/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef PACKETS_H #define PACKETS_H 1 #include #include #include #include #include "compiler.h" #include "openvswitch/geneve.h" #include "openvswitch/packets.h" #include "openvswitch/types.h" #include "openvswitch/nsh.h" #include "odp-netlink.h" #include "random.h" #include "hash.h" #include "tun-metadata.h" #include "unaligned.h" #include "util.h" #include "timeval.h" struct dp_packet; struct conn; struct ds; /* Purely internal to OVS userspace. These flags should never be exposed to * the outside world and so aren't included in the flags mask. */ /* Tunnel information is in userspace datapath format. */ #define FLOW_TNL_F_UDPIF (1 << 4) static inline bool ipv6_addr_is_set(const struct in6_addr *addr); static inline bool flow_tnl_dst_is_set(const struct flow_tnl *tnl) { return tnl->ip_dst || ipv6_addr_is_set(&tnl->ipv6_dst); } static inline bool flow_tnl_src_is_set(const struct flow_tnl *tnl) { return tnl->ip_src || ipv6_addr_is_set(&tnl->ipv6_src); } struct in6_addr flow_tnl_dst(const struct flow_tnl *tnl); struct in6_addr flow_tnl_src(const struct flow_tnl *tnl); /* Returns an offset to 'src' covering all the meaningful fields in 'src'. */ static inline size_t flow_tnl_size(const struct flow_tnl *src) { if (!flow_tnl_dst_is_set(src)) { /* Covers ip_dst and ipv6_dst only. */ return offsetof(struct flow_tnl, ip_src); } if (src->flags & FLOW_TNL_F_UDPIF) { /* Datapath format, cover all options we have. */ return offsetof(struct flow_tnl, metadata.opts) + src->metadata.present.len; } if (!src->metadata.present.map) { /* No TLVs, opts is irrelevant. */ return offsetof(struct flow_tnl, metadata.opts); } /* Have decoded TLVs, opts is relevant. */ return sizeof *src; } /* Copy flow_tnl, but avoid copying unused portions of tun_metadata. Unused * data in 'dst' is NOT cleared, so this must not be used in cases where the * uninitialized portion may be hashed over. */ static inline void flow_tnl_copy__(struct flow_tnl *dst, const struct flow_tnl *src) { memcpy(dst, src, flow_tnl_size(src)); } static inline bool flow_tnl_equal(const struct flow_tnl *a, const struct flow_tnl *b) { size_t a_size = flow_tnl_size(a); return a_size == flow_tnl_size(b) && !memcmp(a, b, a_size); } /* Datapath packet metadata */ struct pkt_metadata { PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline0, uint32_t recirc_id; /* Recirculation id carried with the recirculating packets. 0 for packets received from the wire. */ uint32_t dp_hash; /* hash value computed by the recirculation action. */ uint32_t skb_priority; /* Packet priority for QoS. */ uint32_t pkt_mark; /* Packet mark. */ uint8_t ct_state; /* Connection state. */ bool ct_orig_tuple_ipv6; uint16_t ct_zone; /* Connection zone. */ uint32_t ct_mark; /* Connection mark. */ ovs_u128 ct_label; /* Connection label. */ union flow_in_port in_port; /* Input port. */ odp_port_t orig_in_port; /* Originating in_port for tunneled packets */ struct conn *conn; /* Cached conntrack connection. */ bool reply; /* True if reply direction. */ bool icmp_related; /* True if ICMP related. */ ); PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline1, union { /* Populated only for non-zero 'ct_state'. */ struct ovs_key_ct_tuple_ipv4 ipv4; struct ovs_key_ct_tuple_ipv6 ipv6; /* Used only if */ } ct_orig_tuple; /* 'ct_orig_tuple_ipv6' is set */ ); PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline2, struct flow_tnl tunnel; /* Encapsulating tunnel parameters. Note that * if 'ip_dst' == 0, the rest of the fields may * be uninitialized. */ ); }; BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline0) == 0); BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline1) == CACHE_LINE_SIZE); BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline2) == 