/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef FLOW_H #define FLOW_H 1 #include #include #include #include #include #include #include "bitmap.h" #include "byte-order.h" #include "openvswitch/compiler.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "openvswitch/flow.h" #include "packets.h" #include "hash.h" #include "util.h" struct dpif_flow_stats; struct dpif_flow_attrs; struct ds; struct flow_wildcards; struct minimask; struct dp_packet; struct ofputil_port_map; struct pkt_metadata; struct match; /* Some flow fields are mutually exclusive or only appear within the flow * pipeline. IPv6 headers are bigger than IPv4 and MPLS, and IPv6 ND packets * are bigger than TCP,UDP and IGMP packets. */ #define FLOW_MAX_PACKET_U64S (FLOW_U64S \ /* Unused in datapath */ - FLOW_U64_SIZE(regs) \ - FLOW_U64_SIZE(metadata) \ /* L2.5/3 */ - FLOW_U64_SIZE(nw_src) /* incl. nw_dst */ \ - FLOW_U64_SIZE(mpls_lse) \ /* L4 */ - FLOW_U64_SIZE(tp_src) \ ) extern const uint8_t flow_segment_u64s[]; /* Configured maximum VLAN headers. */ extern int flow_vlan_limit; #define FLOW_U64_OFFSET(FIELD) \ (offsetof(struct flow, FIELD) / sizeof(uint64_t)) #define FLOW_U64_OFFREM(FIELD) \ (offsetof(struct flow, FIELD) % sizeof(uint64_t)) /* Number of 64-bit units spanned by a 'FIELD'. */ #define FLOW_U64_SIZE(FIELD) \ DIV_ROUND_UP(FLOW_U64_OFFREM(FIELD) + MEMBER_SIZEOF(struct flow, FIELD), \ sizeof(uint64_t)) void flow_extract(struct dp_packet *, struct flow *); void flow_zero_wildcards(struct flow *, const struct flow_wildcards *); void flow_unwildcard_tp_ports(const struct flow *, struct flow_wildcards *); void flow_get_metadata(const struct flow *, struct match *flow_metadata); struct netdev *flow_get_tunnel_netdev(struct flow_tnl *tunnel); const char *ct_state_to_string(uint32_t state); uint32_t ct_state_from_string(const char *); bool parse_ct_state(const char *state_str, uint32_t default_state, uint32_t *ct_state, struct ds *); bool validate_ct_state(uint32_t state, struct ds *); void flow_clear_conntrack(struct flow *); char *flow_to_string(const struct flow *, const struct ofputil_port_map *); void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), uint32_t flags, char del); void format_flags_masked(struct ds *ds, const char *name, const char *(*bit_to_string)(uint32_t), uint32_t flags, uint32_t mask, uint32_t max_mask); void format_packet_type_masked(struct ds *, ovs_be32 value, ovs_be32 mask); int parse_flags(const char *s, const char *(*bit_to_string)(uint32_t), char end, const char *field_name, char **res_string, uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask); void flow_format(struct ds *, const struct flow *, const struct ofputil_port_map *); void flow_print(FILE *, const struct flow *, const struct ofputil_port_map *); static inline int flow_compare_3way(const struct flow *, const struct flow *); static inline bool flow_equal(const struct flow *, const struct flow *); static inline size_t flow_hash(const struct flow *, uint32_t basis); void flow_set_dl_vlan(struct flow *, ovs_be16 vid, int id); void flow_fix_vlan_tpid(struct flow *); void flow_set_vlan_vid(struct flow *, ovs_be16 vid); void flow_set_vlan_pcp(struct flow *, uint8_t pcp, int id); void flow_limit_vlans(int vlan_limit); int flow_count_vlan_headers(const struct flow *); void flow_skip_common_vlan_headers(const struct flow *a, int *p_an, const struct flow *b, int *p_bn); void flow_pop_vlan(struct flow*, struct flow_wildcards*); void flow_push_vlan_uninit(struct flow*, struct flow_wildcards*); int flow_count_mpls_labels(const struct flow *, struct flow_wildcards *); int flow_count_common_mpls_labels(const struct flow *a, int an, const struct flow *b, int bn, struct flow_wildcards *wc); void flow_push_mpls(struct flow *, int n, ovs_be16 mpls_eth_type, struct flow_wildcards *, bool clear_flow_L3); bool flow_pop_mpls(struct flow *, int n, ovs_be16 eth_type, struct flow_wildcards *); void flow_set_mpls_label(struct flow *, int idx, ovs_be32 label); void flow_set_mpls_ttl(struct flow *, int idx, uint8_t ttl); void flow_set_mpls_tc(struct flow *, int idx, uint8_t tc); void flow_set_mpls_bos(struct flow *, int idx, uint8_t stack); void flow_set_mpls_lse(struct flow *, int idx, ovs_be32 lse); void flow_compose(struct dp_packet *, const struct flow *, const void *l7, size_t l7_len); void packet_expand(struct dp_packet *, const struct flow *, size_t size); bool parse_ipv6_ext_hdrs(const void **datap, size_t *sizep, uint8_t *nw_proto, uint8_t *nw_frag, const struct ovs_16aligned_ip6_frag **frag_hdr, const struct ip6_rt_hdr **rt_hdr); bool parse_nsh(const void **datap, size_t *sizep, struct ovs_key_nsh *key); uint16_t parse_tcp_flags(struct dp_packet *packet, ovs_be16 *dl_type_p, uint8_t *nw_frag_p, ovs_be16 *first_vlan_tci_p); static inline uint64_t flow_get_xreg(const struct flow *flow, int idx) { return ((uint64_t) flow->regs[idx * 2] << 32) | flow->regs[idx * 2 + 1]; } static inline void flow_set_xreg(struct flow *flow, int idx, uint64_t value) { flow->regs[idx * 2] = value >> 32; flow->regs[idx * 2 + 1] = value; } static inline ovs_u128 flow_get_xxreg(const struct flow *flow, int idx) { ovs_u128 value; value.u64.hi = (uint64_t) flow->regs[idx * 4] << 32; value.u64.hi |= flow->regs[idx * 4 + 1]; value.u64.lo = (uint64_t) flow->regs[idx * 4 + 2] << 32; value.u64.lo |= flow->regs[idx * 4 + 3]; return value; } static inline void flow_set_xxreg(struct flow *flow, int idx, ovs_u128 value) { flow->regs[idx * 4] = value.u64.hi >> 32; flow->regs[idx * 4 + 1] = value.u64.hi; flow->regs[idx * 4 + 2] = value.u64.lo >> 32; flow->regs[idx * 4 + 3] = value.u64.lo; } static inline int flow_compare_3way(const struct flow *a, const struct flow *b) { return memcmp(a, b, sizeof *a); } static inline bool flow_equal(const struct flow *a, const struct flow *b) { return !flow_compare_3way(a, b); } static inline size_t flow_hash(const struct flow *flow, uint32_t basis) { return hash_bytes64((const uint64_t *)flow, sizeof *flow, basis); } static inline uint16_t ofp_to_u16(ofp_port_t ofp_port) { return (OVS_FORCE uint16_t) ofp_port; } static inline uint32_t odp_to_u32(odp_port_t odp_port) { return (OVS_FORCE uint32_t) odp_port; } static inline uint32_t ofp11_to_u32(ofp11_port_t ofp11_port) { return (OVS_FORCE uint32_t) ofp11_port; } static inline ofp_port_t u16_to_ofp(uint16_t port) { return OFP_PORT_C(port); } static inline odp_port_t u32_to_odp(uint32_t port) { return ODP_PORT_C(port); } static inline ofp11_port_t u32_to_ofp11(uint32_t port) { return OFP11_PORT_C(port); } static inline uint32_t hash_ofp_port(ofp_port_t ofp_port) { return hash_int(ofp_to_u16(ofp_port), 0); } static inline uint32_t hash_odp_port(odp_port_t odp_port) { return hash_int(odp_to_u32(odp_port), 0); } uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis); uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis); uint32_t flow_hash_symmetric_l2(const struct flow *flow, uint32_t basis); uint32_t flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis, bool inc_udp_ports ); uint32_t flow_hash_symmetric_l3(const struct flow *flow, uint32_t basis); /* Initialize a flow with random fields that matter for nx_hash_fields. */ void flow_random_hash_fields(struct flow *); void flow_mask_hash_fields(const struct flow *, struct flow_wildcards *, enum nx_hash_fields); uint32_t flow_hash_fields(const struct flow *, enum nx_hash_fields, uint16_t basis); const char *flow_hash_fields_to_str(enum nx_hash_fields); bool flow_hash_fields_valid(enum nx_hash_fields); uint32_t flow_hash_in_wildcards(const struct flow *, const struct flow_wildcards *, uint32_t basis); bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *); /* Bitmap for flow values. For each 1-bit the corresponding flow value is * explicitly specified, other values are zeroes. * * map_t must be wide enough to hold any member of struct flow. */ typedef unsigned long long map_t; #define MAP_T_BITS (sizeof(map_t) * CHAR_BIT) #define MAP_1 (map_t)1 #define MAP_MAX TYPE_MAXIMUM(map_t) #define MAP_IS_SET(MAP, IDX) ((MAP) & (MAP_1 << (IDX))) /* Iterate through the indices of all 1-bits in 'MAP'. */ #define MAP_FOR_EACH_INDEX(IDX, MAP) \ ULLONG_FOR_EACH_1(IDX, MAP) #define FLOWMAP_UNITS DIV_ROUND_UP(FLOW_U64S, MAP_T_BITS) struct flowmap { map_t bits[FLOWMAP_UNITS]; }; #define FLOWMAP_EMPTY_INITIALIZER { { 0 } } static inline void flowmap_init(struct flowmap *); static inline bool flowmap_equal(struct flowmap, struct flowmap); static inline bool flowmap_is_set(const struct flowmap *, size_t idx); static inline bool flowmap_are_set(const struct flowmap *, size_t idx, unsigned int n_bits); static inline void flowmap_set(struct flowmap *, size_t idx, unsigned int n_bits); static inline void flowmap_clear(struct flowmap *, size_t idx, unsigned int n_bits); static inline struct flowmap flowmap_or(struct flowmap, struct flowmap); static inline struct