/* * Copyright (c) 2008, 2009, 2010, 2012, 2013, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef HASH_H #define HASH_H 1 #include #include #include #include #include "util.h" #ifdef __cplusplus extern "C" { #endif static inline uint32_t hash_rot(uint32_t x, int k) { return (x << k) | (x >> (32 - k)); } uint32_t hash_bytes(const void *, size_t n_bytes, uint32_t basis); /* The hash input must be a word larger than 128 bits. */ void hash_bytes128(const void *_, size_t n_bytes, uint32_t basis, ovs_u128 *out); static inline uint32_t hash_int(uint32_t x, uint32_t basis); static inline uint32_t hash_2words(uint32_t, uint32_t); static inline uint32_t hash_uint64(const uint64_t); static inline uint32_t hash_uint64_basis(const uint64_t x, const uint32_t basis); uint32_t hash_3words(uint32_t, uint32_t, uint32_t); static inline uint32_t hash_boolean(bool x, uint32_t basis); uint32_t hash_double(double, uint32_t basis); static inline uint32_t hash_pointer(const void *, uint32_t basis); static inline uint32_t hash_string(const char *, uint32_t basis); /* Murmurhash by Austin Appleby, * from http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp. * * The upstream license there says: * * // MurmurHash3 was written by Austin Appleby, and is placed in the public * // domain. The author hereby disclaims copyright to this source code. * * See hash_words() for sample usage. */ static inline uint32_t mhash_add__(uint32_t hash, uint32_t data) { data *= 0xcc9e2d51; data = hash_rot(data, 15); data *= 0x1b873593; return hash ^ data; } static inline uint32_t mhash_add(uint32_t hash, uint32_t data) { hash = mhash_add__(hash, data); hash = hash_rot(hash, 13); return hash * 5 + 0xe6546b64; } static inline uint32_t mhash_finish(uint32_t hash) { hash ^= hash >> 16; hash *= 0x85ebca6b; hash ^= hash >> 13; hash *= 0xc2b2ae35; hash ^= hash >> 16; return hash; } #if !(defined(__SSE4_2__) && defined(__x86_64__)) /* Mhash-based implementation. */ static inline uint32_t hash_add(uint32_t hash, uint32_t data) { return mhash_add(hash, data); } static inline uint32_t hash_add64(uint32_t hash, uint64_t data) { return hash_add(hash_add(hash, data), data >> 32); } static inline uint32_t hash_finish(uint32_t hash, uint32_t final) { return mhash_finish(hash ^ final); } /* Returns the hash of the 'n' 32-bit words at 'p', starting from 'basis'. * 'p' must be properly aligned. * * This is inlined for the compiler to have access to the 'n_words', which * in many cases is a constant. */ static inline uint32_t hash_words_inline(const uint32_t p[], size_t n_words, uint32_t basis) { uint32_t hash; size_t i; hash = basis; for (i = 0; i < n_words; i++) { hash = hash_add(hash, p[i]); } return hash_finish(hash, n_words * 4); } static inline uint32_t hash_words64_inline(const uint64_t p[], size_t n_words, uint32_t basis) { uint32_t hash; size_t i; hash = basis; for (i = 0; i < n_words; i++) { hash = hash_add64(hash, p[i]); } return hash_finish(hash, n_words * 8); } static inline uint32_t hash_pointer(const void *p, uint32_t basis) { /* Often pointers are hashed simply by casting to integer type, but that * has pitfalls since the lower bits of a pointer are often all 0 for * alignment reasons. It's hard to guess where the entropy really is, so * we give up here and just use a high-quality hash function. * * The double cast suppresses a warning on 64-bit systems about casting to * an integer to different size. That's OK in this case, since most of the * entropy in the pointer is almost certainly in the lower 32 bits. */ return hash_int((uint32_t) (uintptr_t) p, basis); } static inline uint32_t hash_2words(uint32_t x, uint32_t y) { return hash_finish(hash_add(hash_add(x, 0), y), 8); } static inline uint32_t hash_uint64_basis(const uint64_t x, const uint32_t basis) { return hash_finish(hash_add64(basis, x), 8); } static inline uint32_t hash_uint64(const uint64_t x) { return hash_uint64_basis(x, 0); } #else /* __SSE4_2__ && __x86_64__ */ #include static inline uint32_t hash_add(uint32_t hash, uint32_t data) { return _mm_crc32_u32(hash, data); } /* Add the halves of 'data' in the memory order. */ static inline uint32_t hash_add64(uint32_t hash, uint64_t data) { return _mm_crc32_u64(hash, data); } static inline uint32_t hash_finish(uint64_t hash, uint64_t