/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "flow.h" #include #include #include #include #include #include #include #include #include #include "byte-order.h" #include "colors.h" #include "coverage.h" #include "csum.h" #include "dynamic-string.h" #include "hash.h" #include "jhash.h" #include "match.h" #include "dp-packet.h" #include "openflow/openflow.h" #include "packets.h" #include "odp-util.h" #include "random.h" #include "unaligned.h" COVERAGE_DEFINE(flow_extract); COVERAGE_DEFINE(miniflow_malloc); /* U64 indices for segmented flow classification. */ const uint8_t flow_segment_u64s[4] = { FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t), FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t), FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t), FLOW_U64S }; /* Asserts that field 'f1' follows immediately after 'f0' in struct flow, * without any intervening padding. */ #define ASSERT_SEQUENTIAL(f0, f1) \ BUILD_ASSERT_DECL(offsetof(struct flow, f0) \ + MEMBER_SIZEOF(struct flow, f0) \ == offsetof(struct flow, f1)) /* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within * struct flow. */ #define ASSERT_SAME_WORD(f0, f1) \ BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \ == offsetof(struct flow, f1) / 4) /* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit * aligned word in struct flow. */ #define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \ ASSERT_SEQUENTIAL(f0, f1); \ ASSERT_SAME_WORD(f0, f1) /* miniflow_extract() assumes the following to be true to optimize the * extraction process. */ ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci); ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos); ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl); ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto); /* TCP flags in the middle of a BE64, zeroes in the other half. */ BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4); #if WORDS_BIGENDIAN #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \ << 16) #else #define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl)) #endif ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst); /* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which * must contain at least 'size' bytes of data. Returns the first byte of data * removed. */ static inline const void * data_pull(const void **datap, size_t *sizep, size_t size) { const char *data = *datap; *datap = data + size; *sizep -= size; return data; } /* If '*datap' has at least 'size' bytes of data, removes that many bytes from * the head end of '*datap' and returns the first byte removed. Otherwise, * returns a null pointer without modifying '*datap'. */ static inline const void * data_try_pull(const void **datap, size_t *sizep, size_t size) { return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL; } /* Context for pushing data to a miniflow. */ struct mf_ctx { struct flowmap map; uint64_t *data; uint64_t * const end; }; /* miniflow_push_* macros allow filling in a miniflow data values in order. * Assertions are needed only when the layout of the struct flow is modified. * 'ofs' is a compile-time constant, which allows most of the code be optimized * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are * defined as macros. */ #if (FLOW_WC_SEQ != 35) #define MINIFLOW_ASSERT(X) ovs_assert(X) BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime " "assertions enabled. Consider updating FLOW_WC_SEQ after " "testing") #else #define MINIFLOW_ASSERT(X) #endif /* True if 'IDX' and higher bits are not set. */ #define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \ { \ MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \ (MAP_MAX << ((IDX) % MAP_T_BITS)))); \ for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \ MINIFLOW_ASSERT(!(FM)->bits[i]); \ } \ } #define miniflow_set_map(MF, OFS) \ { \ ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \ flowmap_set(&MF.map, (OFS), 1); \ } #define miniflow_assert_in_map(MF, OFS) \ MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \ ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1) #define miniflow_push_uint64_(MF, OFS, VALUE) \ { \ MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \ *MF.data++ = VALUE; \ miniflow_set_map(MF, OFS / 8); \ } #define miniflow_push_be64_(MF, OFS, VALUE) \ miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE)) #define miniflow_push_uint32_(MF, OFS, VALUE) \ { \ MINIFLOW_ASSERT(MF.data < MF.end); \ \ if ((OFS) % 8 == 0) { \ miniflow_set_map(MF, OFS / 8); \ *(uint32_t *)MF.data = VALUE; \ } else if ((OFS) % 8 == 4) { \ miniflow_assert_in_map(MF, OFS / 8); \ *((uint32_t *)MF.data + 1) = VALUE; \ MF.data++; \ } \ } #define miniflow_push_be32_(MF, OFS, VALUE) \ miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE)) #define miniflow_push_uint16_(MF, OFS, VALUE) \ { \ MINIFLOW_ASSERT(MF.data < MF.end); \ \ if ((OFS) % 8 == 0) { \ miniflow_set_map(MF, OFS / 8); \ *(uint16_t *)MF.data = VALUE; \ } else if ((OFS) % 8 == 2) { \ miniflow_assert_in_map(MF, OFS / 8); \ *((uint16_t *)MF.data + 1) = VALUE; \ } else if ((OFS) % 8 == 4) { \ miniflow_assert_in_map(MF, OFS / 8); \ *((uint16_t *)MF.data + 2) = VALUE; \ } else if ((OFS) % 8 == 6) { \ miniflow_assert_in_map(MF, OFS / 8); \ *((uint16_t *)MF.data + 3) = VALUE; \ MF.data++; \ } \ } #define miniflow_push_uint8_(MF, OFS, VALUE) \ { \ MINIFLOW_ASSERT(MF.data < MF.end); \ \ if ((OFS) % 8 == 0) { \ miniflow_set_map(MF, OFS / 8); \ *(uint8_t *)MF.data = VALUE; \ } else if ((OFS) % 8 == 7) { \ miniflow_assert_in_map(MF, OFS / 8); \ *((uint8_t *)MF.data + 7) = VALUE; \ MF.data++; \ } else { \ miniflow_assert_in_map(MF, OFS / 8); \ *((uint8_t *)MF.data + ((OFS) % 8)) = VALUE; \ } \ } #define miniflow_pad_to_64_(MF, OFS) \ { \ MINIFLOW_ASSERT((OFS) % 8 != 0); \ miniflow_assert_in_map(MF, OFS / 8); \ \ memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \ MF.data++; \ } #define miniflow_pad_from_64_(MF, OFS) \ { \ MINIFLOW_ASSERT(MF.data < MF.end); \ \ MINIFLOW_ASSERT((OFS) % 8 != 0); \ miniflow_set_map(MF, OFS / 8); \ \ memset((uint8_t *)MF.data, 0, (OFS) % 8); \ } #define miniflow_push_be16_(MF, OFS, VALUE) \ miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE); #define miniflow_push_be8_(MF, OFS, VALUE) \ miniflow_push_uint8_(MF, OFS, (OVS_FORCE uint8_t)VALUE); #define miniflow_set_maps(MF, OFS, N_WORDS) \ { \ size_t ofs = (OFS); \ size_t n_words = (N_WORDS); \ \ MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \ ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \ flowmap_set(&MF.map, ofs, n_words); \ } /* Data at 'valuep' may be unaligned. */ #define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \ { \ MINIFLOW_ASSERT((OFS) % 8 == 0); \ miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \ memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \ MF.data += (N_WORDS); \ } /* Push 32-bit words padded to 64-bits. */ #define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \ { \ miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \ memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \ MF.data += DIV_ROUND_UP(N_WORDS, 2); \ if ((N_WORDS) & 1) { \ *((uint32_t *)MF.data - 1) = 0; \ } \ } /* Data at 'valuep' may be unaligned. */ /* MACs start 64-aligned, and must be followed by other data or padding. */ #define miniflow_push_macs_(MF, OFS, VALUEP) \ { \ miniflow_set_maps(MF, (OFS) / 8, 2); \ memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \ MF.data += 1; /* First word only. */ \ } #define miniflow_push_uint32(MF, FIELD, VALUE) \ miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_be32(MF, FIELD, VALUE) \ miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_uint16(MF, FIELD, VALUE) \ miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_be16(MF, FIELD, VALUE) \ miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_push_uint8(MF, FIELD, VALUE) \ miniflow_push_uint8_(MF, offsetof(struct flow, FIELD), VALUE) #define miniflow_pad_to_64(MF, FIELD) \ miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD)) #define miniflow_pad_from_64(MF, FIELD) \ miniflow_pad_from_64_(MF, offsetof(struct flow, FIELD)) #define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \ miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS) #define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \ miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS) #define miniflow_push_macs(MF, FIELD, VALUEP) \ miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP) /* Pulls the MPLS headers at '*datap' and returns the count of them. */ static inline int parse_mpls(const void **datap, size_t *sizep) { const struct mpls_hdr *mh; int count = 0; while ((mh = data_try_pull(datap, sizep, sizeof *mh))) { count++; if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) { break; } } return MIN(count, FLOW_MAX_MPLS_LABELS); } static inline ovs_be16 parse_vlan(const void **datap, size_t *sizep) { const struct eth_header *eth = *datap; struct qtag_prefix { ovs_be16 eth_type; /* ETH_TYPE_VLAN */ ovs_be16 tci; }; data_pull(datap, sizep, ETH_ADDR_LEN * 2); if (eth->eth_type == htons(ETH_TYPE_VLAN)) { if (OVS_LIKELY(*sizep >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) { const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp); return qp->tci | htons(VLAN_CFI); } } return 0; } static inline ovs_be16 parse_ethertype(const void **datap, size_t *sizep) { const struct llc_snap_header *llc; ovs_be16 proto; proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto); if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) { return proto; } if (OVS_UNLIKELY(*sizep < sizeof *llc)) { return htons(FLOW_DL_TYPE_NONE); } llc = *datap; if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP || llc->llc.llc_ssap != LLC_SSAP_SNAP || llc->llc.llc_cntl != LLC_CNTL_SNAP || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, sizeof llc->snap.snap_org))) { return htons(FLOW_DL_TYPE_NONE); } data_pull(datap, sizep, sizeof *llc); if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) { return llc->snap.snap_type; } return htons(FLOW_DL_TYPE_NONE); } static inline void parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp, const struct in6_addr **nd_target, struct eth_addr arp_buf[2]) { if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { *nd_target = data_try_pull(datap, sizep, sizeof **nd_target); if (OVS_UNLIKELY(!*nd_target)) { return; } while (*sizep >= 8) { /* The minimum size of an option is 8 bytes, which also is * the size of Ethernet link-layer options. */ const struct ovs_nd_opt *nd_opt = *datap; int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN; if (!opt_len || opt_len > *sizep) { return; } /* Store the link layer address if the appropriate option is * provided. It is considered an error if the same link * layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR && opt_len == 8) { if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) { arp_buf[0] = nd_opt->nd_opt_mac; } else { goto invalid; } } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR && opt_len == 8) { if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) { arp_buf[1] = nd_opt->nd_opt_mac; } else { goto invalid; } } if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) { return; } } } return; invalid: *nd_target = NULL; arp_buf[0] = eth_addr_zero; arp_buf[1] = eth_addr_zero; } /* Initializes 'flow' members from 'packet' and 'md' * * Initializes 'packet' header l2 pointer to the start of the Ethernet * header, and the layer offsets as follows: * * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX * when there is no MPLS shim header. * * - packet->l3_ofs to just past the Ethernet header, or just past the * vlan_header if one is present, to the first byte of the payload of the * Ethernet frame. UINT16_MAX if the frame is too short to contain an * Ethernet header. * * - packet->l4_ofs to just past the IPv4 header, if one is present and * has at least the content used for the fields of interest for the flow, * otherwise UINT16_MAX. */ void flow_extract(struct dp_packet *packet, struct flow *flow) { struct { struct miniflow mf; uint64_t buf[FLOW_U64S]; } m; COVERAGE_INC(flow_extract); miniflow_extract(packet, &m.mf); miniflow_expand(&m.mf, flow); } /* Caller is responsible for initializing 'dst' with enough storage for * FLOW_U64S * 8 bytes. */ void miniflow_extract(struct dp_packet *packet, struct miniflow *dst) { const struct pkt_metadata *md = &packet->md; const void *data = dp_packet_data(packet); size_t size = dp_packet_size(packet); uint64_t *values = miniflow_values(dst); struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values, values + FLOW_U64S }; const char *l2; ovs_be16 dl_type; uint8_t nw_frag, nw_tos, nw_ttl, nw_proto; /* Metadata. */ if (flow_tnl_dst_is_set(&md->tunnel)) { miniflow_push_words(mf, tunnel, &md->tunnel, offsetof(struct flow_tnl, metadata) / sizeof(uint64_t)); if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) { if (md->tunnel.metadata.present.map) { miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata, sizeof md->tunnel.metadata / sizeof(uint64_t)); } } else { if (md->tunnel.metadata.present.len) { miniflow_push_words(mf, tunnel.metadata.present, &md->tunnel.metadata.present, 1); miniflow_push_words(mf, tunnel.metadata.opts.gnv, md->tunnel.metadata.opts.gnv, DIV_ROUND_UP(md->tunnel.metadata.present.len, sizeof(uint64_t))); } } } if (md->skb_priority || md->pkt_mark) { miniflow_push_uint32(mf, skb_priority, md->skb_priority); miniflow_push_uint32(mf, pkt_mark, md->pkt_mark); } miniflow_push_uint32(mf, dp_hash, md->dp_hash); miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port)); if (md->recirc_id || md->ct_state) { miniflow_push_uint32(mf, recirc_id, md->recirc_id); miniflow_push_uint16(mf, ct_state, md->ct_state); miniflow_push_uint16(mf, ct_zone, md->ct_zone); } if (md->ct_state) { miniflow_push_uint32(mf, ct_mark, md->ct_mark); miniflow_pad_to_64(mf, ct_mark); if (!ovs_u128_is_zero(&md->ct_label)) { miniflow_push_words(mf, ct_label, &md->ct_label, sizeof md->ct_label / sizeof(uint64_t)); } } /* Initialize packet's layer pointer and offsets. */ l2 = data; dp_packet_reset_offsets(packet); /* Must have full Ethernet header to proceed. */ if (OVS_UNLIKELY(size < sizeof(struct eth_header))) { goto out; } else { ovs_be16 vlan_tci; /* Link layer. */ ASSERT_SEQUENTIAL(dl_dst, dl_src); miniflow_push_macs(mf, dl_dst, data); /* dl_type, vlan_tci. */ vlan_tci = parse_vlan(&data, &size); dl_type = parse_ethertype(&data, &size); miniflow_push_be16(mf, dl_type, dl_type); miniflow_push_be16(mf, vlan_tci, vlan_tci); } /* Parse mpls. */ if (OVS_UNLIKELY(eth_type_mpls(dl_type))) { int count; const void *mpls = data; packet->l2_5_ofs = (char *)data - l2; count = parse_mpls(&data, &size); miniflow_push_words_32(mf, mpls_lse, mpls, count); } /* Network layer. */ packet->l3_ofs = (char *)data - l2; nw_frag = 0; if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) { const struct ip_header *nh = data; int ip_len; uint16_t tot_len; if (OVS_UNLIKELY(size < IP_HEADER_LEN)) { goto out; } ip_len = IP_IHL(nh->ip_ihl_ver) * 4; if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) { goto out; } if (OVS_UNLIKELY(size < ip_len)) { goto out; } tot_len = ntohs(nh->ip_tot_len); if (OVS_UNLIKELY(tot_len > size)) { goto out; } if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) { goto out; } dp_packet_set_l2_pad_size(packet, size - tot_len); size = tot_len; /* Never pull padding. */ /* Push both source and destination address at once. */ miniflow_push_words(mf, nw_src, &nh->ip_src, 1); miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */ nw_tos = nh->ip_tos; nw_ttl = nh->ip_ttl; nw_proto = nh->ip_proto; if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) { nw_frag = FLOW_NW_FRAG_ANY; if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) { nw_frag |= FLOW_NW_FRAG_LATER; } } data_pull(&data, &size, ip_len); } else if (dl_type == htons(ETH_TYPE_IPV6)) { const struct ovs_16aligned_ip6_hdr *nh; ovs_be32 tc_flow; uint16_t plen; if (OVS_UNLIKELY(size < sizeof *nh)) { goto out; } nh = data_pull(&data, &size, sizeof *nh); plen = ntohs(nh->ip6_plen); if (OVS_UNLIKELY(plen > size)) { goto out; } /* Jumbo Payload option not supported yet. */ if (OVS_UNLIKELY(size - plen > UINT8_MAX)) { goto out; } dp_packet_set_l2_pad_size(packet, size - plen); size = plen; /* Never pull padding. */ miniflow_push_words(mf, ipv6_src, &nh->ip6_src, sizeof