/* * Copyright (c) 2011-2017 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "openvswitch/meta-flow.h" #include #include #include #include #include "classifier.h" #include "openvswitch/dynamic-string.h" #include "nx-match.h" #include "openvswitch/ofp-util.h" #include "ovs-atomic.h" #include "ovs-rcu.h" #include "ovs-thread.h" #include "packets.h" #include "random.h" #include "openvswitch/shash.h" #include "socket-util.h" #include "tun-metadata.h" #include "unaligned.h" #include "util.h" #include "openvswitch/ofp-errors.h" #include "openvswitch/vlog.h" #include "vl-mff-map.h" #include "openvswitch/nsh.h" VLOG_DEFINE_THIS_MODULE(meta_flow); #define FLOW_U32OFS(FIELD) \ offsetof(struct flow, FIELD) % 4 ? -1 : offsetof(struct flow, FIELD) / 4 #define MF_FIELD_SIZES(MEMBER) \ sizeof ((union mf_value *)0)->MEMBER, \ 8 * sizeof ((union mf_value *)0)->MEMBER extern const struct mf_field mf_fields[MFF_N_IDS]; /* Silence a warning. */ const struct mf_field mf_fields[MFF_N_IDS] = { #include "meta-flow.inc" }; /* Maps from an mf_field's 'name' or 'extra_name' to the mf_field. */ static struct shash mf_by_name; /* Rate limit for parse errors. These always indicate a bug in an OpenFlow * controller and so there's not much point in showing a lot of them. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); #define MF_VALUE_EXACT_8 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff #define MF_VALUE_EXACT_16 MF_VALUE_EXACT_8, MF_VALUE_EXACT_8 #define MF_VALUE_EXACT_32 MF_VALUE_EXACT_16, MF_VALUE_EXACT_16 #define MF_VALUE_EXACT_64 MF_VALUE_EXACT_32, MF_VALUE_EXACT_32 #define MF_VALUE_EXACT_128 MF_VALUE_EXACT_64, MF_VALUE_EXACT_64 #define MF_VALUE_EXACT_INITIALIZER { .tun_metadata = { MF_VALUE_EXACT_128 } } const union mf_value exact_match_mask = MF_VALUE_EXACT_INITIALIZER; static void nxm_init(void); /* Returns the field with the given 'name', or a null pointer if no field has * that name. */ const struct mf_field * mf_from_name(const char *name) { nxm_init(); return shash_find_data(&mf_by_name, name); } /* Returns the field with the given 'name' (which is 'len' bytes long), or a * null pointer if no field has that name. */ const struct mf_field * mf_from_name_len(const char *name, size_t len) { nxm_init(); struct shash_node *node = shash_find_len(&mf_by_name, name, len); return node ? node->data : NULL; } static void nxm_do_init(void) { int i; shash_init(&mf_by_name); for (i = 0; i < MFF_N_IDS; i++) { const struct mf_field *mf = &mf_fields[i]; ovs_assert(mf->id == i); /* Fields must be in the enum order. */ shash_add_once(&mf_by_name, mf->name, mf); if (mf->extra_name) { shash_add_once(&mf_by_name, mf->extra_name, mf); } } } static void nxm_init(void) { static pthread_once_t once = PTHREAD_ONCE_INIT; pthread_once(&once, nxm_do_init); } /* Consider the two value/mask pairs 'a_value/a_mask' and 'b_value/b_mask' as * restrictions on a field's value. Then, this function initializes * 'dst_value/dst_mask' such that it combines the restrictions of both pairs. * This is not always possible, i.e. if one pair insists on a value of 0 in * some bit and the other pair insists on a value of 1 in that bit. This * function returns false in a case where the combined restriction is * impossible (in which case 'dst_value/dst_mask' is not fully initialized), * true otherwise. * * (As usually true for value/mask pairs in OVS, any 1-bit in a value must have * a corresponding 1-bit in its mask.) */ bool mf_subvalue_intersect(const union mf_subvalue *a_value, const union mf_subvalue *a_mask, const union mf_subvalue *b_value, const union mf_subvalue *b_mask, union mf_subvalue *dst_value, union mf_subvalue *dst_mask) { for (int i = 0; i < ARRAY_SIZE(a_value->be64); i++) { ovs_be64 av = a_value->be64[i]; ovs_be64 am = a_mask->be64[i]; ovs_be64 bv = b_value->be64[i]; ovs_be64 bm = b_mask->be64[i]; ovs_be64 *dv = &dst_value->be64[i]; ovs_be64 *dm = &dst_mask->be64[i]; if ((av ^ bv) & (am & bm)) { return false; } *dv = av | bv; *dm = am | bm; } return true; } /* Returns the "number of bits" in 'v', e.g. 1 if only the lowest-order bit is * set, 2 if the second-lowest-order bit is set, and so on. */ int mf_subvalue_width(const union mf_subvalue *v) { return 1 + bitwise_rscan(v, sizeof *v, true, sizeof *v * 8 - 1, -1); } /* For positive 'n', shifts the bits in 'value' 'n' bits to the left, and for * negative 'n', shifts the bits '-n' bits to the right. */ void mf_subvalue_shift(union mf_subvalue *value, int n) { if (n) { union mf_subvalue tmp; memset(&tmp, 0, sizeof tmp); if (n > 0 && n < 8 * sizeof tmp) { bitwise_copy(value, sizeof *value, 0, &tmp, sizeof tmp, n, 8 * sizeof tmp - n); } else if (n < 0 && n > -8 * sizeof tmp) { bitwise_copy(value, sizeof *value, -n, &tmp, sizeof tmp, 0, 8 * sizeof tmp + n); } *value = tmp; } } /* Appends a formatted representation of 'sv' to 's'. */ void mf_subvalue_format(const union mf_subvalue *sv, struct ds *s) { ds_put_hex(s, sv, sizeof *sv); } /* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc' * specifies at least one bit in the field. * * The caller is responsible for ensuring that 'wc' corresponds to a flow that * meets 'mf''s prerequisites. */ bool mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc) { switch (mf->id) { case MFF_DP_HASH: return !wc->masks.dp_hash; case MFF_RECIRC_ID: return !wc->masks.recirc_id; case MFF_PACKET_TYPE: return !wc->masks.packet_type; case MFF_CONJ_ID: return !wc->masks.conj_id; case MFF_TUN_SRC: return !wc->masks.tunnel.ip_src; case MFF_TUN_DST: return !wc->masks.tunnel.ip_dst; case MFF_TUN_IPV6_SRC: return ipv6_mask_is_any(&wc->masks.tunnel.ipv6_src); case MFF_TUN_IPV6_DST: return ipv6_mask_is_any(&wc->masks.tunnel.ipv6_dst); case MFF_TUN_ID: return !wc->masks.tunnel.tun_id; case MFF_TUN_TOS: return !wc->masks.tunnel.ip_tos; case MFF_TUN_TTL: return !wc->masks.tunnel.ip_ttl; case MFF_TUN_FLAGS: return !(wc->masks.tunnel.flags & FLOW_TNL_PUB_F_MASK); case MFF_TUN_GBP_ID: return !wc->masks.tunnel.gbp_id; case MFF_TUN_GBP_FLAGS: return !wc->masks.tunnel.gbp_flags; CASE_MFF_TUN_METADATA: return !ULLONG_GET(wc->masks.tunnel.metadata.present.map, mf->id - MFF_TUN_METADATA0); case MFF_METADATA: return !wc->masks.metadata; case MFF_IN_PORT: case MFF_IN_PORT_OXM: return !wc->masks.in_port.ofp_port; case MFF_SKB_PRIORITY: return !wc->masks.skb_priority; case MFF_PKT_MARK: return !wc->masks.pkt_mark; case MFF_CT_STATE: return !wc->masks.ct_state; case MFF_CT_ZONE: return !wc->masks.ct_zone; case MFF_CT_MARK: return !wc->masks.ct_mark; case MFF_CT_LABEL: return ovs_u128_is_zero(wc->masks.ct_label); case MFF_CT_NW_PROTO: return !wc->masks.ct_nw_proto; case MFF_CT_NW_SRC: return !wc->masks.ct_nw_src; case MFF_CT_NW_DST: return !wc->masks.ct_nw_dst; case MFF_CT_TP_SRC: return !wc->masks.ct_tp_src; case MFF_CT_TP_DST: return !wc->masks.ct_tp_dst; case MFF_CT_IPV6_SRC: return ipv6_mask_is_any(&wc->masks.ct_ipv6_src); case MFF_CT_IPV6_DST: return ipv6_mask_is_any(&wc->masks.ct_ipv6_dst); CASE_MFF_REGS: return !wc->masks.regs[mf->id - MFF_REG0]; CASE_MFF_XREGS: return !flow_get_xreg(&wc->masks, mf->id - MFF_XREG0); CASE_MFF_XXREGS: { ovs_u128 value = flow_get_xxreg(&wc->masks, mf->id - MFF_XXREG0); return ovs_u128_is_zero(value); } case MFF_ACTSET_OUTPUT: return !wc->masks.actset_output; case MFF_ETH_SRC: return eth_addr_is_zero(wc->masks.dl_src); case MFF_ETH_DST: return eth_addr_is_zero(wc->masks.dl_dst); case MFF_ETH_TYPE: return !wc->masks.dl_type; case MFF_ARP_SHA: case MFF_ND_SLL: return eth_addr_is_zero(wc->masks.arp_sha); case MFF_ARP_THA: case MFF_ND_TLL: return eth_addr_is_zero(wc->masks.arp_tha); case MFF_VLAN_TCI: return !wc->masks.vlans[0].tci; case MFF_DL_VLAN: return !(wc->masks.vlans[0].tci & htons(VLAN_VID_MASK)); case MFF_VLAN_VID: return !(wc->masks.vlans[0].tci & htons(VLAN_VID_MASK | VLAN_CFI)); case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: return !(wc->masks.vlans[0].tci & htons(VLAN_PCP_MASK)); case MFF_MPLS_LABEL: return !(wc->masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK)); case MFF_MPLS_TC: return !(wc->masks.mpls_lse[0] & htonl(MPLS_TC_MASK)); case MFF_MPLS_BOS: return !(wc->masks.mpls_lse[0] & htonl(MPLS_BOS_MASK)); case MFF_MPLS_TTL: return !(wc->masks.mpls_lse[0] & htonl(MPLS_TTL_MASK)); case MFF_IPV4_SRC: return !wc->masks.nw_src; case MFF_IPV4_DST: return !wc->masks.nw_dst; case MFF_IPV6_SRC: return ipv6_mask_is_any(&wc->masks.ipv6_src); case MFF_IPV6_DST: return ipv6_mask_is_any(&wc->masks.ipv6_dst); case MFF_IPV6_LABEL: return !wc->masks.ipv6_label; case MFF_IP_PROTO: return !wc->masks.nw_proto; case MFF_IP_DSCP: case MFF_IP_DSCP_SHIFTED: return !(wc->masks.nw_tos & IP_DSCP_MASK); case MFF_IP_ECN: return !(wc->masks.nw_tos & IP_ECN_MASK); case MFF_IP_TTL: return !wc->masks.nw_ttl; case MFF_ND_TARGET: return ipv6_mask_is_any(&wc->masks.nd_target); case MFF_IP_FRAG: return !(wc->masks.nw_frag & FLOW_NW_FRAG_MASK); case MFF_ARP_OP: return !wc->masks.nw_proto; case MFF_ARP_SPA: return !wc->masks.nw_src; case MFF_ARP_TPA: return !wc->masks.nw_dst; case MFF_TCP_SRC: case MFF_UDP_SRC: case MFF_SCTP_SRC: case MFF_ICMPV4_TYPE: case MFF_ICMPV6_TYPE: return !wc->masks.tp_src; case MFF_TCP_DST: case MFF_UDP_DST: case MFF_SCTP_DST: case MFF_ICMPV4_CODE: case MFF_ICMPV6_CODE: return !wc->masks.tp_dst; case MFF_TCP_FLAGS: return !wc->masks.tcp_flags; case MFF_NSH_FLAGS: return !wc->masks.nsh.flags; case MFF_NSH_TTL: return !wc->masks.nsh.ttl; case MFF_NSH_MDTYPE: return !wc->masks.nsh.mdtype; case MFF_NSH_NP: return !wc->masks.nsh.np; case MFF_NSH_SPI: return !(wc->masks.nsh.path_hdr & htonl(NSH_SPI_MASK)); case MFF_NSH_SI: return !