flowmap flowmap_and(struct flowmap, struct flowmap); static inline bool flowmap_is_empty(struct flowmap); static inline unsigned int flowmap_n_1bits(struct flowmap); #define FLOWMAP_HAS_FIELD(FM, FIELD) \ flowmap_are_set(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD)) #define FLOWMAP_SET(FM, FIELD) \ flowmap_set(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD)) #define FLOWMAP_SET__(FM, FIELD, SIZE) \ flowmap_set(FM, FLOW_U64_OFFSET(FIELD), \ DIV_ROUND_UP(SIZE, sizeof(uint64_t))) /* XXX: Only works for full 64-bit units. */ #define FLOWMAP_CLEAR(FM, FIELD) \ BUILD_ASSERT_DECL(FLOW_U64_OFFREM(FIELD) == 0); \ BUILD_ASSERT_DECL(sizeof(((struct flow *)0)->FIELD) % sizeof(uint64_t) == 0); \ flowmap_clear(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD)) /* Iterate through all units in 'FMAP'. */ #define FLOWMAP_FOR_EACH_UNIT(UNIT) \ for ((UNIT) = 0; (UNIT) < FLOWMAP_UNITS; (UNIT)++) /* Iterate through all map units in 'FMAP'. */ #define FLOWMAP_FOR_EACH_MAP(MAP, FLOWMAP) \ for (size_t unit__ = 0; \ unit__ < FLOWMAP_UNITS && ((MAP) = (FLOWMAP).bits[unit__], true); \ unit__++) struct flowmap_aux; static inline bool flowmap_next_index(struct flowmap_aux *, size_t *idx); #define FLOWMAP_AUX_INITIALIZER(FLOWMAP) { .unit = 0, .map = (FLOWMAP) } /* Iterate through all struct flow u64 indices specified by 'MAP'. This is a * slower but easier version of the FLOWMAP_FOR_EACH_MAP() & * MAP_FOR_EACH_INDEX() combination. */ #define FLOWMAP_FOR_EACH_INDEX(IDX, MAP) \ for (struct flowmap_aux aux__ = FLOWMAP_AUX_INITIALIZER(MAP); \ flowmap_next_index(&aux__, &(IDX));) /* Flowmap inline implementations. */ static inline void flowmap_init(struct flowmap *fm) { memset(fm, 0, sizeof *fm); } static inline bool flowmap_equal(struct flowmap a, struct flowmap b) { return !memcmp(&a, &b, sizeof a); } static inline bool flowmap_is_set(const struct flowmap *fm, size_t idx) { return (fm->bits[idx / MAP_T_BITS] & (MAP_1 << (idx % MAP_T_BITS))) != 0; } /* Returns 'true' if any of the 'n_bits' bits starting at 'idx' are set in * 'fm'. 'n_bits' can be at most MAP_T_BITS. */ static inline bool flowmap_are_set(const struct flowmap *fm, size_t idx, unsigned int n_bits) { map_t n_bits_mask = (MAP_1 << n_bits) - 1; size_t unit = idx / MAP_T_BITS; idx %= MAP_T_BITS; if (fm->bits[unit] & (n_bits_mask << idx)) { return true; } /* The seemingly unnecessary bounds check on 'unit' is a workaround for a * false-positive array out of bounds error by GCC 4.9. */ if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) { /* Check the remaining bits from the next unit. */ return fm->bits[unit + 1] & (n_bits_mask >> (MAP_T_BITS - idx)); } return false; } /* Set the 'n_bits' consecutive bits in 'fm', starting at bit 'idx'. * 'n_bits' can be at most MAP_T_BITS. */ static inline void flowmap_set(struct flowmap *fm, size_t idx, unsigned int n_bits) { map_t n_bits_mask = (MAP_1 << n_bits) - 1; size_t unit = idx / MAP_T_BITS; idx %= MAP_T_BITS; fm->bits[unit] |= n_bits_mask << idx; /* The seemingly unnecessary bounds check on 'unit' is a workaround for a * false-positive array out of bounds error by GCC 4.9. */ if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) { /* 'MAP_T_BITS - idx' bits were set on 'unit', set the remaining * bits from the next unit. */ fm->bits[unit + 1] |= n_bits_mask >> (MAP_T_BITS - idx); } } /* Clears the 'n_bits' consecutive bits in 'fm', starting at bit 'idx'. * 'n_bits' can be at most MAP_T_BITS. */ static inline void flowmap_clear(struct flowmap *fm, size_t idx, unsigned int n_bits) { map_t n_bits_mask = (MAP_1 << n_bits) - 1; size_t unit = idx / MAP_T_BITS; idx %= MAP_T_BITS; fm->bits[unit] &= ~(n_bits_mask << idx); /* The seemingly unnecessary bounds check on 'unit' is a workaround for a * false-positive array out of bounds error by GCC 4.9. */ if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) { /* 'MAP_T_BITS - idx' bits were cleared on 'unit', clear the * remaining bits from the next unit. */ fm->bits[unit + 1] &= ~(n_bits_mask >> (MAP_T_BITS - idx)); } } /* OR the bits in the flowmaps. */ static inline struct flowmap flowmap_or(struct flowmap a, struct flowmap b) { struct flowmap map; size_t unit; FLOWMAP_FOR_EACH_UNIT (unit) { map.bits[unit] = a.bits[unit] | b.bits[unit]; } return map; } /* AND the bits in the flowmaps. */ static inline struct flowmap flowmap_and(struct flowmap a, struct flowmap b) { struct flowmap map; size_t