2 * CACHE_LINE_SIZE); static inline void pkt_metadata_init_tnl(struct pkt_metadata *md) { odp_port_t orig_in_port; /* Zero up through the tunnel metadata options. The length and table * are before this and as long as they are empty, the options won't * be looked at. Keep the orig_in_port field. */ orig_in_port = md->in_port.odp_port; memset(md, 0, offsetof(struct pkt_metadata, tunnel.metadata.opts)); md->orig_in_port = orig_in_port; } static inline void pkt_metadata_init_conn(struct pkt_metadata *md) { md->conn = NULL; } static inline void pkt_metadata_init(struct pkt_metadata *md, odp_port_t port) { /* This is called for every packet in userspace datapath and affects * performance if all the metadata is initialized. Hence, fields should * only be zeroed out when necessary. * * Initialize only till ct_state. Once the ct_state is zeroed out rest * of ct fields will not be looked at unless ct_state != 0. */ memset(md, 0, offsetof(struct pkt_metadata, ct_orig_tuple_ipv6)); /* It can be expensive to zero out all of the tunnel metadata. However, * we can just zero out ip_dst and the rest of the data will never be * looked at. */ md->tunnel.ip_dst = 0; md->tunnel.ipv6_dst = in6addr_any; md->in_port.odp_port = port; md->orig_in_port = port; md->conn = NULL; } /* This function prefetches the cachelines touched by pkt_metadata_init() * and pkt_metadata_init_tnl(). For performance reasons the two functions * should be kept in sync. */ static inline void pkt_metadata_prefetch_init(struct pkt_metadata *md) { /* Prefetch cacheline0 as members till ct_state and odp_port will * be initialized later in pkt_metadata_init(). */ OVS_PREFETCH(md->cacheline0); /* Prefetch cacheline1 as members of this cacheline will be zeroed out * in pkt_metadata_init_tnl(). */ OVS_PREFETCH(md->cacheline1); /* Prefetch cachline2 as ip_dst & ipv6_dst fields will be initialized. */ OVS_PREFETCH(md->cacheline2); } bool dpid_from_string(const char *s, uint64_t *dpidp); #define ETH_ADDR_LEN 6 static const struct eth_addr eth_addr_broadcast OVS_UNUSED = ETH_ADDR_C(ff,ff,ff,ff,ff,ff); static const struct eth_addr eth_addr_exact OVS_UNUSED = ETH_ADDR_C(ff,ff,ff,ff,ff,ff); static const struct eth_addr eth_addr_zero OVS_UNUSED = ETH_ADDR_C(00,00,00,00,00,00); static const struct eth_addr64 eth_addr64_zero OVS_UNUSED = ETH_ADDR64_C(00,00,00,00,00,00,00,00); static const struct eth_addr eth_addr_stp OVS_UNUSED = ETH_ADDR_C(01,80,c2,00,00,00); static const struct eth_addr eth_addr_lacp OVS_UNUSED = ETH_ADDR_C(01,80,c2,00,00,02); static const struct eth_addr eth_addr_bfd OVS_UNUSED = ETH_ADDR_C(00,23,20,00,00,01); static inline bool eth_addr_is_broadcast(const struct eth_addr a) { return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff); } static inline bool eth_addr_is_multicast(const struct eth_addr a) { return a.ea[0] & 1; } static inline bool eth_addr_is_local(const struct eth_addr a) { /* Local if it is either a locally administered address or a Nicira random * address. */ return a.ea[0] & 2 || (a.be16[0] == htons(0x0023) && (a.be16[1] & htons(0xff80)) == htons(0x2080)); } static inline bool eth_addr_is_zero(const struct eth_addr a) { return !(a.be16[0] | a.be16[1] | a.be16[2]); } static inline bool eth_addr64_is_zero(const struct eth_addr64 a) { return !