(wc->masks.nsh.path_hdr & htonl(NSH_SI_MASK)); case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: return !wc->masks.nsh.context[mf->id - MFF_NSH_C1]; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'. * Each bit in 'mask' will be set to 1 if the bit is significant for matching * purposes, or to 0 if it is wildcarded. * * The caller is responsible for ensuring that 'wc' corresponds to a flow that * meets 'mf''s prerequisites. */ void mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc, union mf_value *mask) { mf_get_value(mf, &wc->masks, mask); } /* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true * if the mask is valid, false otherwise. */ bool mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask) { switch (mf->maskable) { case MFM_NONE: return (is_all_zeros(mask, mf->n_bytes) || is_all_ones(mask, mf->n_bytes)); case MFM_FULLY: return true; } OVS_NOT_REACHED(); } /* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. * If a non-NULL 'mask' is passed, zero-valued matches can also be verified. * Sets inspected bits in 'wc', if non-NULL. */ static bool mf_are_prereqs_ok__(const struct mf_field *mf, const struct flow *flow, const struct flow_wildcards *mask, struct flow_wildcards *wc) { ovs_be16 dl_type = get_dl_type(flow); switch (mf->prereqs) { case MFP_NONE: return true; case MFP_ETHERNET: return is_ethernet(flow, wc); case MFP_ARP: return (dl_type == htons(ETH_TYPE_ARP) || dl_type == htons(ETH_TYPE_RARP)); case MFP_IPV4: return dl_type == htons(ETH_TYPE_IP); case MFP_IPV6: return dl_type == htons(ETH_TYPE_IPV6); case MFP_VLAN_VID: return is_vlan(flow, wc); case MFP_MPLS: return eth_type_mpls(dl_type); case MFP_IP_ANY: return is_ip_any(flow); case MFP_NSH: return dl_type == htons(ETH_TYPE_NSH); case MFP_CT_VALID: return is_ct_valid(flow, mask, wc); case MFP_TCP: /* Matching !FRAG_LATER is not enforced (mask is not checked). */ return is_tcp(flow, wc) && !(flow->nw_frag & FLOW_NW_FRAG_LATER); case MFP_UDP: return is_udp(flow, wc) && !(flow->nw_frag & FLOW_NW_FRAG_LATER); case MFP_SCTP: return is_sctp(flow, wc) && !(flow->nw_frag & FLOW_NW_FRAG_LATER); case MFP_ICMPV4: return is_icmpv4(flow, wc); case MFP_ICMPV6: return is_icmpv6(flow, wc); case MFP_ND: return is_nd(flow, wc); case MFP_ND_SOLICIT: return is_nd(flow, wc) && flow->tp_src == htons(ND_NEIGHBOR_SOLICIT); case MFP_ND_ADVERT: return is_nd(flow, wc) && flow->tp_src == htons(ND_NEIGHBOR_ADVERT); } OVS_NOT_REACHED(); } /* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. * Sets inspected bits in 'wc', if non-NULL. */ bool mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow, struct flow_wildcards *wc) { return mf_are_prereqs_ok__(mf, flow, NULL, wc); } /* Returns true if 'match' meets the prerequisites for 'mf', false otherwise. */ bool mf_are_match_prereqs_ok(const struct mf_field *mf, const struct match *match) { return mf_are_prereqs_ok__(mf, &match->flow, &match->wc, NULL); } /* Returns true if 'value' may be a valid value *as part of a masked match*, * false otherwise. * * A value is not rejected just because it is not valid for the field in * question, but only if it doesn't make sense to test the bits in question at * all. For example, the MFF_VLAN_TCI field will never have a nonzero value * without the VLAN_CFI bit being set, but we can't reject those values because * it is still legitimate to test just for those bits (see the documentation * for NXM_OF_VLAN_TCI in meta-flow.h). On the other hand, there is never a * reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */ bool mf_is_value_valid(const struct mf_field *mf, const union mf_value *value) { switch (mf->id) { case MFF_DP_HASH: case MFF_RECIRC_ID: case MFF_PACKET_TYPE: case MFF_CONJ_ID: case MFF_TUN_ID: case MFF_TUN_SRC: case MFF_TUN_DST: case MFF_TUN_IPV6_SRC: case MFF_TUN_IPV6_DST: case MFF_TUN_TOS: case MFF_TUN_TTL: case MFF_TUN_GBP_ID: case MFF_TUN_GBP_FLAGS: CASE_MFF_TUN_METADATA: case MFF_METADATA: case MFF_IN_PORT: case MFF_SKB_PRIORITY: case MFF_PKT_MARK: case MFF_CT_ZONE: case MFF_CT_MARK: case MFF_CT_LABEL: case MFF_CT_NW_PROTO: case MFF_CT_NW_SRC: case MFF_CT_NW_DST: case MFF_CT_IPV6_SRC: case MFF_CT_IPV6_DST: case MFF_CT_TP_SRC: case MFF_CT_TP_DST: CASE_MFF_REGS: CASE_MFF_XREGS: CASE_MFF_XXREGS: case MFF_ETH_SRC: case MFF_ETH_DST: case MFF_ETH_TYPE: case MFF_VLAN_TCI: case MFF_MPLS_TTL: case MFF_IPV4_SRC: case MFF_IPV4_DST: case MFF_IPV6_SRC: case MFF_IPV6_DST: case MFF_IP_PROTO: case MFF_IP_TTL: case MFF_ARP_SPA: case MFF_ARP_TPA: case MFF_ARP_SHA: case MFF_ARP_THA: case MFF_TCP_SRC: case MFF_TCP_DST: case MFF_UDP_SRC: case MFF_UDP_DST: case MFF_SCTP_SRC: case MFF_SCTP_DST: case MFF_ICMPV4_TYPE: case MFF_ICMPV4_CODE: case MFF_ICMPV6_TYPE: case MFF_ICMPV6_CODE: case MFF_ND_TARGET: case MFF_ND_SLL: case MFF_ND_TLL: return true; case MFF_IN_PORT_OXM: case MFF_ACTSET_OUTPUT: { ofp_port_t port; return !ofputil_port_from_ofp11(value->be32, &port); } case MFF_IP_DSCP: return !(value->u8 & ~IP_DSCP_MASK); case MFF_IP_DSCP_SHIFTED: return !(value->u8 & (~IP_DSCP_MASK >> 2)); case MFF_IP_ECN: return !(value->u8 & ~IP_ECN_MASK); case MFF_IP_FRAG: return !(value->u8 & ~FLOW_NW_FRAG_MASK); case MFF_TCP_FLAGS: return !(value->be16 & ~htons(0x0fff)); case MFF_ARP_OP: return !(value->be16 & htons(0xff00)); case MFF_DL_VLAN: return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK)); case MFF_VLAN_VID: return !(value->be16 & htons(VLAN_PCP_MASK)); case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT)); case MFF_IPV6_LABEL: return !(value->be32 & ~htonl(IPV6_LABEL_MASK)); case MFF_MPLS_LABEL: return !(value->be32 & ~htonl(MPLS_LABEL_MASK >> MPLS_LABEL_SHIFT)); case MFF_MPLS_TC: return !(value->u8 & ~(MPLS_TC_MASK >> MPLS_TC_SHIFT)); case MFF_MPLS_BOS: return !(value->u8 & ~(MPLS_BOS_MASK >> MPLS_BOS_SHIFT)); case MFF_TUN_FLAGS: return !(value->be16 & ~htons(FLOW_TNL_PUB_F_MASK)); case MFF_CT_STATE: return !(value->be32 & ~htonl(CS_SUPPORTED_MASK)); case MFF_NSH_FLAGS: return true; case MFF_NSH_TTL: return (value->u8 <= 63); case MFF_NSH_MDTYPE: return (value->u8 == 1 || value->u8 == 2); case MFF_NSH_NP: return true; case MFF_NSH_SPI: return !(value->be32 & htonl(0xFF000000)); case MFF_NSH_SI: case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: return true; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Copies the value of field 'mf' from 'flow' into 'value'. The caller is * responsible for ensuring that 'flow' meets 'mf''s prerequisites. */ void mf_get_value(const struct mf_field *mf, const struct flow *flow, union mf_value *value) { switch (mf->id) { case MFF_DP_HASH: value->be32 = htonl(flow->dp_hash); break; case MFF_RECIRC_ID: value->be32 = htonl(flow->recirc_id); break; case MFF_PACKET_TYPE: value->be32 = flow->packet_type; break; case MFF_CONJ_ID: value->be32 = htonl(flow->conj_id); break; case MFF_TUN_ID: value->be64 = flow->tunnel.tun_id; break; case MFF_TUN_SRC: value->be32 = flow->tunnel.ip_src; break; case MFF_TUN_DST: value->be32 = flow->tunnel.ip_dst; break; case MFF_TUN_IPV6_SRC: value->ipv6 = flow->tunnel.ipv6_src; break; case MFF_TUN_IPV6_DST: value->ipv6 = flow->tunnel.ipv6_dst; break; case MFF_TUN_FLAGS: value->be16 = htons(flow->tunnel.flags & FLOW_TNL_PUB_F_MASK); break; case MFF_TUN_GBP_ID: value->be16 = flow->tunnel.gbp_id; break; case MFF_TUN_GBP_FLAGS: value->u8 = flow->tunnel.gbp_flags; break; case MFF_TUN_TTL: value->u8 = flow->tunnel.ip_ttl; break; case MFF_TUN_TOS: value->u8 = flow->tunnel.ip_tos; break; CASE_MFF_TUN_METADATA: tun_metadata_read(&flow->tunnel, mf, value); break; case MFF_METADATA: value->be64 = flow->metadata; break; case MFF_IN_PORT: value->be16 = htons(ofp_to_u16(flow->in_port.ofp_port)); break; case MFF_IN_PORT_OXM: value->be32 = ofputil_port_to_ofp11(flow->in_port.ofp_port); break; case MFF_ACTSET_OUTPUT: value->be32 = ofputil_port_to_ofp11(flow->actset_output); break; case MFF_SKB_PRIORITY: value->be32 = htonl(flow->skb_priority); break; case MFF_PKT_MARK: value->be32 = htonl(flow->pkt_mark); break; case MFF_CT_STATE: value->be32 = htonl(flow->ct_state); break; case MFF_CT_ZONE: value->be16 = htons(flow->ct_zone); break; case MFF_CT_MARK: value->be32 = htonl(flow->ct_mark); break; case MFF_CT_LABEL: value->be128 = hton128(flow->ct_label); break; case MFF_CT_NW_PROTO: value->u8 = flow->ct_nw_proto; break; case MFF_CT_NW_SRC: value->be32 = flow->ct_nw_src; break; case MFF_CT_NW_DST: value->be32 = flow->ct_nw_dst; break; case MFF_CT_IPV6_SRC: value->ipv6 = flow->ct_ipv6_src; break; case MFF_CT_IPV6_DST: value->ipv6 = flow->ct_ipv6_dst; break; case MFF_CT_TP_SRC: value->be16 = flow->ct_tp_src; break; case MFF_CT_TP_DST: value->be16 = flow->ct_tp_dst; break; CASE_MFF_REGS: value->be32 = htonl(flow->regs[mf->id - MFF_REG0]); break; CASE_MFF_XREGS: value->be64 = htonll(flow_get_xreg(flow, mf->id - MFF_XREG0)); break; CASE_MFF_XXREGS: value->be128 = hton128(flow_get_xxreg(flow, mf->id - MFF_XXREG0)); break; case MFF_ETH_SRC: value->mac = flow->dl_src; break; case MFF_ETH_DST: value->mac = flow->dl_dst; break; case MFF_ETH_TYPE: value->be16 = flow->dl_type; break; case MFF_VLAN_TCI: value->be16 = flow->vlans[0].tci; break; case MFF_DL_VLAN: value->be16 = flow->vlans[0].tci & htons(VLAN_VID_MASK); break; case MFF_VLAN_VID: value->be16 = flow->vlans[0].tci & htons(VLAN_VID_MASK | VLAN_CFI); break; case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: value->u8 = vlan_tci_to_pcp(flow->vlans[0].tci); break; case MFF_MPLS_LABEL: value->be32 = htonl(mpls_lse_to_label(flow->mpls_lse[0])); break; case MFF_MPLS_TC: value->u8 = mpls_lse_to_tc(flow->mpls_lse[0]); break; case MFF_MPLS_BOS: value->u8 = mpls_lse_to_bos(flow->mpls_lse[0]); break; case MFF_MPLS_TTL: value->u8 = mpls_lse_to_ttl(flow->mpls_lse[0]); break; case