unit; FLOWMAP_FOR_EACH_UNIT (unit) { map.bits[unit] = a.bits[unit] & b.bits[unit]; } return map; } static inline bool flowmap_is_empty(struct flowmap fm) { map_t map; FLOWMAP_FOR_EACH_MAP (map, fm) { if (map) { return false; } } return true; } static inline unsigned int flowmap_n_1bits(struct flowmap fm) { unsigned int n_1bits = 0; size_t unit; FLOWMAP_FOR_EACH_UNIT (unit) { n_1bits += count_1bits(fm.bits[unit]); } return n_1bits; } struct flowmap_aux { size_t unit; struct flowmap map; }; static inline bool flowmap_next_index(struct flowmap_aux *aux, size_t *idx) { for (;;) { map_t *map = &aux->map.bits[aux->unit]; if (*map) { *idx = aux->unit * MAP_T_BITS + raw_ctz(*map); *map = zero_rightmost_1bit(*map); return true; } if (++aux->unit >= FLOWMAP_UNITS) { return false; } } } /* Compressed flow. */ /* A sparse representation of a "struct flow". * * A "struct flow" is fairly large and tends to be mostly zeros. Sparse * representation has two advantages. First, it saves memory and, more * importantly, minimizes the number of accessed cache lines. Second, it saves * time when the goal is to iterate over only the nonzero parts of the struct. * * The map member hold one bit for each uint64_t in a "struct flow". Each * 0-bit indicates that the corresponding uint64_t is zero, each 1-bit that it * *may* be nonzero (see below how this applies to minimasks). * * The values indicated by 'map' always follow the miniflow in memory. The * user of the miniflow is responsible for always having enough storage after * the struct miniflow corresponding to the number of 1-bits in maps. * * Elements in values array are allowed to be zero. This is useful for "struct * minimatch", for which ensuring that the miniflow and minimask members have * same maps allows optimization. This allowance applies only to a miniflow * that is not a mask. That is, a minimask may NOT have zero elements in its * values. * * A miniflow is always dynamically allocated so that the maps are followed by * at least as many elements as there are 1-bits in maps. */ struct miniflow { struct flowmap map; /* Followed by: * uint64_t values[n]; * where 'n' is miniflow_n_values(miniflow). */ }; BUILD_ASSERT_DECL(sizeof(struct miniflow) % sizeof(uint64_t) == 0); #define MINIFLOW_VALUES_SIZE(COUNT) ((COUNT) * sizeof(uint64_t)) static inline uint64_t *miniflow_values(struct miniflow *mf) { return (uint64_t *)(mf + 1); } static inline const uint64_t *miniflow_get_values(const struct miniflow *mf) { return (const uint64_t *)(mf + 1); } struct pkt_metadata; /* The 'dst' must follow with buffer space for FLOW_U64S 64-bit units. * 'dst->map' is ignored on input and set on output to indicate which fields * were extracted. */ void miniflow_extract(struct dp_packet *packet, struct miniflow *dst); void miniflow_map_init(struct miniflow *, const struct flow *); void flow_wc_map(const struct flow *, struct flowmap *); size_t miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src); void miniflow_init(struct miniflow *, const struct flow *); void miniflow_clone(struct miniflow *, const struct miniflow *, size_t n_values); struct miniflow * miniflow_create(const struct flow *); void miniflow_expand(const struct miniflow *, struct flow *); static inline uint64_t flow_u64_value(const struct flow *flow, size_t index) { return ((uint64_t *)flow)[index]; } static inline uint64_t *flow_u64_lvalue(struct flow *flow, size_t index) { return &((uint64_t *)flow)[index]; } static inline size_t miniflow_n_values(const struct miniflow *flow) { return flowmap_n_1bits(flow->map); } struct flow_for_each_in_maps_aux { const struct flow *flow; struct flowmap_aux map_aux; }; static inline bool flow_values_get_next_in_maps(struct flow_for_each_in_maps_aux *aux, uint64_t *value) { size_t idx; if (flowmap_next_index(&aux->map_aux, &idx)) { *value = flow_u64_value(aux->flow, idx); return true; } return false; } /* Iterate through all flow u64 values specified by 'MAPS'. */ #define FLOW_FOR_EACH_IN_MAPS(VALUE, FLOW, MAPS) \ for (struct flow_for_each_in_maps_aux aux__ \ = { (FLOW), FLOWMAP_AUX_INITIALIZER(MAPS) }; \ flow_values_get_next_in_maps(&aux__, &(VALUE));) struct mf_for_each_in_map_aux { size_t unit; /* Current 64-bit unit of the flowmaps being processed. */ struct flowmap fmap; /* Remaining 1-bits corresponding to the 64-bit words in 'values' */ struct flowmap map; /* Remaining 1-bits corresponding to the 64-bit words of interest. */ const