/* * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "openvswitch/match.h" #include #include "flow.h" #include "byte-order.h" #include "colors.h" #include "openvswitch/dynamic-string.h" #include "openvswitch/ofp-util.h" #include "packets.h" #include "tun-metadata.h" #include "openvswitch/nsh.h" /* Converts the flow in 'flow' into a match in 'match', with the given * 'wildcards'. */ void match_init(struct match *match, const struct flow *flow, const struct flow_wildcards *wc) { match->flow = *flow; match->wc = *wc; match_zero_wildcarded_fields(match); memset(&match->tun_md, 0, sizeof match->tun_md); } /* Converts a flow into a match. It sets the wildcard masks based on * the packet contents. It will not set the mask for fields that do not * make sense for the packet type. */ void match_wc_init(struct match *match, const struct flow *flow) { match->flow = *flow; flow_wildcards_init_for_packet(&match->wc, flow); WC_MASK_FIELD(&match->wc, regs); WC_MASK_FIELD(&match->wc, metadata); memset(&match->tun_md, 0, sizeof match->tun_md); } /* Initializes 'match' as a "catch-all" match that matches every packet. */ void match_init_catchall(struct match *match) { memset(&match->flow, 0, sizeof match->flow); flow_wildcards_init_catchall(&match->wc); memset(&match->tun_md, 0, sizeof match->tun_md); } /* For each bit or field wildcarded in 'match', sets the corresponding bit or * field in 'flow' to all-0-bits. It is important to maintain this invariant * in a match that might be inserted into a classifier. * * It is never necessary to call this function directly for a match that is * initialized or modified only by match_*() functions. It is useful to * restore the invariant in a match whose 'wc' member is modified by hand. */ void match_zero_wildcarded_fields(struct match *match) { flow_zero_wildcards(&match->flow, &match->wc); } void match_set_dp_hash(struct match *match, uint32_t value) { match_set_dp_hash_masked(match, value, UINT32_MAX); } void match_set_dp_hash_masked(struct match *match, uint32_t value, uint32_t mask) { match->wc.masks.dp_hash = mask; match->flow.dp_hash = value & mask; } void match_set_recirc_id(struct match *match, uint32_t value) { match->flow.recirc_id = value; match->wc.masks.recirc_id = UINT32_MAX; } void match_set_conj_id(struct match *match, uint32_t value) { match->flow.conj_id = value; match->wc.masks.conj_id = UINT32_MAX; } void match_set_reg(struct match *match, unsigned int reg_idx, uint32_t value) { match_set_reg_masked(match, reg_idx, value, UINT32_MAX); } void match_set_reg_masked(struct match *match, unsigned int reg_idx, uint32_t value, uint32_t mask) { ovs_assert(reg_idx < FLOW_N_REGS); flow_wildcards_set_reg_mask(&match->wc, reg_idx, mask); match->flow.regs[reg_idx] = value & mask; } void match_set_xreg(struct match *match, unsigned int xreg_idx, uint64_t value) { match_set_xreg_masked(match, xreg_idx, value, UINT64_MAX); } void match_set_xreg_masked(struct match *match, unsigned int xreg_idx, uint64_t value, uint64_t mask) { ovs_assert(xreg_idx < FLOW_N_XREGS); flow_wildcards_set_xreg_mask(&match->wc, xreg_idx, mask); flow_set_xreg(&match->flow, xreg_idx, value & mask); } void match_set_xxreg(struct match *match, unsigned int xxreg_idx, ovs_u128 value) { match_set_xxreg_masked(match, xxreg_idx, value, OVS_U128_MAX); } void match_set_xxreg_masked(struct match *match, unsigned int xxreg_idx, ovs_u128 value, ovs_u128 mask) { ovs_assert(xxreg_idx < FLOW_N_XXREGS); flow_wildcards_set_xxreg_mask(&match->wc, xxreg_idx, mask); flow_set_xxreg(&match->flow, xxreg_idx, ovs_u128_and(value, mask)); } void match_set_actset_output(struct match *match, ofp_port_t actset_output) { match->wc.masks.actset_output = u16_to_ofp(UINT16_MAX); match->flow.actset_output = actset_output; } void match_set_metadata(struct match *match, ovs_be64 metadata) { match_set_metadata_masked(match, metadata, OVS_BE64_MAX); } void match_set_metadata_masked(struct match *match, ovs_be64 metadata, ovs_be64 mask) { match->wc.masks.metadata = mask; match->flow.metadata = metadata & mask; } void match_set_tun_id(struct match *match, ovs_be64 tun_id) { match_set_tun_id_masked(match, tun_id, OVS_BE64_MAX); } void match_set_tun_id_masked(struct match *match, ovs_be64 tun_id, ovs_be64 mask) { match->wc.masks.tunnel.tun_id = mask; match->flow.tunnel.tun_id = tun_id & mask; } void match_set_tun_src(struct match *match, ovs_be32 src) { match_set_tun_src_masked(match, src, OVS_BE32_MAX); } void match_set_tun_src_masked(struct match *match, ovs_be32 src, ovs_be32 mask) { match->wc.masks.tunnel.ip_src = mask; match->flow.tunnel.ip_src = src & mask; } void match_set_tun_dst(struct match *match, ovs_be32 dst) { match_set_tun_dst_masked(match, dst, OVS_BE32_MAX); } void match_set_tun_dst_masked(struct match *match, ovs_be32 dst, ovs_be32 mask) { match->wc.masks.tunnel.ip_dst = mask; match->flow.tunnel.ip_dst = dst & mask; } void match_set_tun_ipv6_src(struct match *match, const struct in6_addr *src) { match->flow.tunnel.ipv6_src = *src; match->wc.masks.tunnel.ipv6_src = in6addr_exact; } void match_set_tun_ipv6_src_masked(struct match *match, const struct in6_addr *src, const struct in6_addr *mask) { match->flow.tunnel.ipv6_src = ipv6_addr_bitand(src, mask); match->wc.masks.tunnel.ipv6_src = *mask; } void match_set_tun_ipv6_dst(struct match *match, const struct in6_addr *dst) { match->flow.tunnel.ipv6_dst = *dst; match->wc.masks.tunnel.ipv6_dst = in6addr_exact; } void match_set_tun_ipv6_dst_masked(struct match *match, const struct in6_addr *dst, const struct in6_addr *mask) { match->flow.tunnel.ipv6_dst = ipv6_addr_bitand(dst, mask); match->wc.masks.tunnel.ipv6_dst = *mask; } void match_set_tun_ttl(struct match *match, uint8_t ttl) { match_set_tun_ttl_masked(match, ttl, UINT8_MAX); } void match_set_tun_ttl_masked(struct match *match, uint8_t ttl, uint8_t mask) { match->wc.masks.tunnel.ip_ttl = mask; match->flow.tunnel.ip_ttl = ttl & mask; } void match_set_tun_tos(struct match *match, uint8_t tos) { match_set_tun_tos_masked(match, tos, UINT8_MAX); } void match_set_tun_tos_masked(struct match *match, uint8_t tos, uint8_t mask) { match->wc.masks.tunnel.ip_tos = mask; match->flow.tunnel.ip_tos = tos & mask; } void match_set_tun_flags(struct match *match, uint16_t flags) { match_set_tun_flags_masked(match, flags, UINT16_MAX); } void match_set_tun_flags_masked(struct match *match, uint16_t flags, uint16_t mask) { mask &= FLOW_TNL_PUB_F_MASK; match->wc.masks.tunnel.flags = mask; match->flow.tunnel.flags = flags & mask; } void match_set_tun_tp_dst(struct match *match, ovs_be16 tp_dst) { match_set_tun_tp_dst_masked(match, tp_dst, OVS_BE16_MAX); } void match_set_tun_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->wc.masks.tunnel.tp_dst = mask; match->flow.tunnel.tp_dst = port & mask; } void match_set_tun_gbp_id_masked(struct match *match, ovs_be16 gbp_id, ovs_be16 mask) { match->wc.masks.tunnel.gbp_id = mask; match->flow.tunnel.gbp_id = gbp_id & mask; } void match_set_tun_gbp_id(struct match *match, ovs_be16 gbp_id) { match_set_tun_gbp_id_masked(match, gbp_id, OVS_BE16_MAX); } void match_set_tun_gbp_flags_masked(struct match *match, uint8_t flags, uint8_t mask) { match->wc.masks.tunnel.gbp_flags = mask; match->flow.tunnel.gbp_flags = flags & mask; } void match_set_tun_gbp_flags(struct match *match, uint8_t flags) { match_set_tun_gbp_flags_masked(match, flags, UINT8_MAX); } void match_set_in_port(struct match *match, ofp_port_t ofp_port) { match->wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX); match->flow.in_port.ofp_port = ofp_port; } void match_set_skb_priority(struct match *match, uint32_t skb_priority) { match->wc.masks.skb_priority = UINT32_MAX; match->flow.skb_priority = skb_priority; } void match_set_pkt_mark(struct match *match, uint32_t pkt_mark) { match_set_pkt_mark_masked(match, pkt_mark, UINT32_MAX); } void match_set_pkt_mark_masked(struct match *match, uint32_t pkt_mark, uint32_t mask) { match->flow.pkt_mark = pkt_mark & mask; match->wc.masks.pkt_mark = mask; } void match_set_ct_state(struct match *match, uint32_t ct_state) { match_set_ct_state_masked(match, ct_state, UINT32_MAX); } void match_set_ct_state_masked(struct match *match, uint32_t ct_state, uint32_t mask) { match->flow.ct_state = ct_state & mask & UINT8_MAX; match->wc.masks.ct_state = mask & UINT8_MAX; } void match_set_ct_zone(struct match *match, uint16_t ct_zone) { match->flow.ct_zone = ct_zone; match->wc.masks.ct_zone = UINT16_MAX; } void match_set_ct_mark(struct match *match, uint32_t ct_mark) { match_set_ct_mark_masked(match, ct_mark, UINT32_MAX); } void match_set_ct_mark_masked(struct match *match, uint32_t ct_mark, uint32_t mask) { match->flow.ct_mark = ct_mark & mask; match->wc.masks.ct_mark = mask; } void match_set_ct_label(struct match *match, ovs_u128 ct_label) { ovs_u128 mask; mask.u64.lo = UINT64_MAX; mask.u64.hi = UINT64_MAX; match_set_ct_label_masked(match, ct_label, mask); } void match_set_ct_label_masked(struct match *match, ovs_u128 value, ovs_u128 mask) { match->flow.ct_label.u64.lo = value.u64.lo & mask.u64.lo; match->flow.ct_label.u64.hi = value.u64.hi & mask.u64.hi; match->wc.masks.ct_label = mask; } void match_set_ct_nw_src(struct match *match, ovs_be32 ct_nw_src) { match->flow.ct_nw_src = ct_nw_src; match->wc.masks.ct_nw_src = OVS_BE32_MAX; } void match_set_ct_nw_src_masked(struct match *match, ovs_be32 ct_nw_src, ovs_be32 mask) { match->flow.ct_nw_src = ct_nw_src & mask; match->wc.masks.ct_nw_src = mask; } void match_set_ct_nw_dst(struct match *match, ovs_be32 ct_nw_dst) { match->flow.ct_nw_dst = ct_nw_dst; match->wc.masks.ct_nw_dst = OVS_BE32_MAX; } void match_set_ct_nw_dst_masked(struct match *match, ovs_be32 ct_nw_dst, ovs_be32 mask) { match->flow.ct_nw_dst = ct_nw_dst & mask; match->wc.masks.ct_nw_dst = mask; } void match_set_ct_nw_proto(struct match *match, uint8_t ct_nw_proto) { match->flow.ct_nw_proto = ct_nw_proto; match->wc.masks.ct_nw_proto = UINT8_MAX; } void match_set_ct_tp_src(struct match *match, ovs_be16 ct_tp_src) { match_set_ct_tp_src_masked(match, ct_tp_src, OVS_BE16_MAX); } void match_set_ct_tp_src_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->flow.ct_tp_src = port & mask; match->wc.masks.ct_tp_src = mask; } void match_set_ct_tp_dst(struct match *match, ovs_be16 ct_tp_dst) { match_set_ct_tp_dst_masked(match, ct_tp_dst, OVS_BE16_MAX); } void match_set_ct_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->flow.ct_tp_dst = port & mask; match->wc.masks.ct_tp_dst = mask; } void match_set_ct_ipv6_src(struct match *match, const struct in6_addr *src) { match->flow.ct_ipv6_src = *src; match->wc.masks.ct_ipv6_src = in6addr_exact; } void match_set_ct_ipv6_src_masked(struct match *match, const struct in6_addr *src, const struct in6_addr *mask) { match->flow.ct_ipv6_src = ipv6_addr_bitand(src, mask); match->wc.masks.ct_ipv6_src = *mask; } void match_set_ct_ipv6_dst(struct match *match, const struct in6_addr *dst) { match->flow.ct_ipv6_dst = *dst; match->wc.masks.ct_ipv6_dst = in6addr_exact; } void match_set_ct_ipv6_dst_masked(struct match *match, const struct in6_addr *dst, const struct in6_addr *mask) { match->flow.ct_ipv6_dst = ipv6_addr_bitand(dst, mask); match->wc.masks.ct_ipv6_dst = *mask; } void match_set_packet_type(struct match *match, ovs_be32 packet_type) { match->flow.packet_type = packet_type; match->wc.masks.packet_type = OVS_BE32_MAX; } /* If 'match' does not match on any packet type, make it match on Ethernet * packets (the default packet type, as specified by OpenFlow). */ void match_set_default_packet_type(struct match *match) { if (!match->wc.masks.packet_type) { match_set_packet_type(match, htonl(PT_ETH)); } } /* Returns true if 'match' matches only Ethernet packets (the default packet * type, as specified by OpenFlow). */ bool match_has_default_packet_type(const struct match *match) { return (match->flow.packet_type == htonl(PT_ETH) && match->wc.masks.packet_type == OVS_BE32_MAX); } /* A match on 'field' is being added to or has been added to 'match'. If * 'field' is a data field, and 'match' does not already match on packet_type, * this function make it match on the Ethernet packet_type. * * This function is useful because OpenFlow implicitly applies to Ethernet * packets when there's no explicit packet_type, but matching on a metadata * field doesn't imply anything about the packet_type and falsely inferring * that it does can cause harm. A flow that matches only on metadata fields, * for example, should be able to match more than just Ethernet flows. There * are also important reasons that a catch-all match (one with no field matches * at all) should not imply a packet_type(0,0) match. For example, a "flow * dump" request that matches on no fields should return every flow in the * switch, not just the flows that match on Ethernet. As a second example, * OpenFlow 1.2+ special-cases "table miss" flows, that is catch-all flows with * priority 0, and inferring a match on packet_type(0,0) causes such a flow not * to be a table miss flow. */ void match_add_ethernet_prereq(struct match *match, const struct mf_field *field) { if (field->prereqs != MFP_NONE) { match_set_default_packet_type(match); } } void match_set_dl_type(struct match *match, ovs_be16 dl_type) { match->wc.masks.dl_type = OVS_BE16_MAX; match->flow.dl_type = dl_type; } /* Modifies 'value_src' so that the Ethernet address must match 'value_dst' * exactly. 'mask_dst' is set to all 1s. */ static void set_eth(const struct eth_addr value_src, struct eth_addr *value_dst, struct eth_addr *mask_dst) { *value_dst = value_src; *mask_dst = eth_addr_exact; } /* Modifies 'value_src' so that the Ethernet address must match 'value_src' * after each byte is ANDed with the appropriate byte in 'mask_src'. * 'mask_dst' is set to 'mask_src' */ static void set_eth_masked(const struct eth_addr value_src, const struct eth_addr mask_src, struct eth_addr *value_dst, struct eth_addr *mask_dst) { size_t i; for (i = 0; i < ARRAY_SIZE(value_dst->be16); i++) { value_dst->be16[i] = value_src.be16[i] & mask_src.be16[i]; } *mask_dst = mask_src; } /* Modifies 'rule' so that the source Ethernet address must match 'dl_src' * exactly. */ void match_set_dl_src(struct match *match, const struct eth_addr dl_src) { set_eth(dl_src, &match->flow.dl_src, &match->wc.masks.dl_src); } /* Modifies 'rule' so that the source Ethernet address must match 'dl_src' * after each byte is ANDed with the appropriate byte in 'mask'. */ void match_set_dl_src_masked(struct match *match, const struct eth_addr dl_src, const struct eth_addr mask) { set_eth_masked(dl_src, mask, &match->flow.dl_src, &match->wc.masks.dl_src); } /* Modifies 'match' so that the Ethernet address must match 'dl_dst' * exactly. */ void match_set_dl_dst(struct match *match, const struct eth_addr dl_dst) { set_eth(dl_dst, &match->flow.dl_dst, &match->wc.masks.dl_dst); } /* Modifies 'match' so that the Ethernet address must match 'dl_dst' after each * byte is ANDed with the appropriate byte in 'mask'. * * This function will assert-fail if 'mask' is invalid. Only 'mask' values * accepted by flow_wildcards_is_dl_dst_mask_valid() are allowed. */ void match_set_dl_dst_masked(struct match *match, const struct eth_addr dl_dst, const struct eth_addr mask) { set_eth_masked(dl_dst, mask, &match->flow.dl_dst, &match->wc.masks.dl_dst); } void match_set_dl_tci(struct match *match, ovs_be16 tci) { match_set_dl_tci_masked(match, tci, htons(0xffff)); } void match_set_dl_tci_masked(struct match *match, ovs_be16 tci, ovs_be16 mask) { match->flow.vlans[0].tci = tci & mask; match->wc.masks.vlans[0].tci = mask; } /* Modifies 'match' so that the VLAN VID is wildcarded. If the PCP is already * wildcarded, then 'match' will match a packet regardless of whether it has an * 802.1Q header or not. */ void match_set_any_vid(struct match *match) { if (match->wc.masks.vlans[0].tci & htons(VLAN_PCP_MASK)) { match->wc.masks.vlans[0].tci &= ~htons(VLAN_VID_MASK); match->flow.vlans[0].tci &= ~htons(VLAN_VID_MASK); } else { match_set_dl_tci_masked(match, htons(0), htons(0)); } } /* Modifies 'match' depending on 'dl_vlan': * * - If 'dl_vlan' is htons(OFP_VLAN_NONE), makes 'match' match only packets * without an 802.1Q header. * * - Otherwise, makes 'match' match only packets with an 802.1Q header whose * VID equals the low 12 bits of 'dl_vlan'. */ void match_set_dl_vlan(struct match *match, ovs_be16 dl_vlan) { flow_set_dl_vlan(&match->flow, dl_vlan); if (dl_vlan == htons(OFP10_VLAN_NONE)) { match->wc.masks.vlans[0].tci = OVS_BE16_MAX; } else { match->wc.masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI); } } /* Sets the VLAN VID that 'match' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI). */ void match_set_vlan_vid(struct match *match, ovs_be16 vid) { match_set_vlan_vid_masked(match, vid, htons(VLAN_VID_MASK | VLAN_CFI)); } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID * plus CFI), with the corresponding 'mask'. */ void match_set_vlan_vid_masked(struct match *match, ovs_be16 vid, ovs_be16 mask) { ovs_be16 pcp_mask = htons(VLAN_PCP_MASK); ovs_be16 vid_mask = htons(VLAN_VID_MASK | VLAN_CFI); mask &= vid_mask; flow_set_vlan_vid(&match->flow, vid & mask); match->wc.masks.vlans[0].tci = mask | (match->wc.masks.vlans[0].tci & pcp_mask); } /* Modifies 'match' so that the VLAN PCP is wildcarded. If the VID is already * wildcarded, then 'match' will match a packet regardless of whether it has an * 802.1Q header or not. */ void match_set_any_pcp(struct match *match) { if (match->wc.masks.vlans[0].tci & htons(VLAN_VID_MASK)) { match->wc.masks.vlans[0].tci &= ~htons(VLAN_PCP_MASK); match->flow.vlans[0].tci &= ~htons(VLAN_PCP_MASK); } else { match_set_dl_tci_masked(match, htons(0), htons(0)); } } /* Modifies 'match' so that it matches only