nh->ip6_src / 8); miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst, sizeof nh->ip6_dst / 8); tc_flow = get_16aligned_be32(&nh->ip6_flow); { ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK); miniflow_push_be32(mf, ipv6_label, label); } nw_tos = ntohl(tc_flow) >> 20; nw_ttl = nh->ip6_hlim; nw_proto = nh->ip6_nxt; while (1) { if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS) && (nw_proto != IPPROTO_ROUTING) && (nw_proto != IPPROTO_DSTOPTS) && (nw_proto != IPPROTO_AH) && (nw_proto != IPPROTO_FRAGMENT))) { /* It's either a terminal header (e.g., TCP, UDP) or one we * don't understand. In either case, we're done with the * packet, so use it to fill in 'nw_proto'. */ break; } /* We only verify that at least 8 bytes of the next header are * available, but many of these headers are longer. Ensure that * accesses within the extension header are within those first 8 * bytes. All extension headers are required to be at least 8 * bytes. */ if (OVS_UNLIKELY(size < 8)) { goto out; } if ((nw_proto == IPPROTO_HOPOPTS) || (nw_proto == IPPROTO_ROUTING) || (nw_proto == IPPROTO_DSTOPTS)) { /* These headers, while different, have the fields we care * about in the same location and with the same * interpretation. */ const struct ip6_ext *ext_hdr = data; nw_proto = ext_hdr->ip6e_nxt; if (OVS_UNLIKELY(!data_try_pull(&data, &size, (ext_hdr->ip6e_len + 1) * 8))) { goto out; } } else if (nw_proto == IPPROTO_AH) { /* A standard AH definition isn't available, but the fields * we care about are in the same location as the generic * option header--only the header length is calculated * differently. */ const struct ip6_ext *ext_hdr = data; nw_proto = ext_hdr->ip6e_nxt; if (OVS_UNLIKELY(!data_try_pull(&data, &size, (ext_hdr->ip6e_len + 2) * 4))) { goto out; } } else if (nw_proto == IPPROTO_FRAGMENT) { const struct ovs_16aligned_ip6_frag *frag_hdr = data; nw_proto = frag_hdr->ip6f_nxt; if (!data_try_pull(&data, &size, sizeof *frag_hdr)) { goto out; } /* We only process the first fragment. */ if (frag_hdr->ip6f_offlg != htons(0)) { nw_frag = FLOW_NW_FRAG_ANY; if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) { nw_frag |= FLOW_NW_FRAG_LATER; nw_proto = IPPROTO_FRAGMENT; break; } } } } } else { if (dl_type == htons(ETH_TYPE_ARP) || dl_type == htons(ETH_TYPE_RARP)) { struct eth_addr arp_buf[2]; const struct arp_eth_header *arp = (const struct arp_eth_header *) data_try_pull(&data, &size, ARP_ETH_HEADER_LEN); if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1)) && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP)) && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN) && OVS_LIKELY(arp->ar_pln == 4)) { miniflow_push_be32(mf, nw_src, get_16aligned_be32(&arp->ar_spa)); miniflow_push_be32(mf, nw_dst, get_16aligned_be32(&arp->ar_tpa)); /* We only match on the lower 8 bits of the opcode. */ if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) { miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */ miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op))); } /* Must be adjacent. */ ASSERT_SEQUENTIAL(arp_sha, arp_tha); arp_buf[0] = arp->ar_sha; arp_buf[1] = arp->ar_tha; miniflow_push_macs(mf, arp_sha, arp_buf); miniflow_pad_to_64(mf, arp_tha); } } goto out; } packet->l4_ofs = (char *)data - l2; miniflow_push_be32(mf, nw_frag, BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto)); if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) { if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) { if (OVS_LIKELY(size >= TCP_HEADER_LEN)) { const struct tcp_header *tcp = data; miniflow_push_be32(mf, arp_tha.ea[2], 0); miniflow_push_be32(mf, tcp_flags, TCP_FLAGS_BE32(tcp->tcp_ctl)); miniflow_push_be16(mf, tp_src, tcp->tcp_src); miniflow_push_be16(mf, tp_dst, tcp->tcp_dst); miniflow_pad_to_64(mf, tp_dst); } } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) { if (OVS_LIKELY(size >= UDP_HEADER_LEN)) { const struct udp_header *udp = data; miniflow_push_be16(mf, tp_src, udp->udp_src); miniflow_push_be16(mf, tp_dst, udp->udp_dst); miniflow_pad_to_64(mf, tp_dst); } } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) { if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) { const struct sctp_header *sctp = data; miniflow_push_be16(mf, tp_src, sctp->sctp_src); miniflow_push_be16(mf, tp_dst, sctp->sctp_dst); miniflow_pad_to_64(mf, tp_dst); } } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) { if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) { const struct icmp_header *icmp = data; miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type)); miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code)); miniflow_pad_to_64(mf, tp_dst); } } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) { if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) { const struct igmp_header *igmp = data; miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type)); miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code)); miniflow_push_be32(mf, igmp_group_ip4, get_16aligned_be32(&igmp->group)); } } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) { if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) { const struct in6_addr *nd_target = NULL; struct eth_addr arp_buf[2] = { { { { 0 } } } }; const struct icmp6_hdr *icmp = data_pull(&data, &size, sizeof *icmp); parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf); if (nd_target) { miniflow_push_words(mf, nd_target, nd_target, sizeof *nd_target / sizeof(uint64_t)); } miniflow_push_macs(mf, arp_sha, arp_buf); miniflow_pad_to_64(mf, arp_tha); miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type)); miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code)); miniflow_pad_to_64(mf, tp_dst); } } } out: dst->map = mf.map; } /* For every bit of a field that is wildcarded in 'wildcards', sets the * corresponding bit in 'flow' to zero. */ void flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards) { uint64_t *flow_u64 = (uint64_t *) flow; const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks; size_t i; for (i = 0; i < FLOW_U64S; i++) { flow_u64[i] &= wc_u64[i]; } } void flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc) { if (flow->nw_proto != IPPROTO_ICMP) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } else { wc->masks.tp_src = htons(0xff); wc->masks.tp_dst = htons(0xff); } } /* Initializes 'flow_metadata' with the metadata found in 'flow'. */ void flow_get_metadata(const struct flow *flow, struct match *flow_metadata) { int i; BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); match_init_catchall(flow_metadata); if (flow->tunnel.tun_id != htonll(0)) { match_set_tun_id(flow_metadata, flow->tunnel.tun_id); } if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) { match_set_tun_flags(flow_metadata, flow->tunnel.flags & FLOW_TNL_PUB_F_MASK); } if (flow->tunnel.ip_src) { match_set_tun_src(flow_metadata, flow->tunnel.ip_src); } if (flow->tunnel.ip_dst) { match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst); } if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) { match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src); } if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) { match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst); } if (flow->tunnel.gbp_id != htons(0)) { match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id); } if (flow->tunnel.gbp_flags) { match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags); } tun_metadata_get_fmd(&flow->tunnel, flow_metadata); if (flow->metadata != htonll(0)) { match_set_metadata(flow_metadata, flow->metadata); } for (i = 0; i < FLOW_N_REGS; i++) { if (flow->regs[i]) { match_set_reg(flow_metadata, i, flow->regs[i]); } } if (flow->pkt_mark != 0) { match_set_pkt_mark(flow_metadata, flow->pkt_mark); } match_set_in_port(flow_metadata, flow->in_port.ofp_port); if (flow->ct_state != 0) { match_set_ct_state(flow_metadata, flow->ct_state); } if (flow->ct_zone != 0) { match_set_ct_zone(flow_metadata, flow->ct_zone); } if (flow->ct_mark != 0) { match_set_ct_mark(flow_metadata, flow->ct_mark); } if (!ovs_u128_is_zero(&flow->ct_label)) { match_set_ct_label(flow_metadata, flow->ct_label); } } const char *ct_state_to_string(uint32_t state) { switch (state) { case