/* * Copyright (c) 2008-2019 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "command-line.h" #include "compiler.h" #include "ct-dpif.h" #include "dirs.h" #include "dpctl.h" #include "dpif.h" #include "dpif-provider.h" #include "openvswitch/dynamic-string.h" #include "flow.h" #include "openvswitch/match.h" #include "netdev.h" #include "netlink.h" #include "odp-util.h" #include "openvswitch/ofpbuf.h" #include "openvswitch/ofp-ct.h" #include "packets.h" #include "openvswitch/shash.h" #include "simap.h" #include "smap.h" #include "sset.h" #include "timeval.h" #include "unixctl.h" #include "util.h" #include "openvswitch/ofp-flow.h" #include "openvswitch/ofp-port.h" enum { DPCTL_FLOWS_ADD = 0, DPCTL_FLOWS_DEL, DPCTL_FLOWS_MOD }; typedef int dpctl_command_handler(int argc, const char *argv[], struct dpctl_params *); struct dpctl_command { const char *name; const char *usage; int min_args; int max_args; dpctl_command_handler *handler; enum { DP_RO, DP_RW} mode; }; static const struct dpctl_command *get_all_dpctl_commands(void); static void dpctl_print(struct dpctl_params *dpctl_p, const char *fmt, ...) OVS_PRINTF_FORMAT(2, 3); static void dpctl_error(struct dpctl_params* dpctl_p, int err_no, const char *fmt, ...) OVS_PRINTF_FORMAT(3, 4); static void dpctl_puts(struct dpctl_params *dpctl_p, bool error, const char *string) { dpctl_p->output(dpctl_p->aux, error, string); } static void dpctl_print(struct dpctl_params *dpctl_p, const char *fmt, ...) { char *string; va_list args; va_start(args, fmt); string = xvasprintf(fmt, args); va_end(args); dpctl_puts(dpctl_p, false, string); free(string); } static void dpctl_error(struct dpctl_params* dpctl_p, int err_no, const char *fmt, ...) { const char *subprogram_name = get_subprogram_name(); struct ds ds = DS_EMPTY_INITIALIZER; int save_errno = errno; va_list args; if (subprogram_name[0]) { ds_put_format(&ds, "%s(%s): ", program_name,subprogram_name); } else { ds_put_format(&ds, "%s: ", program_name); } va_start(args, fmt); ds_put_format_valist(&ds, fmt, args); va_end(args); if (err_no != 0) { ds_put_format(&ds, " (%s)", ovs_retval_to_string(err_no)); } ds_put_cstr(&ds, "\n"); dpctl_puts(dpctl_p, true, ds_cstr(&ds)); ds_destroy(&ds); errno = save_errno; } static int dpctl_add_if(int argc, const char *argv[], struct dpctl_params *); static int if_up(struct netdev *netdev) { return netdev_turn_flags_on(netdev, NETDEV_UP, NULL); } /* Retrieve the name of the datapath if exactly one exists. The caller * is responsible for freeing the returned string. If a single datapath * name cannot be determined, returns NULL. */ static char * get_one_dp(struct dpctl_params *dpctl_p) { struct sset types; const char *type; char *dp_name = NULL; size_t count = 0; sset_init(&types); dp_enumerate_types(&types); SSET_FOR_EACH (type, &types) { struct sset names; sset_init(&names); if (!dp_enumerate_names(type, &names)) { count += sset_count(&names); if (!dp_name && count == 1) { dp_name = xasprintf("%s@%s", type, SSET_FIRST(&names)); } } sset_destroy(&names); } sset_destroy(&types); if (!count) { dpctl_error(dpctl_p, 0, "no datapaths exist"); } else if (count > 1) { dpctl_error(dpctl_p, 0, "multiple datapaths, specify one"); free(dp_name); dp_name = NULL; } return dp_name; } static int parsed_dpif_open(const char *arg_, bool create, struct dpif **dpifp) { int result; char *name, *type; dp_parse_name(arg_, &name, &type); if (create) { result = dpif_create(name, type, dpifp); } else { result = dpif_open(name, type, dpifp); } free(name); free(type); return result; } static bool dp_exists(const char *queried_dp) { char *queried_name, *queried_type; dp_parse_name(queried_dp, &queried_name, &queried_type); struct sset dpif_names = SSET_INITIALIZER(&dpif_names), dpif_types = SSET_INITIALIZER(&dpif_types); dp_enumerate_types(&dpif_types); bool found = (sset_contains(&dpif_types, queried_type) && !dp_enumerate_names(queried_type, &dpif_names) && sset_contains(&dpif_names, queried_name)); sset_destroy(&dpif_names); sset_destroy(&dpif_types); free(queried_name); free(queried_type); return found; } static bool dp_arg_exists(int argc, const char *argv[]) { return argc > 1 && dp_exists(argv[1]); } /* Open a dpif with an optional name argument. * * The datapath name is not a mandatory parameter for this command. If it is * not specified, we retrieve it from the current setup, assuming only one * exists. On success stores the opened dpif in '*dpifp'. */ static int opt_dpif_open(int argc, const char *argv[], struct dpctl_params *dpctl_p, int max_args, struct dpif **dpifp) { char *dpname; if (dp_arg_exists(argc, argv)) { dpname = xstrdup(argv[1]); } else if (argc != max_args) { dpname = get_one_dp(dpctl_p); } else { /* If the arguments are the maximum possible number and there is no * valid datapath argument, then we fall into the case of dpname is * NULL, since this is an error. */ dpname = NULL; } int error = 0; if (!dpname) { error = EINVAL; dpctl_error(dpctl_p, error, "datapath not found"); } else { error = parsed_dpif_open(dpname, false, dpifp); free(dpname); if (error) { dpctl_error(dpctl_p, error, "opening datapath"); } } return error; } static int dpctl_add_dp(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error; error = parsed_dpif_open(argv[1], true, &dpif); if (error) { dpctl_error(dpctl_p, error, "add_dp"); return error; } dpif_close(dpif); if (argc > 2) { error = dpctl_add_if(argc, argv, dpctl_p); } return error; } static int dpctl_del_dp(int argc OVS_UNUSED, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error; error = parsed_dpif_open(argv[1], false, &dpif); if (error) { dpctl_error(dpctl_p, error, "opening datapath"); return error; } error = dpif_delete(dpif); if (error) { dpctl_error(dpctl_p, error, "del_dp"); } dpif_close(dpif); return error; } static int dpctl_add_if(int argc OVS_UNUSED, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int i, error, lasterror = 0; error = parsed_dpif_open(argv[1], false, &dpif); if (error) { dpctl_error(dpctl_p, error, "opening datapath"); return error; } for (i = 2; i < argc; i++) { const char *name, *type; char *save_ptr = NULL, *argcopy; struct netdev *netdev = NULL; struct smap args; odp_port_t port_no = ODPP_NONE; char *option; argcopy = xstrdup(argv[i]); name = strtok_r(argcopy, ",", &save_ptr); type = "system"; if (!name) { dpctl_error(dpctl_p, 0, "%s is not a valid network device name", argv[i]); error = EINVAL; goto next; } smap_init(&args); while ((option = strtok_r(NULL, ",", &save_ptr)) != NULL) { char *save_ptr_2 = NULL; char *key, *value; key = strtok_r(option, "=", &save_ptr_2); value = strtok_r(NULL, "", &save_ptr_2); if (!value) { value = ""; } if (!strcmp(key, "type")) { type = value; } else if (!strcmp(key, "port_no")) { port_no = u32_to_odp(atoi(value)); } else if (!smap_add_once(&args, key, value)) { dpctl_error(dpctl_p, 0, "duplicate \"%s\" option", key); } } error = netdev_open(name, type, &netdev); if (error) { dpctl_error(dpctl_p, error, "%s: failed to open network device", name); goto next_destroy_args; } error = netdev_set_config(netdev, &args, NULL); if (error) { goto next_destroy_args; } error = dpif_port_add(dpif, netdev, &port_no); if (error) { dpctl_error(dpctl_p, error, "adding %s to %s failed", name, argv[1]); goto next_destroy_args; } error = if_up(netdev); if (error) { dpctl_error(dpctl_p, error, "%s: failed bringing interface up", name); } next_destroy_args: netdev_close(netdev); smap_destroy(&args); next: free(argcopy); if (error) { lasterror = error; } } dpif_close(dpif); return lasterror; } static int dpctl_set_if(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int i, error, lasterror = 0; error = parsed_dpif_open(argv[1], false, &dpif); if (error) { dpctl_error(dpctl_p, error, "opening datapath"); return error; } for (i = 2; i < argc; i++) { struct netdev *netdev = NULL; struct dpif_port dpif_port; char *save_ptr = NULL; char *type = NULL; char *argcopy; const char *name; struct smap args; odp_port_t port_no; char *option; error = 0; argcopy = xstrdup(argv[i]); name = strtok_r(argcopy, ",", &save_ptr); if (!name) { dpctl_error(dpctl_p, 0, "%s is not a valid network device name", argv[i]); goto next; } /* Get the port's type from the datapath. */ error = dpif_port_query_by_name(dpif, name, &dpif_port); if (error) { dpctl_error(dpctl_p, error, "%s: failed to query port in %s", name, argv[1]); goto next; } type = xstrdup(dpif_port.type); port_no = dpif_port.port_no; dpif_port_destroy(&dpif_port); /* Retrieve its existing configuration. */ error = netdev_open(name, type, &netdev); if (error) { dpctl_error(dpctl_p, error, "%s: failed to open network device", name); goto next; } smap_init(&args); error = netdev_get_config(netdev, &args); if (error) { dpctl_error(dpctl_p, error, "%s: failed to fetch configuration", name); goto next_destroy_args; } /* Parse changes to configuration. */ while ((option = strtok_r(NULL, ",", &save_ptr)) != NULL) { char *save_ptr_2 = NULL; char *key, *value; key = strtok_r(option, "=", &save_ptr_2); value = strtok_r(NULL, "", &save_ptr_2); if (!value) { value = ""; } if (!strcmp(key, "type")) { if (strcmp(value, type)) { dpctl_error(dpctl_p, 0, "%s: can't change type from %s to %s", name, type, value); error = EINVAL; goto next_destroy_args; } } else if (!strcmp(key, "port_no")) { if (port_no != u32_to_odp(atoi(value))) { dpctl_error(dpctl_p, 0, "%s: can't change port number from" " %"PRIu32" to %d", name, port_no, atoi(value)); error = EINVAL; goto next_destroy_args; } } else if (value[0] == '\0') { smap_remove(&args, key); } else { smap_replace(&args, key, value); } } /* Update configuration. */ char *err_s = NULL; error = netdev_set_config(netdev, &args, &err_s); if (err_s || error) { dpctl_error(dpctl_p, error, "%s", err_s ? err_s : "Error updating configuration"); free(err_s); } if (error) { goto next_destroy_args; } next_destroy_args: smap_destroy(&args); next: netdev_close(netdev); free(type); free(argcopy); if (error) { lasterror = error; } } dpif_close(dpif); return lasterror; } static bool get_port_number(struct dpif *dpif, const char *name, odp_port_t *port, struct dpctl_params *dpctl_p) { struct dpif_port dpif_port; if (!dpif_port_query_by_name(dpif, name, &dpif_port)) { *port = dpif_port.port_no; dpif_port_destroy(&dpif_port); return true; } else { dpctl_error(dpctl_p, 0, "no port named %s", name); return false; } } static int dpctl_del_if(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int i, error, lasterror = 0; error = parsed_dpif_open(argv[1], false, &dpif); if (error) { dpctl_error(dpctl_p, error, "opening datapath"); return error; } for (i = 2; i < argc; i++) { const char *name = argv[i]; odp_port_t port; if (!name[strspn(name, "0123456789")]) { port = u32_to_odp(atoi(name)); } else if (!get_port_number(dpif, name, &port, dpctl_p)) { lasterror = ENOENT; continue; } error = dpif_port_del(dpif, port, false); if (error) { dpctl_error(dpctl_p, error, "deleting port %s from %s failed", name, argv[1]); lasterror = error; } } dpif_close(dpif); return lasterror; } static void print_stat(struct dpctl_params *dpctl_p, const char *leader, uint64_t value) { dpctl_print(dpctl_p, "%s", leader); if (value != UINT64_MAX) { dpctl_print(dpctl_p, "%"PRIu64, value); } else { dpctl_print(dpctl_p, "?"); } } static void print_human_size(struct dpctl_params *dpctl_p, uint64_t value) { if (value == UINT64_MAX) { /* Nothing to do. */ } else if (value >= 1024ULL * 1024 * 1024 * 1024) { dpctl_print(dpctl_p, " (%.1f TiB)", value / (1024.0 * 1024 * 1024 * 1024)); } else if (value >= 1024ULL * 1024 * 1024) { dpctl_print(dpctl_p, " (%.1f GiB)", value / (1024.0 * 1024 * 1024)); } else if (value >= 1024ULL * 1024) { dpctl_print(dpctl_p, " (%.1f MiB)", value / (1024.0 * 1024)); } else if (value >= 1024) { dpctl_print(dpctl_p, " (%.1f KiB)", value / 1024.0); } } /* qsort comparison function. */ static int compare_port_nos(const void *a_, const void *b_) { const odp_port_t *ap = a_; const odp_port_t *bp = b_; uint32_t a = odp_to_u32(*ap); uint32_t b = odp_to_u32(*bp); return a < b ? -1 : a > b; } static void show_dpif_cache__(struct dpif *dpif, struct dpctl_params *dpctl_p) { uint32_t nr_caches; int error = dpif_cache_get_supported_levels(dpif, &nr_caches); if (error || nr_caches == 0) { return; } dpctl_print(dpctl_p, " caches:\n"); for (int i = 0; i < nr_caches; i++) { const char *name; uint32_t size; if (dpif_cache_get_name(dpif, i, &name) || dpif_cache_get_size(dpif, i, &size)) { continue; } dpctl_print(dpctl_p, " %s: size:%u\n", name, size); } } static void show_dpif_cache(struct dpif *dpif, struct dpctl_params *dpctl_p) { dpctl_print(dpctl_p, "%s:\n", dpif_name(dpif)); show_dpif_cache__(dpif, dpctl_p); } static void show_dpif(struct dpif *dpif, struct dpctl_params *dpctl_p) { struct dpif_port_dump dump; struct dpif_port dpif_port; struct dpif_dp_stats stats; struct netdev *netdev; dpctl_print(dpctl_p, "%s:\n", dpif_name(dpif)); if (!dpif_get_dp_stats(dpif, &stats)) { dpctl_print(dpctl_p, " lookups: hit:%"PRIu64" missed:%"PRIu64 " lost:%"PRIu64"\n flows: %"PRIu64"\n", stats.n_hit, stats.n_missed, stats.n_lost, stats.n_flows); if (stats.n_masks != UINT32_MAX) { uint64_t n_pkts = stats.n_hit + stats.n_missed; double avg = n_pkts ? (double) stats.n_mask_hit / n_pkts : 0.0; dpctl_print(dpctl_p, " masks: hit:%"PRIu64" total:%"PRIu32 " hit/pkt:%.2f\n", stats.n_mask_hit, stats.n_masks, avg); if (stats.n_cache_hit != UINT64_MAX) { double avg_hits = n_pkts ? (double) stats.n_cache_hit / n_pkts * 100 : 0.0; dpctl_print(dpctl_p, " cache: hit:%"PRIu64" hit-rate:%.2f%%\n", stats.n_cache_hit, avg_hits); } } } show_dpif_cache__(dpif, dpctl_p); odp_port_t *port_nos = NULL; size_t allocated_port_nos = 0, n_port_nos = 0; DPIF_PORT_FOR_EACH (&dpif_port, &dump, dpif) { if (n_port_nos >= allocated_port_nos) { port_nos = x2nrealloc(port_nos, &allocated_port_nos, sizeof *port_nos); } port_nos[n_port_nos] = dpif_port.port_no; n_port_nos++; } if (port_nos) { qsort(port_nos, n_port_nos, sizeof *port_nos, compare_port_nos); } for (int i = 0; i < n_port_nos; i++) { if (dpif_port_query_by_number(dpif, port_nos[i], &dpif_port)) { continue; } dpctl_print(dpctl_p, " port %u: %s", dpif_port.port_no, dpif_port.name); if (strcmp(dpif_port.type, "system")) { int error; dpctl_print(dpctl_p, " (%s", dpif_port.type); error = netdev_open(dpif_port.name, dpif_port.type, &netdev); if (!error) { struct smap config; smap_init(&config); error = netdev_get_config(netdev, &config); if (!error) { const struct smap_node **nodes = smap_sort(&config); for (size_t j = 0; j < smap_count(&config); j++) { const struct smap_node *node = nodes[j]; dpctl_print(dpctl_p, "%c %s=%s", j ? ',' : ':', node->key, node->value); } free(nodes); } else { dpctl_print(dpctl_p, ", could not retrieve configuration " "(%s)", ovs_strerror(error)); } smap_destroy(&config); netdev_close(netdev); } else { dpctl_print(dpctl_p, ": open failed (%s)", ovs_strerror(error)); } dpctl_print(dpctl_p, ")"); } dpctl_print(dpctl_p, "\n"); if (dpctl_p->print_statistics) { struct netdev_stats s; int error; error = netdev_open(dpif_port.name, dpif_port.type, &netdev); if (error) { dpctl_print(dpctl_p, ", open failed (%s)", ovs_strerror(error)); dpif_port_destroy(&dpif_port); continue; } error = netdev_get_stats(netdev, &s); if (!error) { netdev_close(netdev); print_stat(dpctl_p, " RX packets:", s.rx_packets); print_stat(dpctl_p, " errors:", s.rx_errors); print_stat(dpctl_p, " dropped:", s.rx_dropped); print_stat(dpctl_p, " overruns:", s.rx_over_errors); print_stat(dpctl_p, " frame:", s.rx_frame_errors); dpctl_print(dpctl_p, "\n"); print_stat(dpctl_p, " TX packets:", s.tx_packets); print_stat(dpctl_p, " errors:", s.tx_errors); print_stat(dpctl_p, " dropped:", s.tx_dropped); print_stat(dpctl_p, " aborted:", s.tx_aborted_errors); print_stat(dpctl_p, " carrier:", s.tx_carrier_errors); dpctl_print(dpctl_p, "\n"); print_stat(dpctl_p, " collisions:", s.collisions); dpctl_print(dpctl_p, "\n"); print_stat(dpctl_p, " RX bytes:", s.rx_bytes); print_human_size(dpctl_p, s.rx_bytes); print_stat(dpctl_p, " TX bytes:", s.tx_bytes); print_human_size(dpctl_p, s.tx_bytes); dpctl_print(dpctl_p, "\n"); print_stat(dpctl_p, " UPCALL packets:", s.upcall_packets); print_stat(dpctl_p, " errors:", s.upcall_errors); dpctl_print(dpctl_p, "\n"); } else { dpctl_print(dpctl_p, ", could not retrieve stats (%s)", ovs_strerror(error)); } } dpif_port_destroy(&dpif_port); } free(port_nos); } typedef void (*dps_for_each_cb)(struct dpif *, struct dpctl_params *); static int dps_for_each(struct dpctl_params *dpctl_p, dps_for_each_cb cb) { struct sset dpif_names = SSET_INITIALIZER(&dpif_names), dpif_types = SSET_INITIALIZER(&dpif_types); int error, openerror = 0, enumerror = 0; const char *type, *name; bool at_least_one = false; dp_enumerate_types(&dpif_types); SSET_FOR_EACH (type, &dpif_types) { error = dp_enumerate_names(type, &dpif_names); if (error) { enumerror = error; } SSET_FOR_EACH (name, &dpif_names) { struct dpif *dpif; at_least_one = true; error = dpif_open(name, type, &dpif); if (!error) { cb(dpif, dpctl_p); dpif_close(dpif); } else { openerror = error; dpctl_error(dpctl_p, error, "opening datapath %s failed", name); } } } sset_destroy(&dpif_names); sset_destroy(&dpif_types); /* If there has been an error while opening a datapath it should be * reported. Otherwise, we want to ignore the errors generated by * dp_enumerate_names() if at least one datapath has been discovered, * because they're not interesting for the user. This happens, for * example, if OVS is using a userspace datapath and the kernel module * is not loaded. */ if (openerror) { return openerror; } else { return at_least_one ? 