packets with an 802.1Q header whose * PCP equals the low 3 bits of 'dl_vlan_pcp'. */ void match_set_dl_vlan_pcp(struct match *match, uint8_t dl_vlan_pcp) { flow_set_vlan_pcp(&match->flow, dl_vlan_pcp); match->wc.masks.vlans[0].tci |= htons(VLAN_CFI | VLAN_PCP_MASK); } /* Modifies 'match' so that the MPLS label 'idx' matches 'lse' exactly. */ void match_set_mpls_lse(struct match *match, int idx, ovs_be32 lse) { match->wc.masks.mpls_lse[idx] = OVS_BE32_MAX; match->flow.mpls_lse[idx] = lse; } /* Modifies 'match' so that the MPLS label is wildcarded. */ void match_set_any_mpls_label(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_LABEL_MASK); flow_set_mpls_label(&match->flow, idx, htonl(0)); } /* Modifies 'match' so that it matches only packets with an MPLS header whose * label equals the low 20 bits of 'mpls_label'. */ void match_set_mpls_label(struct match *match, int idx, ovs_be32 mpls_label) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_LABEL_MASK); flow_set_mpls_label(&match->flow, idx, mpls_label); } /* Modifies 'match' so that the MPLS TC is wildcarded. */ void match_set_any_mpls_tc(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_TC_MASK); flow_set_mpls_tc(&match->flow, idx, 0); } /* Modifies 'match' so that it matches only packets with an MPLS header whose * Traffic Class equals the low 3 bits of 'mpls_tc'. */ void match_set_mpls_tc(struct match *match, int idx, uint8_t mpls_tc) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_TC_MASK); flow_set_mpls_tc(&match->flow, idx, mpls_tc); } /* Modifies 'match' so that the MPLS stack flag is wildcarded. */ void match_set_any_mpls_bos(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_BOS_MASK); flow_set_mpls_bos(&match->flow, idx, 0); } /* Modifies 'match' so that it matches only packets with an MPLS header whose * Stack Flag equals the lower bit of 'mpls_bos' */ void match_set_mpls_bos(struct match *match, int idx, uint8_t mpls_bos) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_BOS_MASK); flow_set_mpls_bos(&match->flow, idx, mpls_bos); } /* Modifies 'match' so that the TTL of MPLS label 'idx' is wildcarded. */ void match_set_any_mpls_ttl(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_TTL_MASK); flow_set_mpls_ttl(&match->flow, idx, 0); } /* Modifies 'match' so that it matches only packets in which the TTL of MPLS * label 'idx' equals 'mpls_ttl'. */ void match_set_mpls_ttl(struct match *match, int idx, uint8_t mpls_ttl) { match->wc.masks.mpls_lse[idx] |= htonl(MPLS_TTL_MASK); flow_set_mpls_ttl(&match->flow, idx, mpls_ttl); } /* Modifies 'match' so that the MPLS LSE is wildcarded. */ void match_set_any_mpls_lse(struct match *match, int idx) { match->wc.masks.mpls_lse[idx] = htonl(0); flow_set_mpls_lse(&match->flow, idx, htonl(0)); } void match_set_tp_src(struct match *match, ovs_be16 tp_src) { match_set_tp_src_masked(match, tp_src, OVS_BE16_MAX); } void match_set_tp_src_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->flow.tp_src = port & mask; match->wc.masks.tp_src = mask; } void match_set_tp_dst(struct match *match, ovs_be16 tp_dst) { match_set_tp_dst_masked(match, tp_dst, OVS_BE16_MAX); } void match_set_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask) { match->flow.tp_dst = port & mask; match->wc.masks.tp_dst = mask; } void match_set_tcp_flags(struct match *match, ovs_be16 flags) { match_set_tcp_flags_masked(match, flags, OVS_BE16_MAX); } void match_set_tcp_flags_masked(struct match *match, ovs_be16 flags, ovs_be16 mask) { match->flow.tcp_flags = flags & mask; match->wc.masks.tcp_flags = mask; } void match_set_nw_proto(struct match *match, uint8_t nw_proto) { match->flow.nw_proto = nw_proto; match->wc.masks.nw_proto = UINT8_MAX; } void match_set_nw_src(struct match *match, ovs_be32 nw_src) { match->flow.nw_src = nw_src; match->wc.masks.nw_src = OVS_BE32_MAX; } void match_set_nw_src_masked(struct match *match, ovs_be32 nw_src, ovs_be32 mask) { match->flow.nw_src = nw_src & mask; match->wc.masks.nw_src = mask; } void match_set_nw_dst(struct match *match, ovs_be32 nw_dst) { match->flow.nw_dst = nw_dst; match->wc.masks.nw_dst = OVS_BE32_MAX; } void match_set_nw_dst_masked(struct match *match, ovs_be32 ip, ovs_be32 mask) { match->flow.nw_dst = ip & mask; match->wc.masks.nw_dst = mask; } void match_set_nw_dscp(struct match *match, uint8_t nw_dscp) { match->wc.masks.nw_tos |= IP_DSCP_MASK; match->flow.nw_tos &= ~IP_DSCP_MASK; match->flow.nw_tos |= nw_dscp & IP_DSCP_MASK; } void match_set_nw_ecn(struct match *match, uint8_t nw_ecn) { match->wc.masks.nw_tos |= IP_ECN_MASK; match->flow.nw_tos &= ~IP_ECN_MASK; match->flow.nw_tos |= nw_ecn & IP_ECN_MASK; } void match_set_nw_ttl(struct match *match, uint8_t nw_ttl) { match->wc.masks.nw_ttl = UINT8_MAX; match->flow.nw_ttl = nw_ttl; } void match_set_nw_ttl_masked(struct match *match, uint8_t nw_ttl, uint8_t mask) { match->flow.nw_ttl = nw_ttl & mask; match->wc.masks.nw_ttl = mask; } void match_set_nw_frag(struct match *match, uint8_t nw_frag) { match->wc.masks.nw_frag |= FLOW_NW_FRAG_MASK; match->flow.nw_frag = nw_frag; } void match_set_nw_frag_masked(struct match *match, uint8_t nw_frag, uint8_t mask) { match->flow.nw_frag = nw_frag & mask; match->wc.masks.nw_frag = mask; } void match_set_icmp_type(struct match *match, uint8_t icmp_type) { match_set_tp_src(match, htons(icmp_type)); } void match_set_icmp_code(struct match *match, uint8_t icmp_code) { match_set_tp_dst(match, htons(icmp_code)); } void match_set_arp_sha(struct match *match, const struct eth_addr sha) { match->flow.arp_sha = sha; match->wc.masks.arp_sha = eth_addr_exact; } void match_set_arp_sha_masked(struct match *match, const struct eth_addr arp_sha, const struct eth_addr mask) { set_eth_masked(arp_sha, mask, &match->flow.arp_sha, &match->wc.masks.arp_sha); } void match_set_arp_tha(struct match *match, const struct eth_addr tha) { match->flow.arp_tha = tha; match->wc.masks.arp_tha = eth_addr_exact; } void