copy() del pool_keys['count'] del pool_keys['devices'] if (len(pool_keys.keys()) == len(dev_pool.keys()) and self._equal_properties(dev_pool, pool_keys, list(dev_pool))): return pool return None @staticmethod def _ensure_remote_managed_tag( dev: 'objects.PciDevice', pool: Pool): """Add a remote_managed tag depending on a device type if needed. Network devices may be managed remotely, e.g. by a SmartNIC DPU. If a tag has not been explicitly provided, populate it by assuming that a device is not remote managed by default. """ if dev.dev_type not in (fields.PciDeviceType.SRIOV_VF, fields.PciDeviceType.SRIOV_PF, fields.PciDeviceType.VDPA): return # A tag is added here rather than at the client side to avoid an # issue with having objects without this tag specified during an # upgrade to the first version that supports handling this tag. if pool.get(PCI_REMOTE_MANAGED_TAG) is None: # NOTE: tags are compared as strings case-insensitively, see # pci_device_prop_match in nova/pci/utils.py. pool[PCI_REMOTE_MANAGED_TAG] = 'false' def _create_pool_keys_from_dev( self, dev: 'objects.PciDevice', ) -> ty.Optional[Pool]: """Create a stats pool dict that this dev is supposed to be part of Note that this pool dict contains the stats pool's keys and their values. 'count' and 'devices' are not included. """ # Don't add a device that doesn't have a matching device spec. # This can happen during initial sync up with the controller devspec = self.dev_filter.get_devspec(dev) if not devspec: return None tags = devspec.get_tags() pool = {k: getattr(dev, k) for k in self.pool_keys} if tags: pool.update( { k: v for k, v in tags.items() if k not in self.ignored_pool_tags } ) # NOTE(gibi): since PCI in placement maps a PCI dev or a PF to a # single RP and the scheduler allocates from a specific RP we need # to split the pools by PCI or PF address. We can still keep # the VFs from the same parent PF in a single pool though as they # are equivalent from placement perspective. pool['address'] = dev.parent_addr or dev.address # NOTE(gibi): parent_ifname acts like a tag during pci claim but # not provided as part of the whitelist spec as it is auto detected # by the virt driver. # This key is used for match InstancePciRequest backed by neutron ports # that has resource_request and therefore that has resource allocation # already in placement. if dev.extra_info.get('parent_ifname'): pool['parent_ifname'] = dev.extra_info['parent_ifname'] self._ensure_remote_managed_tag(dev, pool) return pool def _get_pool_with_device_type_mismatch( self, dev: 'objects.PciDevice', ) -> ty.Optional[ty.Tuple[Pool, 'objects.PciDevice']]: """Check for device type mismatch in the pools for a given device. Return (pool, device) if device type does not match or a single None if the device type matches. """ for pool in self.pools: for device in pool['devices']: if device.address == dev.address: if dev.dev_type != pool["dev_type"]: return pool, device return None return None def update_device(self, dev: 'objects.PciDevice') -> None: """Update a device to its matching pool.""" pool_device_info = self._get_pool_with_device_type_mismatch(dev) if pool_device_info is None: return None pool, device = pool_device_info pool['devices'].remove(device) self._decrease_pool_count(self.pools, pool) self.add_device(dev) def add_device(self, dev: 'objects.PciDevice') -> None: """Add a device to its matching pool.""" dev_pool = self._create_pool_keys_from_dev(dev) if dev_pool: pool = self._find_pool(dev_pool) if not pool: dev_pool['count'] = 0 dev_pool['devices'] = [] self.pools.append(dev_pool) self.pools.sort(key=lambda item: len(item)) pool = dev_pool pool['count'] += 1 pool['devices'].append(dev) @staticmethod def _decrease_pool_count( pool_list: ty.List[Pool], pool: Pool, count: int = 1, ) -> int: """Decrement pool's size by count. If pool becomes empty, remove pool from pool_list. """ if pool['count'] > count: pool['count'] -= count count = 0 else: count -= pool['count'] pool_list.remove(pool) return count def remove_device(self, dev: 'objects.PciDevice') -> None: """Remove one device from the first pool that it matches.""" dev_pool = self._create_pool_keys_from_dev(dev) if dev_pool: pool = self._find_pool(dev_pool) if not pool: raise exception.PciDevicePoolEmpty( compute_node_id=dev.compute_node_id, address=dev.address) pool['devices'].remove(dev) self._decrease_pool_count(self.pools, pool) def get_free_devs(self) -> ty.List['objects.PciDevice']: free_devs: ty.List[objects.PciDevice] = [] for pool in self.pools: free_devs.extend(pool['devices']) return free_devs def _allocate_devs( self, pool: Pool, num: int, request_id: str ) -> ty.List["objects.PciDevice"]: alloc_devices = [] for _ in range(num): pci_dev = pool['devices'].pop() self._handle_device_dependents(pci_dev) pci_dev.request_id = request_id alloc_devices.append(pci_dev) return alloc_devices def consume_requests( self, pci_requests: 'objects.InstancePCIRequests', numa_cells: ty.Optional[ty.List['objects.InstanceNUMACell']] = None, ) -> ty.Optional[ty.List['objects.PciDevice']]: alloc_devices: ty.List[objects.PciDevice] = [] for request in pci_requests: count = request.count rp_uuids = self._get_rp_uuids_for_request( request=request, provider_mapping=None) pools = self._filter_pools( self.pools, request, numa_cells, rp_uuids=rp_uuids) # Failed to allocate the required number of devices. Return the # devices already allocated during previous iterations back to # their pools if not pools: LOG.error("Failed to allocate PCI devices for instance. " "Unassigning devices back to pools. " "This should not happen, since the scheduler " "should have accurate information, and allocation " "during claims is controlled via a hold " "on the compute node semaphore.") for d in range(len(alloc_devices)): self.add_device(alloc_devices.pop()) raise exception.PciDeviceRequestFailed(requests=pci_requests) if not rp_uuids: # if there is no placement allocation then we are free to # consume from the pools in any order: for pool in pools: if pool['count'] >= count: num_alloc = count else: num_alloc = pool['count'] count -= num_alloc pool['count'] -= num_alloc alloc_devices += self._allocate_devs( pool, num_alloc, request.request_id) if count == 0: break else: # but if there is placement allocation then we have to follow # it requested_devs_per_pool_rp = collections.Counter(rp_uuids) for pool in pools: count = requested_devs_per_pool_rp[pool['rp_uuid']] pool['count'] -= count alloc_devices += self._allocate_devs( pool, count, request.request_id) return alloc_devices def _handle_device_dependents(self, pci_dev: 'objects.PciDevice') -> None: """Remove device dependents or a parent from pools. In case the device is a PF, all of it's dependent VFs should be removed from pools count, if these are present. When the device is a VF, or a VDPA device, it's parent PF pool count should be decreased, unless it is no longer in a pool. """ if pci_dev.dev_type == fields.PciDeviceType.SRIOV_PF: vfs_list = pci_dev.child_devices if vfs_list: free_devs = self.get_free_devs() for vf in vfs_list: # NOTE(gibi): do not try to remove a device that are # already removed if vf in free_devs: self.remove_device(vf) elif pci_dev.dev_type in ( fields.PciDeviceType.SRIOV_VF, fields.PciDeviceType.VDPA, ): try: parent = pci_dev.parent_device # Make sure not to decrease PF pool count if this parent has # been already removed from pools if parent in self.get_free_devs(): self.remove_device(parent) except exception.PciDeviceNotFound: return def _filter_pools_for_spec( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', ) -> ty.List[Pool]: """Filter out pools that don't match the request's device spec. Exclude pools that do not match the specified ``vendor_id``, ``product_id`` and/or ``device_type`` field, or any of the other arbitrary tags such as ``physical_network``, specified in the request. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :returns: A list of pools that can be used to support the request if this is possible. """ def ignore_keys(spec): return { k: v for k, v in spec.items() if k not in self.ignored_spec_tags } request_specs = [ignore_keys(spec) for spec in request.spec] return [ pool for pool in pools if utils.pci_device_prop_match(pool, request_specs) ] def _filter_pools_for_numa_cells( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', numa_cells: ty.Optional[ty.List['objects.InstanceNUMACell']], ) -> ty.List[Pool]: """Filter out pools with the wrong NUMA affinity, if required. Exclude pools that do not have *suitable* PCI NUMA affinity. ``numa_policy`` determines what *suitable* means, being one of PREFERRED (nice-to-have), LEGACY (must-have-if-available) and REQUIRED (must-have). We iterate through the various policies in order of strictness. This means that even if we only *prefer* PCI-NUMA affinity, we will still attempt to provide it if possible. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :param numa_cells: A list of InstanceNUMACell objects whose ``id`` corresponds to the ``id`` of host NUMACells. :returns: A list of pools that can, together, provide at least ``requested_count`` PCI devices with the level of NUMA affinity required by ``numa_policy``, else all pools that can satisfy this policy even if it's not enough. """ if not numa_cells: return pools # we default to the 'legacy' policy for...of course...legacy reasons requested_policy = fields.PCINUMAAffinityPolicy.LEGACY if 'numa_policy' in request: requested_policy = request.numa_policy or requested_policy requested_count = request.count numa_cell_ids = [cell.id for cell in numa_cells] # filter out pools which numa_node is not included in numa_cell_ids filtered_pools = [ pool for pool in pools if any(utils.pci_device_prop_match( pool, [{'numa_node': cell}]) for cell in numa_cell_ids)] # we can't apply a less strict policy than the one requested, so we # need to return if we've demanded a NUMA affinity of REQUIRED. # However, NUMA affinity is a good thing. If we can get enough devices # with the stricter policy then we will use them. if requested_policy == fields.PCINUMAAffinityPolicy.REQUIRED or sum( pool['count'] for pool in filtered_pools) >= requested_count: return filtered_pools # the SOCKET policy is a bit of a special case. It's less strict than # REQUIRED (so REQUIRED will automatically fulfil SOCKET, at least # with our assumption of never having multiple sockets per NUMA node), # but not always more strict than LEGACY: a PCI device with no NUMA # affinity will fulfil LEGACY but not SOCKET. If we have SOCKET, # process it here and don't continue. if requested_policy == fields.PCINUMAAffinityPolicy.SOCKET: return self._filter_pools_for_socket_affinity(pools, numa_cells) # some systems don't report NUMA node info for PCI devices, in which # case None is reported in 'pci_device.numa_node'. The LEGACY policy # allows us to use these devices so we include None in the list of # suitable NUMA cells. numa_cell_ids.append(None) # filter out pools which numa_node is not included in numa_cell_ids filtered_pools = [ pool for pool in pools if any(utils.pci_device_prop_match( pool, [{'numa_node': cell}]) for cell in numa_cell_ids)] # once again, we can't apply a less strict policy than the one # requested, so we need to return if we've demanded a NUMA affinity of # LEGACY. Similarly, we will also return if we have enough devices to # satisfy this somewhat strict policy. if requested_policy == fields.PCINUMAAffinityPolicy.LEGACY or sum( pool['count'] for pool in filtered_pools) >= requested_count: return filtered_pools # if we've got here, we're using the PREFERRED policy and weren't able # to provide anything with stricter affinity. Use whatever devices you # can, folks. return sorted( pools, key=lambda pool: pool.get('numa_node') not in numa_cell_ids) def _filter_pools_for_socket_affinity( self, pools: ty.List[Pool], numa_cells: ty.List['objects.InstanceNUMACell'], ) -> ty.List[Pool]: host_cells = self.numa_topology.cells # bail early if we don't have socket information for all host_cells. # This could happen if we're running on an weird older system with # multiple sockets per NUMA node, which is a configuration that we # explicitly chose not to support. if any(cell.socket is None for cell in host_cells): LOG.debug('No socket information in host NUMA cell(s).') return [] # get a set of host sockets that the guest cells are in. Since guest # cell IDs map to host cell IDs, we can just lookup the latter's # socket. socket_ids = set() for guest_cell in numa_cells: for host_cell in host_cells: if guest_cell.id == host_cell.id: socket_ids.add(host_cell.socket) # now get a set of host NUMA nodes that are in the above sockets allowed_numa_nodes = set() for host_cell in host_cells: if host_cell.socket in socket_ids: allowed_numa_nodes.add(host_cell.id) # filter out pools that are not in one of the correct host NUMA nodes. return [ pool for pool in pools if any( utils.pci_device_prop_match(pool, [{'numa_node': numa_node}]) for numa_node in allowed_numa_nodes ) ] def _filter_pools_for_unrequested_pfs( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', ) -> ty.List[Pool]: """Filter out pools with PFs, unless these are required. This is necessary in cases where PFs and VFs have the same product_id and generally useful elsewhere. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :returns: A list of pools that can be used to support the request if this is possible. """ if all( spec.get('dev_type') != fields.PciDeviceType.SRIOV_PF for spec in request.spec ): pools = [ pool for pool in pools if not pool.get('dev_type') == fields.PciDeviceType.SRIOV_PF ] return pools def _filter_pools_for_unrequested_vdpa_devices( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', ) -> ty.List[Pool]: """Filter out pools with VDPA devices, unless these are required. This is necessary as vdpa devices require special handling and should not be allocated to generic pci device requests. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :returns: A list of pools that can be used to support the request if this is possible. """ if all( spec.get('dev_type') != fields.PciDeviceType.VDPA for spec in request.spec ): pools = [ pool for pool in pools if not pool.get('dev_type') == fields.PciDeviceType.VDPA ] return pools def _filter_pools_for_unrequested_remote_managed_devices( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', ) -> ty.List[Pool]: """Filter out pools with remote_managed devices, unless requested. Remote-managed devices are not usable for legacy SR-IOV or hardware offload scenarios and must be excluded from allocation. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :returns: A list of pools that can be used to support the request if this is possible. """ if all(not strutils.bool_from_string(spec.get(PCI_REMOTE_MANAGED_TAG)) for spec in request.spec): pools = [pool for pool in pools if not strutils.bool_from_string( pool.get(PCI_REMOTE_MANAGED_TAG))] return pools def _filter_pools_based_on_placement_allocation( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', rp_uuids: ty.List[str], ) -> ty.List[Pool]: if not rp_uuids: # If there is no placement allocation then we don't need to filter # by it. This could happen if the instance only has neutron port # based InstancePCIRequest as that is currently not having # placement allocation (except for QoS ports, but that handled in a # separate codepath) or if the [filter_scheduler]pci_in_placement # configuration option is not enabled in the scheduler. return pools requested_dev_count_per_rp = collections.Counter(rp_uuids) matching_pools = [] for pool in pools: rp_uuid = pool.get('rp_uuid') if rp_uuid is None: # NOTE(gibi): As rp_uuids is not empty the scheduler allocated # PCI resources on this host, so we know that # [pci]report_in_placement is enabled on this host. But this # pool has no RP mapping which can only happen if the pool # contains PCI devices with physical_network tag, as those # devices not yet reported in placement. But if they are not # reported then we can ignore them here too. continue if ( # the placement allocation contains this pool rp_uuid in requested_dev_count_per_rp and # the amount of dev allocated in placement can be consumed # from the pool pool["count"] >= requested_dev_count_per_rp[rp_uuid] ): matching_pools.append(pool) return matching_pools def _filter_pools( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', numa_cells: ty.Optional[ty.List['objects.InstanceNUMACell']], rp_uuids: ty.List[str], ) -> ty.Optional[ty.List[Pool]]: """Determine if an individual PCI request can be met. Filter pools, which are collections of devices with similar traits, to identify those that can support the provided PCI request. If ``numa_cells`` is provided then NUMA locality may be taken into account, depending on the value of ``request.numa_policy``. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :param numa_cells: A list of InstanceNUMACell objects whose ``id`` corresponds to the ``id`` of host NUMACell objects. :param rp_uuids: A list of PR uuids this request fulfilled from in placement. So here we have to consider only the pools matching with thes RP uuids :returns: A list of pools that can be used to support the request if this is possible, else None. """ # NOTE(vladikr): This code may be open to race conditions. # Two concurrent requests may succeed when called support_requests # because this method does not remove related devices from the pools # Firstly, let's exclude all devices that don't match our spec (e.g. # they've got different PCI IDs or something) before_count = sum([pool['count'] for pool in pools]) pools = self._filter_pools_for_spec(pools, request) after_count = sum([pool['count'] for pool in pools]) if after_count < before_count: LOG.debug( 'Dropped %d device(s) due to mismatched PCI attribute(s)', before_count - after_count ) if after_count < request.count: LOG.debug('Not enough PCI devices left to satisfy request') return None # Next, let's exclude all devices that aren't on the correct NUMA node # or socket, *assuming* we have devices and care about that, as # determined by policy before_count = after_count pools = self._filter_pools_for_numa_cells(pools, request, numa_cells) after_count = sum([pool['count'] for pool in pools]) if after_count < before_count: LOG.debug( 'Dropped %d device(s) as they are on the wrong NUMA node(s)', before_count - after_count ) if after_count < request.count: LOG.debug('Not enough PCI devices left to satisfy request') return None # If we're not requesting PFs then we should not use these. # Exclude them. before_count = after_count pools = self._filter_pools_for_unrequested_pfs(pools, request) after_count = sum([pool['count'] for pool in pools]) if after_count < before_count: LOG.debug( 'Dropped %d device(s) as they are PFs which we have not ' 'requested', before_count - after_count ) if after_count < request.count: LOG.debug('Not enough PCI devices left to satisfy request') return None # If we're not requesting VDPA devices then we should not use these # either. Exclude them. before_count = after_count pools = self._filter_pools_for_unrequested_vdpa_devices(pools, request) after_count = sum([pool['count'] for pool in pools]) if after_count < before_count: LOG.debug( 'Dropped %d device(s) as they are VDPA devices which we have ' 'not requested', before_count - after_count ) # If we're not requesting remote_managed devices then we should not # use these either. Exclude them. before_count = after_count pools = self._filter_pools_for_unrequested_remote_managed_devices( pools, request) after_count = sum([pool['count'] for pool in pools]) if after_count < before_count: LOG.debug( 'Dropped %d device(s) as they are remote-managed devices which' 'we have not requested', before_count - after_count ) # if there is placement allocation for the request then we have to # remove the pools that are not in the placement allocation before_count = after_count pools = self._filter_pools_based_on_placement_allocation( pools, request, rp_uuids) after_count = sum([pool['count'] for pool in pools]) if after_count < before_count: LOG.debug( 'Dropped %d device(s) that are not part of the placement ' 'allocation', before_count - after_count ) if after_count < request.count: LOG.debug('Not enough PCI devices left to satisfy request') return None return pools def support_requests( self, requests: ty.List['objects.InstancePCIRequest'], provider_mapping: ty.Optional[ty.Dict[str, ty.List[str]]], numa_cells: ty.Optional[ty.List['objects.InstanceNUMACell']] = None, ) -> bool: """Determine if the PCI requests can be met. Determine, based on a compute node's PCI stats, if an instance can be scheduled on the node. **Support does not mean real allocation**. If ``numa_cells`` is provided then NUMA locality may be taken into account, depending on the value of ``numa_policy``. :param requests: A list of InstancePCIRequest object describing the types, quantities