0 : enumerror; } } static int dpctl_show(int argc, const char *argv[], struct dpctl_params *dpctl_p) { int error, lasterror = 0; if (argc > 1) { int i; for (i = 1; i < argc; i++) { const char *name = argv[i]; struct dpif *dpif; error = parsed_dpif_open(name, false, &dpif); if (!error) { show_dpif(dpif, dpctl_p); dpif_close(dpif); } else { dpctl_error(dpctl_p, error, "opening datapath %s failed", name); lasterror = error; } } } else { lasterror = dps_for_each(dpctl_p, show_dpif); } return lasterror; } static void dump_cb(struct dpif *dpif, struct dpctl_params *dpctl_p) { dpctl_print(dpctl_p, "%s\n", dpif_name(dpif)); } static int dpctl_dump_dps(int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, struct dpctl_params *dpctl_p) { return dps_for_each(dpctl_p, dump_cb); } static void format_dpif_flow(struct ds *ds, const struct dpif_flow *f, struct hmap *ports, struct dpctl_params *dpctl_p) { if (dpctl_p->verbosity && f->ufid_present) { odp_format_ufid(&f->ufid, ds); ds_put_cstr(ds, ", "); } odp_flow_format(f->key, f->key_len, f->mask, f->mask_len, ports, ds, dpctl_p->verbosity); ds_put_cstr(ds, ", "); dpif_flow_stats_format(&f->stats, ds); if (dpctl_p->verbosity && f->attrs.offloaded) { if (f->attrs.dp_layer && !strcmp(f->attrs.dp_layer, "ovs")) { ds_put_cstr(ds, ", offloaded:partial"); } else { ds_put_cstr(ds, ", offloaded:yes"); } } if (dpctl_p->verbosity && f->attrs.dp_layer) { ds_put_format(ds, ", dp:%s", f->attrs.dp_layer); } ds_put_cstr(ds, ", actions:"); format_odp_actions(ds, f->actions, f->actions_len, ports); if (dpctl_p->verbosity && f->attrs.dp_extra_info) { ds_put_format(ds, ", dp-extra-info:%s", f->attrs.dp_extra_info); } } struct dump_types { bool ovs; bool tc; bool dpdk; bool offloaded; bool non_offloaded; bool partially_offloaded; }; static void enable_all_dump_types(struct dump_types *dump_types) { dump_types->ovs = true; dump_types->tc = true; dump_types->dpdk = true; dump_types->offloaded = true; dump_types->non_offloaded = true; dump_types->partially_offloaded = true; } static int populate_dump_types(char *types_list, struct dump_types *dump_types, struct dpctl_params *dpctl_p) { if (!types_list) { enable_all_dump_types(dump_types); return 0; } char *current_type; while (types_list && types_list[0] != '\0') { current_type = types_list; size_t type_len = strcspn(current_type, ","); types_list += type_len + (types_list[type_len] != '\0'); current_type[type_len] = '\0'; if (!strcmp(current_type, "ovs")) { dump_types->ovs = true; } else if (!strcmp(current_type, "tc")) { dump_types->tc = true; } else if (!strcmp(current_type, "dpdk")) { dump_types->dpdk = true; } else if (!strcmp(current_type, "offloaded")) { dump_types->offloaded = true; } else if (!strcmp(current_type, "non-offloaded")) { dump_types->non_offloaded = true; } else if (!strcmp(current_type, "partially-offloaded")) { dump_types->partially_offloaded = true; } else if (!strcmp(current_type, "all")) { enable_all_dump_types(dump_types); } else { dpctl_error(dpctl_p, EINVAL, "Failed to parse type (%s)", current_type); return EINVAL; } } return 0; } static void determine_dpif_flow_dump_types(struct dump_types *dump_types, struct dpif_flow_dump_types *dpif_dump_types) { dpif_dump_types->ovs_flows = dump_types->ovs || dump_types->non_offloaded; dpif_dump_types->netdev_flows = dump_types->tc || dump_types->offloaded || dump_types->non_offloaded || dump_types->dpdk || dump_types->partially_offloaded; } static bool flow_passes_type_filter(const struct dpif_flow *f, struct dump_types *dump_types) { if (dump_types->ovs && !strcmp(f->attrs.dp_layer, "ovs")) { return true; } if (dump_types->tc && !strcmp(f->attrs.dp_layer, "tc")) { return true; } if (dump_types->dpdk && !strcmp(f->attrs.dp_layer, "dpdk")) { return true; } if (dump_types->offloaded && f->attrs.offloaded && strcmp(f->attrs.dp_layer, "ovs")) { return true; } if (dump_types->partially_offloaded && f->attrs.offloaded && !strcmp(f->attrs.dp_layer, "ovs")) { return true; } if (dump_types->non_offloaded && !(f->attrs.offloaded)) { return true; } return false; } static struct hmap * dpctl_get_portno_names(struct dpif *dpif, const struct dpctl_params *dpctl_p) { if (dpctl_p->names) { struct hmap *portno_names = xmalloc(sizeof *portno_names); hmap_init(portno_names); struct dpif_port_dump port_dump; struct dpif_port dpif_port; DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, dpif) { odp_portno_names_set(portno_names, dpif_port.port_no, dpif_port.name); } return portno_names; } else { return NULL; } } static void dpctl_free_portno_names(struct hmap *portno_names) { if (portno_names) { odp_portno_names_destroy(portno_names); hmap_destroy(portno_names); free(portno_names); } } static int dpctl_dump_flows(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; struct ds ds; char *filter = NULL; struct flow flow_filter; struct flow_wildcards wc_filter; char *types_list = NULL; struct dump_types dump_types; struct dpif_flow_dump_types dpif_dump_types; struct dpif_flow_dump_thread *flow_dump_thread; struct dpif_flow_dump *flow_dump; struct dpif_flow f; int pmd_id = PMD_ID_NULL; bool pmd_id_filter = false; int lastargc = 0; int error; while (argc > 1 && lastargc != argc) { lastargc = argc; if (!strncmp(argv[argc - 1], "filter=", 7) && !filter) { filter = xstrdup(argv[--argc] + 7); } else if (!strncmp(argv[argc - 1], "type=", 5) && !types_list) { if (!dpctl_p->is_appctl) { dpctl_error(dpctl_p, 0, "Invalid argument 'type'. " "Use 'ovs-appctl dpctl/dump-flows' instead."); error = EINVAL; goto out_free; } types_list = xstrdup(argv[--argc] + 5); } else if (!strncmp(argv[argc - 1], "pmd=", 4)) { if (!ovs_scan(argv[--argc], "pmd=%d", &pmd_id)) { error = EINVAL; goto out_free; } if (pmd_id == -1) { pmd_id = NON_PMD_CORE_ID; } pmd_id_filter = true; } } error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { goto out_free; } struct hmap *portno_names = dpctl_get_portno_names(dpif, dpctl_p); if (filter) { struct ofputil_port_map port_map; ofputil_port_map_init(&port_map); struct dpif_port_dump port_dump; struct dpif_port dpif_port; DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, dpif) { ofputil_port_map_put(&port_map, u16_to_ofp(odp_to_u32(dpif_port.port_no)), dpif_port.name); } char *err = parse_ofp_exact_flow(&flow_filter, &wc_filter, NULL, filter, &port_map); ofputil_port_map_destroy(&port_map); if (err) { dpctl_error(dpctl_p, 0, "Failed to parse filter (%s)", err); free(err); error = EINVAL; goto out_dpifclose; } } memset(&dump_types, 0, sizeof dump_types); error = populate_dump_types(types_list, &dump_types, dpctl_p); if (error) { goto out_dpifclose; } determine_dpif_flow_dump_types(&dump_types, &dpif_dump_types); /* Make sure that these values are different. PMD_ID_NULL means that the * pmd is unspecified (e.g. because the datapath doesn't have different * pmd threads), while NON_PMD_CORE_ID refers to every non pmd threads * in the userspace datapath */ BUILD_ASSERT(PMD_ID_NULL != NON_PMD_CORE_ID); ds_init(&ds); memset(&f, 0, sizeof f); flow_dump = dpif_flow_dump_create(dpif, false, &dpif_dump_types); flow_dump_thread = dpif_flow_dump_thread_create(flow_dump); while (dpif_flow_dump_next(flow_dump_thread, &f, 1)) { if (filter) { struct flow flow; struct flow_wildcards wc; struct match match, match_filter; struct minimatch minimatch; odp_flow_key_to_flow(f.key, f.key_len, &flow, NULL); odp_flow_key_to_mask(f.mask, f.mask_len, &wc, &flow, NULL); match_init(&match, &flow, &wc); match_init(&match_filter, &flow_filter, &wc); match_init(&match_filter, &match_filter.flow, &wc_filter); minimatch_init(&minimatch, &match_filter); if (!minimatch_matches_flow(&minimatch, &match.flow)) { minimatch_destroy(&minimatch); continue; } minimatch_destroy(&minimatch); } ds_clear(&ds); /* If 'pmd_id' is specified, overlapping flows could be dumped from * different pmd threads. So, separates dumps from different pmds * by printing a title line. */ if (!pmd_id_filter && pmd_id != f.pmd_id) { if (f.pmd_id == NON_PMD_CORE_ID) { ds_put_format(&ds, "flow-dump from the main thread:\n"); } else { ds_put_format(&ds, "flow-dump from pmd on cpu core: %d\n", f.pmd_id); } pmd_id = f.pmd_id; } if (pmd_id == f.pmd_id && flow_passes_type_filter(&f, &dump_types)) { format_dpif_flow(&ds, &f, portno_names, dpctl_p); dpctl_print(dpctl_p, "%s\n", ds_cstr(&ds)); } } dpif_flow_dump_thread_destroy(flow_dump_thread); error = dpif_flow_dump_destroy(flow_dump); if (error) { dpctl_error(dpctl_p, error, "Failed to dump flows from datapath"); } ds_destroy(&ds); out_dpifclose: dpctl_free_portno_names(portno_names); dpif_close(dpif); out_free: free(filter); free(types_list); return error; } static int dpctl_put_flow_dpif(struct dpif *dpif, const char *key_s, const char *actions_s, enum dpif_flow_put_flags flags, struct dpctl_params *dpctl_p) { struct dpif_flow_stats stats; struct dpif_port dpif_port; struct dpif_port_dump port_dump; struct ofpbuf actions; struct ofpbuf key; struct ofpbuf mask; ovs_u128 ufid; bool ufid_present; struct simap port_names; int n, error; ufid_present = false; n = odp_ufid_from_string(key_s, &ufid); if (n < 0) { dpctl_error(dpctl_p, -n, "parsing flow ufid"); return -n; } else if (n) { key_s += n; ufid_present = true; } simap_init(&port_names); DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, dpif) { simap_put(&port_names, dpif_port.name, odp_to_u32(dpif_port.port_no)); } ofpbuf_init(&key, 