final) { /* The finishing multiplier 0x805204f3 has been experimentally * derived to pass the testsuite hash tests. */ hash = _mm_crc32_u64(hash, final) * 0x805204f3; return hash ^ (uint32_t)hash >> 16; /* Increase entropy in LSBs. */ } /* Returns the hash of the 'n' 32-bit words at 'p_', starting from 'basis'. * We access 'p_' as a uint64_t pointer, which is fine for __SSE_4_2__. * * This is inlined for the compiler to have access to the 'n_words', which * in many cases is a constant. */ static inline uint32_t hash_words_inline(const uint32_t p_[], size_t n_words, uint32_t basis) { const uint64_t *p = (const void *)p_; uint64_t hash1 = basis; uint64_t hash2 = 0; uint64_t hash3 = n_words; const uint32_t *endp = (const uint32_t *)p + n_words; const uint64_t *limit = p + n_words / 2 - 3; while (p <= limit) { hash1 = _mm_crc32_u64(hash1, p[0]); hash2 = _mm_crc32_u64(hash2, p[1]); hash3 = _mm_crc32_u64(hash3, p[2]); p += 3; } switch (endp - (const uint32_t *)p) { case 1: hash1 = _mm_crc32_u32(hash1, *(const uint32_t *)&p[0]); break; case 2: hash1 = _mm_crc32_u64(hash1, p[0]); break; case 3: hash1 = _mm_crc32_u64(hash1, p[0]); hash2 = _mm_crc32_u32(hash2, *(const uint32_t *)&p[1]); break; case 4: hash1 = _mm_crc32_u64(hash1, p[0]); hash2 = _mm_crc32_u64(hash2, p[1]); break; case 5: hash1 = _mm_crc32_u64(hash1, p[0]); hash2 = _mm_crc32_u64(hash2, p[1]); hash3 = _mm_crc32_u32(hash3, *(const uint32_t *)&p[2]); break; } return hash_finish(hash1, hash2 << 32 | hash3); } /* A simpler version for 64-bit data. * 'n_words' is the count of 64-bit words, basis is 64 bits. */ static inline uint32_t hash_words64_inline(const uint64_t p[], size_t n_words, uint32_t basis) { uint64_t hash1 = basis; uint64_t hash2 = 0; uint64_t hash3 = n_words; const uint64_t *endp = p + n_words; const uint64_t *limit = endp - 3; while (p <= limit) { hash1 = _mm_crc32_u64(hash1, p[0]); hash2 = _mm_crc32_u64(hash2, p[1]); hash3 = _mm_crc32_u64(hash3, p[2]); p += 3; } switch (endp - p) { case 1: hash1 = _mm_crc32_u64(hash1, p[0]); break; case 2: hash1 = _mm_crc32_u64(hash1, p[0]); hash2 = _mm_crc32_u64(hash2, p[1]); break; } return hash_finish(hash1, hash2 << 32 | hash3); } static inline uint32_t hash_uint64_basis(const uint64_t x, const uint32_t basis) { /* '23' chosen to mix bits enough for the test-hash to pass. */ return hash_finish(hash_add64(basis, x), 23); } static inline uint32_t hash_uint64(const uint64_t x) { return hash_uint64_basis(x, 0); } static inline uint32_t hash_2words(uint32_t x, uint32_t y) { return hash_uint64((uint64_t)y << 32 | x); } static inline uint32_t hash_pointer(const void *p, uint32_t basis) { return hash_uint64_basis((uint64_t) (uintptr_t) p, basis); } #endif uint32_t hash_words__(const uint32_t p[], size_t n_words, uint32_t basis); uint32_t hash_words64__(const uint64_t p[], size_t n_words, uint32_t basis); /* Inline the larger hash functions only when 'n_words' is known to be * compile-time constant. */ #if __GNUC__ >= 4 static inline uint32_t hash_words(const uint32_t p[], size_t n_words, uint32_t basis) { if (__builtin_constant_p(n_words)) { return hash_words_inline(p, n_words, basis); } else { return hash_words__(p, n_words, basis); } } static inline uint32_t hash_words64(const uint64_t p[], size_t n_words, uint32_t basis) { if (__builtin_constant_p(n_words)) { return hash_words64_inline(p, n_words, basis); } else { return hash_words64__(p, n_words, basis); } } #else static inline uint32_t hash_words(const uint32_t p[], size_t n_words, uint32_t basis) { return hash_words__(p, n_words, basis); } static inline uint32_t hash_words64(const uint64_t p[], size_t n_words, uint32_t basis) { return hash_words64__(p, n_words, basis); } #endif static inline uint32_t hash_string(const char *s, uint32_t basis) { return hash_bytes(s, strlen(s), basis); } static inline uint32_t hash_int(uint32_t x, uint32_t basis) { return hash_2words(x, basis); } /* An attempt at a useful 1-bit hash function. Has not been analyzed for * quality. */ static inline uint32_t hash_boolean(bool x, uint32_t basis) { const uint32_t P0 = 0xc2b73583; /* This is hash_int(1, 0). */ const uint32_t P1 = 0xe90f1258; /* This is hash_int(2, 0). */ return (x ? P0 : P1) ^ hash_rot(basis, 1); } #ifdef __cplusplus } #endif #endif /* hash.h */