uint64_t *values; /* 64-bit words corresponding to the 1-bits in 'fmap'. */ }; /* Get the data from 'aux->values' corresponding to the next lowest 1-bit * in 'aux->map', given that 'aux->values' points to an array of 64-bit * words corresponding to the 1-bits in 'aux->fmap', starting from the * rightmost 1-bit. * * Returns 'true' if the traversal is incomplete, 'false' otherwise. * 'aux' is prepared for the next iteration after each call. * * This is used to traverse through, for example, the values in a miniflow * representation of a flow key selected by non-zero 64-bit words in a * corresponding subtable mask. */ static inline bool mf_get_next_in_map(struct mf_for_each_in_map_aux *aux, uint64_t *value) { map_t *map, *fmap; map_t rm1bit; /* Skip empty map units. */ while (OVS_UNLIKELY(!*(map = &aux->map.bits[aux->unit]))) { /* Skip remaining data in the current unit before advancing * to the next. */ aux->values += count_1bits(aux->fmap.bits[aux->unit]); if (++aux->unit == FLOWMAP_UNITS) { return false; } } rm1bit = rightmost_1bit(*map); *map -= rm1bit; fmap = &aux->fmap.bits[aux->unit]; /* If the rightmost 1-bit found from the current unit in 'aux->map' * ('rm1bit') is also present in 'aux->fmap', store the corresponding * value from 'aux->values' to '*value', otherwise store 0. */ if (OVS_LIKELY(*fmap & rm1bit)) { /* Skip all 64-bit words in 'values' preceding the one corresponding * to 'rm1bit'. */ map_t trash = *fmap & (rm1bit - 1); /* Avoid resetting 'fmap' and calling count_1bits() when trash is * zero. */ if (trash) { *fmap -= trash; aux->values += count_1bits(trash); } *value = *aux->values; } else { *value = 0; } return true; } /* Iterate through miniflow u64 values specified by 'FLOWMAP'. */ #define MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, FLOW, FLOWMAP) \ for (struct mf_for_each_in_map_aux aux__ = \ { 0, (FLOW)->map, (FLOWMAP), miniflow_get_values(FLOW) }; \ mf_get_next_in_map(&aux__, &(VALUE));) /* This can be used when it is known that 'idx' is set in 'map'. */ static inline const uint64_t * miniflow_values_get__(const uint64_t *values, map_t map, size_t idx) { return values + count_1bits(map & ((MAP_1 << idx) - 1)); } /* This can be used when it is known that 'u64_idx' is set in * the map of 'mf'. */ static inline const uint64_t * miniflow_get__(const struct miniflow *mf, size_t idx) { const uint64_t *values = miniflow_get_values(mf); const map_t *map = mf->map.bits; while (idx >= MAP_T_BITS) { idx -= MAP_T_BITS; values += count_1bits(*map++); } return miniflow_values_get__(values, *map, idx); } #define MINIFLOW_IN_MAP(MF, IDX) flowmap_is_set(&(MF)->map, IDX) /* Get the value of the struct flow 'FIELD' as up to 8 byte wide integer type * 'TYPE' from miniflow 'MF'. */ #define MINIFLOW_GET_TYPE(MF, TYPE, FIELD) \ (BUILD_ASSERT(sizeof(TYPE) == sizeof(((struct flow *)0)->FIELD)), \ BUILD_ASSERT_GCCONLY(__builtin_types_compatible_p(TYPE, typeof(((struct flow *)0)->FIELD))), \ MINIFLOW_GET_TYPE__(MF, TYPE, FIELD)) /* Like MINIFLOW_GET_TYPE, but without checking that TYPE is the correct width * for FIELD. (This is useful for deliberately reading adjacent fields in one * go.) */ #define MINIFLOW_GET_TYPE__(MF, TYPE, FIELD) \ (MINIFLOW_IN_MAP(MF, FLOW_U64_OFFSET(FIELD)) \ ? ((OVS_FORCE const TYPE *)miniflow_get__(MF, FLOW_U64_OFFSET(FIELD))) \ [FLOW_U64_OFFREM(FIELD) / sizeof(TYPE)] \ : 0) #define MINIFLOW_GET_U128(FLOW, FIELD) \ (ovs_u128) { .u64 = { \ (MINIFLOW_IN_MAP(FLOW, FLOW_U64_OFFSET(FIELD)) ? \ *miniflow_get__(FLOW, FLOW_U64_OFFSET(FIELD)) : 0), \ (MINIFLOW_IN_MAP(FLOW, FLOW_U64_OFFSET(FIELD) + 1) ? \ *miniflow_get__(FLOW, FLOW_U64_OFFSET(FIELD) + 1) : 0) } } #define MINIFLOW_GET_U8(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint8_t, FIELD) #define MINIFLOW_GET_U16(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint16_t, FIELD) #define MINIFLOW_GET_BE16(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, ovs_be16, FIELD) #define MINIFLOW_GET_U32(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint32_t, FIELD) #define MINIFLOW_GET_BE32(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, ovs_be32, FIELD) #define MINIFLOW_GET_U64(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, uint64_t, FIELD) #define MINIFLOW_GET_BE64(FLOW, FIELD) \ MINIFLOW_GET_TYPE(FLOW, ovs_be64, FIELD) static inline uint64_t miniflow_get(const struct miniflow *, unsigned int u64_ofs); static inline uint32_t miniflow_get_u32(const