MFF_IPV4_SRC: value->be32 = flow->nw_src; break; case MFF_IPV4_DST: value->be32 = flow->nw_dst; break; case MFF_IPV6_SRC: value->ipv6 = flow->ipv6_src; break; case MFF_IPV6_DST: value->ipv6 = flow->ipv6_dst; break; case MFF_IPV6_LABEL: value->be32 = flow->ipv6_label; break; case MFF_IP_PROTO: value->u8 = flow->nw_proto; break; case MFF_IP_DSCP: value->u8 = flow->nw_tos & IP_DSCP_MASK; break; case MFF_IP_DSCP_SHIFTED: value->u8 = flow->nw_tos >> 2; break; case MFF_IP_ECN: value->u8 = flow->nw_tos & IP_ECN_MASK; break; case MFF_IP_TTL: value->u8 = flow->nw_ttl; break; case MFF_IP_FRAG: value->u8 = flow->nw_frag; break; case MFF_ARP_OP: value->be16 = htons(flow->nw_proto); break; case MFF_ARP_SPA: value->be32 = flow->nw_src; break; case MFF_ARP_TPA: value->be32 = flow->nw_dst; break; case MFF_ARP_SHA: case MFF_ND_SLL: value->mac = flow->arp_sha; break; case MFF_ARP_THA: case MFF_ND_TLL: value->mac = flow->arp_tha; break; case MFF_TCP_SRC: case MFF_UDP_SRC: case MFF_SCTP_SRC: value->be16 = flow->tp_src; break; case MFF_TCP_DST: case MFF_UDP_DST: case MFF_SCTP_DST: value->be16 = flow->tp_dst; break; case MFF_TCP_FLAGS: value->be16 = flow->tcp_flags; break; case MFF_ICMPV4_TYPE: case MFF_ICMPV6_TYPE: value->u8 = ntohs(flow->tp_src); break; case MFF_ICMPV4_CODE: case MFF_ICMPV6_CODE: value->u8 = ntohs(flow->tp_dst); break; case MFF_ND_TARGET: value->ipv6 = flow->nd_target; break; case MFF_NSH_FLAGS: value->u8 = flow->nsh.flags; break; case MFF_NSH_TTL: value->u8 = flow->nsh.ttl; break; case MFF_NSH_MDTYPE: value->u8 = flow->nsh.mdtype; break; case MFF_NSH_NP: value->u8 = flow->nsh.np; break; case MFF_NSH_SPI: value->be32 = nsh_path_hdr_to_spi(flow->nsh.path_hdr); if (value->be32 == htonl(NSH_SPI_MASK >> NSH_SPI_SHIFT)) { value->be32 = OVS_BE32_MAX; } break; case MFF_NSH_SI: value->u8 = nsh_path_hdr_to_si(flow->nsh.path_hdr); break; case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: value->be32 = flow->nsh.context[mf->id - MFF_NSH_C1]; break; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Makes 'match' match field 'mf' exactly, with the value matched taken from * 'value'. The caller is responsible for ensuring that 'match' meets 'mf''s * prerequisites. * * If non-NULL, 'err_str' returns a malloc'ed string describing any errors * with the request or NULL if there is no error. The caller is reponsible * for freeing the string. */ void mf_set_value(const struct mf_field *mf, const union mf_value *value, struct match *match, char **err_str) { if (err_str) { *err_str = NULL; } switch (mf->id) { case MFF_DP_HASH: match_set_dp_hash(match, ntohl(value->be32)); break; case MFF_RECIRC_ID: match_set_recirc_id(match, ntohl(value->be32)); break; case MFF_PACKET_TYPE: match_set_packet_type(match, value->be32); break; case MFF_CONJ_ID: match_set_conj_id(match, ntohl(value->be32)); break; case MFF_TUN_ID: match_set_tun_id(match, value->be64); break; case MFF_TUN_SRC: match_set_tun_src(match, value->be32); break; case MFF_TUN_DST: match_set_tun_dst(match, value->be32); break; case MFF_TUN_IPV6_SRC: match_set_tun_ipv6_src(match, &value->ipv6); break; case MFF_TUN_IPV6_DST: match_set_tun_ipv6_dst(match, &value->ipv6); break; case MFF_TUN_FLAGS: match_set_tun_flags(match, ntohs(value->be16)); break; case MFF_TUN_GBP_ID: match_set_tun_gbp_id(match, value->be16); break; case MFF_TUN_GBP_FLAGS: match_set_tun_gbp_flags(match, value->u8); break; case MFF_TUN_TOS: match_set_tun_tos(match, value->u8); break; case MFF_TUN_TTL: match_set_tun_ttl(match, value->u8); break; CASE_MFF_TUN_METADATA: tun_metadata_set_match(mf, value, NULL, match, err_str); break; case MFF_METADATA: match_set_metadata(match, value->be64); break; case MFF_IN_PORT: match_set_in_port(match, u16_to_ofp(ntohs(value->be16))); break; case MFF_IN_PORT_OXM: { ofp_port_t port; ofputil_port_from_ofp11(value->be32, &port); match_set_in_port(match, port); break; } case MFF_ACTSET_OUTPUT: { ofp_port_t port; ofputil_port_from_ofp11(value->be32, &port); match_set_actset_output(match, port); break; } case MFF_SKB_PRIORITY: match_set_skb_priority(match, ntohl(value->be32)); break; case MFF_PKT_MARK: match_set_pkt_mark(match, ntohl(value->be32)); break; case MFF_CT_STATE: match_set_ct_state(match, ntohl(value->be32)); break; case MFF_CT_ZONE: match_set_ct_zone(match, ntohs(value->be16)); break; case MFF_CT_MARK: match_set_ct_mark(match, ntohl(value->be32)); break; case MFF_CT_LABEL: match_set_ct_label(match, ntoh128(value->be128)); break; case MFF_CT_NW_PROTO: match_set_ct_nw_proto(match, value->u8); break; case MFF_CT_NW_SRC: match_set_ct_nw_src(match, value->be32); break; case MFF_CT_NW_DST: match_set_ct_nw_dst(match, value->be32); break; case MFF_CT_IPV6_SRC: match_set_ct_ipv6_src(match, &value->ipv6); break; case MFF_CT_IPV6_DST: match_set_ct_ipv6_dst(match, &value->ipv6); break; case MFF_CT_TP_SRC: match_set_ct_tp_src(match, value->be16); break; case MFF_CT_TP_DST: match_set_ct_tp_dst(match, value->be16); break; CASE_MFF_REGS: match_set_reg(match, mf->id - MFF_REG0, ntohl(value->be32)); break; CASE_MFF_XREGS: match_set_xreg(match, mf->id - MFF_XREG0, ntohll(value->be64)); break; CASE_MFF_XXREGS: match_set_xxreg(match, mf->id - MFF_XXREG0, ntoh128(value->be128)); break; case MFF_ETH_SRC: match_set_dl_src(match, value->mac); break; case MFF_ETH_DST: match_set_dl_dst(match, value->mac); break; case MFF_ETH_TYPE: match_set_dl_type(match, value->be16); break; case MFF_VLAN_TCI: match_set_dl_tci(match, value->be16); break; case MFF_DL_VLAN: match_set_dl_vlan(match, value->be16); break; case MFF_VLAN_VID: match_set_vlan_vid(match, value->be16); break; case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: match_set_dl_vlan_pcp(match, value->u8); break; case MFF_MPLS_LABEL: match_set_mpls_label(match, 0, value->be32); break; case MFF_MPLS_TC: match_set_mpls_tc(match, 0, value->u8); break; case MFF_MPLS_BOS: match_set_mpls_bos(match, 0, value->u8); break; case MFF_MPLS_TTL: match_set_mpls_ttl(match, 0, value->u8); break; case MFF_IPV4_SRC: match_set_nw_src(match, value->be32); break; case MFF_IPV4_DST: match_set_nw_dst(match, value->be32); break; case MFF_IPV6_SRC: match_set_ipv6_src(match, &value->ipv6); break; case MFF_IPV6_DST: match_set_ipv6_dst(match, &value->ipv6); break; case MFF_IPV6_LABEL: match_set_ipv6_label(match, value->be32); break; case MFF_IP_PROTO: match_set_nw_proto(match, value->u8); break; case MFF_IP_DSCP: match_set_nw_dscp(match, value->u8); break; case MFF_IP_DSCP_SHIFTED: match_set_nw_dscp(match, value->u8 << 2); break; case MFF_IP_ECN: match_set_nw_ecn(match, value->u8); break; case MFF_IP_TTL: match_set_nw_ttl(match, value->u8); break; case MFF_IP_FRAG: match_set_nw_frag(match, value->u8); break; case MFF_ARP_OP: match_set_nw_proto(match, ntohs(value->be16)); break; case MFF_ARP_SPA: match_set_nw_src(match, value->be32); break; case MFF_ARP_TPA: match_set_nw_dst(match, value->be32); break; case MFF_ARP_SHA: case MFF_ND_SLL: match_set_arp_sha(match, value->mac); break; case MFF_ARP_THA: case MFF_ND_TLL: match_set_arp_tha(match, value->mac); break; case MFF_TCP_SRC: case MFF_UDP_SRC: case MFF_SCTP_SRC: match_set_tp_src(match, value->be16); break; case MFF_TCP_DST: case MFF_UDP_DST: case MFF_SCTP_DST: match_set_tp_dst(match, value->be16); break; case MFF_TCP_FLAGS: match_set_tcp_flags(match, value->be16); break; case MFF_ICMPV4_TYPE: case MFF_ICMPV6_TYPE: match_set_icmp_type(match, value->u8); break; case MFF_ICMPV4_CODE: case MFF_ICMPV6_CODE: match_set_icmp_code(match, value->u8); break; case MFF_ND_TARGET: match_set_nd_target(match, &value->ipv6); break; case MFF_NSH_FLAGS: MATCH_SET_FIELD_UINT8(match, nsh.flags, value->u8); break; case MFF_NSH_TTL: MATCH_SET_FIELD_UINT8(match, nsh.ttl, value->u8); break; case MFF_NSH_MDTYPE: MATCH_SET_FIELD_UINT8(match, nsh.mdtype, value->u8); break; case MFF_NSH_NP: MATCH_SET_FIELD_UINT8(match, nsh.np, value->u8); break; case MFF_NSH_SPI: match->wc.masks.nsh.path_hdr |= htonl(NSH_SPI_MASK); nsh_path_hdr_set_spi(&match->flow.nsh.path_hdr, value->be32); break; case MFF_NSH_SI: match->wc.masks.nsh.path_hdr |= htonl(NSH_SI_MASK); nsh_path_hdr_set_si(&match->flow.nsh.path_hdr, value->u8); break; case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: MATCH_SET_FIELD_BE32(match, nsh.context[mf->id - MFF_NSH_C1], value->be32); break; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Unwildcard the bits in 'mask' of the 'wc' member field described by 'mf'. * The caller is responsible for ensuring that 'wc' meets 'mf''s * prerequisites. */ void mf_mask_field_masked(const struct mf_field *mf, const union mf_value *mask, struct flow_wildcards *wc) { union mf_value temp_mask; /* For MFF_DL_VLAN, we cannot send a all 1's to flow_set_dl_vlan() as that * will be considered as OFP10_VLAN_NONE. So make sure the mask only has * valid bits in this case. */ if (mf->id == MFF_DL_VLAN) { temp_mask.be16 = htons(VLAN_VID_MASK) & mask->be16; mask = &temp_mask; } union mf_value mask_value; mf_get_value(mf, &wc->masks, &mask_value); for (size_t i = 0; i < mf->n_bytes; i++) { mask_value.b[i] |= mask->b[i]; } mf_set_flow_value(mf, &mask_value, &wc->masks); } /* Unwildcard 'wc' member field described by 'mf'. The caller is * responsible for ensuring that 'mask' meets 'mf''s prerequisites. */ void mf_mask_field(const struct mf_field *mf, struct flow_wildcards *wc) { mf_mask_field_masked(mf, &exact_match_mask, wc); } static int field_len(const struct mf_field *mf, const union mf_value *value_) { const uint8_t *value = &value_->u8; int i; if (!mf->variable_len) { return mf->n_bytes; } if (!value) { return 0; } for (i = 0; i < mf->n_bytes; i++) { if (value[i] != 0) { break; } } return mf->n_bytes - i; } /* Returns the effective length of the field. For fixed length fields, * this is just the defined length. For variable length fields, it is * the minimum size encoding that retains the same meaning (i.e. * discarding leading zeros). * * 'is_masked' returns (if non-NULL) whether the original contained * a mask. Otherwise, a mask that is the same length as the value * might be misinterpreted as an exact match. */ int mf_field_len(const struct mf_field *mf, const union mf_value *value, const union mf_value *mask, bool *is_masked_) { int len, mask_len; bool is_masked = mask && !is_all_ones(mask, mf->n_bytes); len = field_len(mf, value); if (is_masked) { mask_len = field_len(mf, mask); len = MAX(len, mask_len); } if (is_masked_) { *is_masked_ = is_masked; } return len; } /* Sets 'flow' member field described by 'mf' to 'value'. The caller is * responsible for ensuring that 'flow' meets 'mf''s prerequisites.