0); ofpbuf_init(&mask, 0); char *error_s; error = odp_flow_from_string(key_s, &port_names, &key, &mask, &error_s); simap_destroy(&port_names); if (error) { dpctl_error(dpctl_p, error, "parsing flow key (%s)", error_s); free(error_s); goto out_freekeymask; } ofpbuf_init(&actions, 0); error = odp_actions_from_string(actions_s, NULL, &actions); if (error) { dpctl_error(dpctl_p, error, "parsing actions"); goto out_freeactions; } if (!ufid_present && dpctl_p->is_appctl) { /* Generating UFID for this flow so it could be offloaded to HW. We're * not doing that if invoked from ovs-dpctl utility because * odp_flow_key_hash() uses randomly generated base for flow hashes * that will be different for each invocation. And, anyway, offloading * is only available via appctl. */ odp_flow_key_hash(key.data, key.size, &ufid); ufid_present = true; } /* The flow will be added on all pmds currently in the datapath. */ error = dpif_flow_put(dpif, flags, key.data, key.size, mask.size == 0 ? NULL : mask.data, mask.size, actions.data, actions.size, ufid_present ? &ufid : NULL, PMD_ID_NULL, dpctl_p->print_statistics ? &stats : NULL); if (error) { dpctl_error(dpctl_p, error, "updating flow table"); goto out_freeactions; } if (dpctl_p->print_statistics) { struct ds s; ds_init(&s); dpif_flow_stats_format(&stats, &s); dpctl_print(dpctl_p, "%s\n", ds_cstr(&s)); ds_destroy(&s); } out_freeactions: ofpbuf_uninit(&actions); out_freekeymask: ofpbuf_uninit(&mask); ofpbuf_uninit(&key); return error; } static int dpctl_put_flow(int argc, const char *argv[], enum dpif_flow_put_flags flags, struct dpctl_params *dpctl_p) { struct dpif *dpif; int error; error = opt_dpif_open(argc, argv, dpctl_p, 4, &dpif); if (error) { return error; } error = dpctl_put_flow_dpif(dpif, argv[argc - 2], argv[argc - 1], flags, dpctl_p); dpif_close(dpif); return error; } static int dpctl_add_flow(int argc, const char *argv[], struct dpctl_params *dpctl_p) { return dpctl_put_flow(argc, argv, DPIF_FP_CREATE, dpctl_p); } static int dpctl_mod_flow(int argc, const char *argv[], struct dpctl_params *dpctl_p) { enum dpif_flow_put_flags flags; flags = DPIF_FP_MODIFY; if (dpctl_p->may_create) { flags |= DPIF_FP_CREATE; } if (dpctl_p->zero_statistics) { flags |= DPIF_FP_ZERO_STATS; } return dpctl_put_flow(argc, argv, flags, dpctl_p); } static int dpctl_get_flow(int argc, const char *argv[], struct dpctl_params *dpctl_p) { const char *key_s = argv[argc - 1]; struct dpif_flow flow; struct dpif *dpif; ovs_u128 ufid; struct ofpbuf buf; uint64_t stub[DPIF_FLOW_BUFSIZE / 8]; struct ds ds; int n, error; error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (error) { return error; } ofpbuf_use_stub(&buf, &stub, sizeof stub); struct hmap *portno_names = dpctl_get_portno_names(dpif, dpctl_p); n = odp_ufid_from_string(key_s, &ufid); if (n <= 0) { dpctl_error(dpctl_p, -n, "parsing flow ufid"); goto out; } /* In case of PMD will be returned flow from first PMD thread with match. */ error = dpif_flow_get(dpif, NULL, 0, &ufid, PMD_ID_NULL, &buf, &flow); if (error) { dpctl_error(dpctl_p, error, "getting flow"); goto out; } ds_init(&ds); format_dpif_flow(&ds, &flow, portno_names, dpctl_p); dpctl_print(dpctl_p, "%s\n", ds_cstr(&ds)); ds_destroy(&ds); out: dpctl_free_portno_names(portno_names); ofpbuf_uninit(&buf); dpif_close(dpif); return error; } static int dpctl_del_flow_dpif(struct dpif *dpif, const char *key_s, struct dpctl_params *dpctl_p) { struct dpif_flow_stats stats; struct dpif_port dpif_port; struct dpif_port_dump port_dump; struct ofpbuf key; struct ofpbuf mask; /* To be ignored. */ ovs_u128 ufid; bool ufid_generated; bool ufid_present; struct simap port_names; int n, error; ufid_present = false; n = odp_ufid_from_string(key_s, &ufid); if (n < 0) { dpctl_error(dpctl_p, -n, "parsing flow ufid"); return -n; } else if (n) { key_s += n; ufid_present = true; } simap_init(&port_names); DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, dpif) { simap_put(&port_names, dpif_port.name, odp_to_u32(dpif_port.port_no)); } ofpbuf_init(&key, 0); ofpbuf_init(&mask, 0); char *error_s; error = odp_flow_from_string(key_s, &port_names, &key, &mask, &error_s); if (error) { dpctl_error(dpctl_p, error, "%s", error_s); free(error_s); goto out; } if (!ufid_present && dpctl_p->is_appctl) { /* While adding flow via appctl we're generating UFID to make HW * offloading possible. Generating UFID here to be sure that such * flows could be removed the same way they were added. */ odp_flow_key_hash(key.data, key.size, &ufid); ufid_present = ufid_generated = true; } /* The flow will be deleted from all pmds currently in the datapath. */ error = dpif_flow_del(dpif, key.data, key.size, ufid_present ? &ufid : NULL, PMD_ID_NULL, dpctl_p->print_statistics ? &stats : NULL); if (error) { dpctl_error(dpctl_p, error, "deleting flow"); if (error == ENOENT && (!ufid_present || ufid_generated)) { struct ds s; ds_init(&s); ds_put_format(&s, "Perhaps you need to specify a UFID?"); dpctl_print(dpctl_p, "%s\n", ds_cstr(&s)); ds_destroy(&s); } goto out; } if (dpctl_p->print_statistics) { struct ds s; ds_init(&s); dpif_flow_stats_format(&stats, &s); dpctl_print(dpctl_p, "%s\n", ds_cstr(&s)); ds_destroy(&s); } out: ofpbuf_uninit(&mask); ofpbuf_uninit(&key); simap_destroy(&port_names); return error; } static int dpctl_del_flow(int argc, const char *argv[], struct dpctl_params *dpctl_p) { const char *key_s = argv[argc - 1]; struct dpif *dpif; int error; error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (error) { return error; } error = dpctl_del_flow_dpif(dpif, key_s, dpctl_p); dpif_close(dpif); return error; } static int dpctl_parse_flow_line(int command, struct ds *s, char **flow, char **action) { const char *line = ds_cstr(s); size_t len; /* First figure out the command, or fallback to FLOWS_ADD. */ line += strspn(line, " \t\r\n"); len = strcspn(line, ", \t\r\n"); if (!strncmp(line, "add", len)) { command = DPCTL_FLOWS_ADD; } else if (!strncmp(line, "delete", len)) { command = DPCTL_FLOWS_DEL; } else if (!strncmp(line, "modify", len)) { command = DPCTL_FLOWS_MOD; } else { len = 0; } line += len; /* Isolate flow and action (for add/modify). */ line += strspn(line, " \t\r\n"); len = strcspn(line, " \t\r\n"); if (len == 0) { *flow = NULL; *action = NULL; return command; } *flow = xzalloc(len + 1); ovs_strlcpy(*flow, line, len + 1); line += len; line += strspn(line, " \t\r\n"); if (strlen(line)) { *action = xstrdup(line); } else { *action = NULL; } return command; } static int dpctl_process_flows(int argc, const char *argv[], struct dpctl_params *dpctl_p) { const char *file_name = argv[argc - 1]; int line_number = 0; struct dpif *dpif; struct ds line; FILE *stream; int error; int def_cmd = DPCTL_FLOWS_ADD; if (strstr(argv[0], "mod-flows")) { def_cmd = DPCTL_FLOWS_MOD; } else if (strstr(argv[0], "del-flows")) { def_cmd = DPCTL_FLOWS_DEL; } error = opt_dpif_open(argc, argv, dpctl_p, 4, &dpif); if (error) { return error; } stream = !strcmp(file_name, "-") ? stdin : fopen(file_name, "r"); if (!stream) { error = errno; dpctl_error(dpctl_p, error, "Opening file \"%s\" failed", file_name); goto out_close_dpif; } ds_init(&line); while (!ds_get_preprocessed_line(&line, stream, &line_number)) { /* We do not process all the lines first and then execute the actions * as we would like to take commands as a continuous stream of * commands from stdin. */ char *flow = NULL; char *action = NULL; int cmd = dpctl_parse_flow_line(def_cmd, &line, &flow, &action); if ((!flow && !action) || ((cmd == DPCTL_FLOWS_ADD || cmd == DPCTL_FLOWS_MOD) && !action) || (cmd == DPCTL_FLOWS_DEL && action)) { dpctl_error(dpctl_p, 0, "Failed parsing line number %u, skipped!", line_number); } else { switch (cmd) { case DPCTL_FLOWS_ADD: dpctl_put_flow_dpif(dpif, flow, action, DPIF_FP_CREATE, dpctl_p); break; case DPCTL_FLOWS_MOD: dpctl_put_flow_dpif(dpif, flow, action, DPIF_FP_MODIFY, dpctl_p); break; case DPCTL_FLOWS_DEL: dpctl_del_flow_dpif(dpif, flow, dpctl_p); break; } } free(flow); free(action); } ds_destroy(&line); if (stream != stdin) { fclose(stream); } out_close_dpif: dpif_close(dpif); return 0; } static int dpctl_del_flows(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error; if ((!dp_arg_exists(argc, argv) && argc == 2) || argc > 2) { return dpctl_process_flows(argc, argv, dpctl_p); } error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { return error; } error = dpif_flow_flush(dpif); if (error) { dpctl_error(dpctl_p, error, "deleting all flows"); } dpif_close(dpif); return error; } static int dpctl_offload_stats_show(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct netdev_custom_stats stats; struct dpif *dpif; int error; size_t i; error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { return error; } memset(&stats, 0, sizeof(stats)); error = dpif_offload_stats_get(dpif, &stats); if (error) { dpctl_error(dpctl_p, error, "retrieving offload statistics"); goto