match_set_arp_tha_masked(struct match *match, const struct eth_addr arp_tha, const struct eth_addr mask) { set_eth_masked(arp_tha, mask, &match->flow.arp_tha, &match->wc.masks.arp_tha); } void match_set_ipv6_src(struct match *match, const struct in6_addr *src) { match->flow.ipv6_src = *src; match->wc.masks.ipv6_src = in6addr_exact; } void match_set_ipv6_src_masked(struct match *match, const struct in6_addr *src, const struct in6_addr *mask) { match->flow.ipv6_src = ipv6_addr_bitand(src, mask); match->wc.masks.ipv6_src = *mask; } void match_set_ipv6_dst(struct match *match, const struct in6_addr *dst) { match->flow.ipv6_dst = *dst; match->wc.masks.ipv6_dst = in6addr_exact; } void match_set_ipv6_dst_masked(struct match *match, const struct in6_addr *dst, const struct in6_addr *mask) { match->flow.ipv6_dst = ipv6_addr_bitand(dst, mask); match->wc.masks.ipv6_dst = *mask; } void match_set_ipv6_label(struct match *match, ovs_be32 ipv6_label) { match->wc.masks.ipv6_label = OVS_BE32_MAX; match->flow.ipv6_label = ipv6_label; } void match_set_ipv6_label_masked(struct match *match, ovs_be32 ipv6_label, ovs_be32 mask) { match->flow.ipv6_label = ipv6_label & mask; match->wc.masks.ipv6_label = mask; } void match_set_nd_target(struct match *match, const struct in6_addr *target) { match->flow.nd_target = *target; match->wc.masks.nd_target = in6addr_exact; } void match_set_nd_target_masked(struct match *match, const struct in6_addr *target, const struct in6_addr *mask) { match->flow.nd_target = ipv6_addr_bitand(target, mask); match->wc.masks.nd_target = *mask; } /* Returns true if 'a' and 'b' wildcard the same fields and have the same * values for fixed fields, otherwise false. */ bool match_equal(const struct match *a, const struct match *b) { return (flow_wildcards_equal(&a->wc, &b->wc) && flow_equal(&a->flow, &b->flow)); } /* Returns a hash value for the flow and wildcards in 'match', starting from * 'basis'. */ uint32_t match_hash(const struct match *match, uint32_t basis) { return flow_wildcards_hash(&match->wc, flow_hash(&match->flow, basis)); } static bool match_has_default_recirc_id(const struct match *m) { return m->flow.recirc_id == 0 && (m->wc.masks.recirc_id == UINT32_MAX || m->wc.masks.recirc_id == 0); } static bool match_has_default_dp_hash(const struct match *m) { return ((m->flow.dp_hash | m->wc.masks.dp_hash) == 0); } /* Return true if the hidden fields of the match are set to the default values. * The default values equals to those set up by match_init_hidden_fields(). */ bool match_has_default_hidden_fields(const struct match *m) { return match_has_default_recirc_id(m) && match_has_default_dp_hash(m); } void match_init_hidden_fields(struct match *m) { match_set_recirc_id(m, 0); match_set_dp_hash_masked(m, 0, 0); } static void format_eth_masked(struct ds *s, const char *name, const struct eth_addr eth, const struct eth_addr mask) { if (!eth_addr_is_zero(mask)) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); eth_format_masked(eth, &mask, s); ds_put_char(s, ','); } } static void format_ip_netmask(struct ds *s, const char *name, ovs_be32 ip, ovs_be32 netmask) { if (netmask) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); ip_format_masked(ip, netmask, s); ds_put_char(s, ','); } } static void format_ipv6_netmask(struct ds *s, const char *name, const struct in6_addr *addr, const struct in6_addr *netmask) { if (!ipv6_mask_is_any(netmask)) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); ipv6_format_masked(addr, netmask, s); ds_put_char(s, ','); } } static void format_uint8_masked(struct ds *s, const char *name, uint8_t value, uint8_t mask) { if (mask != 0) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); if (mask == UINT8_MAX) { ds_put_format(s, "%"PRIu8, value); } else { ds_put_format(s, "0x%02"PRIx8"/0x%02"PRIx8, value, mask); } ds_put_char(s, ','); } } static void format_uint16_masked(struct ds *s, const char *name, uint16_t value, uint16_t mask) { if (mask != 0) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); if (mask == UINT16_MAX) { ds_put_format(s, "%"PRIu16, value); } else { ds_put_format(s, "0x%"PRIx16"/0x%"PRIx16, value, mask); } ds_put_char(s, ','); } } static void format_be16_masked(struct ds *s, const char *name, ovs_be16 value, ovs_be16 mask) { if (mask != htons(0)) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); if (mask == OVS_BE16_MAX) { ds_put_format(s, "%"PRIu16, ntohs(value)); } else { ds_put_format(s, "0x%"PRIx16"/0x%"PRIx16, ntohs(value), ntohs(mask)); } ds_put_char(s, ','); } } static void format_be32_masked(struct ds *s, const char *name, ovs_be32 value, ovs_be32 mask) { if (mask != htonl(0)) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); if (mask == OVS_BE32_MAX) { ds_put_format(s, "%"PRIu32, ntohl(value)); } else { ds_put_format(s, "0x%08"PRIx32"/0x%08"PRIx32, ntohl(value), ntohl(mask)); } ds_put_char(s, ','); } } static void format_be32_masked_hex(struct ds *s, const char *name, ovs_be32 value, ovs_be32 mask) { if (mask != htonl(0)) { ds_put_format(s, "%s%s=%s", colors.param, name, colors.end); if (mask == OVS_BE32_MAX) { ds_put_format(s, "0x%"PRIx32, ntohl(value)); } else { ds_put_format(s, "0x%"PRIx32"/0x%"PRIx32, ntohl(value), ntohl(mask)); } ds_put_char(s, ','); } } static void format_uint32_masked(struct ds *s, const char *name, uint32_t value, uint32_t mask) { if (mask) { ds_put_format(s, "%s%s=%s%#"PRIx32, colors.param, name, colors.end, value); if (mask != UINT32_MAX) { ds_put_format(s, "/%#"PRIx32, mask); } ds_put_char(s, ','); } } static void format_be64_masked(struct ds *s, const char *name, ovs_be64 value, ovs_be64 mask) { if (mask != htonll(0)) { ds_put_format(s, "%s%s=%s%#"PRIx64, colors.param, name, colors.end, ntohll(value)); if (mask != OVS_BE64_MAX) { ds_put_format(s, "/%#"PRIx64, ntohll(mask)); } ds_put_char(s, ','); } } static void format_flow_tunnel(struct ds *s, const struct match *match) { const struct flow_wildcards *wc = &match->wc; const struct flow_tnl *tnl = &match->flow.tunnel; format_be64_masked(s, "tun_id", tnl->tun_id, wc->masks.tunnel.tun_id); format_ip_netmask(s, "tun_src", tnl->ip_src, wc->masks.tunnel.ip_src); format_ip_netmask(s, "tun_dst", tnl->ip_dst, wc->masks.tunnel.ip_dst); format_ipv6_netmask(s, "tun_ipv6_src", &tnl->ipv6_src, &wc->masks.tunnel.ipv6_src); format_ipv6_netmask(s, "tun_ipv6_dst", &tnl->ipv6_dst, &wc->masks.tunnel.ipv6_dst); if (wc->masks.tunnel.gbp_id) { format_be16_masked(s, "tun_gbp_id", tnl->gbp_id, wc->masks.tunnel.gbp_id); } if (wc->masks.tunnel.gbp_flags) { ds_put_format(s, "tun_gbp_flags=%#"PRIx8",", tnl->gbp_flags); } if (wc->masks.tunnel.ip_tos) { ds_put_format(s, "tun_tos=%"PRIx8",", tnl->ip_tos); } if (wc->masks.tunnel.ip_ttl) { ds_put_format(s, "tun_ttl=%"PRIu8",", tnl->ip_ttl); } if (wc->masks.tunnel.flags & FLOW_TNL_F_MASK) { format_flags_masked(s, "tun_flags", flow_tun_flag_to_string, tnl->flags & FLOW_TNL_F_MASK, wc->masks.tunnel.flags & FLOW_TNL_F_MASK, FLOW_TNL_F_MASK); ds_put_char(s, ','); } tun_metadata_match_format(s, match); } static void format_ct_label_masked(struct ds *s, const ovs_u128 *key, const ovs_u128 *mask) { if (!ovs_u128_is_zero(*mask)) { ovs_be128 value = hton128(*key); ds_put_format(s, "%sct_label=%s", colors.param, colors.end); ds_put_hex(s, &value, sizeof value); if (!is_all_ones(mask, sizeof(*mask))) { value = hton128(*mask); ds_put_char(s, '/'); ds_put_hex(s, &value, sizeof value); } ds_put_char(s, ','); } } static void format_nsh_masked(struct ds *s, const struct flow *f, const struct flow *m) { ovs_be32 spi_mask = nsh_path_hdr_to_spi(m->nsh.path_hdr); if (spi_mask == htonl(NSH_SPI_MASK >> NSH_SPI_SHIFT)) { spi_mask = OVS_BE32_MAX; } format_uint8_masked(s, "nsh_flags", f->nsh.flags, m->nsh.flags); format_uint8_masked(s, "nsh_ttl", f->nsh.ttl, m->nsh.ttl); format_uint8_masked(s, "nsh_mdtype", f->nsh.mdtype, m->nsh.mdtype); format_uint8_masked(s, "nsh_np", f->nsh.np, m->nsh.np); format_be32_masked_hex(s, "nsh_spi", nsh_path_hdr_to_spi(f->nsh.path_hdr), spi_mask); format_uint8_masked(s, "nsh_si", nsh_path_hdr_to_si(f->nsh.path_hdr), nsh_path_hdr_to_si(m->nsh.path_hdr)); if (m->nsh.mdtype == UINT8_MAX && f->nsh.mdtype == NSH_M_TYPE1) { format_be32_masked_hex(s, "nsh_c1", f->nsh.context[0], m->nsh.context[0]); format_be32_masked_hex(s, "nsh_c2", f->nsh.context[1], m->nsh.context[1]); format_be32_masked_hex(s, "nsh_c3", f->nsh.context[2], m->nsh.context[2]); format_be32_masked_hex(s, "nsh_c4", f->nsh.context[3], m->nsh.context[3]); } } /* Appends a string representation of 'match' to 's'. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in 's'. If 'port_map' is * nonnull, uses it to translate port numbers to names in output. */ void match_format(const struct match *match, const struct ofputil_port_map *port_map, struct ds *s, int priority) { const struct flow_wildcards *wc = &match->wc; size_t start_len = s->length; const struct flow *f = &match->flow; bool skip_type = false; bool skip_proto = false; ovs_be16 dl_type = f->dl_type; bool is_megaflow = false; int i; BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40); if (priority != OFP_DEFAULT_PRIORITY) { ds_put_format(s, "%spriority=%s%d,", colors.special, colors.end, priority); } format_uint32_masked(s, "pkt_mark", f->pkt_mark, wc->masks.pkt_mark); if (wc->masks.recirc_id) { format_uint32_masked(s, "recirc_id", f->recirc_id, wc->masks.recirc_id); is_megaflow = true; } if (wc->masks.dp_hash) { format_uint32_masked(s, "dp_hash", f->dp_hash, wc->masks.dp_hash); } if (wc->masks.conj_id) { ds_put_format(s, "%sconj_id%s=%"PRIu32",", colors.param, colors.end, f->conj_id); } if (wc->masks.skb_priority) { ds_put_format(s, "%sskb_priority=%s%#"PRIx32",", colors.param, colors.end, f->skb_priority); } if (wc->masks.actset_output) { ds_put_format(s, "%sactset_output=%s", colors.param, colors.end); ofputil_format_port(f->actset_output, port_map, s); ds_put_char(s, ','); } if (wc->masks.ct_state) { if (wc->masks.ct_state == UINT8_MAX) { ds_put_format(s, "%sct_state=%s", colors.param, colors.end); if (f->ct_state) { format_flags(s, ct_state_to_string, f->ct_state, '|'); } else { ds_put_cstr(s, "0"); /* No state. */ } } else { format_flags_masked(s, "ct_state", ct_state_to_string, f->ct_state, wc->masks.ct_state, UINT8_MAX); } ds_put_char(s, ','); } if (wc->masks.ct_zone) { format_uint16_masked(s, "ct_zone", f->ct_zone, wc->masks.ct_zone); } if (wc->masks.ct_mark) { format_uint32_masked(s, "ct_mark", f->ct_mark, wc->masks.ct_mark); } if (!ovs_u128_is_zero(wc->masks.ct_label)) { format_ct_label_masked(s, &f->ct_label, &wc->masks.ct_label); } format_ip_netmask(s, "ct_nw_src", f->ct_nw_src, wc->masks.ct_nw_src); format_ipv6_netmask(s, "ct_ipv6_src", &f->ct_ipv6_src, &wc->masks.ct_ipv6_src); format_ip_netmask(s, "ct_nw_dst", f->ct_nw_dst, wc->masks.ct_nw_dst); format_ipv6_netmask(s, "ct_ipv6_dst", &f->ct_ipv6_dst, &wc->masks.ct_ipv6_dst); if (wc->masks.ct_nw_proto) { ds_put_format(s, "%sct_nw_proto=%s%"PRIu8",", colors.param, colors.end, f->ct_nw_proto); format_be16_masked(s, "ct_tp_src", f->ct_tp_src, wc->masks.ct_tp_src); format_be16_masked(s, "ct_tp_dst", f->ct_tp_dst, wc->masks.ct_tp_dst); } if (wc->masks.packet_type && (!match_has_default_packet_type(match) || is_megaflow)) { format_packet_type_masked(s, f->packet_type, wc->masks.packet_type); ds_put_char(s, ','); if (pt_ns(f->packet_type) == OFPHTN_ETHERTYPE) { dl_type = pt_ns_type_be(f->packet_type); } } if (wc->masks.dl_type) { skip_type = true; if (dl_type == htons(ETH_TYPE_IP)) { if (wc->masks.nw_proto) { skip_proto = true; if (f->nw_proto == IPPROTO_ICMP) { ds_put_format(s, "%sicmp%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_IGMP) { ds_put_format(s, "%sigmp%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_TCP) { ds_put_format(s, "%stcp%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_UDP) { ds_put_format(s, "%sudp%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_SCTP) { ds_put_format(s, "%ssctp%s,", colors.value, colors.end); } else { ds_put_format(s, "%sip%s,", colors.value, colors.end); skip_proto = false; } } else { ds_put_format(s, "%sip%s,", colors.value, colors.end); } } else if (dl_type == htons(ETH_TYPE_IPV6)) { if (wc->masks.nw_proto) { skip_proto = true; if (f->nw_proto == IPPROTO_ICMPV6) { ds_put_format(s, "%sicmp6%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_TCP) { ds_put_format(s, "%stcp6%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_UDP) { ds_put_format(s, "%sudp6%s,", colors.value, colors.end); } else if (f->nw_proto == IPPROTO_SCTP) { ds_put_format(s, "%ssctp6%s,", colors.value, colors.end); } else { ds_put_format(s, "%sipv6%s,", colors.value, colors.end); skip_proto = false; } } else { ds_put_format(s, "%sipv6%s,", colors.value, colors.end); } } else if (dl_type == htons(ETH_TYPE_ARP)) { ds_put_format(s, "%sarp%s,", colors.value, colors.end); } else if (dl_type == htons(ETH_TYPE_RARP)) { ds_put_format(s, "%srarp%s,", colors.value, colors.end); } else if (dl_type == htons(ETH_TYPE_MPLS)) { ds_put_format(s, "%smpls%s,", colors.value, colors.end); } else if (dl_type == htons(ETH_TYPE_MPLS_MCAST)) { ds_put_format(s, "%smplsm%s,", colors.value, colors.end); } else { skip_type = false; } } for (i = 0; i < FLOW_N_REGS; i++) { #define REGNAME_LEN 20 char regname[REGNAME_LEN]; if (snprintf(regname, REGNAME_LEN, "reg%d", i) >= REGNAME_LEN) { strcpy(regname, "reg?"); } format_uint32_masked(s, regname, f->regs[i], wc->masks.regs[i]); } format_flow_tunnel(s, match); format_be64_masked(s, "metadata", f->metadata, wc->masks.metadata); if (wc->masks.in_port.ofp_port) { ds_put_format(s, "%sin_port=%s", colors.param, colors.end); ofputil_format_port(f->in_port.ofp_port, port_map, s); ds_put_char(s, ','); } for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) { char str_i[8]; if (!wc->masks.vlans[i].tci) { break; } /* Print VLAN tags as dl_vlan, dl_vlan1, dl_vlan2 ... */ if (i == 0) { str_i[0] = '\0'; } else { snprintf(str_i, sizeof(str_i), "%d", i); } ovs_be16 vid_mask = wc->masks.vlans[i].tci & htons(VLAN_VID_MASK); ovs_be16 pcp_mask = wc->masks.vlans[i].tci & htons(VLAN_PCP_MASK); ovs_be16 cfi = wc->masks.vlans[i].tci & htons(VLAN_CFI); if (cfi && f->vlans[i].tci & htons(VLAN_CFI) && (!vid_mask || vid_mask == htons(VLAN_VID_MASK)) && (!pcp_mask || pcp_mask == htons(VLAN_PCP_MASK)) && (vid_mask || pcp_mask)) { if (vid_mask) { ds_put_format(s, "%sdl_vlan%s=%s%"PRIu16",", colors.param, str_i, colors.end, vlan_tci_to_vid(f->vlans[i].tci)); } if (pcp_mask) { ds_put_format(s, "%sdl_vlan_pcp%s=%s%d,", colors.param, str_i, colors.end, vlan_tci_to_pcp(f->vlans[i].tci)); } } else if (wc->masks.vlans[i].tci == htons(0xffff)) { ds_put_format(s, "%svlan_tci%s=%s0x%04"PRIx16",", colors.param, str_i, colors.end, ntohs(f->vlans[i].tci)); } else { ds_put_format(s, "%svlan_tci%s=%s0x%04"PRIx16"/0x%04"PRIx16",", colors.param, str_i, colors.end, ntohs(f->vlans[i].tci), ntohs(wc->masks.vlans[i].tci)); } } format_eth_masked(s, "dl_src", f->dl_src, wc->masks.dl_src); format_eth_masked(s, "dl_dst", f->dl_dst, wc->masks.dl_dst); if (!skip_type && wc->masks.dl_type) { ds_put_format(s, "%sdl_type=%s0x%04"PRIx16",", colors.param, colors.end, ntohs(dl_type)); } if (dl_type == htons(ETH_TYPE_IPV6)) { format_ipv6_netmask(s, "ipv6_src", &f->ipv6_src, &wc->masks.ipv6_src); format_ipv6_netmask(s, "ipv6_dst", &f->ipv6_dst, &wc->masks.ipv6_dst); if (wc->masks.ipv6_label) { if (wc->masks.ipv6_label == OVS_BE32_MAX) { ds_put_format(s, "%sipv6_label=%s0x%05"PRIx32",", colors.param, colors.end, ntohl(f->ipv6_label)); } else { ds_put_format(s, "%sipv6_label=%s0x%05"PRIx32"/0x%05"PRIx32",", colors.param, colors.end, ntohl(f->ipv6_label), ntohl(wc->masks.ipv6_label)); } } } else if (dl_type == htons(ETH_TYPE_ARP) || dl_type == htons(ETH_TYPE_RARP)) { format_ip_netmask(s, "arp_spa", f->nw_src, wc->masks.nw_src); format_ip_netmask(s, "arp_tpa", f->nw_dst, wc->masks.nw_dst); } else if (dl_type == htons(ETH_TYPE_NSH)) { format_nsh_masked(s, f, &wc->masks); } else { format_ip_netmask(s, "nw_src", f->nw_src, wc->masks.nw_src); format_ip_netmask(s, "nw_dst", f->nw_dst, wc->masks.nw_dst); } if (!skip_proto && wc->masks.nw_proto) { if (dl_type == htons(ETH_TYPE_ARP) || dl_type == htons(ETH_TYPE_RARP)) { ds_put_format(s, "%sarp_op=%s%"PRIu8",", colors.param, colors.end, f->nw_proto); } else { ds_put_format(s, "%snw_proto=%s%"PRIu8",", colors.param, colors.end, f->nw_proto); } } if (dl_type == htons(ETH_TYPE_ARP) || dl_type == htons(ETH_TYPE_RARP)) { format_eth_masked(s, "arp_sha", f->arp_sha, wc->masks.arp_sha); format_eth_masked(s, "arp_tha", f->arp_tha, wc->masks.arp_tha); } if (wc->masks.nw_tos & IP_DSCP_MASK) { ds_put_format(s, "%snw_tos=%s%d,", colors.param, colors.end, f->nw_tos & IP_DSCP_MASK); } if (wc->masks.nw_tos & IP_ECN_MASK) { ds_put_format(s, "%snw_ecn=%s%d,", colors.param, colors.end, f->nw_tos & IP_ECN_MASK); } if (wc->masks.nw_ttl) { ds_put_format(s, "%snw_ttl=%s%d,", colors.param, colors.end, f->nw_ttl); } if (wc->masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK)) { ds_put_format(s, "%smpls_label=%s%"PRIu32",", colors.param, colors.end, mpls_lse_to_label(f->mpls_lse[0])); } if (wc->masks.mpls_lse[0] & htonl(MPLS_TC_MASK)) { ds_put_format(s, "%smpls_tc=%s%"PRIu8",", colors.param, colors.end, mpls_lse_to_tc(f->mpls_lse[0])); } if (wc->masks.mpls_lse[0] & htonl(MPLS_TTL_MASK)) { ds_put_format(s, "%smpls_ttl=%s%"PRIu8",", colors.param, colors.end, mpls_lse_to_ttl(f->mpls_lse[0])); } if (wc->masks.mpls_lse[0] & htonl(MPLS_BOS_MASK)) { ds_put_format(s, "%smpls_bos=%s%"PRIu8",", colors.param, colors.end, mpls_lse_to_bos(f->mpls_lse[0])); } format_be32_masked(s, "mpls_lse1", f->mpls_lse[1], wc->masks.mpls_lse[1]); format_be32_masked(s, "mpls_lse2", f->mpls_lse[2], wc->masks.mpls_lse[2]); switch (wc->masks.nw_frag) { case FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER: ds_put_format(s, "%snw_frag=%s%s,", colors.param, colors.end, f->nw_frag & FLOW_NW_FRAG_ANY ? (f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "first") : (f->nw_frag & FLOW_NW_FRAG_LATER ? "" : "no")); break; case FLOW_NW_FRAG_ANY: ds_put_format(s, "%snw_frag=%s%s,", colors.param, colors.end, f->nw_frag & FLOW_NW_FRAG_ANY ? "yes" : "no"); break; case FLOW_NW_FRAG_LATER: ds_put_format(s, "%snw_frag=%s%s,", colors.param, colors.end, f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "not_later"); break; } if (dl_type == htons(ETH_TYPE_IP) && f->nw_proto == IPPROTO_ICMP) { format_be16_masked(s, "icmp_type", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "icmp_code", f->tp_dst, wc->masks.tp_dst); } else if (dl_type == htons(ETH_TYPE_IP) && f->nw_proto == IPPROTO_IGMP) { format_be16_masked(s, "igmp_type", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "igmp_code", f->tp_dst, wc->masks.tp_dst); } else if (dl_type == htons(ETH_TYPE_IPV6) && f->nw_proto == IPPROTO_ICMPV6) { format_be16_masked(s, "icmp_type", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "icmp_code", f->tp_dst, wc->masks.tp_dst); format_ipv6_netmask(s, "nd_target", &f->nd_target, &wc->masks.nd_target); format_eth_masked(s, "nd_sll", f->arp_sha, wc->masks.arp_sha); format_eth_masked(s, "nd_tll", f->arp_tha, wc->masks.arp_tha); } else { format_be16_masked(s, "tp_src", f->tp_src, wc->masks.tp_src); format_be16_masked(s, "tp_dst", f->tp_dst, wc->masks.tp_dst); } if (is_ip_any(f) && f->nw_proto == IPPROTO_TCP && wc->masks.tcp_flags) { format_flags_masked(s, "tcp_flags", packet_tcp_flag_to_string, ntohs(f->tcp_flags), TCP_FLAGS(wc->masks.tcp_flags), TCP_FLAGS(OVS_BE16_MAX)); } if (s->length > start_len) { ds_chomp(s, ','); } } /* Converts 'match' to a string and returns the string. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in the string. If * 'port_map' is nonnull, uses it to translate port numbers to names in * output. The caller must free the string (with free()). */ char * match_to_string(const struct match *match, const struct ofputil_port_map *port_map, int priority) { struct ds s = DS_EMPTY_INITIALIZER; match_format(match, port_map, &s, priority); return ds_steal_cstr(&s); } void match_print(const struct match *match, const struct ofputil_port_map *port_map) { char *s = match_to_string(match, port_map, OFP_DEFAULT_PRIORITY); puts(s); free(s); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimatch_destroy(). */ void minimatch_init(struct minimatch *dst, const struct match *src) { struct miniflow tmp; miniflow_map_init(&tmp, &src->wc.masks); /* Allocate two consecutive miniflows. */ miniflow_alloc(dst->flows, 2, &tmp); miniflow_init(dst->flow, &src->flow); minimask_init(dst->mask, &src->wc); } /* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' * with minimatch_destroy(). */ void minimatch_clone(struct minimatch *dst, const struct minimatch *src) { /* Allocate two consecutive miniflows. */ size_t data_size = miniflow_alloc(dst->flows, 2, &src->mask->masks); memcpy(miniflow_values(dst->flow), miniflow_get_values(src->flow), data_size); memcpy(miniflow_values(&dst->mask->masks), miniflow_get_values(&src->mask->masks), data_size); } /* Initializes 'dst' with the data in 'src', destroying 'src'. The caller must * eventually free 'dst' with minimatch_destroy(). */ void minimatch_move(struct minimatch *dst, struct minimatch *src) { dst->flow = src->flow; dst->mask = src->mask; } /* Frees any memory owned by 'match'. Does not free the storage in which * 'match' itself resides; the caller is responsible for that. */ void minimatch_destroy(struct minimatch *match) { free(match->flow); } /* Initializes 'dst' as a copy of 'src'. */ void minimatch_expand(const struct minimatch *src, struct match *dst) { miniflow_expand(src->flow, &dst->flow); minimask_expand(src->mask, &dst->wc); memset(&dst->tun_md, 0, sizeof dst->tun_md); } /* Returns true if 'a' and 'b' match the same packets, false otherwise. */ bool minimatch_equal(const struct minimatch *a, const struct minimatch *b) { return minimask_equal(a->mask, b->mask) && miniflow_equal(a->flow, b->flow); } /* Returns true if 'target' satisifies 'match', that is, if each bit for which * 'match' specifies a particular value has the correct value in 'target'. * * This function is equivalent to miniflow_equal_flow_in_minimask(&match->flow, * target, &match->mask) but it is faster because of the invariant that * match->flow.map and match->mask.map are the same. */ bool minimatch_matches_flow(const struct minimatch *match, const struct flow *target) { const uint64_t *flowp = miniflow_get_values(match->flow); const uint64_t *maskp = miniflow_get_values(&match->mask->masks); size_t idx; FLOWMAP_FOR_EACH_INDEX(idx, match->flow->map) { if ((*flowp++ ^ flow_u64_value(target, idx)) & *maskp++) { return false; } } return true; } /* Appends a string representation of 'match' to 's'. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in 's'. If 'port_map' is * nonnull, uses it to translate port numbers to names in output. */ void minimatch_format(const struct minimatch *match, const struct tun_table *tun_table, const struct ofputil_port_map *port_map, struct ds *s, int priority) { struct match megamatch; minimatch_expand(match, &megamatch); megamatch.flow.tunnel.metadata.tab = tun_table; match_format(&megamatch, port_map, s, priority); } /* Converts 'match' to a string and returns the string. If 'priority' is * different from OFP_DEFAULT_PRIORITY, includes it in the string. The caller * must free the string (with free()). If 'port_map' is nonnull, uses it to * translate port numbers to names in output. */ char * minimatch_to_string(const struct minimatch *match, const struct ofputil_port_map *port_map, int priority) { struct match megamatch; minimatch_expand(match, &megamatch); return match_to_string(&megamatch, port_map, priority); }