(a.be16[0] | a.be16[1] | a.be16[2] | a.be16[3]); } static inline int eth_mask_is_exact(const struct eth_addr a) { return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff); } static inline int eth_addr_compare_3way(const struct eth_addr a, const struct eth_addr b) { return memcmp(&a, &b, sizeof a); } static inline int eth_addr64_compare_3way(const struct eth_addr64 a, const struct eth_addr64 b) { return memcmp(&a, &b, sizeof a); } static inline bool eth_addr_equals(const struct eth_addr a, const struct eth_addr b) { return !eth_addr_compare_3way(a, b); } static inline bool eth_addr64_equals(const struct eth_addr64 a, const struct eth_addr64 b) { return !eth_addr64_compare_3way(a, b); } static inline bool eth_addr_equal_except(const struct eth_addr a, const struct eth_addr b, const struct eth_addr mask) { return !(((a.be16[0] ^ b.be16[0]) & mask.be16[0]) || ((a.be16[1] ^ b.be16[1]) & mask.be16[1]) || ((a.be16[2] ^ b.be16[2]) & mask.be16[2])); } uint64_t eth_addr_to_uint64(const struct eth_addr ea); static inline uint64_t eth_addr_vlan_to_uint64(const struct eth_addr ea, uint16_t vlan) { return (((uint64_t)vlan << 48) | eth_addr_to_uint64(ea)); } void eth_addr_from_uint64(uint64_t x, struct eth_addr *ea); static inline struct eth_addr eth_addr_invert(const struct eth_addr src) { struct eth_addr dst; for (int i = 0; i < ARRAY_SIZE(src.be16); i++) { dst.be16[i] = ~src.be16[i]; } return dst; } void eth_addr_mark_random(struct eth_addr *ea); static inline void eth_addr_random(struct eth_addr *ea) { random_bytes((uint8_t *)ea, sizeof *ea); eth_addr_mark_random(ea); } static inline void eth_addr_nicira_random(struct eth_addr *ea) { eth_addr_random(ea); /* Set the OUI to the Nicira one. */ ea->ea[0] = 0x00; ea->ea[1] = 0x23; ea->ea[2] = 0x20; /* Set the top bit to indicate random Nicira address. */ ea->ea[3] |= 0x80; } static inline uint32_t hash_mac(const struct eth_addr ea, const uint16_t vlan, const uint32_t basis) { return hash_uint64_basis(eth_addr_vlan_to_uint64(ea, vlan), basis); } bool eth_addr_is_reserved(const struct eth_addr); bool eth_addr_from_string(const char *, struct eth_addr *); void compose_rarp(struct dp_packet *, const struct eth_addr); void eth_push_vlan(struct dp_packet *, ovs_be16 tpid, ovs_be16 tci); void eth_pop_vlan(struct dp_packet *); const char *eth_from_hex(const char *hex, struct dp_packet **packetp); void eth_format_masked(const struct eth_addr ea, const struct eth_addr *mask, struct ds *s); void set_mpls_lse(struct dp_packet *, ovs_be32 label); void push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse); void pop_mpls(struct dp_packet *, ovs_be16 ethtype); void set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl); void set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc); void set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label); void set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos); ovs_be32 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label); void add_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse, bool l3_encap); /* Example: * * struct eth_addr mac; * [...] * printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac)); * */ #define ETH_ADDR_FMT \ "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8 #define ETH_ADDR_ARGS(EA) ETH_ADDR_BYTES_ARGS((EA).ea) #define ETH_ADDR_BYTES_ARGS(EAB) \ (EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], (EAB)[4], (EAB)[5] #define ETH_ADDR_STRLEN 17 /* Example: * * struct eth_addr64 eui64; * [...] * printf("The EUI-64 address is "ETH_ADDR64_FMT"\n", ETH_ADDR64_ARGS(mac)); * */ #define ETH_ADDR64_FMT \ "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":" \ "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8 #define ETH_ADDR64_ARGS(EA) ETH_ADDR64_BYTES_ARGS((EA).ea64) #define ETH_ADDR64_BYTES_ARGS(EAB) \ (EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], \ (EAB)[4], (EAB)[5], (EAB)[6], (EAB)[7] #define ETH_ADDR64_STRLEN 23 /* Example: * * char *string = "1 00:11:22:33:44:55 2"; * struct eth_addr mac; * int a, b; * * if (ovs_scan(string, "%d"ETH_ADDR_SCAN_FMT"%d", * &a, ETH_ADDR_SCAN_ARGS(mac), &b)) { * ... * } */ #define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8 #define ETH_ADDR_SCAN_ARGS(EA) \ &(EA).ea[0], &(EA).ea[1], &(EA).ea[2], &(EA).ea[3], &(EA).ea[4], &(EA).ea[5] #define ETH_TYPE_IP 0x0800 #define ETH_TYPE_ARP 0x0806 #define ETH_TYPE_TEB 0x6558 #define ETH_TYPE_VLAN_8021Q 0x8100 #define ETH_TYPE_VLAN ETH_TYPE_VLAN_8021Q #define ETH_TYPE_VLAN_8021AD 0x88a8 #define ETH_TYPE_IPV6 0x86dd #define ETH_TYPE_LACP 0x8809 #define ETH_TYPE_RARP 0x8035 #define ETH_TYPE_MPLS 0x8847 #define ETH_TYPE_MPLS_MCAST 0x8848 #define ETH_TYPE_NSH 0x894f #define ETH_TYPE_ERSPAN1 0x88be /* version 1 type II */ #define ETH_TYPE_ERSPAN2 0x22eb /* version 2 type III */ static inline bool eth_type_mpls(ovs_be16 eth_type) { return eth_type == htons(ETH_TYPE_MPLS) || eth_type == htons(ETH_TYPE_MPLS_MCAST); } static inline bool eth_type_vlan(ovs_be16 eth_type) { return eth_type == htons(ETH_TYPE_VLAN_8021Q) || eth_type == htons(ETH_TYPE_VLAN_8021AD); } /* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame * lengths. */ #define ETH_TYPE_MIN 0x600 #define ETH_HEADER_LEN 14 #define ETH_PAYLOAD_MIN 46 #define ETH_PAYLOAD_MAX 1500 #define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN) #define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX) #define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX) struct eth_header { struct eth_addr eth_dst; struct eth_addr eth_src; ovs_be16 eth_type; }; BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header)); void push_eth(struct dp_packet *packet, const struct eth_addr *dst, const struct eth_addr *src); void pop_eth(struct dp_packet *packet); void push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src); bool pop_nsh(struct dp_packet *packet); #define LLC_DSAP_SNAP 0xaa #define LLC_SSAP_SNAP 0xaa #define LLC_CNTL_SNAP 3 #define LLC_HEADER_LEN 3 struct llc_header { uint8_t llc_dsap; uint8_t llc_ssap; uint8_t llc_cntl; }; BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header)); /* LLC field values used for STP frames. */ #define STP_LLC_SSAP 0x42 #define STP_LLC_DSAP 0x42 #define STP_LLC_CNTL 0x03 #define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so sizeof(SNAP_ORG_ETHERNET) == 3. */ #define SNAP_HEADER_LEN 5 OVS_PACKED( struct snap_header { uint8_t snap_org[3]; ovs_be16 snap_type; }); BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header)); #define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN) OVS_PACKED( struct llc_snap_header { struct llc_header llc; struct snap_header snap; }); BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header)); #define VLAN_VID_MASK 0x0fff #define VLAN_VID_SHIFT 0 #define VLAN_PCP_MASK 0xe000 #define VLAN_PCP_SHIFT 13 #define VLAN_CFI 0x1000 #define VLAN_CFI_SHIFT 12 /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the VLAN ID in host byte order. */ static inline uint16_t vlan_tci_to_vid(ovs_be16 vlan_tci) { return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT; } /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the priority code point (PCP) in host byte order. */ static inline int vlan_tci_to_pcp(ovs_be16 vlan_tci) { return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT; } /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the Canonical Format Indicator (CFI). */ static inline int vlan_tci_to_cfi(ovs_be16 vlan_tci) { return (vlan_tci & htons(VLAN_CFI)) != 0; } #define VLAN_HEADER_LEN 4 struct vlan_header { ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */ ovs_be16 vlan_next_type; }; BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header)); #define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN) struct vlan_eth_header { struct eth_addr veth_dst; struct