struct miniflow *, unsigned int u32_ofs); static inline ovs_be32 miniflow_get_be32(const struct miniflow *, unsigned int be32_ofs); static inline uint16_t miniflow_get_vid(const struct miniflow *, size_t); static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *); static inline ovs_be64 miniflow_get_metadata(const struct miniflow *); static inline uint64_t miniflow_get_tun_metadata_present_map( const struct miniflow *); static inline uint32_t miniflow_get_recirc_id(const struct miniflow *); static inline uint32_t miniflow_get_dp_hash(const struct miniflow *); static inline ovs_be32 miniflow_get_ports(const struct miniflow *); bool miniflow_equal(const struct miniflow *a, const struct miniflow *b); bool miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b, const struct minimask *); bool miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b, const struct minimask *); uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis); /* Compressed flow wildcards. */ /* A sparse representation of a "struct flow_wildcards". * * See the large comment on struct miniflow for details. * * Note: While miniflow can have zero data for a 1-bit in the map, * a minimask may not! We rely on this in the implementation. */ struct minimask { struct miniflow masks; }; void minimask_init(struct minimask *, const struct flow_wildcards *); struct minimask * minimask_create(const struct flow_wildcards *); void minimask_combine(struct minimask *dst, const struct minimask *a, const struct minimask *b, uint64_t storage[FLOW_U64S]); void minimask_expand(const struct minimask *, struct flow_wildcards *); static inline uint32_t minimask_get_u32(const struct minimask *, unsigned int u32_ofs); static inline ovs_be32 minimask_get_be32(const struct minimask *, unsigned int be32_ofs); static inline uint16_t minimask_get_vid_mask(const struct minimask *, size_t); static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *); bool minimask_equal(const struct minimask *a, const struct minimask *b); bool minimask_has_extra(const struct minimask *, const struct minimask *); /* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits * or fields. */ static inline bool minimask_is_catchall(const struct minimask *mask) { /* For every 1-bit in mask's map, the corresponding value is non-zero, * so the only way the mask can not fix any bits or fields is for the * map the be zero. */ return flowmap_is_empty(mask->masks.map); } /* Returns the uint64_t that would be at byte offset '8 * u64_ofs' if 'flow' * were expanded into a "struct flow". */ static inline uint64_t miniflow_get(const struct miniflow *flow, unsigned int u64_ofs) { return MINIFLOW_IN_MAP(flow, u64_ofs) ? *miniflow_get__(flow, u64_ofs) : 0; } static inline uint32_t miniflow_get_u32(const struct miniflow *flow, unsigned int u32_ofs) { uint64_t value = miniflow_get(flow, u32_ofs / 2); #if WORDS_BIGENDIAN return (u32_ofs & 1) ? value : value >> 32; #else return (u32_ofs & 1) ? value >> 32 : value; #endif } static inline ovs_be32 miniflow_get_be32(const struct miniflow *flow, unsigned int be32_ofs) { return (OVS_FORCE ovs_be32)miniflow_get_u32(flow, be32_ofs); } /* Returns the VID within the vlan_tci member of the "struct flow" represented * by 'flow'. */ static inline uint16_t miniflow_get_vid(const struct miniflow *flow, size_t n) { if (n < FLOW_MAX_VLAN_HEADERS) { union flow_vlan_hdr hdr = { .qtag = MINIFLOW_GET_BE32(flow, vlans[n].qtag) }; return vlan_tci_to_vid(hdr.tci); } return 0; } /* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask' * were expanded into a "struct flow_wildcards". */ static inline uint32_t minimask_get_u32(const struct minimask *mask, unsigned int u32_ofs) { return miniflow_get_u32(&mask->masks, u32_ofs); } static inline ovs_be32 minimask_get_be32(const struct minimask *mask, unsigned int be32_ofs) { return (OVS_FORCE ovs_be32)minimask_get_u32(mask, be32_ofs); } /* Returns the VID mask within the vlan_tci member of the "struct * flow_wildcards" represented by 'mask'. */ static inline uint16_t minimask_get_vid_mask(const struct minimask *mask, size_t n) { return miniflow_get_vid(&mask->masks, n); } /* Returns the value of the "tcp_flags" field in 'flow'. */ static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *flow) { return ntohs(MINIFLOW_GET_BE16(flow, tcp_flags)); } /* Returns the value of the OpenFlow 1.1+ "metadata" field in 'flow'. */ static inline ovs_be64 miniflow_get_metadata(const