CS_REPLY_DIR: return "rpl"; case CS_TRACKED: return "trk"; case CS_NEW: return "new"; case CS_ESTABLISHED: return "est"; case CS_RELATED: return "rel"; case CS_INVALID: return "inv"; case CS_SRC_NAT: return "snat"; case CS_DST_NAT: return "dnat"; default: return NULL; } } char * flow_to_string(const struct flow *flow) { struct ds ds = DS_EMPTY_INITIALIZER; flow_format(&ds, flow); return ds_cstr(&ds); } const char * flow_tun_flag_to_string(uint32_t flags) { switch (flags) { case FLOW_TNL_F_DONT_FRAGMENT: return "df"; case FLOW_TNL_F_CSUM: return "csum"; case FLOW_TNL_F_KEY: return "key"; case FLOW_TNL_F_OAM: return "oam"; default: return NULL; } } void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), uint32_t flags, char del) { uint32_t bad = 0; if (!flags) { ds_put_char(ds, '0'); return; } while (flags) { uint32_t bit = rightmost_1bit(flags); const char *s; s = bit_to_string(bit); if (s) { ds_put_format(ds, "%s%c", s, del); } else { bad |= bit; } flags &= ~bit; } if (bad) { ds_put_format(ds, "0x%"PRIx32"%c", bad, del); } ds_chomp(ds, del); } void format_flags_masked(struct ds *ds, const char *name, const char *(*bit_to_string)(uint32_t), uint32_t flags, uint32_t mask, uint32_t max_mask) { if (name) { ds_put_format(ds, "%s%s=%s", colors.param, name, colors.end); } if (mask == max_mask) { format_flags(ds, bit_to_string, flags, '|'); return; } if (!mask) { ds_put_cstr(ds, "0/0"); return; } while (mask) { uint32_t bit = rightmost_1bit(mask); const char *s = bit_to_string(bit); ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-", s ? s : "[Unknown]"); mask &= ~bit; } } /* Scans a string 's' of flags to determine their numerical value and * returns the number of characters parsed using 'bit_to_string' to * lookup flag names. Scanning continues until the character 'end' is * reached. * * In the event of a failure, a negative error code will be returned. In * addition, if 'res_string' is non-NULL then a descriptive string will * be returned incorporating the identifying string 'field_name'. This * error string must be freed by the caller. * * Upon success, the flag values will be stored in 'res_flags' and * optionally 'res_mask', if it is non-NULL (if it is NULL then any masks * present in the original string will be considered an error). The * caller may restrict the acceptable set of values through the mask * 'allowed'. */ int parse_flags(const char *s, const char *(*bit_to_string)(uint32_t), char end, const char *field_name, char **res_string, uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask) { uint32_t result = 0; int n; /* Parse masked flags in numeric format? */ if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n", res_flags, res_mask, &n) && n > 0) { if (*res_flags & ~allowed || *res_mask & ~allowed) { goto unknown; } return n; } n = 0; if (res_mask && (*s == '+' || *s == '-')) { uint32_t flags = 0, mask = 0; /* Parse masked flags. */ while (s[0] != end) { bool set; uint32_t bit; size_t len; if (s[0] == '+') { set = true; } else if (s[0] == '-') { set = false; } else { if (res_string) { *res_string = xasprintf("%s: %s must be preceded by '+' " "(for SET) or '-' (NOT SET)", s, field_name); } return -EINVAL; } s++; n++; for (bit = 1; bit; bit <<= 1) { const char *fname = bit_to_string(bit); if (!fname) { continue; } len = strlen(fname); if (strncmp(s, fname, len) || (s[len] != '+' && s[len] != '-' && s[len] != end)) { continue; } if (mask & bit) { /* bit already set. */ if (res_string) { *res_string = xasprintf("%s: Each %s flag can be " "specified only once", s, field_name); } return -EINVAL; } if (!(bit & allowed)) { goto unknown; } if (set) { flags |= bit; } mask |= bit; break; } if (!bit) { goto unknown; } s += len; n += len; } *res_flags = flags; *res_mask = mask; return n; } /* Parse unmasked flags. If a flag is present, it is set, otherwise * it is not set. */ while (s[n] != end) { unsigned long long int flags; uint32_t bit; int n0; if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) { if (flags & ~allowed) { goto unknown; } n += n0 + (s[n + n0] == '|'); result |= flags; continue; } for (bit = 1; bit; bit <<= 1) { const char *name = bit_to_string(bit); size_t len; if (!name) { continue; } len = strlen(name); if (!strncmp(s + n, name, len) && (s[n + len] == '|' || s[n + len] == end)) { if (!(bit & allowed)) { goto unknown; } result |= bit; n += len + (s[n + len] == '|'); break; } } if (!bit) { goto unknown; } } *res_flags = result; if (res_mask) { *res_mask = UINT32_MAX; } if (res_string) { *res_string = NULL; } return n; unknown: if (res_string) { *res_string = xasprintf("%s: unknown %s flag(s)", s, field_name); } return -EINVAL; } void flow_format(struct ds *ds, const struct flow *flow) { struct match match; struct flow_wildcards *wc = &match.wc; match_wc_init(&match, flow); /* As this function is most often used for formatting a packet in a * packet-in message, skip formatting the packet context fields that are * all-zeroes to make the print-out easier on the eyes. This means that a * missing context field implies a zero value for that field. This is * similar to OpenFlow encoding of these fields, as the specification * states that all-zeroes context fields should not be encoded in the * packet-in messages. */ if (!flow->in_port.ofp_port) { WC_UNMASK_FIELD(wc, in_port); } if (!flow->skb_priority) { WC_UNMASK_FIELD(wc, skb_priority); } if (!flow->pkt_mark) { WC_UNMASK_FIELD(wc, pkt_mark); } if (!flow->recirc_id) { WC_UNMASK_FIELD(wc, recirc_id); } if (!flow->dp_hash) { WC_UNMASK_FIELD(wc, dp_hash); } if (!flow->ct_state) { WC_UNMASK_FIELD(wc, ct_state); } if (!flow->ct_zone) { WC_UNMASK_FIELD(wc, ct_zone); } if (!flow->ct_mark) { WC_UNMASK_FIELD(wc, ct_mark); } if (ovs_u128_is_zero(&flow->ct_label)) { WC_UNMASK_FIELD(wc, ct_label); } for (int i = 0; i < FLOW_N_REGS; i++) { if (!flow->regs[i]) { WC_UNMASK_FIELD(wc, regs[i]); } } if (!flow->metadata) { WC_UNMASK_FIELD(wc, metadata); } match_format(&match, ds, OFP_DEFAULT_PRIORITY); } void flow_print(FILE *stream, const struct flow *flow) { char *s = flow_to_string(flow); fputs(s, stream); free(s); } /* flow_wildcards functions. */ /* Initializes 'wc' as a set of wildcards that matches every packet. */ void flow_wildcards_init_catchall(struct flow_wildcards *wc) { memset(&wc->masks, 0, sizeof wc->masks); } /* Converts a flow into flow wildcards. It sets the wildcard masks based on * the packet headers extracted to 'flow'. It will not set the mask for fields * that do not make sense for the packet type. OpenFlow-only metadata is * wildcarded, but other metadata is unconditionally exact-matched. */ void flow_wildcards_init_for_packet(struct flow_wildcards *wc, const struct flow *flow) { memset(&wc->masks, 0x0, sizeof wc->masks); /* Update this function whenever struct flow changes. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); if (flow_tnl_dst_is_set(&flow->tunnel)) { if (flow->tunnel.flags & FLOW_TNL_F_KEY) { WC_MASK_FIELD(wc, tunnel.tun_id); } WC_MASK_FIELD(wc, tunnel.ip_src); WC_MASK_FIELD(wc, tunnel.ip_dst); WC_MASK_FIELD(wc, tunnel.ipv6_src); WC_MASK_FIELD(wc, tunnel.ipv6_dst); WC_MASK_FIELD(wc, tunnel.flags); WC_MASK_FIELD(wc, tunnel.ip_tos); WC_MASK_FIELD(wc, tunnel.ip_ttl); WC_MASK_FIELD(wc, tunnel.tp_src); WC_MASK_FIELD(wc, tunnel.tp_dst); WC_MASK_FIELD(wc, tunnel.gbp_id); WC_MASK_FIELD(wc, tunnel.gbp_flags); if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) { if (flow->tunnel.metadata.present.map) { wc->masks.tunnel.metadata.present.map = flow->tunnel.metadata.present.map; WC_MASK_FIELD(wc, tunnel.metadata.opts.u8); } } else { WC_MASK_FIELD(wc, tunnel.metadata.present.len); memset(wc->masks.tunnel.metadata.opts.gnv, 0xff, flow->tunnel.metadata.present.len); } } else if (flow->tunnel.tun_id) { WC_MASK_FIELD(wc, tunnel.tun_id); } /* metadata, regs, and conj_id wildcarded. */ WC_MASK_FIELD(wc, skb_priority); WC_MASK_FIELD(wc, pkt_mark); WC_MASK_FIELD(wc, ct_state); WC_MASK_FIELD(wc, ct_zone); WC_MASK_FIELD(wc, ct_mark); WC_MASK_FIELD(wc, ct_label); WC_MASK_FIELD(wc, recirc_id); WC_MASK_FIELD(wc, dp_hash); WC_MASK_FIELD(wc, in_port); /* actset_output wildcarded. */ WC_MASK_FIELD(wc, dl_dst); WC_MASK_FIELD(wc, dl_src); WC_MASK_FIELD(wc, dl_type); WC_MASK_FIELD(wc, vlan_tci); if (flow->dl_type == htons(ETH_TYPE_IP)) { WC_MASK_FIELD(wc, nw_src); WC_MASK_FIELD(wc, nw_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { WC_MASK_FIELD(wc, ipv6_src); WC_MASK_FIELD(wc, ipv6_dst); WC_MASK_FIELD(wc, ipv6_label); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { WC_MASK_FIELD(wc, nw_src); WC_MASK_FIELD(wc, nw_dst); WC_MASK_FIELD(wc, nw_proto); WC_MASK_FIELD(wc, arp_sha); WC_MASK_FIELD(wc, arp_tha); return; } else if (eth_type_mpls(flow->dl_type)) { for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) { WC_MASK_FIELD(wc, mpls_lse[i]); if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { break; } } return; } else { return; /* Unknown ethertype. */ } /* IPv4 or IPv6. */ WC_MASK_FIELD(wc, nw_frag); WC_MASK_FIELD(wc, nw_tos); WC_MASK_FIELD(wc, nw_ttl); WC_MASK_FIELD(wc, nw_proto); /* No transport layer header in later fragments. */ if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) && (flow->nw_proto == IPPROTO_ICMP || flow->nw_proto == IPPROTO_ICMPV6 || flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_UDP || flow->nw_proto == IPPROTO_SCTP || flow->nw_proto == IPPROTO_IGMP)) { WC_MASK_FIELD(wc, tp_src); WC_MASK_FIELD(wc, tp_dst); if (flow->nw_proto == IPPROTO_TCP) { WC_MASK_FIELD(wc, tcp_flags); } else if (flow->nw_proto == IPPROTO_ICMPV6) { WC_MASK_FIELD(wc, arp_sha); WC_MASK_FIELD(wc, arp_tha); WC_MASK_FIELD(wc, nd_target); } else if (flow->nw_proto == IPPROTO_IGMP) { WC_MASK_FIELD(wc, igmp_group_ip4); } } } /* Return a map of possible fields for a packet of the same type as 'flow'. * Including extra bits in the returned mask is not wrong, it is just less * optimal. * * This is a less precise version of flow_wildcards_init_for_packet() above. */ void flow_wc_map(const struct flow *flow, struct flowmap *map) { /* Update this function whenever struct flow changes. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); flowmap_init(map); if (flow_tnl_dst_is_set(&flow->tunnel)) { FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata)); if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) { if (flow->tunnel.metadata.present.map) { FLOWMAP_SET(map, tunnel.metadata); } } else { FLOWMAP_SET(map, tunnel.metadata.present.len); FLOWMAP_SET__(map, tunnel.metadata.opts.gnv, flow->tunnel.metadata.present.len); } } /* Metadata fields that can appear on packet input. */ FLOWMAP_SET(map, skb_priority); FLOWMAP_SET(map, pkt_mark); FLOWMAP_SET(map, recirc_id); FLOWMAP_SET(map, dp_hash); FLOWMAP_SET(map, in_port); FLOWMAP_SET(map, dl_dst); FLOWMAP_SET(map, dl_src); FLOWMAP_SET(map, dl_type); FLOWMAP_SET(map, vlan_tci); FLOWMAP_SET(map, ct_state); FLOWMAP_SET(map, ct_zone); FLOWMAP_SET(map, ct_mark); FLOWMAP_SET(map, ct_label); /* Ethertype-dependent fields. */ if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) { FLOWMAP_SET(map, nw_src); FLOWMAP_SET(map, nw_dst); FLOWMAP_SET(map, nw_proto); FLOWMAP_SET(map, nw_frag); FLOWMAP_SET(map, nw_tos); FLOWMAP_SET(map, nw_ttl); if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) { FLOWMAP_SET(map, igmp_group_ip4); } else { FLOWMAP_SET(map, tcp_flags); FLOWMAP_SET(map, tp_src); FLOWMAP_SET(map, tp_dst); } } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { FLOWMAP_SET(map, ipv6_src); FLOWMAP_SET(map, ipv6_dst); FLOWMAP_SET(map, ipv6_label); FLOWMAP_SET(map, nw_proto); FLOWMAP_SET(map, nw_frag); FLOWMAP_SET(map, nw_tos); FLOWMAP_SET(map, nw_ttl); if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) { FLOWMAP_SET(map, nd_target); FLOWMAP_SET(map, arp_sha); FLOWMAP_SET(map, arp_tha); } else { FLOWMAP_SET(map, tcp_flags); FLOWMAP_SET(map, tp_src); FLOWMAP_SET(map, tp_dst); } } else if (eth_type_mpls(flow->dl_type)) { FLOWMAP_SET(map, mpls_lse); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { FLOWMAP_SET(map, nw_src); FLOWMAP_SET(map, nw_dst); FLOWMAP_SET(map, nw_proto); FLOWMAP_SET(map, arp_sha); FLOWMAP_SET(map, arp_tha); } } /* Clear the metadata and register wildcard masks. They are not packet * header fields. */ void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc) { /* Update this function whenever struct flow changes. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata); memset(&wc->masks.regs, 0, sizeof wc->masks.regs); wc->masks.actset_output = 0; wc->masks.conj_id = 0; } /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or * fields. */ bool flow_wildcards_is_catchall(const struct flow_wildcards *wc) { const uint64_t *wc_u64 = (const uint64_t *) &wc->masks; size_t i; for (i = 0; i < FLOW_U64S; i++) { if (wc_u64[i]) { return false; } } return true; } /* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'. * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded * in 'src1' or 'src2' or both. */ void flow_wildcards_and(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { uint64_t *dst_u64 = (uint64_t *) &dst->masks; const uint64_t *src1_u64 = (const uint64_t *) &src1->masks; const uint64_t *src2_u64 = (const uint64_t *) &src2->masks; size_t i; for (i = 0; i < FLOW_U64S; i++) { dst_u64[i] = src1_u64[i] & src2_u64[i]; } } /* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That * is, a bit or a field is wildcarded in 'dst' if it is neither * wildcarded in 'src1' nor 'src2'. */ void flow_wildcards_or(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { uint64_t *dst_u64 = (uint64_t *) &dst->masks; const uint64_t *src1_u64 = (const uint64_t *) &src1->masks; const uint64_t *src2_u64 = (const uint64_t *) &src2->masks; size_t i; for (i = 0; i < FLOW_U64S; i++) { dst_u64[i] = src1_u64[i] | src2_u64[i]; } } /* Returns a hash of the wildcards in 'wc'. */ uint32_t flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis) { return flow_hash(&wc->masks, basis); } /* Returns true if 'a' and 'b' represent the same wildcards, false if they are * different. */ bool flow_wildcards_equal(const struct flow_wildcards *a, const struct flow_wildcards *b) { return flow_equal(&a->masks, &b->masks); } /* Returns true if at least one bit or field is wildcarded in 'a' but not in * 'b', false otherwise. */ bool flow_wildcards_has_extra(const struct flow_wildcards *a, const struct flow_wildcards *b) { const uint64_t *a_u64 = (const uint64_t *) &a->masks; const uint64_t *b_u64 = (const uint64_t *) &b->masks; size_t i; for (i = 0; i < FLOW_U64S; i++) { if ((a_u64[i] & b_u64[i]) != b_u64[i]) { return true; } } return false; } /* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits) * in 'wc' do not need to be equal in 'a' and 'b'. */ bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *wc) { const uint64_t *a_u64 = (const uint64_t *) a; const uint64_t *b_u64 = (const uint64_t *) b; const uint64_t *wc_u64 = (const uint64_t *) &wc->masks; size_t i; for (i = 0; i < FLOW_U64S; i++) { if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) { return false; } } return true; } /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. * (A 0-bit indicates a wildcard bit.) */ void flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) { wc->masks.regs[idx] = mask; } /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. * (A 0-bit indicates a wildcard bit.) */ void flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask) { flow_set_xreg(&wc->masks, idx, mask); } /* Calculates the 5-tuple hash from the given miniflow. * This returns the same value as flow_hash_5tuple for the corresponding * flow. */ uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis) { uint32_t hash = basis; if (flow) { ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type); hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto)); /* Separate loops for better optimization. */ if (dl_type == htons(ETH_TYPE_IPV6)) { struct flowmap map = FLOWMAP_EMPTY_INITIALIZER; uint64_t value; FLOWMAP_SET(&map, ipv6_src); FLOWMAP_SET(&map, ipv6_dst); MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) { hash = hash_add64(hash, value); } } else { hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src)); hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst)); } /* Add both ports at once. */ hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src)); hash = hash_finish(hash, 42); /* Arbitrary number. */ } return hash; } ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst); ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst); /* Calculates the 5-tuple hash from the given flow. */ uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis) { uint32_t hash = basis; if (flow) { hash = hash_add(hash, flow->nw_proto); if (flow->dl_type == htons(ETH_TYPE_IPV6)) { const uint64_t *flow_u64 = (const uint64_t *)flow; int ofs = offsetof(struct flow, ipv6_src) / 8; int end = ofs + 2 * sizeof flow->ipv6_src / 8; for (;ofs < end; ofs++) { hash = hash_add64(hash, flow_u64[ofs]); } } else { hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src); hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst); } /* Add both ports at once. */ hash = hash_add(hash, ((const uint32_t *)flow)[offsetof(struct flow, tp_src) / sizeof(uint32_t)]); hash = hash_finish(hash, 42); /* Arbitrary number. */ } return hash; } /* Hashes 'flow' based on its L2 through L4 protocol information. */ uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis) { struct { union { ovs_be32 ipv4_addr; struct in6_addr ipv6_addr; }; ovs_be16 eth_type; ovs_be16 vlan_tci; ovs_be16 tp_port; struct eth_addr eth_addr; uint8_t ip_proto; } fields; int i; memset(&fields, 0, sizeof fields); for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) { fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i]; } fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK); fields.eth_type = flow->dl_type; /* UDP source and destination port are not taken into account because they * will not necessarily be symmetric in a bidirectional flow. */ if (fields.eth_type == htons(ETH_TYPE_IP)) { fields.ipv4_addr = flow->nw_src ^ flow->nw_dst; fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) { fields.tp_port = flow->tp_src ^ flow->tp_dst; } } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) { const uint8_t *a = &flow->ipv6_src.s6_addr[0]; const uint8_t *b = &flow->ipv6_dst.s6_addr[0]; uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0]; for (i=0; i<16; i++) { ipv6_addr[i] = a[i] ^ b[i]; } fields.ip_proto = flow->nw_proto; if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) { fields.tp_port = flow->tp_src ^ flow->tp_dst; } } return jhash_bytes(&fields, sizeof fields, basis); } /* Hashes 'flow' based on its L3 through L4 protocol information */ uint32_t flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis, bool inc_udp_ports) { uint32_t hash = basis; /* UDP source and destination port are also taken into account. */ if (flow->dl_type == htons(ETH_TYPE_IP)) { hash = hash_add(hash, (OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst)); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { /* IPv6 addresses are 64-bit aligned inside struct flow. */ const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr); const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr); for (int i = 0; i < 4; i++) { hash = hash_add64(hash, a[i] ^ b[i]); } } else { /* Cannot hash non-IP flows */ return 0; } hash = hash_add(hash, flow->nw_proto); if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP || (inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) { hash = hash_add(hash, (OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst)); } return hash_finish(hash, basis); } /* Initialize a flow with random fields that matter for nx_hash_fields. */ void flow_random_hash_fields(struct flow *flow) { uint16_t rnd = random_uint16(); /* Initialize to all zeros. */ memset(flow, 0, sizeof *flow); eth_addr_random(&flow->dl_src); eth_addr_random(&flow->dl_dst); flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK); /* Make most of the random flows IPv4, some IPv6, and rest random. */ flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) : rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd; if (dl_type_is_ip_any(flow->dl_type)) { if (flow->dl_type == htons(ETH_TYPE_IP)) { flow->nw_src = (OVS_FORCE ovs_be32)random_uint32(); flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32(); } else { random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src); random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst); } /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */ rnd = random_uint16(); flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP : rnd < 0xc000 ? IPPROTO_UDP : rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd; if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_UDP || flow->nw_proto == IPPROTO_SCTP) { flow->tp_src = (OVS_FORCE ovs_be16)random_uint16(); flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16(); } } } /* Masks the fields in 'wc' that are used by the flow hash 'fields'. */ void flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc, enum nx_hash_fields fields) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); break; case NX_HASH_FIELDS_SYMMETRIC_L4: memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src); memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); } if (is_ip_any(flow)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); flow_unwildcard_tp_ports(flow, wc); } wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); break; case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } /* no break */ case NX_HASH_FIELDS_SYMMETRIC_L3L4: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src); memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); } else { break; /* non-IP flow */ } memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } break; default: OVS_NOT_REACHED(); } } /* Hashes the portions of 'flow' designated by 'fields'. */ uint32_t flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields, uint16_t basis) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis); case NX_HASH_FIELDS_SYMMETRIC_L4: return flow_hash_symmetric_l4(flow, basis); case NX_HASH_FIELDS_SYMMETRIC_L3L4: return flow_hash_symmetric_l3l4(flow, basis, false); case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return flow_hash_symmetric_l3l4(flow, basis, true); } OVS_NOT_REACHED(); } /* Returns a string representation of 'fields'. */ const char * flow_hash_fields_to_str(enum nx_hash_fields fields) { switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return "eth_src"; case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4"; case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4"; case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp"; default: return ""; } } /* Returns true if the value of 'fields' is supported. Otherwise false. */ bool flow_hash_fields_valid(enum nx_hash_fields fields) { return fields == NX_HASH_FIELDS_ETH_SRC || fields == NX_HASH_FIELDS_SYMMETRIC_L4 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4 || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP; } /* Returns a hash value for the bits of 'flow' that are active based on * 'wc', given 'basis'. */ uint32_t flow_hash_in_wildcards(const struct flow *flow, const struct flow_wildcards *wc, uint32_t basis) { const uint64_t *wc_u64 = (const uint64_t *) &wc->masks; const uint64_t *flow_u64 = (const uint64_t *) flow; uint32_t hash; size_t i; hash = basis; for (i = 0; i < FLOW_U64S; i++) { hash = hash_add64(hash, flow_u64[i] & wc_u64[i]); } return hash_finish(hash, 8 * FLOW_U64S); } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.0 "dl_vlan" value: * * - If it is in the range 0...4095, 'flow->vlan_tci' is set to match * that VLAN. Any existing PCP match is unchanged (it becomes 0 if * 'flow' previously matched packets without a VLAN header). * * - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet * without a VLAN tag. * * - Other values of 'vid' should not be used. */ void flow_set_dl_vlan(struct flow *flow, ovs_be16 vid) { if (vid == htons(OFP10_VLAN_NONE)) { flow->vlan_tci = htons(0); } else { vid &= htons(VLAN_VID_MASK); flow->vlan_tci &= ~htons(VLAN_VID_MASK); flow->vlan_tci |= htons(VLAN_CFI) | vid; } } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI). */ void flow_set_vlan_vid(struct flow *flow, ovs_be16 vid) { ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI); flow->vlan_tci &= ~mask; flow->vlan_tci |= vid & mask; } /* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the * range 0...7. * * This function has no effect on the VLAN ID that 