*/ void mf_set_flow_value(const struct mf_field *mf, const union mf_value *value, struct flow *flow) { switch (mf->id) { case MFF_DP_HASH: flow->dp_hash = ntohl(value->be32); break; case MFF_RECIRC_ID: flow->recirc_id = ntohl(value->be32); break; case MFF_PACKET_TYPE: flow->packet_type = value->be32; break; case MFF_CONJ_ID: flow->conj_id = ntohl(value->be32); break; case MFF_TUN_ID: flow->tunnel.tun_id = value->be64; break; case MFF_TUN_SRC: flow->tunnel.ip_src = value->be32; break; case MFF_TUN_DST: flow->tunnel.ip_dst = value->be32; break; case MFF_TUN_IPV6_SRC: flow->tunnel.ipv6_src = value->ipv6; break; case MFF_TUN_IPV6_DST: flow->tunnel.ipv6_dst = value->ipv6; break; case MFF_TUN_FLAGS: flow->tunnel.flags = (flow->tunnel.flags & ~FLOW_TNL_PUB_F_MASK) | ntohs(value->be16); break; case MFF_TUN_GBP_ID: flow->tunnel.gbp_id = value->be16; break; case MFF_TUN_GBP_FLAGS: flow->tunnel.gbp_flags = value->u8; break; case MFF_TUN_TOS: flow->tunnel.ip_tos = value->u8; break; case MFF_TUN_TTL: flow->tunnel.ip_ttl = value->u8; break; CASE_MFF_TUN_METADATA: tun_metadata_write(&flow->tunnel, mf, value); break; case MFF_METADATA: flow->metadata = value->be64; break; case MFF_IN_PORT: flow->in_port.ofp_port = u16_to_ofp(ntohs(value->be16)); break; case MFF_IN_PORT_OXM: ofputil_port_from_ofp11(value->be32, &flow->in_port.ofp_port); break; case MFF_ACTSET_OUTPUT: ofputil_port_from_ofp11(value->be32, &flow->actset_output); break; case MFF_SKB_PRIORITY: flow->skb_priority = ntohl(value->be32); break; case MFF_PKT_MARK: flow->pkt_mark = ntohl(value->be32); break; case MFF_CT_STATE: flow->ct_state = ntohl(value->be32); break; case MFF_CT_ZONE: flow->ct_zone = ntohs(value->be16); break; case MFF_CT_MARK: flow->ct_mark = ntohl(value->be32); break; case MFF_CT_LABEL: flow->ct_label = ntoh128(value->be128); break; case MFF_CT_NW_PROTO: flow->ct_nw_proto = value->u8; break; case MFF_CT_NW_SRC: flow->ct_nw_src = value->be32; break; case MFF_CT_NW_DST: flow->ct_nw_dst = value->be32; break; case MFF_CT_IPV6_SRC: flow->ct_ipv6_src = value->ipv6; break; case MFF_CT_IPV6_DST: flow->ct_ipv6_dst = value->ipv6; break; case MFF_CT_TP_SRC: flow->ct_tp_src = value->be16; break; case MFF_CT_TP_DST: flow->ct_tp_dst = value->be16; break; CASE_MFF_REGS: flow->regs[mf->id - MFF_REG0] = ntohl(value->be32); break; CASE_MFF_XREGS: flow_set_xreg(flow, mf->id - MFF_XREG0, ntohll(value->be64)); break; CASE_MFF_XXREGS: flow_set_xxreg(flow, mf->id - MFF_XXREG0, ntoh128(value->be128)); break; case MFF_ETH_SRC: flow->dl_src = value->mac; break; case MFF_ETH_DST: flow->dl_dst = value->mac; break; case MFF_ETH_TYPE: flow->dl_type = value->be16; break; case MFF_VLAN_TCI: flow->vlans[0].tci = value->be16; flow_fix_vlan_tpid(flow); break; case MFF_DL_VLAN: flow_set_dl_vlan(flow, value->be16); flow_fix_vlan_tpid(flow); break; case MFF_VLAN_VID: flow_set_vlan_vid(flow, value->be16); flow_fix_vlan_tpid(flow); break; case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: flow_set_vlan_pcp(flow, value->u8); flow_fix_vlan_tpid(flow); break; case MFF_MPLS_LABEL: flow_set_mpls_label(flow, 0, value->be32); break; case MFF_MPLS_TC: flow_set_mpls_tc(flow, 0, value->u8); break; case MFF_MPLS_BOS: flow_set_mpls_bos(flow, 0, value->u8); break; case MFF_MPLS_TTL: flow_set_mpls_ttl(flow, 0, value->u8); break; case MFF_IPV4_SRC: flow->nw_src = value->be32; break; case MFF_IPV4_DST: flow->nw_dst = value->be32; break; case MFF_IPV6_SRC: flow->ipv6_src = value->ipv6; break; case MFF_IPV6_DST: flow->ipv6_dst = value->ipv6; break; case MFF_IPV6_LABEL: flow->ipv6_label = value->be32 & htonl(IPV6_LABEL_MASK); break; case MFF_IP_PROTO: flow->nw_proto = value->u8; break; case MFF_IP_DSCP: flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= value->u8 & IP_DSCP_MASK; break; case MFF_IP_DSCP_SHIFTED: flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= value->u8 << 2; break; case MFF_IP_ECN: flow->nw_tos &= ~IP_ECN_MASK; flow->nw_tos |= value->u8 & IP_ECN_MASK; break; case MFF_IP_TTL: flow->nw_ttl = value->u8; break; case MFF_IP_FRAG: flow->nw_frag = value->u8 & FLOW_NW_FRAG_MASK; break; case MFF_ARP_OP: flow->nw_proto = ntohs(value->be16); break; case MFF_ARP_SPA: flow->nw_src = value->be32; break; case MFF_ARP_TPA: flow->nw_dst = value->be32; break; case MFF_ARP_SHA: case MFF_ND_SLL: flow->arp_sha = value->mac; break; case MFF_ARP_THA: case MFF_ND_TLL: flow->arp_tha = value->mac; break; case MFF_TCP_SRC: case MFF_UDP_SRC: case MFF_SCTP_SRC: flow->tp_src = value->be16; break; case MFF_TCP_DST: case MFF_UDP_DST: case MFF_SCTP_DST: flow->tp_dst = value->be16; break; case MFF_TCP_FLAGS: flow->tcp_flags = value->be16; break; case MFF_ICMPV4_TYPE: case MFF_ICMPV6_TYPE: flow->tp_src = htons(value->u8); break; case MFF_ICMPV4_CODE: case MFF_ICMPV6_CODE: flow->tp_dst = htons(value->u8); break; case MFF_ND_TARGET: flow->nd_target = value->ipv6; break; case MFF_NSH_FLAGS: flow->nsh.flags = value->u8; break; case MFF_NSH_TTL: flow->nsh.ttl = value->u8; break; case MFF_NSH_MDTYPE: flow->nsh.mdtype = value->u8; break; case MFF_NSH_NP: flow->nsh.np = value->u8; break; case MFF_NSH_SPI: nsh_path_hdr_set_spi(&flow->nsh.path_hdr, value->be32); break; case MFF_NSH_SI: nsh_path_hdr_set_si(&flow->nsh.path_hdr, value->u8); break; case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: flow->nsh.context[mf->id - MFF_NSH_C1] = value->be32; break; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Consider each of 'src', 'mask', and 'dst' as if they were arrays of 8*n * bits. Then, for each 0 <= i < 8 * n such that mask[i] == 1, sets dst[i] = * src[i]. */ static void apply_mask(const uint8_t *src, const uint8_t *mask, uint8_t *dst, size_t n) { size_t i; for (i = 0; i < n; i++) { dst[i] = (src[i] & mask[i]) | (dst[i] & ~mask[i]); } } /* Sets 'flow' member field described by 'field' to 'value', except that bits * for which 'mask' has a 0-bit keep their existing values. The caller is * responsible for ensuring that 'flow' meets 'field''s prerequisites.*/ void mf_set_flow_value_masked(const struct mf_field *field, const union mf_value *value, const union mf_value *mask, struct flow *flow) { union mf_value tmp; mf_get_value(field, flow, &tmp); apply_mask((const uint8_t *) value, (const uint8_t *) mask, (uint8_t *) &tmp, field->n_bytes); mf_set_flow_value(field, &tmp, flow); } bool mf_is_tun_metadata(const struct mf_field *mf) { return mf->id >= MFF_TUN_METADATA0 && mf->id < MFF_TUN_METADATA0 + TUN_METADATA_NUM_OPTS; } bool mf_is_pipeline_field(const struct mf_field *mf) { switch (mf->id) { case MFF_TUN_ID: case MFF_TUN_SRC: case MFF_TUN_DST: case MFF_TUN_IPV6_SRC: case MFF_TUN_IPV6_DST: case MFF_TUN_FLAGS: case MFF_TUN_GBP_ID: case MFF_TUN_GBP_FLAGS: CASE_MFF_TUN_METADATA: case MFF_METADATA: case MFF_IN_PORT: case MFF_IN_PORT_OXM: CASE_MFF_REGS: CASE_MFF_XREGS: CASE_MFF_XXREGS: case MFF_PACKET_TYPE: return true; case MFF_DP_HASH: case MFF_RECIRC_ID: case MFF_CONJ_ID: case MFF_TUN_TTL: case MFF_TUN_TOS: case MFF_ACTSET_OUTPUT: case MFF_SKB_PRIORITY: case MFF_PKT_MARK: case MFF_CT_STATE: case MFF_CT_ZONE: case MFF_CT_MARK: case MFF_CT_LABEL: case MFF_CT_NW_PROTO: case MFF_CT_NW_SRC: case MFF_CT_NW_DST: case MFF_CT_IPV6_SRC: case MFF_CT_IPV6_DST: case MFF_CT_TP_SRC: case MFF_CT_TP_DST: case MFF_ETH_SRC: case MFF_ETH_DST: case MFF_ETH_TYPE: case MFF_VLAN_TCI: case MFF_DL_VLAN: case MFF_VLAN_VID: case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: case MFF_MPLS_LABEL: case MFF_MPLS_TC: case MFF_MPLS_BOS: case MFF_MPLS_TTL: case MFF_IPV4_SRC: case MFF_IPV4_DST: case MFF_IPV6_SRC: case MFF_IPV6_DST: case MFF_IPV6_LABEL: case MFF_IP_PROTO: case MFF_IP_DSCP: case MFF_IP_DSCP_SHIFTED: case MFF_IP_ECN: case MFF_IP_TTL: case MFF_IP_FRAG: case MFF_ARP_OP: case MFF_ARP_SPA: case MFF_ARP_TPA: case MFF_ARP_SHA: case MFF_ARP_THA: case MFF_TCP_SRC: case MFF_TCP_DST: case MFF_TCP_FLAGS: case MFF_UDP_SRC: case MFF_UDP_DST: case MFF_SCTP_SRC: case MFF_SCTP_DST: case MFF_ICMPV4_TYPE: case MFF_ICMPV4_CODE: case MFF_ICMPV6_TYPE: case MFF_ICMPV6_CODE: case MFF_ND_TARGET: case MFF_ND_SLL: case MFF_ND_TLL: case MFF_NSH_FLAGS: case MFF_NSH_TTL: case MFF_NSH_MDTYPE: case MFF_NSH_NP: case MFF_NSH_SPI: case MFF_NSH_SI: case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: return false; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Returns true if 'mf' has previously been set in 'flow', false if * it contains a non-default value. * * The caller is responsible for ensuring that 'flow' meets 'mf''s * prerequisites. */ bool mf_is_set(const struct mf_field *mf, const struct flow *flow) { if (!mf_is_tun_metadata(mf)) { union mf_value value; mf_get_value(mf, flow, &value); return !is_all_zeros(&value, mf->n_bytes); } else { return ULLONG_GET(flow->tunnel.metadata.present.map, mf->id - MFF_TUN_METADATA0); } } /* Makes 'match' wildcard field 'mf'. * * The caller is responsible for ensuring that 'match' meets 'mf''s * prerequisites. * * If non-NULL, 'err_str' returns a malloc'ed string describing any errors * with the request or NULL if there is no error. The caller is reponsible * for freeing the string. */ void mf_set_wild(const struct mf_field *mf, struct match *match, char **err_str) { if (err_str) { *err_str = NULL; } switch (mf->id) { case MFF_DP_HASH: match->flow.dp_hash = 0; match->wc.masks.dp_hash = 0; break; case MFF_RECIRC_ID: match->flow.recirc_id = 0; match->wc.masks.recirc_id = 0; break; case MFF_PACKET_TYPE: match->flow.packet_type = 0; match->wc.masks.packet_type = 0; break; case MFF_CONJ_ID: match->flow.conj_id = 0; match->wc.masks.conj_id = 0; break; case MFF_TUN_ID: match_set_tun_id_masked(match, htonll(0), htonll(0)); break; case MFF_TUN_SRC: match_set_tun_src_masked(match, htonl(0), htonl(0)); break; case MFF_TUN_DST: match_set_tun_dst_masked(match, htonl(0), htonl(0)); break; case MFF_TUN_IPV6_SRC: memset(&match->wc.masks.tunnel.ipv6_src, 0, sizeof match->wc.masks.tunnel.ipv6_src); memset(&match->flow.tunnel.ipv6_src, 0, sizeof match->flow.tunnel.ipv6_src); break; case MFF_TUN_IPV6_DST: memset(&match->wc.masks.tunnel.ipv6_dst, 0, sizeof match->wc.masks.tunnel.ipv6_dst); memset(&match->flow.tunnel.ipv6_dst, 0, sizeof match->flow.tunnel.ipv6_dst); break; case MFF_TUN_FLAGS: match_set_tun_flags_masked(match, 0, 0); break; case MFF_TUN_GBP_ID: match_set_tun_gbp_id_masked(match, 0, 0); break; case MFF_TUN_GBP_FLAGS: match_set_tun_gbp_flags_masked(match, 0, 0); break; case MFF_TUN_TOS: match_set_tun_tos_masked(match, 0, 0); break; case MFF_TUN_TTL: match_set_tun_ttl_masked(match, 0, 0); break; CASE_MFF_TUN_METADATA: tun_metadata_set_match(mf, NULL, NULL, match, err_str); break; case MFF_METADATA: match_set_metadata_masked(match, htonll(0), htonll(0)); break; case MFF_IN_PORT: case MFF_IN_PORT_OXM: match->flow.in_port.ofp_port = 0; match->wc.masks.in_port.ofp_port = 0; break; case MFF_ACTSET_OUTPUT: match->flow.actset_output = 0; match->wc.masks.actset_output = 0; break; case MFF_SKB_PRIORITY: match->flow.skb_priority = 0; match->wc.masks.skb_priority = 0; break; case MFF_PKT_MARK: match->flow.pkt_mark = 0; match->wc.masks.pkt_mark = 0; break; case MFF_CT_STATE: match->flow.ct_state = 0; match->wc.masks.ct_state = 0; break; case MFF_CT_ZONE: match->flow.ct_zone = 0; match->wc.masks.ct_zone = 0; break; case MFF_CT_MARK: match->flow.ct_mark = 0; match->wc.masks.ct_mark = 0; break; case MFF_CT_LABEL: memset(&match->flow.ct_label, 0, sizeof(match->flow.ct_label)); memset(&match->wc.masks.ct_label, 0, sizeof(match->wc.masks.ct_label)); break; case MFF_CT_NW_PROTO: match->flow.ct_nw_proto = 0; match->wc.masks.ct_nw_proto = 0; break; case MFF_CT_NW_SRC: match->flow.ct_nw_src = 0; match->wc.masks.ct_nw_src = 0; break; case MFF_CT_NW_DST: match->flow.ct_nw_dst = 0; match->wc.masks.ct_nw_dst = 0; break; case MFF_CT_IPV6_SRC: memset(&match->flow.ct_ipv6_src, 0, sizeof(match->flow.ct_ipv6_src)); WC_UNMASK_FIELD(&match->wc, ct_ipv6_src); break; case MFF_CT_IPV6_DST: memset(&match->flow.ct_ipv6_dst, 0, sizeof(match->flow.ct_ipv6_dst)); WC_UNMASK_FIELD(&match->wc, ct_ipv6_dst); break; case MFF_CT_TP_SRC: match->flow.ct_tp_src = 0; match->wc.masks.ct_tp_src = 0; break; case MFF_CT_TP_DST: match->flow.ct_tp_dst = 0; match->wc.masks.ct_tp_dst = 0; break; CASE_MFF_REGS: match_set_reg_masked(match, mf->id - MFF_REG0, 0, 0); break; CASE_MFF_XREGS: match_set_xreg_masked(match, mf->id - MFF_XREG0, 0, 0); break; CASE_MFF_XXREGS: { match_set_xxreg_masked(match, mf->id - MFF_XXREG0, OVS_U128_ZERO, OVS_U128_ZERO); break; } case MFF_ETH_SRC: match->flow.dl_src = eth_addr_zero; match->wc.masks.dl_src = eth_addr_zero; break; case MFF_ETH_DST: match->flow.dl_dst = eth_addr_zero; match->wc.masks.dl_dst = eth_addr_zero; break; case MFF_ETH_TYPE: match->flow.dl_type = htons(0); match->wc.masks.dl_type = htons(0); break; case MFF_VLAN_TCI: match_set_dl_tci_masked(match, htons(0), htons(0)); break; case MFF_DL_VLAN: case MFF_VLAN_VID: match_set_any_vid(match); break; case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: match_set_any_pcp(match); break; case MFF_MPLS_LABEL: match_set_any_mpls_label(match, 0); break; case MFF_MPLS_TC: match_set_any_mpls_tc(match, 0); break; case MFF_MPLS_BOS: match_set_any_mpls_bos(match, 0); break; case MFF_MPLS_TTL: match_set_any_mpls_ttl(match, 0); break; case MFF_IPV4_SRC: case MFF_ARP_SPA: match_set_nw_src_masked(match, htonl(0), htonl(0)); break; case MFF_IPV4_DST: case MFF_ARP_TPA: match_set_nw_dst_masked(match, htonl(0), htonl(0)); break; case MFF_IPV6_SRC: memset(&match->wc.masks.ipv6_src, 0, sizeof match->wc.masks.ipv6_src); memset(&match->flow.ipv6_src, 0, sizeof match->flow.ipv6_src); break; case MFF_IPV6_DST: memset(&match->wc.masks.ipv6_dst, 0, sizeof match->wc.masks.ipv6_dst); memset(&match->flow.ipv6_dst, 0, sizeof match->flow.ipv6_dst); break; case MFF_IPV6_LABEL: match->wc.masks.ipv6_label = htonl(0); match->flow.ipv6_label = htonl(0); break; case MFF_IP_PROTO: match->wc.masks.nw_proto = 0; match->flow.nw_proto = 0; break; case MFF_IP_DSCP: case MFF_IP_DSCP_SHIFTED: match->wc.masks.nw_tos &= ~IP_DSCP_MASK; match->flow.nw_tos &= ~IP_DSCP_MASK; break; case MFF_IP_ECN: match->wc.masks.nw_tos &= ~IP_ECN_MASK; match->flow.nw_tos &= ~IP_ECN_MASK; break; case MFF_IP_TTL: match->wc.masks.nw_ttl = 0; match->flow.nw_ttl = 0; break; case MFF_IP_FRAG: match->wc.masks.nw_frag &= ~FLOW_NW_FRAG_MASK; match->flow.nw_frag &= ~FLOW_NW_FRAG_MASK; break; case MFF_ARP_OP: match->wc.masks.nw_proto = 0; match->flow.nw_proto = 0; break; case MFF_ARP_SHA: case MFF_ND_SLL: match->flow.arp_sha = eth_addr_zero; match->wc.masks.arp_sha = eth_addr_zero; break; case MFF_ARP_THA: case MFF_ND_TLL: match->flow.arp_tha = eth_addr_zero; match->wc.masks.arp_tha = eth_addr_zero; break; case MFF_TCP_SRC: case MFF_UDP_SRC: case MFF_SCTP_SRC: case MFF_ICMPV4_TYPE: case MFF_ICMPV6_TYPE: match->wc.masks.tp_src = htons(0); match->flow.tp_src = htons(0); break; case MFF_TCP_DST: case MFF_UDP_DST: case MFF_SCTP_DST: case MFF_ICMPV4_CODE: case MFF_ICMPV6_CODE: match->wc.masks.tp_dst = htons(0); match->flow.tp_dst = htons(0); break; case MFF_TCP_FLAGS: match->wc.masks.tcp_flags = htons(0); match->flow.tcp_flags = htons(0); break; case MFF_ND_TARGET: memset(&match->wc.masks.nd_target, 0, sizeof match->wc.masks.nd_target); memset(&match->flow.nd_target, 0, sizeof match->flow.nd_target); break; case MFF_NSH_FLAGS: MATCH_SET_FIELD_MASKED(match, nsh.flags, 0, 0); break; case MFF_NSH_TTL: MATCH_SET_FIELD_MASKED(match, nsh.ttl, 0, 0); break; case MFF_NSH_MDTYPE: MATCH_SET_FIELD_MASKED(match, nsh.mdtype, 0, 0); break; case MFF_NSH_NP: MATCH_SET_FIELD_MASKED(match, nsh.np, 0, 0); break; case MFF_NSH_SPI: match->wc.masks.nsh.path_hdr &= ~htonl(NSH_SPI_MASK); nsh_path_hdr_set_spi(&match->flow.nsh.path_hdr, htonl(0)); break; case MFF_NSH_SI: match->wc.masks.nsh.path_hdr &= ~htonl(NSH_SI_MASK); nsh_path_hdr_set_si(&match->flow.nsh.path_hdr, 0); break; case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: MATCH_SET_FIELD_MASKED(match, nsh.context[mf->id - MFF_NSH_C1], htonl(0), htonl(0)); break; case MFF_N_IDS: default: OVS_NOT_REACHED(); } } /* Makes 'match' match field 'mf' with the specified 'value' and 'mask'. * 'value' specifies a value to match and 'mask' specifies a wildcard pattern, * with a 1-bit indicating that the corresponding value bit must match and a * 0-bit indicating a don't-care. * * If 'mask' is NULL or points to all-1-bits, then this call is equivalent to * mf_set_value(mf, value, match). If 'mask' points to all-0-bits, then this * call is equivalent to mf_set_wild(mf, match). * * 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller * is responsible for ensuring that 'match' meets 'mf''s prerequisites. * * If non-NULL, 'err_str' returns a malloc'ed string describing any errors * with the request or NULL if there is no error. The caller is reponsible * for freeing the string. * * Return a set of enum ofputil_protocol bits (as an uint32_t to avoid circular * dependency on enum ofputil_protocol definition) indicating which OpenFlow * protocol versions can support this functionality. */ uint32_t mf_set(const struct mf_field *mf, const union mf_value *value, const union mf_value *mask, struct match *match, char **err_str) { if (!mask || is_all_ones(mask, mf->n_bytes)) { mf_set_value(mf, value, match, err_str); return mf->usable_protocols_exact; } else if (is_all_zeros(mask, mf->n_bytes) && !mf_is_tun_metadata(mf)) { /* Tunnel metadata matches on the existence of the field itself, so * it still needs to be encoded even if the value is wildcarded. */ mf_set_wild(mf, match, err_str); return OFPUTIL_P_ANY; } if (err_str) { *err_str = NULL; } switch (mf->id) { case MFF_CT_ZONE: case MFF_CT_NW_PROTO: case MFF_CT_NW_SRC: case MFF_CT_NW_DST: case MFF_CT_IPV6_SRC: case MFF_CT_IPV6_DST: case MFF_CT_TP_SRC: case MFF_CT_TP_DST: case MFF_RECIRC_ID: case MFF_PACKET_TYPE: case MFF_CONJ_ID: case MFF_IN_PORT: case MFF_IN_PORT_OXM: case MFF_ACTSET_OUTPUT: case MFF_SKB_PRIORITY: case MFF_ETH_TYPE: case MFF_DL_VLAN: case MFF_DL_VLAN_PCP: case MFF_VLAN_PCP: case MFF_MPLS_LABEL: case MFF_MPLS_TC: case MFF_MPLS_BOS: case MFF_MPLS_TTL: case MFF_IP_PROTO: case MFF_IP_TTL: case MFF_IP_DSCP: case MFF_IP_DSCP_SHIFTED: case MFF_IP_ECN: case MFF_ARP_OP: case MFF_ICMPV4_TYPE: case MFF_ICMPV4_CODE: case MFF_ICMPV6_TYPE: case MFF_ICMPV6_CODE: return OFPUTIL_P_NONE; case MFF_DP_HASH: match_set_dp_hash_masked(match, ntohl(value->be32), ntohl(mask->be32)); break; case MFF_TUN_ID: match_set_tun_id_masked(match, value->be64, mask->be64); break; case MFF_TUN_SRC: match_set_tun_src_masked(match, value->be32, mask->be32); break; case MFF_TUN_DST: match_set_tun_dst_masked(match, value->be32, mask->be32); break; case MFF_TUN_IPV6_SRC: match_set_tun_ipv6_src_masked(match, &value->ipv6, &mask->ipv6); break; case MFF_TUN_IPV6_DST: match_set_tun_ipv6_dst_masked(match, &value->ipv6, &mask->ipv6); break; case MFF_TUN_FLAGS: match_set_tun_flags_masked(match, ntohs(value->be16), ntohs(mask->be16)); break; case MFF_TUN_GBP_ID: match_set_tun_gbp_id_masked(match, value->be16, mask->be16); break; case MFF_TUN_GBP_FLAGS: match_set_tun_gbp_flags_masked(match, value->u8, mask->u8); break; case MFF_TUN_TTL: match_set_tun_ttl_masked(match, value->u8, mask->u8); break; case MFF_TUN_TOS: match_set_tun_tos_masked(match, value->u8, mask->u8); break; CASE_MFF_TUN_METADATA: tun_metadata_set_match(mf, value, mask, match, err_str); break; case MFF_METADATA: match_set_metadata_masked(match, value->be64, mask->be64); break; CASE_MFF_REGS: match_set_reg_masked(match, mf->id - MFF_REG0, ntohl(value->be32), ntohl(mask->be32)); break; CASE_MFF_XREGS: match_set_xreg_masked(match, mf->id - MFF_XREG0, ntohll(value->be64), ntohll(mask->be64)); break; CASE_MFF_XXREGS: { match_set_xxreg_masked(match, mf->id - MFF_XXREG0, ntoh128(value->be128), ntoh128(mask->be128)); break; } case MFF_PKT_MARK: match_set_pkt_mark_masked(match, ntohl(value->be32), ntohl(mask->be32)); break; case MFF_CT_STATE: match_set_ct_state_masked(match, ntohl(value->be32), ntohl(mask->be32)); break; case MFF_CT_MARK: match_set_ct_mark_masked(match, ntohl(value->be32), ntohl(mask->be32)); break; case MFF_CT_LABEL: match_set_ct_label_masked(match, ntoh128(value->be128), ntoh128(mask->be128)); break; case MFF_ETH_DST: match_set_dl_dst_masked(match, value->mac, mask->mac); break; case MFF_ETH_SRC: match_set_dl_src_masked(match, value->mac, mask->mac); break; case MFF_ARP_SHA: case MFF_ND_SLL: match_set_arp_sha_masked(match, value->mac, mask->mac); break; case MFF_ARP_THA: case MFF_ND_TLL: match_set_arp_tha_masked(match, value->mac, mask->mac); break; case MFF_VLAN_TCI: match_set_dl_tci_masked(match, value->be16, mask->be16); break; case MFF_VLAN_VID: match_set_vlan_vid_masked(match, value->be16, mask->be16); break; case MFF_IPV4_SRC: match_set_nw_src_masked(match, value->be32, mask->be32); break; case MFF_IPV4_DST: match_set_nw_dst_masked(match, value->be32, mask->be32); break; case MFF_IPV6_SRC: match_set_ipv6_src_masked(match, &value->ipv6, &mask->ipv6); break; case MFF_IPV6_DST: match_set_ipv6_dst_masked(match, &value->ipv6, &mask->ipv6); break; case MFF_IPV6_LABEL: if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) { mf_set_value(mf, value, match, err_str); } else { match_set_ipv6_label_masked(match, value->be32, mask->be32); } break; case MFF_ND_TARGET: match_set_nd_target_masked(match, &value->ipv6, &mask->ipv6); break; case MFF_IP_FRAG: match_set_nw_frag_masked(match, value->u8, mask->u8); break; case MFF_ARP_SPA: match_set_nw_src_masked(match, value->be32, mask->be32); break; case MFF_ARP_TPA: match_set_nw_dst_masked(match, value->be32, mask->be32); break; case MFF_TCP_SRC: case MFF_UDP_SRC: case MFF_SCTP_SRC: match_set_tp_src_masked(match, value->be16, mask->be16); break; case MFF_TCP_DST: case MFF_UDP_DST: case MFF_SCTP_DST: match_set_tp_dst_masked(match, value->be16, mask->be16); break; case MFF_TCP_FLAGS: match_set_tcp_flags_masked(match, value->be16, mask->be16); break; case MFF_NSH_FLAGS: MATCH_SET_FIELD_MASKED(match, nsh.flags, value->u8, mask->u8); break; case MFF_NSH_TTL: MATCH_SET_FIELD_MASKED(match, nsh.ttl, value->u8, mask->u8); break; case MFF_NSH_MDTYPE: MATCH_SET_FIELD_MASKED(match, nsh.mdtype, value->u8, mask->u8); break; case MFF_NSH_NP: MATCH_SET_FIELD_MASKED(match, nsh.np, value->u8, mask->u8); break; case MFF_NSH_SPI: match->wc.masks.nsh.path_hdr |= mask->be32; nsh_path_hdr_set_spi(&match->flow.nsh.path_hdr, value->be32 & mask->be32); break; case MFF_NSH_SI: match->wc.masks.nsh.path_hdr |= htonl(mask->u8); nsh_path_hdr_set_si(&match->flow.nsh.path_hdr, value->u8 & mask->u8); break; case MFF_NSH_C1: case MFF_NSH_C2: case MFF_NSH_C3: case MFF_NSH_C4: MATCH_SET_FIELD_MASKED(match, nsh.context[mf->id - MFF_NSH_C1], value->be32, mask->be32); break; case MFF_N_IDS: default: OVS_NOT_REACHED(); } return ((mf->usable_protocols_bitwise == mf->usable_protocols_cidr || ip_is_cidr(mask->be32)) ? mf->usable_protocols_cidr : mf->usable_protocols_bitwise); } static enum ofperr mf_check__(const struct mf_subfield *sf, const struct match *match, const char *type) { if (!sf->field) { VLOG_WARN_RL(&rl, "unknown %s field", type); return OFPERR_OFPBAC_BAD_SET_TYPE; } else if (!sf->n_bits) { VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name); return OFPERR_OFPBAC_BAD_SET_LEN; } else if (sf->ofs >= sf->field->n_bits) { VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s", sf->ofs, sf->field->n_bits, type, sf->field->name); return OFPERR_OFPBAC_BAD_SET_LEN; } else if (sf->ofs + sf->n_bits > sf->field->n_bits) { VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width " "of %s field %s", sf->ofs, sf->n_bits, sf->field->n_bits, type, sf->field->name); return OFPERR_OFPBAC_BAD_SET_LEN; } else if (match && !mf_are_match_prereqs_ok(sf->field, match)) { VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites", type, sf->field->name); return OFPERR_OFPBAC_MATCH_INCONSISTENT; } else { return 0; } } /* Sets all the bits in 'sf' to 1 within 'wc', if 'wc' is nonnull. */ static void unwildcard_subfield(const struct mf_subfield *sf, struct flow_wildcards *wc) { if (wc) { union mf_value mask; memset(&mask, 0, sizeof mask); bitwise_one(&mask, sf->field->n_bytes, sf->ofs, sf->n_bits); mf_mask_field_masked(sf->field, &mask, wc); } } /* Copies 'src' into 'dst' within 'flow', and sets all the bits in 'src' and * 'dst' to 1s in 'wc', if 'wc' is nonnull. * * 'src' and 'dst' may overlap. */ void mf_subfield_copy(const struct mf_subfield *src, const struct mf_subfield *dst, struct flow *flow, struct flow_wildcards *wc) { ovs_assert(src->n_bits == dst->n_bits); if (mf_are_prereqs_ok(dst->field, flow, wc) && mf_are_prereqs_ok(src->field, flow, wc)) { unwildcard_subfield(src, wc); unwildcard_subfield(dst, wc); union mf_value src_value; union mf_value dst_value; mf_get_value(dst->field, flow, &dst_value); mf_get_value(src->field, flow, &src_value); bitwise_copy(&src_value, src->field->n_bytes, src->ofs, &dst_value, dst->field->n_bytes, dst->ofs, src->n_bits); mf_set_flow_value(dst->field, &dst_value, flow); } } /* Swaps the bits in 'src' and 'dst' within 'flow', and sets all the bits in * 'src' and 'dst' to 1s in 'wc', if 'wc' is nonnull. * * 'src' and 'dst' may overlap. */ void mf_subfield_swap(const struct mf_subfield *a, const struct mf_subfield *b, struct flow *flow, struct flow_wildcards *wc) { ovs_assert(a->n_bits == b->n_bits); if (mf_are_prereqs_ok(a->field, flow, wc) && mf_are_prereqs_ok(b->field, flow, wc)) { unwildcard_subfield(a, wc); unwildcard_subfield(b, wc); union mf_value a_value; union mf_value b_value; mf_get_value(a->field, flow, &a_value); mf_get_value(b->field, flow, &b_value); union mf_value b2_value = b_value; /* Copy 'a' into 'b'. */ bitwise_copy(&a_value, a->field->n_bytes, a->ofs, &b_value, b->field->n_bytes, b->ofs, a->n_bits); mf_set_flow_value(b->field, &b_value, flow); /* Copy original 'b' into 'a'. */ bitwise_copy(&b2_value, b->field->n_bytes, b->ofs, &a_value, a->field->n_bytes, a->ofs, b->n_bits); mf_set_flow_value(a->field, &a_value, flow); } } /* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns * 0 if so, otherwise an OpenFlow error code (e.g. as returned by * ofp_mkerr()). */ enum ofperr mf_check_src(const struct mf_subfield *sf, const struct match *match) { return mf_check__(sf, match, "source"); } /* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0 * if so, otherwise an OpenFlow error code (e.g. as returned by * ofp_mkerr()). */ enum ofperr mf_check_dst(const struct mf_subfield *sf, const struct match *match) { int error = mf_check__(sf, match, "destination"); if (!error && !sf->field->writable) { VLOG_WARN_RL(&rl, "destination field %s is not writable", sf->field->name); return OFPERR_OFPBAC_BAD_SET_ARGUMENT; } return error; } /* Copies the value and wildcard bit pattern for 'mf' from 'match' into the * 'value' and 'mask', respectively. */ void mf_get(const struct mf_field *mf, const struct match *match, union mf_value *value, union mf_value *mask) { mf_get_value(mf, &match->flow, value); mf_get_mask(mf, &match->wc, mask); } static char * mf_from_integer_string(const struct mf_field *mf, const char *s, uint8_t *valuep, uint8_t *maskp) { char *tail; const char *err_str = ""; int err; err = parse_int_string(s, valuep, mf->n_bytes, &tail); if (err || (*tail != '\0' && *tail != '/')) { err_str = "value"; goto syntax_error; } if (*tail == '/') { err = parse_int_string(tail + 1, maskp, mf->n_bytes, &tail); if (err || *tail != '\0') { err_str = "mask"; goto syntax_error; } } else { memset(maskp, 0xff, mf->n_bytes); } return NULL; syntax_error: if (err == ERANGE) { return xasprintf("%s: %s too large for %u-byte field %s", s, err_str, mf->n_bytes, mf->name); } else { return xasprintf("%s: bad syntax for %s %s", s, mf->name, err_str); } } static char * mf_from_packet_type_string(const char *s, ovs_be32 *packet_type) { char *tail; const char *err_str = ""; int err; if (*s != '(') { err_str = "missing '('"; goto syntax_error; } s++; err = parse_int_string(s, (uint8_t *)packet_type, 2, &tail); if (err) { err_str = "ns"; goto syntax_error; } if (*tail != ',') { err_str = "missing ','"; goto