struct miniflow *flow) { return MINIFLOW_GET_BE64(flow, metadata); } /* Returns the bitmap that indicates which tunnel metadata fields are present * in 'flow'. */ static inline uint64_t miniflow_get_tun_metadata_present_map(const struct miniflow *flow) { return MINIFLOW_GET_U64(flow, tunnel.metadata.present.map); } /* Returns the recirc_id in 'flow.' */ static inline uint32_t miniflow_get_recirc_id(const struct miniflow *flow) { return MINIFLOW_GET_U32(flow, recirc_id); } /* Returns the dp_hash in 'flow.' */ static inline uint32_t miniflow_get_dp_hash(const struct miniflow *flow) { return MINIFLOW_GET_U32(flow, dp_hash); } /* Returns the 'tp_src' and 'tp_dst' fields together as one piece of data. */ static inline ovs_be32 miniflow_get_ports(const struct miniflow *flow) { return MINIFLOW_GET_TYPE__(flow, ovs_be32, tp_src); } /* Returns the mask for the OpenFlow 1.1+ "metadata" field in 'mask'. * * The return value is all-1-bits if 'mask' matches on the whole value of the * metadata field, all-0-bits if 'mask' entirely wildcards the metadata field, * or some other value if the metadata field is partially matched, partially * wildcarded. */ static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *mask) { return MINIFLOW_GET_BE64(&mask->masks, metadata); } /* Perform a bitwise OR of miniflow 'src' flow data specified in 'subset' with * the equivalent fields in 'dst', storing the result in 'dst'. 'subset' must * be a subset of 'src's map. */ static inline void flow_union_with_miniflow_subset(struct flow *dst, const struct miniflow *src, struct flowmap subset) { uint64_t *dst_u64 = (uint64_t *) dst; const uint64_t *p = miniflow_get_values(src); map_t map; FLOWMAP_FOR_EACH_MAP (map, subset) { size_t idx; MAP_FOR_EACH_INDEX(idx, map) { dst_u64[idx] |= *p++; } dst_u64 += MAP_T_BITS; } } /* Perform a bitwise OR of miniflow 'src' flow data with the equivalent * fields in 'dst', storing the result in 'dst'. */ static inline void flow_union_with_miniflow(struct flow *dst, const struct miniflow *src) { flow_union_with_miniflow_subset(dst, src, src->map); } static inline bool is_ct_valid(const struct flow *flow, const struct flow_wildcards *mask, struct flow_wildcards *wc) { /* Matches are checked with 'mask' and without 'wc'. */ if (mask && !wc) { /* Must match at least one of the bits that implies a valid * conntrack entry, or an explicit not-invalid. */ return flow->ct_state & (CS_NEW | CS_ESTABLISHED | CS_RELATED | CS_REPLY_DIR | CS_SRC_NAT | CS_DST_NAT) || (flow->ct_state & CS_TRACKED && mask->masks.ct_state & CS_INVALID && !(flow->ct_state & CS_INVALID)); } /* Else we are checking a fully extracted flow, where valid CT state always * has either 'new', 'established', or 'reply_dir' bit set. */ #define CS_VALID_MASK (CS_NEW | CS_ESTABLISHED | CS_REPLY_DIR) if (wc) { wc->masks.ct_state |= CS_VALID_MASK; } return flow->ct_state & CS_VALID_MASK; } static inline void pkt_metadata_from_flow(struct pkt_metadata *md, const struct flow *flow) { /* Update this function whenever struct flow changes. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42); md->recirc_id = flow->recirc_id; md->dp_hash = flow->dp_hash; flow_tnl_copy__(&md->tunnel, &flow->tunnel); md->skb_priority = flow->skb_priority; md->pkt_mark = flow->pkt_mark; md->in_port = flow->in_port; md->ct_state = flow->ct_state; md->ct_zone = flow->ct_zone; md->ct_mark = flow->ct_mark; md->ct_label = flow->ct_label; md->ct_orig_tuple_ipv6 = false; if (flow->dl_type && is_ct_valid(flow, NULL, NULL)) { if (flow->dl_type == htons(ETH_TYPE_IP)) { md->ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) { flow->ct_nw_src, flow->ct_nw_dst, flow->ct_tp_src, flow->ct_tp_dst, flow->ct_nw_proto, }; } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { md->ct_orig_tuple_ipv6 = true; md->ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) { flow->ct_ipv6_src, flow->ct_ipv6_dst, flow->ct_tp_src, flow->ct_tp_dst, flow->ct_nw_proto, }; } else { /* Reset ct_orig_tuple for other types. */ memset(&md->ct_orig_tuple, 0, sizeof md->ct_orig_tuple); } } else { memset(&md->ct_orig_tuple, 0, sizeof md->ct_orig_tuple); } } /* Often, during translation we need to read a value from a flow('FLOW') and * unwildcard the corresponding bits in the wildcards('WC'). This macro makes * it easier to do that. */ #define FLOW_WC_GET_AND_MASK_WC(FLOW, WC, FIELD) \ (((WC) ? WC_MASK_FIELD(WC, FIELD) : NULL), ((FLOW)->FIELD)) static