eth_addr veth_src; ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */ ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */ ovs_be16 veth_next_type; }; BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header)); /* MPLS related definitions */ #define MPLS_TTL_MASK 0x000000ff #define MPLS_TTL_SHIFT 0 #define MPLS_BOS_MASK 0x00000100 #define MPLS_BOS_SHIFT 8 #define MPLS_TC_MASK 0x00000e00 #define MPLS_TC_SHIFT 9 #define MPLS_LABEL_MASK 0xfffff000 #define MPLS_LABEL_SHIFT 12 #define MPLS_HLEN 4 struct mpls_hdr { ovs_16aligned_be32 mpls_lse; }; BUILD_ASSERT_DECL(MPLS_HLEN == sizeof(struct mpls_hdr)); /* Given a mpls label stack entry in network byte order * return mpls label in host byte order */ static inline uint32_t mpls_lse_to_label(ovs_be32 mpls_lse) { return (ntohl(mpls_lse) & MPLS_LABEL_MASK) >> MPLS_LABEL_SHIFT; } /* Given a mpls label stack entry in network byte order * return mpls tc */ static inline uint8_t mpls_lse_to_tc(ovs_be32 mpls_lse) { return (ntohl(mpls_lse) & MPLS_TC_MASK) >> MPLS_TC_SHIFT; } /* Given a mpls label stack entry in network byte order * return mpls ttl */ static inline uint8_t mpls_lse_to_ttl(ovs_be32 mpls_lse) { return (ntohl(mpls_lse) & MPLS_TTL_MASK) >> MPLS_TTL_SHIFT; } /* Set label in mpls lse. */ static inline void flow_set_mpls_lse_label(ovs_be32 *mpls_lse, uint32_t label) { *mpls_lse &= ~htonl(MPLS_LABEL_MASK); *mpls_lse |= htonl(label << MPLS_LABEL_SHIFT); } /* Set TC in mpls lse. */ static inline void flow_set_mpls_lse_tc(ovs_be32 *mpls_lse, uint8_t tc) { *mpls_lse &= ~htonl(MPLS_TC_MASK); *mpls_lse |= htonl((tc & 0x7) << MPLS_TC_SHIFT); } /* Set BOS in mpls lse. */ static inline void flow_set_mpls_lse_bos(ovs_be32 *mpls_lse, uint8_t bos) { *mpls_lse &= ~htonl(MPLS_BOS_MASK); *mpls_lse |= htonl((bos & 0x1) << MPLS_BOS_SHIFT); } /* Set TTL in mpls lse. */ static inline void flow_set_mpls_lse_ttl(ovs_be32 *mpls_lse, uint8_t ttl) { *mpls_lse &= ~htonl(MPLS_TTL_MASK); *mpls_lse |= htonl(ttl << MPLS_TTL_SHIFT); } /* Given a mpls label stack entry in network byte order * return mpls BoS bit */ static inline uint8_t mpls_lse_to_bos(ovs_be32 mpls_lse) { return (mpls_lse & htonl(MPLS_BOS_MASK)) != 0; } #define IP_FMT "%"PRIu32".%"PRIu32".%"PRIu32".%"PRIu32 #define IP_ARGS(ip) \ ntohl(ip) >> 24, \ (ntohl(ip) >> 16) & 0xff, \ (ntohl(ip) >> 8) & 0xff, \ ntohl(ip) & 0xff /* Example: * * char *string = "1 33.44.55.66 2"; * ovs_be32 ip; * int a, b; * * if (ovs_scan(string, "%d"IP_SCAN_FMT"%d", &a, IP_SCAN_ARGS(&ip), &b)) { * ... * } */ #define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8 #define IP_SCAN_ARGS(ip) \ ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \ &((uint8_t *) ip)[1], \ &((uint8_t *) ip)[2], \ &((uint8_t *) ip)[3] #define IP_PORT_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8":%"SCNu16 #define IP_PORT_SCAN_ARGS(ip, port) \ ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \ &((uint8_t *) ip)[1], \ &((uint8_t *) ip)[2], \ &((uint8_t *) ip)[3], \ ((void) (ovs_be16) *(port), (uint16_t *) port) /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N * high-order 1-bits and 32-N low-order 0-bits. */ static inline bool ip_is_cidr(ovs_be32 netmask) { uint32_t x = ~ntohl(netmask); return !