close_dpif; } dpctl_print(dpctl_p, "HW Offload stats:\n"); for (i = 0; i < stats.size; i++) { dpctl_print(dpctl_p, " %s: %6" PRIu64 "\n", stats.counters[i].name, stats.counters[i].value); } netdev_free_custom_stats_counters(&stats); close_dpif: dpif_close(dpif); return error; } static int dpctl_help(int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, struct dpctl_params *dpctl_p) { if (dpctl_p->usage) { dpctl_p->usage(dpctl_p->aux); } return 0; } static int dpctl_list_commands(int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, struct dpctl_params *dpctl_p) { struct ds ds = DS_EMPTY_INITIALIZER; const struct dpctl_command *commands = get_all_dpctl_commands(); ds_put_cstr(&ds, "The available commands are:\n"); for (; commands->name; commands++) { const struct dpctl_command *c = commands; if (dpctl_p->is_appctl && !strcmp(c->name, "help")) { continue; } ds_put_format(&ds, " %s%-23s %s\n", dpctl_p->is_appctl ? "dpctl/" : "", c->name, c->usage); } dpctl_puts(dpctl_p, false, ds.string); ds_destroy(&ds); return 0; } static int dpctl_dump_conntrack(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct ct_dpif_dump_state *dump; struct ct_dpif_entry cte; uint16_t zone, *pzone = NULL; int tot_bkts; struct dpif *dpif; int error; if (argc > 1 && ovs_scan(argv[argc - 1], "zone=%"SCNu16, &zone)) { pzone = &zone; argc--; } error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { return error; } error = ct_dpif_dump_start(dpif, &dump, pzone, &tot_bkts); if (error) { dpctl_error(dpctl_p, error, "starting conntrack dump"); dpif_close(dpif); return error; } while (!(error = ct_dpif_dump_next(dump, &cte))) { struct ds s = DS_EMPTY_INITIALIZER; ct_dpif_format_entry(&cte, &s, dpctl_p->verbosity, dpctl_p->print_statistics); ct_dpif_entry_uninit(&cte); dpctl_print(dpctl_p, "%s\n", ds_cstr(&s)); ds_destroy(&s); } if (error == EOF) { /* Any CT entry was dumped with no issue. */ error = 0; } else if (error) { dpctl_error(dpctl_p, error, "dumping conntrack entry"); } ct_dpif_dump_done(dump); dpif_close(dpif); return error; } static int dpctl_flush_conntrack(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif = NULL; struct ofp_ct_match match = {0}; struct ds ds = DS_EMPTY_INITIALIZER; uint16_t zone, *pzone = NULL; int error; int args = argc - 1; int zone_pos = 1; if (dp_arg_exists(argc, argv)) { args--; zone_pos = 2; } /* Parse zone. */ if (args && !strncmp(argv[zone_pos], "zone=", 5)) { if (!ovs_scan(argv[zone_pos], "zone=%"SCNu16, &zone)) { ds_put_cstr(&ds, "failed to parse zone"); error = EINVAL; goto error; } pzone = &zone; args--; } /* Parse ct tuples. */ for (int i = 0; i < 2; i++) { if (!args) { break; } struct ofp_ct_tuple *tuple = i ? &match.tuple_reply : &match.tuple_orig; const char *arg = argv[argc - args]; if (arg[0] && !ofp_ct_tuple_parse(tuple, arg, &ds, &match.ip_proto, &match.l3_type)) { error = EINVAL; goto error; } args--; } /* Report error if there is more than one unparsed argument. */ if (args > 0) { ds_put_cstr(&ds, "invalid arguments"); error = EINVAL; goto error; } error = opt_dpif_open(argc, argv, dpctl_p, 5, &dpif); if (error) { dpctl_error(dpctl_p, error, "Cannot open dpif"); return error; } error = ct_dpif_flush(dpif, pzone, &match); if (!error) { dpif_close(dpif); return 0; } else { ds_put_cstr(&ds, "failed to flush conntrack"); } error: dpctl_error(dpctl_p, error, "%s", ds_cstr(&ds)); ds_destroy(&ds); dpif_close(dpif); return error; } static int dpctl_ct_stats_show(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; struct ct_dpif_dump_state *dump; struct ct_dpif_entry cte; uint16_t zone, *pzone = NULL; int tot_bkts; int lastargc = 0; int proto_stats[CT_STATS_MAX]; int tcp_conn_per_states[CT_DPIF_TCPS_MAX_NUM]; int error; bool verbose = dpctl_p->verbosity; while (argc > 1 && lastargc != argc) { lastargc = argc; if (!strncmp(argv[argc - 1], "verbose", 7)) { /* Support "verbose" argument for backwards compatibility. */ verbose = true; argc--; } else if (!strncmp(argv[argc - 1], "zone=", 5)) { if (ovs_scan(argv[argc - 1], "zone=%"SCNu16, &zone)) { pzone = &zone; argc--; } } } error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { return error; } memset(proto_stats, 0, sizeof(proto_stats)); memset(tcp_conn_per_states, 0, sizeof(tcp_conn_per_states)); error = ct_dpif_dump_start(dpif, &dump, pzone, &tot_bkts); if (error) { dpctl_error(dpctl_p, error, "starting conntrack dump"); dpif_close(dpif); return error; } int tot_conn = 0; while (!(error = ct_dpif_dump_next(dump, &cte))) { ct_dpif_entry_uninit(&cte); tot_conn++; switch (cte.tuple_orig.ip_proto) { case IPPROTO_ICMP: proto_stats[CT_STATS_ICMP]++; break; case IPPROTO_ICMPV6: proto_stats[CT_STATS_ICMPV6]++; break; case IPPROTO_TCP: proto_stats[CT_STATS_TCP]++; uint8_t tcp_state; /* We keep two separate tcp states, but we print just one. The * Linux kernel connection tracker internally keeps only one state, * so 'state_orig' and 'state_reply', will be the same. */ tcp_state = MAX(cte.protoinfo.tcp.state_orig, cte.protoinfo.tcp.state_reply); tcp_state = ct_dpif_coalesce_tcp_state(tcp_state); tcp_conn_per_states[tcp_state]++; break; case IPPROTO_UDP: proto_stats[CT_STATS_UDP]++; break; case IPPROTO_SCTP: proto_stats[CT_STATS_SCTP]++; break; case IPPROTO_UDPLITE: proto_stats[CT_STATS_UDPLITE]++; break; case IPPROTO_DCCP: proto_stats[CT_STATS_DCCP]++; break; case IPPROTO_IGMP: proto_stats[CT_STATS_IGMP]++; break; default: proto_stats[CT_STATS_OTHER]++; break; } } if (error == EOF) { /* All CT entries were dumped with no issue. */ error = 0; } else if (error) { dpctl_error(dpctl_p, error, "dumping conntrack entry"); /* Fall through to show any other info we collected. */ } dpctl_print(dpctl_p, "Connections Stats:\n Total: %d\n", tot_conn); if (proto_stats[CT_STATS_TCP]) { dpctl_print(dpctl_p, " TCP: %d\n", proto_stats[CT_STATS_TCP]); if (verbose) { dpctl_print(dpctl_p, " Conn per TCP states:\n"); for (int i = 0; i < CT_DPIF_TCPS_MAX_NUM; i++) { if (tcp_conn_per_states[i]) { struct ds s = DS_EMPTY_INITIALIZER; ct_dpif_format_tcp_stat(&s, i, tcp_conn_per_states[i]); dpctl_print(dpctl_p, "%s\n", ds_cstr(&s)); ds_destroy(&s); } } } } if (proto_stats[CT_STATS_UDP]) { dpctl_print(dpctl_p, " UDP: %d\n", proto_stats[CT_STATS_UDP]); } if (proto_stats[CT_STATS_UDPLITE]) { dpctl_print(dpctl_p, " UDPLITE: %d\n", proto_stats[CT_STATS_UDPLITE]); } if (proto_stats[CT_STATS_SCTP]) { dpctl_print(dpctl_p, " SCTP: %d\n", proto_stats[CT_STATS_SCTP]); } if (proto_stats[CT_STATS_ICMP]) { dpctl_print(dpctl_p, " ICMP: %d\n", proto_stats[CT_STATS_ICMP]); } if (proto_stats[CT_STATS_DCCP]) { dpctl_print(dpctl_p, " DCCP: %d\n", proto_stats[CT_STATS_DCCP]); } if (proto_stats[CT_STATS_IGMP]) { dpctl_print(dpctl_p, " IGMP: %d\n", proto_stats[CT_STATS_IGMP]); } if (proto_stats[CT_STATS_OTHER]) { dpctl_print(dpctl_p, " Other: %d\n", proto_stats[CT_STATS_OTHER]); } ct_dpif_dump_done(dump); dpif_close(dpif); return error; } #define CT_BKTS_GT "gt=" static int dpctl_ct_bkts(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; struct ct_dpif_dump_state *dump; struct ct_dpif_entry cte; uint16_t gt = 0; /* Threshold: display value when greater than gt. */ uint16_t *pzone = NULL; int tot_bkts = 0; int error; if (argc > 1 && !strncmp(argv[argc - 1], CT_BKTS_GT, strlen(CT_BKTS_GT))) { if (ovs_scan(argv[argc - 1], CT_BKTS_GT"%"SCNu16, >)) { argc--; } } error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { return error; } error = ct_dpif_dump_start(dpif, &dump, pzone, &tot_bkts); if (error) { dpctl_error(dpctl_p, error, "starting conntrack dump"); dpif_close(dpif); return error; } if (tot_bkts == -1) { /* Command not available when called by kernel OvS. */ dpctl_print(dpctl_p, "Command is available for UserSpace ConnTracker only.\n"); ct_dpif_dump_done(dump); dpif_close(dpif); return 0; } dpctl_print(dpctl_p, "Total Buckets: %d\n", tot_bkts); int tot_conn = 0; uint32_t *conn_per_bkts = xzalloc(tot_bkts * sizeof(uint32_t)); while (!(error = ct_dpif_dump_next(dump, &cte))) { ct_dpif_entry_uninit(&cte); tot_conn++; if (tot_bkts > 0) { if (cte.bkt < tot_bkts) { conn_per_bkts[cte.bkt]++; } else { dpctl_print(dpctl_p, "Bucket nr out of range: %d >= %d\n", cte.bkt, tot_bkts); } } } if (error == EOF) { /* All CT entries were dumped with no issue. */ error = 0; } else if (error) { dpctl_error(dpctl_p, error, "dumping conntrack entry"); /* Fall through and display all the collected info. */ } dpctl_print(dpctl_p, "Current Connections: %d\n", tot_conn); dpctl_print(dpctl_p, "\n"); if (tot_bkts && tot_conn) { dpctl_print(dpctl_p, "+-----------+" "-----------------------------------------+\n"); dpctl_print(dpctl_p, "| Buckets |" " Connections per Buckets |\n"); dpctl_print(dpctl_p, "+-----------+" "-----------------------------------------+"); #define NUM_BKTS_DIPLAYED_PER_ROW 8 for (int i = 0; i < tot_bkts; i++) { if (i % NUM_BKTS_DIPLAYED_PER_ROW == 0) { dpctl_print(dpctl_p, "\n %3d..