inline bool is_ethernet(const struct flow *flow, struct flow_wildcards *wc) { if (wc) { WC_MASK_FIELD(wc, packet_type); } return flow->packet_type == htonl(PT_ETH); } static inline ovs_be16 get_dl_type(const struct flow *flow) { if (flow->packet_type == htonl(PT_ETH)) { return flow->dl_type; } else if (pt_ns(flow->packet_type) == OFPHTN_ETHERTYPE) { return pt_ns_type_be(flow->packet_type); } else { return htons(FLOW_DL_TYPE_NONE); } } static inline bool is_vlan(const struct flow *flow, struct flow_wildcards *wc) { if (!is_ethernet(flow, wc)) { return false; } if (wc) { WC_MASK_FIELD_MASK(wc, vlans[0].tci, htons(VLAN_CFI)); } return (flow->vlans[0].tci & htons(VLAN_CFI)) != 0; } static inline bool is_ip_any(const struct flow *flow) { return dl_type_is_ip_any(get_dl_type(flow)); } static inline bool is_ip_proto(const struct flow *flow, uint8_t ip_proto, struct flow_wildcards *wc) { if (is_ip_any(flow)) { if (wc) { WC_MASK_FIELD(wc, nw_proto); } return flow->nw_proto == ip_proto; } return false; } static inline bool is_tcp(const struct flow *flow, struct flow_wildcards *wc) { return is_ip_proto(flow, IPPROTO_TCP, wc); } static inline bool is_udp(const struct flow *flow, struct flow_wildcards *wc) { return is_ip_proto(flow, IPPROTO_UDP, wc); } static inline bool is_sctp(const struct flow *flow, struct flow_wildcards *wc) { return is_ip_proto(flow, IPPROTO_SCTP, wc); } static inline bool is_icmpv4(const struct flow *flow, struct flow_wildcards *wc) { if (get_dl_type(flow) == htons(ETH_TYPE_IP)) { if (wc) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); } return flow->nw_proto == IPPROTO_ICMP; } return false; } static inline bool is_icmpv6(const struct flow *flow, struct flow_wildcards *wc) { if (get_dl_type(flow) == htons(ETH_TYPE_IPV6)) { if (wc) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); } return flow->nw_proto == IPPROTO_ICMPV6; } return false; } static inline bool is_nd(const struct flow *flow, struct flow_wildcards *wc) { if (is_icmpv6(flow, wc)) { if (wc) { memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); } if (flow->tp_dst != htons(0)) { return false; } if (wc) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); } return (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) || flow->tp_src == htons(ND_NEIGHBOR_ADVERT)); } return false; } static inline bool is_arp(const struct flow *flow) { return (flow->dl_type == htons(ETH_TYPE_ARP)); } static inline bool is_garp(const struct flow *flow, struct flow_wildcards *wc) { if (is_arp(flow)) { return (FLOW_WC_GET_AND_MASK_WC(flow, wc, nw_src) == FLOW_WC_GET_AND_MASK_WC(flow, wc, nw_dst)); } return false; } static inline bool is_igmp(const struct flow *flow, struct flow_wildcards *wc) { if (get_dl_type(flow) == htons(ETH_TYPE_IP)) { if (wc) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); } return flow->nw_proto == IPPROTO_IGMP; } return false; } static inline bool is_mld(const struct flow *flow, struct flow_wildcards *wc) { if (is_icmpv6(flow, wc)) { if (wc) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); } return (flow->tp_src == htons(MLD_QUERY) || flow->tp_src == htons(MLD_REPORT) || flow->tp_src == htons(MLD_DONE) || flow->tp_src == htons(MLD2_REPORT)); } return false; } static inline bool is_mld_query(const struct flow *flow, struct flow_wildcards *wc) { if (is_icmpv6(flow, wc)) { if (wc) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); } return flow->tp_src == htons(MLD_QUERY); } return false; } static inline bool is_mld_report(const struct flow *flow, struct flow_wildcards *wc) { return is_mld(flow, wc) && !is_mld_query(flow, wc); } static inline bool is_stp(const struct flow *flow) { return (flow->dl_type == htons(FLOW_DL_TYPE_NONE) && eth_addr_equals(flow->dl_dst, eth_addr_stp)); } /* Returns true if flow->tp_dst equals 'port'. If 'wc' is nonnull, sets * appropriate bits in wc->masks.tp_dst to account for the test. * * The caller must already have ensured that 'flow' is a protocol for which * tp_dst is relevant. */ static inline bool tp_dst_equals(const struct flow *flow, uint16_t port, struct flow_wildcards *wc) { uint16_t diff = port ^ ntohs(flow->tp_dst); if (wc) { if (diff) { /* Set mask for the most significant mismatching bit. */ int ofs = raw_clz64((uint64_t) diff << 48); /* range [0,15] */ wc->masks.tp_dst |= htons(0x8000 >> ofs); } else { /* Must match all bits. */ wc->masks.tp_dst = OVS_BE16_MAX; } } return !diff; } #endif /* flow.h */