'flow' matches. * * After calling this function, 'flow' will not match packets without a VLAN * header. */ void flow_set_vlan_pcp(struct flow *flow, uint8_t pcp) { pcp &= 0x07; flow->vlan_tci &= ~htons(VLAN_PCP_MASK); flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } /* Returns the number of MPLS LSEs present in 'flow' * * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type. * Otherwise traverses 'flow''s MPLS label stack stopping at the * first entry that has the BoS bit set. If no such entry exists then * the maximum number of LSEs that can be stored in 'flow' is returned. */ int flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc) { /* dl_type is always masked. */ if (eth_type_mpls(flow->dl_type)) { int i; int cnt; cnt = 0; for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) { if (wc) { wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK); } if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { return i + 1; } if (flow->mpls_lse[i]) { cnt++; } } return cnt; } else { return 0; } } /* Returns the number consecutive of MPLS LSEs, starting at the * innermost LSE, that are common in 'a' and 'b'. * * 'an' must be flow_count_mpls_labels(a). * 'bn' must be flow_count_mpls_labels(b). */ int flow_count_common_mpls_labels(const struct flow *a, int an, const struct flow *b, int bn, struct flow_wildcards *wc) { int min_n = MIN(an, bn); if (min_n == 0) { return 0; } else { int common_n = 0; int a_last = an - 1; int b_last = bn - 1; int i; for (i = 0; i < min_n; i++) { if (wc) { wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX; wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX; } if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) { break; } else { common_n++; } } return common_n; } } /* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type * to 'mpls_eth_type', which must be an MPLS Ethertype. * * If the new label is the first MPLS label in 'flow', it is generated as; * * - label: 2, if 'flow' is IPv6, otherwise 0. * * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64. * * - TC: IPv4 or IPv6 TOS, if present, otherwise 0. * * - BoS: 1. * * If the new label is the second or later label MPLS label in 'flow', it is * generated as; * * - label: Copied from outer label. * * - TTL: Copied from outer label. * * - TC: Copied from outer label. * * - BoS: 0. * * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow). */ void flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type, struct flow_wildcards *wc) { ovs_assert(eth_type_mpls(mpls_eth_type)); ovs_assert(n < FLOW_MAX_MPLS_LABELS); if (n) { int i; if (wc) { memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n); } for (i = n; i >= 1; i--) { flow->mpls_lse[i] = flow->mpls_lse[i - 1]; } flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK)); } else { int label = 0; /* IPv4 Explicit Null. */ int tc = 0; int ttl = 64; if (flow->dl_type == htons(ETH_TYPE_IPV6)) { label = 2; } if (is_ip_any(flow)) { tc = (flow->nw_tos & IP_DSCP_MASK) >> 2; if (wc) { wc->masks.nw_tos |= IP_DSCP_MASK; wc->masks.nw_ttl = 0xff; } if (flow->nw_ttl) { ttl = flow->nw_ttl; } } flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label)); /* Clear all L3 and L4 fields and dp_hash. */ BUILD_ASSERT(FLOW_WC_SEQ == 35); memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0, sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT); flow->dp_hash = 0; } flow->dl_type = mpls_eth_type; } /* Tries to remove the outermost MPLS label from 'flow'. Returns true if * successful, false otherwise. On success, sets 'flow''s Ethernet type to * 'eth_type'. * * 'n' must be flow_count_mpls_labels(flow). */ bool flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type, struct flow_wildcards *wc) { int i; if (n == 0) { /* Nothing to pop. */ return false; } else if (n == FLOW_MAX_MPLS_LABELS) { if (wc) { wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK); } if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) { /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */ return false; } } if (wc) { memset(&wc->masks.mpls_lse[1], 0xff, sizeof *wc->masks.mpls_lse * (n - 1)); } for (i = 1; i < n; i++) { flow->mpls_lse[i - 1] = flow->mpls_lse[i]; } flow->mpls_lse[n - 1] = 0; flow->dl_type = eth_type; return true; } /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted * as an OpenFlow 1.1 "mpls_label" value. */ void flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label) { set_mpls_lse_label(&flow->mpls_lse[idx], label); } /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the * range 0...255. */ void flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl) { set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl); } /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the * range 0...7. */ void flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc) { set_mpls_lse_tc(&flow->mpls_lse[idx], tc); } /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */ void flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos) { set_mpls_lse_bos(&flow->mpls_lse[idx], bos); } /* Sets the entire MPLS LSE. */ void flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse) { flow->mpls_lse[idx] = lse; } static size_t flow_compose_l4(struct dp_packet *p, const struct flow *flow) { size_t l4_len = 0; if (!(flow->nw_frag & FLOW_NW_FRAG_ANY) || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { if (flow->nw_proto == IPPROTO_TCP) { struct tcp_header *tcp; l4_len = sizeof *tcp; tcp = dp_packet_put_zeros(p, l4_len); tcp->tcp_src = flow->tp_src; tcp->tcp_dst = flow->tp_dst; tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5); } else if (flow->nw_proto == IPPROTO_UDP) { struct udp_header *udp; l4_len = sizeof *udp; udp = dp_packet_put_zeros(p, l4_len); udp->udp_src = flow->tp_src; udp->udp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_SCTP) { struct sctp_header *sctp; l4_len = sizeof *sctp; sctp = dp_packet_put_zeros(p, l4_len); sctp->sctp_src = flow->tp_src; sctp->sctp_dst = flow->tp_dst; } else if (flow->nw_proto == IPPROTO_ICMP) { struct icmp_header *icmp; l4_len = sizeof *icmp; icmp = dp_packet_put_zeros(p, l4_len); icmp->icmp_type = ntohs(flow->tp_src); icmp->icmp_code = ntohs(flow->tp_dst); icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN); } else if (flow->nw_proto == IPPROTO_IGMP) { struct igmp_header *igmp; l4_len = sizeof *igmp; igmp = dp_packet_put_zeros(p, l4_len); igmp->igmp_type = ntohs(flow->tp_src); igmp->igmp_code = ntohs(flow->tp_dst); put_16aligned_be32(&igmp->group, flow->igmp_group_ip4); igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN); } else if (flow->nw_proto == IPPROTO_ICMPV6) { struct icmp6_hdr *icmp; l4_len = sizeof *icmp; icmp = dp_packet_put_zeros(p, l4_len); icmp->icmp6_type = ntohs(flow->tp_src); icmp->icmp6_code = ntohs(flow->tp_dst); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { struct in6_addr *nd_target; struct ovs_nd_opt *nd_opt; l4_len += sizeof *nd_target; nd_target = dp_packet_put_zeros(p, sizeof *nd_target); *nd_target = flow->nd_target; if (!eth_addr_is_zero(flow->arp_sha)) { l4_len += 8; nd_opt = dp_packet_put_zeros(p, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR; nd_opt->nd_opt_mac = flow->arp_sha; } if (!eth_addr_is_zero(flow->arp_tha)) { l4_len += 8; nd_opt = dp_packet_put_zeros(p, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR; nd_opt->nd_opt_mac = flow->arp_tha; } } icmp->icmp6_cksum = (OVS_FORCE uint16_t) csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp); } } return l4_len; } /* Puts into 'b' a packet that flow_extract() would parse as having the given * 'flow'. * * (This is useful only for testing, obviously, and the packet isn't really * valid. It hasn't got some checksums filled in, for one, and lots of fields * are just zeroed.) */ void flow_compose(struct dp_packet *p, const struct flow *flow) { size_t l4_len; /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */ eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0); if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) { struct eth_header *eth = dp_packet_l2(p); eth->eth_type = htons(dp_packet_size(p)); return; } if (flow->vlan_tci & htons(VLAN_CFI)) { eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci); } if (flow->dl_type == htons(ETH_TYPE_IP)) { struct ip_header *ip; ip = dp_packet_put_zeros(p, sizeof *ip); ip->ip_ihl_ver = IP_IHL_VER(5, 4); ip->ip_tos = flow->nw_tos; ip->ip_ttl = flow->nw_ttl; ip->ip_proto = flow->nw_proto; put_16aligned_be32(&ip->ip_src, flow->nw_src); put_16aligned_be32(&ip->ip_dst, flow->nw_dst); if (flow->nw_frag & FLOW_NW_FRAG_ANY) { ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS); if (flow->nw_frag & FLOW_NW_FRAG_LATER) { ip->ip_frag_off |= htons(100); } } dp_packet_set_l4(p, dp_packet_tail(p)); l4_len = flow_compose_l4(p, flow); ip = dp_packet_l3(p); ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len); ip->ip_csum = csum(ip, sizeof *ip); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { struct ovs_16aligned_ip6_hdr *nh; nh = dp_packet_put_zeros(p, sizeof *nh); put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) | htonl(flow->nw_tos << 20) | flow->ipv6_label); nh->ip6_hlim = flow->nw_ttl; nh->ip6_nxt = flow->nw_proto; memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src)); memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst)); dp_packet_set_l4(p, dp_packet_tail(p)); l4_len = flow_compose_l4(p, flow); nh = dp_packet_l3(p); nh->ip6_plen = htons(l4_len); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { struct arp_eth_header *arp; arp = dp_packet_put_zeros(p, sizeof *arp); dp_packet_set_l3(p, arp); arp->ar_hrd = htons(1); arp->ar_pro = htons(ETH_TYPE_IP); arp->ar_hln = ETH_ADDR_LEN; arp->ar_pln = 4; arp->ar_op = htons(flow->nw_proto); if (flow->nw_proto == ARP_OP_REQUEST || flow->nw_proto == ARP_OP_REPLY) { put_16aligned_be32(&arp->ar_spa, flow->nw_src); put_16aligned_be32(&arp->ar_tpa, flow->nw_dst); arp->ar_sha = flow->arp_sha; arp->ar_tha = flow->arp_tha; } } if (eth_type_mpls(flow->dl_type)) { int n; p->l2_5_ofs = p->l3_ofs; for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) { if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) { break; } } while (n > 0) { push_mpls(p, flow->dl_type, flow->mpls_lse[--n]); } } } /* Compressed flow. */ /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by * the caller. The caller must have already computed 'dst->map' properly to * indicate the significant uint64_t elements of 'src'. * * Normally the significant elements are the ones that are non-zero. However, * when a miniflow is initialized from a (mini)mask, the values can be zeroes, * so that the flow and mask always have the same maps. */ void miniflow_init(struct miniflow *dst, const struct flow *src) { uint64_t *dst_u64 = miniflow_values(dst); size_t idx; FLOWMAP_FOR_EACH_INDEX(idx, dst->map) { *dst_u64++ = flow_u64_value(src, idx); } } /* Initialize the maps of 'flow' from 'src'. */ void miniflow_map_init(struct miniflow *flow, const struct flow *src) { /* Initialize map, counting the number of nonzero elements. */ flowmap_init(&flow->map); for (size_t i = 0; i < FLOW_U64S; i++) { if (flow_u64_value(src, i)) { flowmap_set(&flow->map, i, 1); } } } /* Allocates 'n' count of miniflows, consecutive in memory, initializing the * map of each from 'src'. * Returns the size of the miniflow data. */ size_t miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src) { size_t n_values = miniflow_n_values(src); size_t data_size = MINIFLOW_VALUES_SIZE(n_values); struct miniflow *dst = xmalloc(n * (sizeof *src + data_size)); size_t i; COVERAGE_INC(miniflow_malloc); for (i = 0; i < n; i++) { *dst = *src; /* Copy maps. */ dsts[i] = dst; dst += 1; /* Just past the maps. */ dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */ } return data_size; } /* Returns a miniflow copy of 'src'. The caller must eventually free() the * returned miniflow. */ struct miniflow * miniflow_create(const struct flow *src) { struct miniflow tmp; struct miniflow *dst; miniflow_map_init(&tmp, src); miniflow_alloc(&dst, 1, &tmp); miniflow_init(dst, src); return dst; } /* Initializes 'dst' as a copy of 'src'. The caller must have allocated * 'dst' to have inline space for 'n_values' data in 'src'. */ void miniflow_clone(struct miniflow *dst, const struct miniflow *src, size_t n_values) { *dst = *src; /* Copy maps. */ memcpy(miniflow_values(dst), miniflow_get_values(src), MINIFLOW_VALUES_SIZE(n_values)); } /* Initializes 'dst' as a copy of 'src'. */ void miniflow_expand(const struct miniflow *src, struct flow *dst) { memset(dst, 0, sizeof *dst); flow_union_with_miniflow(dst, src); } /* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */ bool miniflow_equal(const struct miniflow *a, const struct miniflow *b) { const uint64_t *ap = miniflow_get_values(a); const uint64_t *bp = miniflow_get_values(b); /* This is mostly called after a matching hash, so it is highly likely that * the maps are equal as well. */ if (OVS_LIKELY(flowmap_equal(a->map, b->map))) { return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap); } else { size_t idx; FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) { if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0) != (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) { return false; } } } return true; } /* Returns false if 'a' and 'b' differ at the places where there are 1-bits * in 'mask', true otherwise. */ bool miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b, const struct minimask *mask) { const uint64_t *p = miniflow_get_values(&mask->masks); size_t idx; FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) { if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) { return false; } } return true; } /* Returns true if 'a' and 'b' are equal at the places where there are 1-bits * in 'mask', false if they differ. */ bool miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b, const struct minimask *mask) { const uint64_t *p = miniflow_get_values(&mask->masks); size_t idx; FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) { if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) { return false; } } return true; } void minimask_init(struct minimask *mask, const struct flow_wildcards *wc) { miniflow_init(&mask->masks, &wc->masks); } /* Returns a minimask copy of 'wc'. The caller must eventually free the * returned minimask with free(). */ struct minimask * minimask_create(const struct flow_wildcards *wc) { return (struct minimask *)miniflow_create(&wc->masks); } /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'. * * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which * must follow '*dst_' in memory, for use by 'dst_'. The caller must *not* * free 'dst_' free(). */ void minimask_combine(struct minimask *dst_, const struct minimask *a_, const struct minimask *b_, uint64_t storage[FLOW_U64S]) { struct miniflow *dst = &dst_->masks; uint64_t *dst_values = storage; const struct miniflow *a = &a_->masks; const struct miniflow *b = &b_->masks; size_t idx; flowmap_init(&dst->map); FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) { /* Both 'a' and 'b' have non-zero data at 'idx'. */ uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx); if (mask) { flowmap_set(&dst->map, idx, 1); *dst_values++ = mask; } } } /* Initializes 'wc' as a copy of 'mask'. */ void minimask_expand(const struct minimask *mask, struct flow_wildcards *wc) { miniflow_expand(&mask->masks, &wc->masks); } /* Returns true if 'a' and 'b' are the same flow mask, false otherwise. * Minimasks may not have zero data values, so for the minimasks to be the * same, they need to have the same map and the same data values. */ bool minimask_equal(const struct minimask *a, const struct minimask *b) { return !memcmp(a, b, sizeof *a + MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks))); } /* Returns true if at least one bit matched by 'b' is wildcarded by 'a', * false otherwise. */ bool minimask_has_extra(const struct minimask *a, const struct minimask *b) { const uint64_t *bp = miniflow_get_values(&b->masks); size_t idx; FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) { uint64_t b_u64 = *bp++; /* 'b_u64' is non-zero, check if the data in 'a' is either zero * or misses some of the bits in 'b_u64'. */ if (!MINIFLOW_IN_MAP(&a->masks, idx) || ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) { return true; /* 'a' wildcards some bits 'b' doesn't. */ } } return false; }