%3d | ", i, i + NUM_BKTS_DIPLAYED_PER_ROW - 1); } if (conn_per_bkts[i] > gt) { dpctl_print(dpctl_p, "%5d", conn_per_bkts[i]); } else { dpctl_print(dpctl_p, "%5s", "."); } } dpctl_print(dpctl_p, "\n\n"); } ct_dpif_dump_done(dump); dpif_close(dpif); free(conn_per_bkts); return error; } static int dpctl_ct_set_maxconns(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (!error) { uint32_t maxconns; if (ovs_scan(argv[argc - 1], "%"SCNu32, &maxconns)) { error = ct_dpif_set_maxconns(dpif, maxconns); if (!error) { dpctl_print(dpctl_p, "setting maxconns successful"); } else { dpctl_error(dpctl_p, error, "ct set maxconns failed"); } } else { error = EINVAL; dpctl_error(dpctl_p, error, "maxconns missing or malformed"); } dpif_close(dpif); } return error; } static int dpctl_ct_get_maxconns(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (!error) { uint32_t maxconns; error = ct_dpif_get_maxconns(dpif, &maxconns); if (!error) { dpctl_print(dpctl_p, "%u\n", maxconns); } else { dpctl_error(dpctl_p, error, "maxconns could not be retrieved"); } dpif_close(dpif); } return error; } static int dpctl_ct_get_nconns(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (!error) { uint32_t nconns; error = ct_dpif_get_nconns(dpif, &nconns); if (!error) { dpctl_print(dpctl_p, "%u\n", nconns); } else { dpctl_error(dpctl_p, error, "nconns could not be retrieved"); } dpif_close(dpif); } return error; } static int dpctl_ct_set_tcp_seq_chk__(int argc, const char *argv[], struct dpctl_params *dpctl_p, bool enabled) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (!error) { error = ct_dpif_set_tcp_seq_chk(dpif, enabled); if (!error) { dpctl_print(dpctl_p, "%s TCP sequence checking successful", enabled ? "enabling" : "disabling"); } else { dpctl_error(dpctl_p, error, "%s TCP sequence checking failed", enabled ? "enabling" : "disabling"); } dpif_close(dpif); } return error; } static int dpctl_ct_enable_tcp_seq_chk(int argc, const char *argv[], struct dpctl_params *dpctl_p) { return dpctl_ct_set_tcp_seq_chk__(argc, argv, dpctl_p, true); } static int dpctl_ct_disable_tcp_seq_chk(int argc, const char *argv[], struct dpctl_params *dpctl_p) { return dpctl_ct_set_tcp_seq_chk__(argc, argv, dpctl_p, false); } static int dpctl_ct_get_tcp_seq_chk(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (!error) { bool enabled; error = ct_dpif_get_tcp_seq_chk(dpif, &enabled); if (!error) { dpctl_print(dpctl_p, "TCP sequence checking: %s\n", enabled ? "enabled" : "disabled"); } else { dpctl_error(dpctl_p, error, "TCP sequence checking query failed"); } dpif_close(dpif); } return error; } static int dpctl_ct_set_limits(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; struct ds ds = DS_EMPTY_INITIALIZER; int i = dp_arg_exists(argc, argv) ? 2 : 1; uint32_t default_limit, *p_default_limit = NULL; struct ovs_list zone_limits = OVS_LIST_INITIALIZER(&zone_limits); int error = opt_dpif_open(argc, argv, dpctl_p, INT_MAX, &dpif); if (error) { return error; } /* Parse default limit */ if (!strncmp(argv[i], "default=", 8)) { if (ovs_scan(argv[i], "default=%"SCNu32, &default_limit)) { p_default_limit = &default_limit; i++; } else { ds_put_cstr(&ds, "invalid default limit"); error = EINVAL; goto error; } } /* Parse ct zone limit tuples */ while (i < argc) { uint16_t zone; uint32_t limit; if (!ct_dpif_parse_zone_limit_tuple(argv[i++], &zone, &limit, &ds)) { error = EINVAL; goto error; } ct_dpif_push_zone_limit(&zone_limits, zone, limit, 0); } error = ct_dpif_set_limits(dpif, p_default_limit, &zone_limits); if (!error) { ct_dpif_free_zone_limits(&zone_limits); dpif_close(dpif); return 0; } else { ds_put_cstr(&ds, "failed to set conntrack limit"); } error: dpctl_error(dpctl_p, error, "%s", ds_cstr(&ds)); ds_destroy(&ds); ct_dpif_free_zone_limits(&zone_limits); dpif_close(dpif); return error; } static int parse_ct_limit_zones(const char *argv, struct ovs_list *zone_limits, struct ds *ds) { char *save_ptr = NULL, *argcopy, *next_zone; uint16_t zone; if (strncmp(argv, "zone=", 5)) { ds_put_format(ds, "invalid argument %s", argv); return EINVAL; } argcopy = xstrdup(argv + 5); next_zone = strtok_r(argcopy, ",", &save_ptr); while (next_zone != NULL) { if (ovs_scan(next_zone, "%"SCNu16, &zone)) { ct_dpif_push_zone_limit(zone_limits, zone, 0, 0); } else { ds_put_cstr(ds, "invalid zone"); free(argcopy); return EINVAL; } next_zone = strtok_r(NULL, ",", &save_ptr); } free(argcopy); return 0; } static int dpctl_ct_del_limits(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; struct ds ds = DS_EMPTY_INITIALIZER; int error; int i = dp_arg_exists(argc, argv) ? 2 : 1; struct ovs_list zone_limits = OVS_LIST_INITIALIZER(&zone_limits); error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (error) { return error; } error = parse_ct_limit_zones(argv[i], &zone_limits, &ds); if (error) { goto error; } error = ct_dpif_del_limits(dpif, &zone_limits); if (!error) { goto out; } else { ds_put_cstr(&ds, "failed to delete conntrack limit"); } error: dpctl_error(dpctl_p, error, "%s", ds_cstr(&ds)); ds_destroy(&ds); out: ct_dpif_free_zone_limits(&zone_limits); dpif_close(dpif); return error; } static int dpctl_ct_get_limits(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; struct ds ds = DS_EMPTY_INITIALIZER; uint32_t default_limit; int i = dp_arg_exists(argc, argv) ? 2 : 1; struct ovs_list list_query = OVS_LIST_INITIALIZER(&list_query); struct ovs_list list_reply = OVS_LIST_INITIALIZER(&list_reply); int error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (error) { return error; } if (argc > i) { error = parse_ct_limit_zones(argv[i], &list_query, &ds); if (error) { goto error; } } error = ct_dpif_get_limits(dpif, &default_limit, &list_query, &list_reply); if (!error) { ct_dpif_format_zone_limits(default_limit, &list_reply, &ds); dpctl_print(dpctl_p, "%s\n", ds_cstr(&ds)); goto out; } else { ds_put_format(&ds, "failed to get conntrack limit %s", ovs_strerror(error)); } error: dpctl_error(dpctl_p, error, "%s", ds_cstr(&ds)); out: ds_destroy(&ds); ct_dpif_free_zone_limits(&list_query); ct_dpif_free_zone_limits(&list_reply); dpif_close(dpif); return error; } static int dpctl_ct_get_sweep(int argc, const char *argv[], struct dpctl_params *dpctl_p) { uint32_t sweep_ms = 0; struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (error) { return error; } error = ct_dpif_sweep(dpif, &sweep_ms); if (error) { dpctl_error(dpctl_p, error, "failed to get the sweep interval"); } else { dpctl_print(dpctl_p, "%"PRIu32, sweep_ms); } dpif_close(dpif); return error; } static int dpctl_ct_set_sweep(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct ds ds = DS_EMPTY_INITIALIZER; uint32_t sweep_ms = 0; struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (error) { return error; } if (!ovs_scan(argv[argc - 1], "%"SCNu32, &sweep_ms) || sweep_ms == 0) { ds_put_format(&ds, "invalid sweep value"); error = EINVAL; goto error; } error = ct_dpif_sweep(dpif, &sweep_ms); if (!error) { dpctl_print(dpctl_p, "setting sweep interval successful\n"); goto out; } ds_put_format(&ds, "failed to set the sweep interval"); error: dpctl_error(dpctl_p, error, "%s", ds_cstr(&ds)); ds_destroy(&ds); out: dpif_close(dpif); return error; } static int ipf_set_enabled__(int argc, const char *argv[], struct dpctl_params *dpctl_p, bool enabled) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 4, &dpif); if (!error) { char v4_or_v6[3] = {0}; if (ovs_scan(argv[argc - 1], "%2s", v4_or_v6) && (!strncmp(v4_or_v6, "v4", 2) || !strncmp(v4_or_v6, "v6", 2))) { error = ct_dpif_ipf_set_enabled( dpif, !strncmp(v4_or_v6, "v6", 2), enabled); if (!error) { dpctl_print(dpctl_p, "%s fragmentation reassembly successful", enabled ? "enabling" : "disabling"); } else { dpctl_error(dpctl_p, error, "%s fragmentation reassembly failed", enabled ? "enabling" : "disabling"); } } else { error = EINVAL; dpctl_error(dpctl_p, error, "parameter missing: 'v4' for IPv4 or 'v6' for IPv6"); } dpif_close(dpif); } return error; } static int dpctl_ipf_set_enabled(int argc, const char *argv[], struct dpctl_params *dpctl_p) { return ipf_set_enabled__(argc, argv, dpctl_p, true); } static int dpctl_ipf_set_disabled(int argc, const char *argv[], struct dpctl_params *dpctl_p) { return ipf_set_enabled__(argc, argv, dpctl_p, false); } static int dpctl_ipf_set_min_frag(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 4, &dpif); if (!error) { char v4_or_v6[3] = {0}; if (ovs_scan(argv[argc - 2], "%2s", v4_or_v6) && (!strncmp(v4_or_v6, "v4", 2) || !strncmp(v4_or_v6, "v6", 2))) { uint32_t min_fragment; if (ovs_scan(argv[argc - 1], "%"SCNu32, &min_fragment)) { error = ct_dpif_ipf_set_min_frag( dpif, !strncmp(v4_or_v6, "v6", 2), min_fragment); if (!error) { dpctl_print(dpctl_p, "setting minimum fragment size successful"); } else { dpctl_error(dpctl_p, error, "requested minimum fragment size too small;" " see documentation"); } } else { error = EINVAL; dpctl_error(dpctl_p, error, "parameter missing for minimum fragment size"); } } else { error = EINVAL; dpctl_error(dpctl_p, error, "parameter missing: v4 for IPv4 or v6 for IPv6"); } dpif_close(dpif); } return error; } static int dpctl_ipf_set_max_nfrags(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 3, &dpif); if (!error) { uint32_t nfrags_max; if (ovs_scan(argv[argc - 1], "%"SCNu32, &nfrags_max)) { error = ct_dpif_ipf_set_max_nfrags(dpif, nfrags_max); if (!error) { dpctl_print(dpctl_p, "setting maximum fragments successful"); } else { dpctl_error(dpctl_p, error, "setting maximum fragments failed"); } } else { error = EINVAL; dpctl_error(dpctl_p, error, "parameter missing for maximum fragments"); } dpif_close(dpif); } return error; } static void dpctl_dump_ipf(struct dpif *dpif, struct dpctl_params *dpctl_p) { struct ipf_dump_ctx *dump_ctx; char *dump; int error = ct_dpif_ipf_dump_start(dpif, &dump_ctx); if (error) { dpctl_error(dpctl_p, error, "starting ipf list dump"); /* Nothing to clean up, just return. */ return; } dpctl_print(dpctl_p, "\n Fragment Lists:\n\n"); while (!