syntax_error; } s = tail + 1; err = parse_int_string(s, ((uint8_t *)packet_type) + 2, 2, &tail); if (err) { err_str = "ns_type"; goto syntax_error; } if (*tail != ')') { err_str = "missing ')'"; goto syntax_error; } return NULL; syntax_error: return xasprintf("%s: bad syntax for packet type %s", s, err_str); } static char * mf_from_ethernet_string(const struct mf_field *mf, const char *s, struct eth_addr *mac, struct eth_addr *mask) { int n; ovs_assert(mf->n_bytes == ETH_ADDR_LEN); n = -1; if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*mac), &n) && n == strlen(s)) { *mask = eth_addr_exact; return NULL; } n = -1; if (ovs_scan(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*mac), ETH_ADDR_SCAN_ARGS(*mask), &n) && n == strlen(s)) { return NULL; } return xasprintf("%s: invalid Ethernet address", s); } static char * mf_from_ipv4_string(const struct mf_field *mf, const char *s, ovs_be32 *ip, ovs_be32 *mask) { ovs_assert(mf->n_bytes == sizeof *ip); return ip_parse_masked(s, ip, mask); } static char * mf_from_ipv6_string(const struct mf_field *mf, const char *s, struct in6_addr *ipv6, struct in6_addr *mask) { ovs_assert(mf->n_bytes == sizeof *ipv6); return ipv6_parse_masked(s, ipv6, mask); } static char * mf_from_ofp_port_string(const struct mf_field *mf, const char *s, const struct ofputil_port_map *port_map, ovs_be16 *valuep, ovs_be16 *maskp) { ofp_port_t port; ovs_assert(mf->n_bytes == sizeof(ovs_be16)); if (ofputil_port_from_string(s, port_map, &port)) { *valuep = htons(ofp_to_u16(port)); *maskp = OVS_BE16_MAX; return NULL; } return xasprintf("%s: invalid or unknown port for %s", s, mf->name); } static char * mf_from_ofp_port_string32(const struct mf_field *mf, const char *s, const struct ofputil_port_map *port_map, ovs_be32 *valuep, ovs_be32 *maskp) { ofp_port_t port; ovs_assert(mf->n_bytes == sizeof(ovs_be32)); if (ofputil_port_from_string(s, port_map, &port)) { *valuep = ofputil_port_to_ofp11(port); *maskp = OVS_BE32_MAX; return NULL; } return xasprintf("%s: port value out of range for %s", s, mf->name); } struct frag_handling { const char *name; uint8_t mask; uint8_t value; }; static const struct frag_handling all_frags[] = { #define A FLOW_NW_FRAG_ANY #define L FLOW_NW_FRAG_LATER /* name mask value */ { "no", A|L, 0 }, { "first", A|L, A }, { "later", A|L, A|L }, { "no", A, 0 }, { "yes", A, A }, { "not_later", L, 0 }, { "later", L, L }, #undef A #undef L }; static char * mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp) { const struct frag_handling *h; for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) { if (!strcasecmp(s, h->name)) { /* We force the upper bits of the mask on to make mf_parse_value() * happy (otherwise it will never think it's an exact match.) */ *maskp = h->mask | ~FLOW_NW_FRAG_MASK; *valuep = h->value; return NULL; } } return xasprintf("%s: unknown fragment type (valid types are \"no\", " "\"yes\", \"first\", \"later\", \"not_first\"", s); } static char * parse_mf_flags(const char *s, const char *(*bit_to_string)(uint32_t), const char *field_name, ovs_be16 *flagsp, ovs_be16 allowed, ovs_be16 *maskp) { int err; char *err_str; uint32_t flags, mask; err = parse_flags(s, bit_to_string, '\0', field_name, &err_str, &flags, ntohs(allowed), maskp ? &mask : NULL); if (err < 0) { return err_str; } *flagsp = htons(flags); if (maskp) { *maskp = htons(mask); } return NULL; } static char * mf_from_tcp_flags_string(const char *s, ovs_be16 *flagsp, ovs_be16 *maskp) { return parse_mf_flags(s, packet_tcp_flag_to_string, "TCP", flagsp, TCP_FLAGS_BE16(OVS_BE16_MAX), maskp); } static char * mf_from_tun_flags_string(const char *s, ovs_be16 *flagsp, ovs_be16 *maskp) { return parse_mf_flags(s, flow_tun_flag_to_string, "tunnel", flagsp, htons(FLOW_TNL_PUB_F_MASK), maskp); } static char * mf_from_ct_state_string(const char *s, ovs_be32 *flagsp, ovs_be32 *maskp) { int err; char *err_str; uint32_t flags, mask; err = parse_flags(s, ct_state_to_string, '\0', "ct_state", &err_str, &flags, CS_SUPPORTED_MASK, maskp ? &mask : NULL); if (err < 0) { return err_str; } *flagsp = htonl(flags); if (maskp) { *maskp = htonl(mask); } return NULL; } /* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns * NULL if successful, otherwise a malloc()'d string describing the error. */ char * mf_parse(const struct mf_field *mf, const char *s, const struct ofputil_port_map *port_map, union mf_value *value, union mf_value *mask) { char *error; if (!strcmp(s, "*")) { memset(value, 0, mf->n_bytes); memset(mask, 0, mf->n_bytes); return NULL; } switch (mf->string) { case MFS_DECIMAL: case MFS_HEXADECIMAL: error = mf_from_integer_string(mf, s, (uint8_t *) value, (uint8_t *) mask); break; case MFS_CT_STATE: ovs_assert(mf->n_bytes == sizeof(ovs_be32)); error = mf_from_ct_state_string(s, &value->be32, &mask->be32); break; case MFS_ETHERNET: error = mf_from_ethernet_string(mf, s, &value->mac, &mask->mac); break; case MFS_IPV4: error = mf_from_ipv4_string(mf, s, &value->be32, &mask->be32); break; case MFS_IPV6: error = mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6); break; case MFS_OFP_PORT: error = mf_from_ofp_port_string(mf, s, port_map, &value->be16, &mask->be16); break; case MFS_OFP_PORT_OXM: error = mf_from_ofp_port_string32(mf, s, port_map, &value->be32, &mask->be32); break; case MFS_FRAG: error = mf_from_frag_string(s, &value->u8, &mask->u8); break; case MFS_TNL_FLAGS: ovs_assert(mf->n_bytes == sizeof(ovs_be16)); error = mf_from_tun_flags_string(s, &value->be16, &mask->be16); break; case MFS_TCP_FLAGS: ovs_assert(mf->n_bytes == sizeof(ovs_be16)); error = mf_from_tcp_flags_string(s, &value->be16, &mask->be16); break; case MFS_PACKET_TYPE: ovs_assert(mf->n_bytes == sizeof(ovs_be32)); error = mf_from_packet_type_string(s, &value->be32); mask->be32 = OVS_BE32_MAX; break; default: OVS_NOT_REACHED(); } if (!error && !mf_is_mask_valid(mf, mask)) { error = xasprintf("%s: invalid mask for field %s", s, mf->name); } return error; } /* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if * successful, otherwise a malloc()'d string describing the error. */ char * mf_parse_value(const struct mf_field *mf, const char *s, const struct ofputil_port_map *port_map, union mf_value *value) { union mf_value mask; char *error; error = mf_parse(mf, s, port_map, value, &mask); if (error) { return error; } if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) { return xasprintf("%s: wildcards not allowed here", s); } return NULL; } static void mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep, const uint8_t *maskp, struct ds *s) { if (mf->string == MFS_HEXADECIMAL) { ds_put_hex(s, valuep, mf->n_bytes); } else { unsigned long long int integer = 0; int i; ovs_assert(mf->n_bytes <= 8); for (i = 0; i < mf->n_bytes; i++) { integer = (integer << 8) | valuep[i]; } ds_put_format(s, "%lld", integer); } if (maskp) { /* I guess we could write the mask in decimal for MFS_DECIMAL but I'm * not sure that that a bit-mask written in decimal is ever easier to * understand than the same bit-mask written in hexadecimal. */ ds_put_char(s, '/'); ds_put_hex(s, maskp, mf->n_bytes); } } static void mf_format_frag_string(uint8_t value, uint8_t mask, struct ds *s) { const struct frag_handling *h; mask &= FLOW_NW_FRAG_MASK; value &= mask; for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) { if (value == h->value && mask == h->mask) { ds_put_cstr(s, h->name); return; } } ds_put_cstr(s, ""); } static void mf_format_tnl_flags_string(ovs_be16 value, ovs_be16 mask, struct ds *s) { format_flags_masked(s, NULL, flow_tun_flag_to_string, ntohs(value), ntohs(mask) & FLOW_TNL_PUB_F_MASK, FLOW_TNL_PUB_F_MASK); } static void mf_format_tcp_flags_string(ovs_be16 value, ovs_be16 mask, struct ds *s) { format_flags_masked(s, NULL, packet_tcp_flag_to_string, ntohs(value), TCP_FLAGS(mask), TCP_FLAGS(OVS_BE16_MAX)); } static void mf_format_ct_state_string(ovs_be32 value, ovs_be32 mask, struct ds *s) { format_flags_masked(s, NULL, ct_state_to_string, ntohl(value), ntohl(mask), UINT16_MAX); } static void mf_format_packet_type_string(ovs_be32 value, ovs_be32 mask, struct ds *s) { format_packet_type_masked(s, value, mask); } /* Appends to 's' a string representation of field 'mf' whose value is in * 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */ void mf_format(const struct mf_field *mf, const union mf_value *value, const union mf_value *mask, const struct ofputil_port_map *port_map, struct ds *s) { if (mask) { if (is_all_zeros(mask, mf->n_bytes)) { ds_put_cstr(s, "ANY"); return; } else if (is_all_ones(mask, mf->n_bytes)) { mask = NULL; } } switch (mf->string) { case MFS_OFP_PORT_OXM: if (!mask) { ofp_port_t port; ofputil_port_from_ofp11(value->be32, &port); ofputil_format_port(port, port_map, s); break; } /* fall through */ case MFS_OFP_PORT: if (!mask) { ofputil_format_port(u16_to_ofp(ntohs(value->be16)), port_map, s); break; } /* fall through */ case MFS_DECIMAL: case MFS_HEXADECIMAL: mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s); break; case MFS_CT_STATE: mf_format_ct_state_string(value->be32, mask ? mask->be32 : OVS_BE32_MAX, s); break; case MFS_ETHERNET: eth_format_masked(value->mac, mask ? &mask->mac : NULL, s); break; case MFS_IPV4: ip_format_masked(value->be32, mask ? mask->be32 : OVS_BE32_MAX, s); break; case MFS_IPV6: ipv6_format_masked(&value->ipv6, mask ? &mask->ipv6 : NULL, s); break; case MFS_FRAG: mf_format_frag_string(value->u8, mask ? mask->u8 : UINT8_MAX, s); break; case MFS_TNL_FLAGS: mf_format_tnl_flags_string(value->be16, mask ? mask->be16 : OVS_BE16_MAX, s); break; case MFS_TCP_FLAGS: mf_format_tcp_flags_string(value->be16, mask ? mask->be16 : OVS_BE16_MAX, s); break; case MFS_PACKET_TYPE: mf_format_packet_type_string(value->be32, mask ? mask->be32 : OVS_BE32_MAX, s); break; default: OVS_NOT_REACHED(); } } /* Makes subfield 'sf' within 'flow' exactly match the 'sf->n_bits' * least-significant bits in 'x'. */ void mf_write_subfield_flow(const struct mf_subfield *sf, const union mf_subvalue *x, struct flow *flow) { const struct mf_field *field = sf->field; union mf_value value; mf_get_value(field, flow, &value); bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits); mf_set_flow_value(field, &value, flow); } /* Makes subfield 'sf' within 'match' exactly match the 'sf->n_bits' * least-significant bits in 'x'. */ void mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x, struct match *match) { const struct mf_field *field = sf->field; union mf_value value, mask; mf_get(field, match, &value, &mask); bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits); bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits); mf_set(field, &value, &mask, match, NULL); } void mf_write_subfield_value(const struct mf_subfield *sf, const void *src, struct match *match) { const struct mf_field *field = sf->field; union mf_value value, mask; unsigned int size = DIV_ROUND_UP(sf->n_bits, 8); mf_get(field, match, &value, &mask); bitwise_copy(src, size, 0, &value, field->n_bytes, sf->ofs, sf->n_bits); bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits); mf_set(field, &value, &mask, match, NULL); } /* 'v' and 'm' correspond to values of 'field'. This function copies them into * 'match' in the correspond positions. */ void mf_mask_subfield(const struct mf_field *field, const union mf_subvalue *v, const union mf_subvalue *m, struct match *match) { union mf_value value, mask; mf_get(field, match, &value, &mask); bitwise_copy(v, sizeof *v, 0, &value, field->n_bytes, 0, field->n_bits); bitwise_copy(m, sizeof *m, 0, &mask, field->n_bytes, 0, field->n_bits); mf_set(field, &value, &mask, match, NULL); } /* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for * reading 'flow', e.g. as checked by mf_check_src(). */ void mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow, union mf_subvalue *x) { union mf_value value; mf_get_value(sf->field, flow, &value); memset(x, 0, sizeof *x); bitwise_copy(&value, sf->field->n_bytes, sf->ofs, x, sizeof *x, 0, sf->n_bits); } /* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading * 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or * less. */ uint64_t mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow) { union mf_value value; mf_get_value(sf->field, flow, &value); return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits); } void mf_format_subvalue(const union mf_subvalue *subvalue, struct ds *s) { ds_put_hex(s, subvalue->u8, sizeof subvalue->u8); } void field_array_set(enum mf_field_id id, const union mf_value *value, struct field_array *fa) { size_t i, offset = 0; ovs_assert(id < MFF_N_IDS); /* Find the spot for 'id'. */ BITMAP_FOR_EACH_1 (i, id, fa->used.bm) { offset += mf_from_id(i)->n_bytes; } size_t value_size = mf_from_id(id)->n_bytes; /* make room if necessary. */ if (!bitmap_is_set(fa->used.bm, id)) { fa->values = xrealloc(fa->values, fa->values_size + value_size); /* Move remainder forward, if any. */ if (offset < fa->values_size) { memmove(fa->values + offset + value_size, fa->values + offset, fa->values_size - offset); } fa->values_size += value_size; } bitmap_set1(fa->used.bm, id); memcpy(fa->values + offset, value, value_size); } /* A wrapper for variable length mf_fields that is maintained by * struct vl_mff_map.*/ struct vl_mf_field { struct mf_field mf; struct ovs_refcount ref_cnt; struct cmap_node cmap_node; /* In ofproto->vl_mff_map->cmap. */ }; static inline uint32_t mf_field_hash(uint32_t key) { return hash_int(key, 0); } static void vmf_delete(struct vl_mf_field *vmf) { if (ovs_refcount_unref(&vmf->ref_cnt) == 1) { /* Postpone as this function is typically called immediately * after removing from cmap. */ ovsrcu_postpone(free, vmf); } else { VLOG_WARN_RL(&rl, "Attempted to delete VMF %s but refcount is nonzero!", vmf->mf.name); } } enum ofperr mf_vl_mff_map_clear(struct vl_mff_map *vl_mff_map, bool force) OVS_REQUIRES(vl_mff_map->mutex) { struct vl_mf_field *vmf; if (!force) { CMAP_FOR_EACH (vmf, cmap_node, &vl_mff_map->cmap) { if (ovs_refcount_read(&vmf->ref_cnt) != 1) { return OFPERR_NXTTMFC_INVALID_TLV_DEL; } } } CMAP_FOR_EACH (vmf, cmap_node, &vl_mff_map->cmap) { cmap_remove(&vl_mff_map->cmap, &vmf->cmap_node, mf_field_hash(vmf->mf.id)); vmf_delete(vmf); } return 0; } static struct vl_mf_field * mf_get_vl_mff__(uint32_t id, const struct vl_mff_map *vl_mff_map) { struct vl_mf_field *vmf; CMAP_FOR_EACH_WITH_HASH (vmf, cmap_node, mf_field_hash(id), &vl_mff_map->cmap) { if (vmf->mf.id == id) { return vmf; } } return NULL; } /* If 'mff' is a variable length field, looks up 'vl_mff_map', returns a * pointer to the variable length meta-flow field corresponding to 'mff'. * Returns NULL if no mapping is existed for 'mff'. */ const struct mf_field * mf_get_vl_mff(const struct mf_field *mff, const struct vl_mff_map *vl_mff_map) { if (mff && mff->variable_len && vl_mff_map) { return &mf_get_vl_mff__(mff->id, vl_mff_map)->mf; } return NULL; } static enum ofperr mf_vl_mff_map_del(struct vl_mff_map *vl_mff_map, const struct ofputil_tlv_table_mod *ttm, bool force) OVS_REQUIRES(vl_mff_map->mutex) { struct ofputil_tlv_map *tlv_map; struct vl_mf_field *vmf; unsigned int idx; if (!force) { LIST_FOR_EACH (tlv_map, list_node, &ttm->mappings) { idx = MFF_TUN_METADATA0 + tlv_map->index; if (idx >= MFF_TUN_METADATA0 + TUN_METADATA_NUM_OPTS) { return OFPERR_NXTTMFC_BAD_FIELD_IDX; } vmf = mf_get_vl_mff__(idx, vl_mff_map); if (vmf && ovs_refcount_read(&vmf->ref_cnt) != 1) { return OFPERR_NXTTMFC_INVALID_TLV_DEL; } } } LIST_FOR_EACH (tlv_map, list_node, &ttm->mappings) { idx = MFF_TUN_METADATA0 + tlv_map->index; if (idx >= MFF_TUN_METADATA0 + TUN_METADATA_NUM_OPTS) { return OFPERR_NXTTMFC_BAD_FIELD_IDX; } vmf = mf_get_vl_mff__(idx, vl_mff_map); if (vmf) { cmap_remove(&vl_mff_map->cmap, &vmf->cmap_node, mf_field_hash(idx)); vmf_delete(vmf); } } return 0; } static enum ofperr mf_vl_mff_map_add(struct vl_mff_map *vl_mff_map, const struct ofputil_tlv_table_mod *ttm) OVS_REQUIRES(vl_mff_map->mutex) { struct ofputil_tlv_map *tlv_map; struct vl_mf_field *vmf; unsigned int idx; LIST_FOR_EACH (tlv_map, list_node, &ttm->mappings) { idx = MFF_TUN_METADATA0 + tlv_map->index; if (idx >= MFF_TUN_METADATA0 + TUN_METADATA_NUM_OPTS) { return OFPERR_NXTTMFC_BAD_FIELD_IDX; } vmf = xmalloc(sizeof *vmf); vmf->mf = mf_fields[idx]; vmf->mf.n_bytes = tlv_map->option_len; vmf->mf.n_bits = tlv_map->option_len * 8; vmf->mf.mapped = true; ovs_refcount_init(&vmf->ref_cnt); cmap_insert(&vl_mff_map->cmap, &vmf->cmap_node, mf_field_hash(idx)); } return 0; } /* Updates the tun_metadata mf_field in 'vl_mff_map' according to 'ttm'. * This function must be invoked after tun_metadata_table_mod(). * Returns OFPERR_NXTTMFC_BAD_FIELD_IDX, if the index for the vl_mf_field is * invalid. * Returns OFPERR_NXTTMFC_INVALID_TLV_DEL, if 'ttm' tries to delete an * vl_mf_field that is still used by any active flow.*/ enum ofperr mf_vl_mff_map_mod_from_tun_metadata(struct vl_mff_map *vl_mff_map, const struct ofputil_tlv_table_mod *ttm) OVS_REQUIRES(vl_mff_map->mutex) { switch (ttm->command) { case NXTTMC_ADD: return mf_vl_mff_map_add(vl_mff_map, ttm); case NXTTMC_DELETE: return mf_vl_mff_map_del(vl_mff_map, ttm, false); case NXTTMC_CLEAR: return mf_vl_mff_map_clear(vl_mff_map, false); default: OVS_NOT_REACHED(); } return 0; } /* Returns true if a variable length meta-flow field 'mff' is not mapped in * the 'vl_mff_map'. */ bool mf_vl_mff_invalid(const struct mf_field *mff, const struct vl_mff_map *map) { return map && mff && mff->variable_len && !mff->mapped; } void mf_vl_mff_set_tlv_bitmap(const struct mf_field *mff, uint64_t *tlv_bitmap) { if (mff && mff->mapped) { ovs_assert(mf_is_tun_metadata(mff)); ULLONG_SET1(*tlv_bitmap, mff->id - MFF_TUN_METADATA0); } } static void mf_vl_mff_ref_cnt_mod(const struct vl_mff_map *map, uint64_t tlv_bitmap, bool ref) { struct vl_mf_field *vmf; int i; if (map) { ULLONG_FOR_EACH_1 (i, tlv_bitmap) { vmf = mf_get_vl_mff__(i + MFF_TUN_METADATA0, map); if (vmf) { if (ref) { ovs_refcount_ref(&vmf->ref_cnt); } else { ovs_refcount_unref(&vmf->ref_cnt); } } else { VLOG_WARN("Invalid TLV index %d.", i); } } } } void mf_vl_mff_ref(const struct vl_mff_map *map, uint64_t tlv_bitmap) { mf_vl_mff_ref_cnt_mod(map, tlv_bitmap, true); } void mf_vl_mff_unref(const struct vl_mff_map *map, uint64_t tlv_bitmap) { mf_vl_mff_ref_cnt_mod(map, tlv_bitmap, false); } enum ofperr mf_vl_mff_nx_pull_header(struct ofpbuf *b, const struct vl_mff_map *vl_mff_map, const struct mf_field **field, bool *masked, uint64_t *tlv_bitmap) { enum ofperr error = nx_pull_header(b, vl_mff_map, field, masked); if (error) { return error; } mf_vl_mff_set_tlv_bitmap(*field, tlv_bitmap); return 0; } enum ofperr mf_vl_mff_nx_pull_entry(struct ofpbuf *b, const struct vl_mff_map *vl_mff_map, const struct mf_field **field, union mf_value *value, union mf_value *mask, uint64_t *tlv_bitmap) { enum ofperr error = nx_pull_entry(b, vl_mff_map, field, value, mask); if (error) { return error; } mf_vl_mff_set_tlv_bitmap(*field, tlv_bitmap); return 0; } enum ofperr mf_vl_mff_mf_from_nxm_header(uint32_t header, const struct vl_mff_map *vl_mff_map, const struct mf_field **field, uint64_t *tlv_bitmap) { *field = mf_from_nxm_header(header, vl_mff_map); if (mf_vl_mff_invalid(*field, vl_mff_map)) { return OFPERR_NXFMFC_INVALID_TLV_FIELD; } mf_vl_mff_set_tlv_bitmap(*field, tlv_bitmap); return 0; }