(x & (x + 1)); } static inline bool ip_is_multicast(ovs_be32 ip) { return (ip & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ip_is_local_multicast(ovs_be32 ip) { return (ip & htonl(0xffffff00)) == htonl(0xe0000000); } int ip_count_cidr_bits(ovs_be32 netmask); void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *); bool ip_parse(const char *s, ovs_be32 *ip); char *ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port) OVS_WARN_UNUSED_RESULT; char *ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask) OVS_WARN_UNUSED_RESULT; char *ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; char *ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip, ovs_be32 *mask) OVS_WARN_UNUSED_RESULT; char *ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; #define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4) #define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15) #define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl)) #ifndef IPPROTO_SCTP #define IPPROTO_SCTP 132 #endif #ifndef IPPROTO_DCCP #define IPPROTO_DCCP 33 #endif #ifndef IPPROTO_IGMP #define IPPROTO_IGMP 2 #endif #ifndef IPPROTO_IPIP #define IPPROTO_IPIP 4 #endif #ifndef IPPROTO_UDPLITE #define IPPROTO_UDPLITE 136 #endif /* TOS fields. */ #define IP_ECN_NOT_ECT 0x0 #define IP_ECN_ECT_1 0x01 #define IP_ECN_ECT_0 0x02 #define IP_ECN_CE 0x03 #define IP_ECN_MASK 0x03 #define IP_DSCP_CS6 0xc0 #define IP_DSCP_MASK 0xfc static inline int IP_ECN_is_ce(uint8_t dsfield) { return (dsfield & IP_ECN_MASK) == IP_ECN_CE; } #define IP_VERSION 4 #define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */ #define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */ #define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */ #define IP_IS_FRAGMENT(ip_frag_off) \ ((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK)) #define IP_HEADER_LEN 20 struct ip_header { uint8_t ip_ihl_ver; uint8_t ip_tos; ovs_be16 ip_tot_len; ovs_be16 ip_id; ovs_be16 ip_frag_off; uint8_t ip_ttl; uint8_t ip_proto; ovs_be16 ip_csum; ovs_16aligned_be32 ip_src; ovs_16aligned_be32 ip_dst; }; BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header)); /* ICMPv4 types. */ #define ICMP4_ECHO_REPLY 0 #define ICMP4_DST_UNREACH 3 #define ICMP4_SOURCEQUENCH 4 #define ICMP4_REDIRECT 5 #define ICMP4_ECHO_REQUEST 8 #define ICMP4_TIME_EXCEEDED 11 #define ICMP4_PARAM_PROB 12 #define ICMP4_TIMESTAMP 13 #define ICMP4_TIMESTAMPREPLY 14 #define ICMP4_INFOREQUEST 15 #define ICMP4_INFOREPLY 16 #define ICMP_HEADER_LEN 8 struct icmp_header { uint8_t icmp_type; uint8_t icmp_code; ovs_be16 icmp_csum; union { struct { ovs_be16 id; ovs_be16 seq; } echo; struct { ovs_be16 empty; ovs_be16 mtu; } frag; ovs_16aligned_be32 gateway; } icmp_fields; }; BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header)); /* ICMPV4 */ #define ICMP_ERROR_DATA_L4_LEN 8 #define IGMP_HEADER_LEN 8 struct igmp_header { uint8_t igmp_type; uint8_t igmp_code; ovs_be16 igmp_csum; ovs_16aligned_be32 group; }; BUILD_ASSERT_DECL(IGMP_HEADER_LEN == sizeof(struct igmp_header)); #define IGMPV3_HEADER_LEN 8 struct igmpv3_header { uint8_t type; uint8_t rsvr1; ovs_be16 csum; ovs_be16 rsvr2; ovs_be16 ngrp; }; BUILD_ASSERT_DECL(IGMPV3_HEADER_LEN == sizeof(struct igmpv3_header)); #define IGMPV3_QUERY_HEADER_LEN 12 struct igmpv3_query_header { uint8_t type; uint8_t max_resp; ovs_be16 csum; ovs_16aligned_be32 group; uint8_t srs_qrv; uint8_t qqic; ovs_be16 nsrcs; }; BUILD_ASSERT_DECL( IGMPV3_QUERY_HEADER_LEN == sizeof(struct igmpv3_query_header )); #define IGMPV3_RECORD_LEN 8 struct igmpv3_record { uint8_t type; uint8_t aux_len; ovs_be16 nsrcs; ovs_16aligned_be32 maddr; }; BUILD_ASSERT_DECL(IGMPV3_RECORD_LEN == sizeof(struct igmpv3_record)); #define IGMP_HOST_MEMBERSHIP_QUERY 0x11 /* From RFC1112 */ #define IGMP_HOST_MEMBERSHIP_REPORT 0x12 /* Ditto */ #define IGMPV2_HOST_MEMBERSHIP_REPORT 0x16 /* V2 version of 0x12 */ #define IGMP_HOST_LEAVE_MESSAGE 0x17 #define IGMPV3_HOST_MEMBERSHIP_REPORT 0x22 /* V3 version of 0x12 */ /* * IGMPv3 and MLDv2 use the same codes. */ #define IGMPV3_MODE_IS_INCLUDE 1 #define IGMPV3_MODE_IS_EXCLUDE 2 #define IGMPV3_CHANGE_TO_INCLUDE_MODE 3 #define IGMPV3_CHANGE_TO_EXCLUDE_MODE 4 #define IGMPV3_ALLOW_NEW_SOURCES 5 #define IGMPV3_BLOCK_OLD_SOURCES 6 #define SCTP_HEADER_LEN 12 struct sctp_header { ovs_be16 sctp_src; ovs_be16 sctp_dst; ovs_16aligned_be32 sctp_vtag; ovs_16aligned_be32 sctp_csum; }; BUILD_ASSERT_DECL(SCTP_HEADER_LEN == sizeof(struct sctp_header)); #define UDP_HEADER_LEN 8 struct udp_header { ovs_be16 udp_src; ovs_be16 udp_dst; ovs_be16 udp_len; ovs_be16 udp_csum; }; BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header)); #define ESP_HEADER_LEN 8 struct esp_header { ovs_be32 spi; ovs_be32 seq_no; }; BUILD_ASSERT_DECL(ESP_HEADER_LEN == sizeof(struct esp_header)); #define ESP_TRAILER_LEN 2 struct esp_trailer { uint8_t pad_len; uint8_t next_hdr; }; BUILD_ASSERT_DECL(ESP_TRAILER_LEN == sizeof(struct esp_trailer)); #define TCP_FIN 0x001 #define TCP_SYN 0x002 #define TCP_RST 0x004 #define TCP_PSH 0x008 #define TCP_ACK 0x010 #define TCP_URG 0x020 #define TCP_ECE 0x040 #define TCP_CWR 0x080 #define TCP_NS 0x100 #define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12))) #define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x0fff) #define TCP_FLAGS_BE16(tcp_ctl) ((tcp_ctl) & htons(0x0fff)) #define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12) #define TCP_HEADER_LEN 20 struct tcp_header { ovs_be16 tcp_src; ovs_be16 tcp_dst; ovs_16aligned_be32 tcp_seq; ovs_16aligned_be32 tcp_ack; ovs_be16 tcp_ctl; ovs_be16 tcp_winsz; ovs_be16 tcp_csum; ovs_be16 tcp_urg; }; BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header)); /* Connection states. * * Names like CS_RELATED are bit values, e.g. 1 << 2. * Names like CS_RELATED_BIT are bit indexes, e.g. 2. */ #define CS_STATES \ CS_STATE(NEW, 0, "new") \ CS_STATE(ESTABLISHED, 1, "est") \ CS_STATE(RELATED, 2, "rel") \ CS_STATE(REPLY_DIR, 3, "rpl") \ CS_STATE(INVALID, 4, "inv") \ CS_STATE(TRACKED, 5, "trk") \ CS_STATE(SRC_NAT, 6, "snat") \ CS_STATE(DST_NAT, 7, "dnat") enum { #define CS_STATE(ENUM, INDEX, NAME) \ CS_##ENUM = 1 << INDEX, \ CS_##ENUM##_BIT = INDEX, CS_STATES #undef CS_STATE }; /* Undefined connection state bits. */ enum { #define CS_STATE(ENUM, INDEX, NAME) +CS_##ENUM CS_SUPPORTED_MASK = CS_STATES #undef CS_STATE }; #define CS_UNSUPPORTED_MASK (~(uint32_t)CS_SUPPORTED_MASK) #define ARP_HRD_ETHERNET 1 #define ARP_PRO_IP 0x0800 #define ARP_OP_REQUEST 1 #define ARP_OP_REPLY 2 #define ARP_OP_RARP 3 #define ARP_ETH_HEADER_LEN 28 struct arp_eth_header { /* Generic members. */ ovs_be16 ar_hrd; /* Hardware type. */ ovs_be16 ar_pro; /* Protocol type. */ uint8_t ar_hln; /* Hardware address length. */ uint8_t ar_pln; /* Protocol address length. */ ovs_be16 ar_op; /* Opcode. */ /* Ethernet+IPv4 specific members. */ struct eth_addr ar_sha; /* Sender hardware address. */ ovs_16aligned_be32 ar_spa; /* Sender protocol address. */ struct eth_addr ar_tha; /* Target hardware address. */ ovs_16aligned_be32 ar_tpa; /* Target protocol address. */ }; BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header)); #define IPV6_HEADER_LEN 40 /* Like struct in6_addr, but whereas that struct requires 32-bit alignment on * most implementations, this one only requires 16-bit alignment. */ union ovs_16aligned_in6_addr { ovs_be16 be16[8]; ovs_16aligned_be32 be32[4]; }; /* Like struct ip6_hdr, but whereas that struct requires 32-bit alignment, this * one only requires 16-bit alignment. */ struct ovs_16aligned_ip6_hdr { union { struct ovs_16aligned_ip6_hdrctl { ovs_16aligned_be32 ip6_un1_flow; ovs_be16 ip6_un1_plen; uint8_t ip6_un1_nxt; uint8_t ip6_un1_hlim; } ip6_un1; uint8_t ip6_un2_vfc; } ip6_ctlun; union ovs_16aligned_in6_addr ip6_src; union ovs_16aligned_in6_addr ip6_dst; }; /* Like struct in6_frag, but whereas that struct requires 32-bit alignment, * this one only requires 16-bit alignment. */ struct