(error = ct_dpif_ipf_dump_next(dpif, dump_ctx, &dump))) { dpctl_print(dpctl_p, "%s\n", dump); free(dump); } if (error && error != EOF) { dpctl_error(dpctl_p, error, "dumping ipf lists failed"); } ct_dpif_ipf_dump_done(dpif, dump_ctx); } static int dpctl_ct_ipf_get_status(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct dpif *dpif; int error = opt_dpif_open(argc, argv, dpctl_p, 2, &dpif); if (!error) { struct dpif_ipf_status dpif_ipf_status; error = ct_dpif_ipf_get_status(dpif, &dpif_ipf_status); if (!error) { dpctl_print(dpctl_p, " Fragmentation Module Status\n"); dpctl_print(dpctl_p, " ---------------------------\n"); dpctl_print(dpctl_p, " v4 enabled: %u\n", dpif_ipf_status.v4.enabled); dpctl_print(dpctl_p, " v6 enabled: %u\n", dpif_ipf_status.v6.enabled); dpctl_print(dpctl_p, " max num frags (v4/v6): %u\n", dpif_ipf_status.nfrag_max); dpctl_print(dpctl_p, " num frag: %u\n", dpif_ipf_status.nfrag); dpctl_print(dpctl_p, " min v4 frag size: %u\n", dpif_ipf_status.v4.min_frag_size); dpctl_print(dpctl_p, " v4 frags accepted: %"PRIu64"\n", dpif_ipf_status.v4.nfrag_accepted); dpctl_print(dpctl_p, " v4 frags completed: %"PRIu64"\n", dpif_ipf_status.v4.nfrag_completed_sent); dpctl_print(dpctl_p, " v4 frags expired: %"PRIu64"\n", dpif_ipf_status.v4.nfrag_expired_sent); dpctl_print(dpctl_p, " v4 frags too small: %"PRIu64"\n", dpif_ipf_status.v4.nfrag_too_small); dpctl_print(dpctl_p, " v4 frags overlapped: %"PRIu64"\n", dpif_ipf_status.v4.nfrag_overlap); dpctl_print(dpctl_p, " v4 frags purged: %"PRIu64"\n", dpif_ipf_status.v4.nfrag_purged); dpctl_print(dpctl_p, " min v6 frag size: %u\n", dpif_ipf_status.v6.min_frag_size); dpctl_print(dpctl_p, " v6 frags accepted: %"PRIu64"\n", dpif_ipf_status.v6.nfrag_accepted); dpctl_print(dpctl_p, " v6 frags completed: %"PRIu64"\n", dpif_ipf_status.v6.nfrag_completed_sent); dpctl_print(dpctl_p, " v6 frags expired: %"PRIu64"\n", dpif_ipf_status.v6.nfrag_expired_sent); dpctl_print(dpctl_p, " v6 frags too small: %"PRIu64"\n", dpif_ipf_status.v6.nfrag_too_small); dpctl_print(dpctl_p, " v6 frags overlapped: %"PRIu64"\n", dpif_ipf_status.v6.nfrag_overlap); dpctl_print(dpctl_p, " v6 frags purged: %"PRIu64"\n", dpif_ipf_status.v6.nfrag_purged); } else { dpctl_error(dpctl_p, error, "ipf status could not be retrieved"); return error; } if (dpctl_p->verbosity) { dpctl_dump_ipf(dpif, dpctl_p); } dpif_close(dpif); } return error; } static int dpctl_cache_get_size(int argc, const char *argv[], struct dpctl_params *dpctl_p) { int error; if (argc > 1) { struct dpif *dpif; error = parsed_dpif_open(argv[1], false, &dpif); if (!error) { show_dpif_cache(dpif, dpctl_p); dpif_close(dpif); } else { dpctl_error(dpctl_p, error, "Opening datapath %s failed", argv[1]); } } else { error = dps_for_each(dpctl_p, show_dpif_cache); } return error; } static int dpctl_cache_set_size(int argc, const char *argv[], struct dpctl_params *dpctl_p) { uint32_t nr_caches, size; int i, error = EINVAL; struct dpif *dpif; if (argc != 4) { dpctl_error(dpctl_p, error, "Invalid number of arguments"); return error; } if (!ovs_scan(argv[3], "%"SCNu32, &size)) { dpctl_error(dpctl_p, error, "size is malformed"); return error; } error = parsed_dpif_open(argv[1], false, &dpif); if (error) { dpctl_error(dpctl_p, error, "Opening datapath %s failed", argv[1]); return error; } error = dpif_cache_get_supported_levels(dpif, &nr_caches); if (error || nr_caches == 0) { dpctl_error(dpctl_p, error, "Setting caches not supported"); goto exit; } for (i = 0; i < nr_caches; i++) { const char *name; if (dpif_cache_get_name(dpif, i, &name)) { continue; } if (!strcmp(argv[2], name)) { break; } } if (i == nr_caches) { error = EINVAL; dpctl_error(dpctl_p, error, "Cache name \"%s\" not found on dpif", argv[2]); goto exit; } error = dpif_cache_set_size(dpif, i, size); if (!error) { dpif_cache_get_size(dpif, i, &size); dpctl_print(dpctl_p, "Setting cache size successful, new size %u\n", size); } else { dpctl_error(dpctl_p, error, "Setting cache size failed"); } exit: dpif_close(dpif); return error; } /* Undocumented commands for unit testing. */ static int dpctl_parse_actions(int argc, const char *argv[], struct dpctl_params* dpctl_p) { int i, error = 0; for (i = 1; i < argc; i++) { struct ofpbuf actions; struct ds s; ofpbuf_init(&actions, 0); error = odp_actions_from_string(argv[i], NULL, &actions); if (error) { ofpbuf_uninit(&actions); dpctl_error(dpctl_p, error, "odp_actions_from_string"); return error; } ds_init(&s); format_odp_actions(&s, actions.data, actions.size, NULL); dpctl_print(dpctl_p, "%s\n", ds_cstr(&s)); ds_destroy(&s); ofpbuf_uninit(&actions); } return error; } struct actions_for_flow { struct hmap_node hmap_node; struct flow flow; struct ofpbuf actions; }; static struct actions_for_flow * get_actions_for_flow(struct hmap *actions_per_flow, const struct flow *flow) { uint32_t hash = flow_hash(flow, 0); struct actions_for_flow *af; HMAP_FOR_EACH_WITH_HASH (af, hmap_node, hash, actions_per_flow) { if (flow_equal(&af->flow, flow)) { return af; } } af = xmalloc(sizeof *af); af->flow = *flow; ofpbuf_init(&af->actions, 0); hmap_insert(actions_per_flow, &af->hmap_node, hash); return af; } static int compare_actions_for_flow(const void *a_, const void *b_) { struct actions_for_flow *const *a = a_; struct actions_for_flow *const *b = b_; return flow_compare_3way(&(*a)->flow, &(*b)->flow); } static int compare_output_actions(const void *a_, const void *b_) { const struct nlattr *a = a_; const struct nlattr *b = b_; uint32_t a_port = nl_attr_get_u32(a); uint32_t b_port = nl_attr_get_u32(b); return a_port < b_port ? -1 : a_port > b_port; } static void sort_output_actions__(struct nlattr *first, struct nlattr *end) { size_t bytes = (uint8_t *) end - (uint8_t *) first; size_t n = bytes / NL_A_U32_SIZE; ovs_assert(bytes % NL_A_U32_SIZE == 0); qsort(first, n, NL_A_U32_SIZE, compare_output_actions); } static void sort_output_actions(struct nlattr *actions, size_t length) { struct nlattr *first_output = NULL; struct nlattr *a; int left; NL_ATTR_FOR_EACH (a, left, actions, length) { if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT) { if (!first_output) { first_output = a; } } else { if (first_output) { sort_output_actions__(first_output, a); first_output = NULL; } } } if (first_output) { uint8_t *end = (uint8_t *) actions + length; sort_output_actions__(first_output, ALIGNED_CAST(struct nlattr *, end)); } } /* usage: "ovs-dpctl normalize-actions FLOW ACTIONS" where FLOW and ACTIONS * have the syntax used by "ovs-dpctl dump-flows". * * This command prints ACTIONS in a format that shows what happens for each * VLAN, independent of the order of the ACTIONS. For example, there is more * than one way to output a packet on VLANs 9 and 11, but this command will * print the same output for any form. * * The idea here generalizes beyond VLANs (e.g. to setting other fields) but * so far the implementation only covers VLANs. */ static int dpctl_normalize_actions(int argc, const char *argv[], struct dpctl_params *dpctl_p) { struct simap port_names; struct ofpbuf keybuf; struct flow flow; struct ofpbuf odp_actions; struct hmap actions_per_flow; struct actions_for_flow **afs; struct actions_for_flow *af; struct nlattr *a; size_t n_afs; struct ds s; int left; int i, error; int encaps = 0; ds_init(&s); simap_init(&port_names); for (i = 3; i < argc; i++) { char name[16]; int number; if (ovs_scan(argv[i], "%15[^=]=%d", name, &number)) { uintptr_t n = number; simap_put(&port_names, name, n); } else { dpctl_error(dpctl_p, 0, "%s: expected NAME=NUMBER", argv[i]); error = EINVAL; goto out; } } /* Parse flow key. */ ofpbuf_init(&keybuf, 0); char *error_s; error = odp_flow_from_string(argv[1], &port_names, &keybuf, NULL, &error_s); if (error) { dpctl_error(dpctl_p, error, "odp_flow_key_from_string (%s)", error_s); free(error_s); goto out_freekeybuf; } ds_clear(&s); odp_flow_format(keybuf.data, keybuf.size, NULL, 0, NULL, &s, dpctl_p->verbosity); dpctl_print(dpctl_p, "input flow: %s\n", ds_cstr(&s)); error = odp_flow_key_to_flow(keybuf.data, keybuf.size, &flow, &error_s); if (error) { dpctl_error(dpctl_p, error, "odp_flow_key_to_flow failed (%s)", error_s ? error_s : "reason unknown"); free(error_s); goto out_freekeybuf; } /* Parse actions. */ ofpbuf_init(&odp_actions, 0); error = odp_actions_from_string(argv[2], &port_names, &odp_actions); if (error) { dpctl_error(dpctl_p, error, "odp_actions_from_string"); goto out_freeactions; } if (dpctl_p->verbosity) { ds_clear(&s); format_odp_actions(&s, odp_actions.data, odp_actions.size, NULL); dpctl_print(dpctl_p, "input actions: %s\n", ds_cstr(&s)); } hmap_init(&actions_per_flow); NL_ATTR_FOR_EACH (a, left, odp_actions.data, odp_actions.size) { const struct ovs_action_push_vlan *push; switch(nl_attr_type(a)) { case OVS_ACTION_ATTR_POP_VLAN: flow_pop_vlan(&flow, NULL); continue; case OVS_ACTION_ATTR_PUSH_VLAN: flow_push_vlan_uninit(&flow, NULL); push = nl_attr_get_unspec(a, sizeof *push); flow.vlans[0].tpid = push->vlan_tpid; flow.vlans[0].tci = push->vlan_tci; continue; } af = get_actions_for_flow(&actions_per_flow, &flow); nl_msg_put_unspec(&af->actions, nl_attr_type(a), nl_attr_get(a), nl_attr_get_size(a)); } n_afs = hmap_count(&actions_per_flow); afs = xmalloc(n_afs * sizeof *afs); i = 0; HMAP_FOR_EACH (af, hmap_node, &actions_per_flow) { afs[i++] = af; } ovs_assert(i == n_afs); hmap_destroy(&actions_per_flow); qsort(afs, n_afs, sizeof *afs, compare_actions_for_flow); for (i = 0; i < n_afs; i++) { af = afs[i]; sort_output_actions(af->actions.data, af->actions.size); for (encaps = 0; encaps < FLOW_MAX_VLAN_HEADERS; encaps ++) { union flow_vlan_hdr *vlan = &af->flow.vlans[encaps]; if (vlan->tci != htons(0)) { dpctl_print(dpctl_p, "vlan("); if (vlan->tpid != htons(ETH_TYPE_VLAN)) { dpctl_print(dpctl_p, "tpid=0x%04"PRIx16",", vlan->tpid); } dpctl_print(dpctl_p, "vid=%"PRIu16",pcp=%d): ", vlan_tci_to_vid(vlan->tci), vlan_tci_to_pcp(vlan->tci)); } else { if (encaps == 0) { dpctl_print(dpctl_p, "no vlan: "); } break; } } if (eth_type_mpls(af->flow.dl_type)) { dpctl_print(dpctl_p, "mpls(label=%"PRIu32",tc=%d,ttl=%d): ", mpls_lse_to_label(af->flow.mpls_lse[0]), mpls_lse_to_tc(af->flow.mpls_lse[0]), mpls_lse_to_ttl(af->flow.mpls_lse[0])); } else { dpctl_print(dpctl_p, "no mpls: "); } ds_clear(&s); format_odp_actions(&s, af->actions.data, af->actions.size, NULL); dpctl_puts(dpctl_p, false, ds_cstr(&s)); ofpbuf_uninit(&af->actions); free(af); } free(afs); out_freeactions: ofpbuf_uninit(&odp_actions); out_freekeybuf: ofpbuf_uninit(&keybuf); out: simap_destroy(&port_names); ds_destroy(&s); return error; } static const struct dpctl_command all_commands[] = { { "add-dp", "dp [iface...]", 1, INT_MAX, dpctl_add_dp, DP_RW }, { "del-dp", "dp", 1, 1, dpctl_del_dp, DP_RW }, { "add-if", "dp iface...", 2, INT_MAX, dpctl_add_if, DP_RW }, { "del-if", "dp iface...", 2, INT_MAX, dpctl_del_if, DP_RW }, { "set-if", "dp iface...", 2, INT_MAX, dpctl_set_if, DP_RW }, { "dump-dps", "", 0, 0, dpctl_dump_dps, DP_RO }, { "show", "[-s] [dp...]", 0, INT_MAX, dpctl_show, DP_RO }, { "dump-flows", "[-m] [--names] [dp] [filter=..] [type=..] [pmd=..]", 0, 6, dpctl_dump_flows, DP_RO }, { "add-flow", "[dp] flow actions", 2, 3, dpctl_add_flow, DP_RW }, { "mod-flow", "[dp] flow actions", 2, 3, dpctl_mod_flow, DP_RW }, { "get-flow", "[dp] ufid", 1, 2, dpctl_get_flow, DP_RO }, { "del-flow", "[dp] flow", 1, 2, dpctl_del_flow, DP_RW }, { "add-flows", "[dp] file", 1, 2, dpctl_process_flows, DP_RW }, { "mod-flows", "[dp] file", 1, 2, dpctl_process_flows, DP_RW }, { "del-flows", "[dp] [file]", 0, 2, dpctl_del_flows, DP_RW }, { "offload-stats-show", "[dp]", 0, 1, dpctl_offload_stats_show, DP_RO }, { "dump-conntrack", "[-m] [-s] [dp] [zone=N]", 0, 4, dpctl_dump_conntrack, DP_RO }, { "flush-conntrack", "[dp] [zone=N] [ct-orig-tuple] [ct-reply-tuple]", 0, 4, dpctl_flush_conntrack, DP_RW }, { "cache-get-size", "[dp]", 0, 1, dpctl_cache_get_size, DP_RO }, { "cache-set-size", "dp cache ", 3, 3, dpctl_cache_set_size, DP_RW }, { "ct-stats-show", "[dp] [zone=N]", 0, 3, dpctl_ct_stats_show, DP_RO }, { "ct-bkts", "[dp] [gt=N]", 0, 2, dpctl_ct_bkts, DP_RO }, { "ct-set-maxconns", "[dp] maxconns", 1, 2, dpctl_ct_set_maxconns, DP_RW }, { "ct-get-maxconns", "[dp]", 0, 1, dpctl_ct_get_maxconns, DP_RO }, { "ct-get-nconns", "[dp]", 0, 1, dpctl_ct_get_nconns, DP_RO }, { "ct-enable-tcp-seq-chk", "[dp]", 0, 1, dpctl_ct_enable_tcp_seq_chk, DP_RW }, { "ct-disable-tcp-seq-chk", "[dp]", 0, 1, dpctl_ct_disable_tcp_seq_chk, DP_RW }, { "ct-get-tcp-seq-chk", "[dp]", 0, 1, dpctl_ct_get_tcp_seq_chk, DP_RO }, { "ct-set-limits", "[dp] [default=L] [zone=N,limit=L]...", 1, INT_MAX, dpctl_ct_set_limits, DP_RO }, { "ct-del-limits", "[dp] zone=N1[,N2]...", 1, 2, dpctl_ct_del_limits, DP_RO }, { "ct-get-limits", "[dp] [zone=N1[,N2]...]", 0, 2, dpctl_ct_get_limits, DP_RO }, { "ct-get-sweep-interval", "[dp]", 0, 1, dpctl_ct_get_sweep, DP_RO }, { "ct-set-sweep-interval", "[dp] ms", 1, 2, dpctl_ct_set_sweep, DP_RW }, { "ipf-set-enabled", "[dp] v4|v6", 1, 2, dpctl_ipf_set_enabled, DP_RW }, { "ipf-set-disabled", "[dp] v4|v6", 1, 2, dpctl_ipf_set_disabled, DP_RW }, { "ipf-set-min-frag", "[dp] v4|v6 minfragment", 2, 3, dpctl_ipf_set_min_frag, DP_RW }, { "ipf-set-max-nfrags", "[dp] maxfrags", 1, 2, dpctl_ipf_set_max_nfrags, DP_RW }, { "ipf-get-status", "[dp]", 0, 1, dpctl_ct_ipf_get_status, DP_RO }, { "help", "", 0, INT_MAX, dpctl_help, DP_RO }, { "list-commands", "", 0, INT_MAX, dpctl_list_commands, DP_RO }, /* Undocumented commands for testing. */ { "parse-actions", "actions", 1, INT_MAX, dpctl_parse_actions, DP_RO }, { "normalize-actions", "actions", 2, INT_MAX, dpctl_normalize_actions, DP_RO }, { NULL, NULL, 0, 0, NULL, DP_RO }, }; static const struct dpctl_command *get_all_dpctl_commands(void) { return all_commands; } /* Runs the command designated by argv[0] within the command table specified by * 'commands', which must be terminated by a command whose 'name' member is a * null pointer. */ int dpctl_run_command(int argc, const char *argv[], struct dpctl_params *dpctl_p) { const struct dpctl_command *p; if (argc < 1) { dpctl_error(dpctl_p, 0, "missing command name; use --help for help"); return EINVAL; } for (p = all_commands; p->name != NULL; p++) { if (!strcmp(p->name, argv[0])) { int n_arg = argc - 1; if (n_arg < p->min_args) { dpctl_error(dpctl_p, 0, "'%s' command requires at least %d arguments", p->name, p->min_args); return EINVAL; } else if (n_arg > p->max_args) { dpctl_error(dpctl_p, 0, "'%s' command takes at most %d arguments", p->name, p->max_args); return EINVAL; } else { if (p->mode == DP_RW && dpctl_p->read_only) { dpctl_error(dpctl_p, 0, "'%s' command does not work in read only mode", p->name); return EINVAL; } return p->handler(argc, argv, dpctl_p); } } } dpctl_error(dpctl_p, 0, "unknown command '%s'; use --help for help", argv[0]); return EINVAL; } static void dpctl_unixctl_print(void *userdata, bool error OVS_UNUSED, const char *msg) { struct ds *ds = userdata; ds_put_cstr(ds, msg); } static void dpctl_unixctl_handler(struct unixctl_conn *conn, int argc, const char *argv[], void *aux) { struct ds ds = DS_EMPTY_INITIALIZER; bool error = false; struct dpctl_params dpctl_p = { .is_appctl = true, .output = dpctl_unixctl_print, .aux = &ds, }; /* Parse options (like getopt). Unfortunately it does * not seem a good idea to call getopt_long() here, since it uses global * variables */ bool set_names = false; while (argc > 1 && !error) { const char *arg = argv[1]; if (!strncmp(arg, "--", 2)) { /* Long option */ if (!strcmp(arg, "--statistics")) { dpctl_p.print_statistics = true; } else if (!strcmp(arg, "--clear")) { dpctl_p.zero_statistics = true; } else if (!strcmp(arg, "--may-create")) { dpctl_p.may_create = true; } else if (!strcmp(arg, "--more")) { dpctl_p.verbosity++; } else if (!strcmp(arg, "--names")) { dpctl_p.names = true; set_names = true; } else if (!strcmp(arg, "--no-names")) { dpctl_p.names = false; set_names = true; } else { ds_put_format(&ds, "Unrecognized option %s", argv[1]); error = true; } } else if (arg[0] == '-' && arg[1] != '\0') { /* Short option[s] */ const char *opt = &arg[1]; while (*opt && !error) { switch (*opt) { case 'm': dpctl_p.verbosity++; break; case 's': dpctl_p.print_statistics = true; break; default: ds_put_format(&ds, "Unrecognized option -%c", *opt); error = true; break; } opt++; } } else { /* Doesn't start with -, not an option */ break; } if (error) { break; } argv++; argc--; } if (!set_names) { dpctl_p.names = dpctl_p.verbosity > 0; } if (!error) { dpctl_command_handler *handler = (dpctl_command_handler *) aux; error = handler(argc, argv, &dpctl_p) != 0; } if (error) { unixctl_command_reply_error(conn, ds_cstr(&ds)); } else { unixctl_command_reply(conn, ds_cstr(&ds)); } ds_destroy(&ds); } void dpctl_unixctl_register(void) { const struct dpctl_command *p; for (p = all_commands; p->name != NULL; p++) { if (strcmp(p->name, "help")) { char *cmd_name = xasprintf("dpctl/%s", p->name); unixctl_command_register(cmd_name, p->usage, p->min_args, p->max_args, dpctl_unixctl_handler, p->handler); free(cmd_name); } } }