and required NUMA affinities of devices we want. :type requests: nova.objects.InstancePCIRequests :param provider_mapping: A dict keyed by RequestGroup requester_id, to a list of resource provider UUIDs which provide resource for that RequestGroup. If it is None then it signals that the InstancePCIRequest objects already stores a mapping per request. I.e.: we are called _after_ the scheduler made allocations for this request in placement. :param numa_cells: A list of InstanceNUMACell objects whose ``id`` corresponds to the ``id`` of host NUMACells, or None. :returns: Whether this compute node can satisfy the given request. """ # try to apply the requests on the copy of the stats if it applies # cleanly then we know that the requests is supported. We call apply # only on a copy as we don't want to actually consume resources from # the pool as at this point this is just a test during host filtering. # Later the scheduler will call apply_request to consume on the # selected host. The compute will call consume_request during PCI claim # to consume not just from the pools but also consume PciDevice # objects. stats = copy.deepcopy(self) try: stats.apply_requests(requests, provider_mapping, numa_cells) except exception.PciDeviceRequestFailed: return False return True def _apply_request( self, pools: ty.List[Pool], request: 'objects.InstancePCIRequest', rp_uuids: ty.List[str], numa_cells: ty.Optional[ty.List['objects.InstanceNUMACell']] = None, ) -> bool: """Apply an individual PCI request. Apply a PCI request against a given set of PCI device pools, which are collections of devices with similar traits. If ``numa_cells`` is provided then NUMA locality may be taken into account, depending on the value of ``request.numa_policy``. :param pools: A list of PCI device pool dicts :param request: An InstancePCIRequest object describing the type, quantity and required NUMA affinity of device(s) we want. :param rp_uuids: A list of PR uuids this request fulfilled from in placement :param numa_cells: A list of InstanceNUMACell objects whose ``id`` corresponds to the ``id`` of host NUMACell objects. :returns: True if the request was applied against the provided pools successfully, else False. """ # NOTE(vladikr): This code maybe open to race conditions. # Two concurrent requests may succeed when called support_requests # because this method does not remove related devices from the pools filtered_pools = self._filter_pools( pools, request, numa_cells, rp_uuids) if not filtered_pools: return False if not rp_uuids: # If there is no placement allocation for this request then we are # free to consume from the filtered pools in any order count = request.count for pool in filtered_pools: count = self._decrease_pool_count(pools, pool, count) if not count: break else: # but if there is placement allocation then we have to follow that requested_devs_per_pool_rp = collections.Counter(rp_uuids) for pool in filtered_pools: count = requested_devs_per_pool_rp[pool['rp_uuid']] pool['count'] -= count if pool['count'] == 0: pools.remove(pool) return True def _get_rp_uuids_for_request( self, provider_mapping: ty.Optional[ty.Dict[str, ty.List[str]]], request: 'objects.InstancePCIRequest' ) -> ty.List[str]: """Return the list of RP uuids that are fulfilling the request. An RP will be in the list as many times as many devices needs to be allocated from that RP. """ if request.source == objects.InstancePCIRequest.NEUTRON_PORT: # TODO(gibi): support neutron based requests in a later cycle # an empty list will signal that any PCI pool can be used for this # request return [] if not provider_mapping: # NOTE(gibi): AFAIK specs is always a list of a single dict # but the object is hard to change retroactively rp_uuids = request.spec[0].get('rp_uuids') if not rp_uuids: # This can happen if [filter_scheduler]pci_in_placement is not # enabled yet # An empty list will signal that any PCI pool can be used for # this request return [] # TODO(gibi): this is baaad but spec is a dict of string so # the list is serialized return rp_uuids.split(',') # NOTE(gibi): the PCI prefilter generates RequestGroup suffixes from # InstancePCIRequests in the form of {request_id}-{count_index} # NOTE(gibi): a suffixed request group always fulfilled from a single # RP return [ rp_uuids[0] for group_id, rp_uuids in provider_mapping.items() if group_id.startswith(request.request_id) ] def apply_requests( self, requests: ty.List['objects.InstancePCIRequest'], provider_mapping: ty.Optional[ty.Dict[str, ty.List[str]]], numa_cells: ty.Optional[ty.List['objects.InstanceNUMACell']] = None, ) -> None: """Apply PCI requests to the PCI stats. This is used in multiple instance creation, when the scheduler has to maintain how the resources are consumed by the instances. If ``numa_cells`` is provided then NUMA locality may be taken into account, depending on the value of ``numa_policy``. :param requests: A list of InstancePCIRequest object describing the types, quantities and required NUMA affinities of devices we want. :type requests: nova.objects.InstancePCIRequests :param provider_mapping: A dict keyed by RequestGroup requester_id, to a list of resource provider UUIDs which provide resource for that RequestGroup. If it is None then it signals that the InstancePCIRequest objects already stores a mapping per request. I.e.: we are called _after_ the scheduler made allocations for this request in placement. :param numa_cells: A list of InstanceNUMACell objects whose ``id`` corresponds to the ``id`` of host NUMACells, or None. :raises: exception.PciDeviceRequestFailed if this compute node cannot satisfy the given request. """ for r in requests: rp_uuids = self._get_rp_uuids_for_request(provider_mapping, r) if not self._apply_request(self.pools, r, rp_uuids, numa_cells): raise exception.PciDeviceRequestFailed(requests=requests) def __iter__(self) -> ty.Iterator[Pool]: pools: ty.List[Pool] = [] for pool in self.pools: pool = copy.deepcopy(pool) # 'devices' shouldn't be part of stats if 'devices' in pool: del pool['devices'] pools.append(pool) return iter(pools) def clear(self) -> None: """Clear all the stats maintained.""" self.pools = [] def __eq__(self, other: object) -> bool: if not isinstance(other, PciDeviceStats): return NotImplemented return self.pools == other.pools def to_device_pools_obj(self) -> 'objects.PciDevicePoolList': """Return the contents of the pools as a PciDevicePoolList object.""" stats = [x for x in self] return pci_device_pool.from_pci_stats(stats) def has_remote_managed_device_pools(self) -> bool: """Determine whether remote managed device pools are present on a host. The check is pool-based, not free device-based and is NUMA cell agnostic. """ dummy_req = objects.InstancePCIRequest( count=0, spec=[{'remote_managed': True}] ) pools = self._filter_pools_for_spec(self.pools, dummy_req) return bool(pools) def populate_pools_metadata_from_assigned_devices(self): """Populate the rp_uuid of each pool based on the rp_uuid of the devices assigned to the pool. This can only be called from the compute where devices are assigned to each pool. This should not be called from the scheduler as there device - pool assignment is not known. """ # PciDevices are tracked in placement and flavor based PCI requests # are scheduled and allocated in placement. To be able to correlate # what is allocated in placement and what is consumed in nova we # need to map device pools to RPs. We can do that as the PciDevice # contains the RP UUID that represents it in placement. # NOTE(gibi): We cannot do this when the device is originally added to # the pool as the device -> placement translation, that creates the # RPs, runs after all the device is created and assigned to pools. for pool in self.pools: pool_rps = { dev.extra_info.get("rp_uuid") for dev in pool["devices"] if "rp_uuid" in dev.extra_info } if len(pool_rps) >= 2: # FIXME(gibi): Do we have a 1:1 pool - RP mapping even # if two PFs providing very similar VFs? raise ValueError( "We have a pool %s connected to more than one RPs %s in " "placement via devs %s" % (pool, pool_rps, pool["devices"]) ) if not pool_rps: # this can happen if the nova-compute is upgraded to have the # PCI in placement inventory handling code but # [pci]report_in_placement is not turned on yet. continue if pool_rps: # now we know that it is a single RP pool['rp_uuid'] = next(iter(pool_rps))