ovs_16aligned_ip6_frag { uint8_t ip6f_nxt; uint8_t ip6f_reserved; ovs_be16 ip6f_offlg; ovs_16aligned_be32 ip6f_ident; }; #define IP6_RT_HDR_LEN 4 struct ip6_rt_hdr { uint8_t nexthdr; uint8_t hdrlen; uint8_t type; uint8_t segments_left; }; BUILD_ASSERT_DECL(IP6_RT_HDR_LEN == sizeof(struct ip6_rt_hdr)); #define ICMP6_HEADER_LEN 4 struct icmp6_header { uint8_t icmp6_type; uint8_t icmp6_code; ovs_be16 icmp6_cksum; }; BUILD_ASSERT_DECL(ICMP6_HEADER_LEN == sizeof(struct icmp6_header)); #define ICMP6_DATA_HEADER_LEN 8 struct icmp6_data_header { struct icmp6_header icmp6_base; union { ovs_16aligned_be32 be32[1]; ovs_be16 be16[2]; uint8_t u8[4]; } icmp6_data; }; BUILD_ASSERT_DECL(ICMP6_DATA_HEADER_LEN == sizeof(struct icmp6_data_header)); uint32_t packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *); ovs_be16 packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *, const void *, uint8_t, uint16_t); /* Neighbor Discovery option field. * ND options are always a multiple of 8 bytes in size. */ #define ND_LLA_OPT_LEN 8 struct ovs_nd_lla_opt { uint8_t type; /* One of ND_OPT_*_LINKADDR. */ uint8_t len; struct eth_addr mac; }; BUILD_ASSERT_DECL(ND_LLA_OPT_LEN == sizeof(struct ovs_nd_lla_opt)); /* Neighbor Discovery option: Prefix Information. */ #define ND_PREFIX_OPT_LEN 32 struct ovs_nd_prefix_opt { uint8_t type; /* ND_OPT_PREFIX_INFORMATION. */ uint8_t len; /* Always 4. */ uint8_t prefix_len; uint8_t la_flags; /* ND_PREFIX_* flags. */ ovs_16aligned_be32 valid_lifetime; ovs_16aligned_be32 preferred_lifetime; ovs_16aligned_be32 reserved; /* Always 0. */ union ovs_16aligned_in6_addr prefix; }; BUILD_ASSERT_DECL(ND_PREFIX_OPT_LEN == sizeof(struct ovs_nd_prefix_opt)); /* Neighbor Discovery option: MTU. */ #define ND_MTU_OPT_LEN 8 #define ND_MTU_DEFAULT 0 struct ovs_nd_mtu_opt { uint8_t type; /* ND_OPT_MTU */ uint8_t len; /* Always 1. */ ovs_be16 reserved; /* Always 0. */ ovs_16aligned_be32 mtu; }; BUILD_ASSERT_DECL(ND_MTU_OPT_LEN == sizeof(struct ovs_nd_mtu_opt)); /* Like struct nd_msg (from ndisc.h), but whereas that struct requires 32-bit * alignment, this one only requires 16-bit alignment. */ #define ND_MSG_LEN 24 struct ovs_nd_msg { struct icmp6_header icmph; ovs_16aligned_be32 rso_flags; union ovs_16aligned_in6_addr target; struct ovs_nd_lla_opt options[0]; }; BUILD_ASSERT_DECL(ND_MSG_LEN == sizeof(struct ovs_nd_msg)); /* Neighbor Discovery packet flags. */ #define ND_RSO_ROUTER 0x80000000 #define ND_RSO_SOLICITED 0x40000000 #define ND_RSO_OVERRIDE 0x20000000 #define RA_MSG_LEN 16 struct ovs_ra_msg { struct icmp6_header icmph; uint8_t cur_hop_limit; uint8_t mo_flags; /* ND_RA_MANAGED_ADDRESS and ND_RA_OTHER_CONFIG flags. */ ovs_be16 router_lifetime; ovs_be32 reachable_time; ovs_be32 retrans_timer; struct ovs_nd_lla_opt options[0]; }; BUILD_ASSERT_DECL(RA_MSG_LEN == sizeof(struct ovs_ra_msg)); #define ND_RA_MANAGED_ADDRESS 0x80 #define ND_RA_OTHER_CONFIG 0x40 /* Defaults based on MaxRtrInterval and MinRtrInterval from RFC 4861 section * 6.2.1 */ #define ND_RA_MAX_INTERVAL_DEFAULT 600 static inline int nd_ra_min_interval_default(int max) { return max >= 9 ? max / 3 : max * 3 / 4; } /* * Use the same struct for MLD and MLD2, naming members as the defined fields in * in the corresponding version of the protocol, though they are reserved in the * other one. */ #define MLD_HEADER_LEN 8 struct mld_header { uint8_t type; uint8_t code; ovs_be16 csum; ovs_be16 mrd; ovs_be16 ngrp; }; BUILD_ASSERT_DECL(MLD_HEADER_LEN == sizeof(struct mld_header)); #define MLD2_RECORD_LEN 20 struct mld2_record { uint8_t type; uint8_t aux_len; ovs_be16 nsrcs; union ovs_16aligned_in6_addr maddr; }; BUILD_ASSERT_DECL(MLD2_RECORD_LEN == sizeof(struct mld2_record)); #define MLD_QUERY 130 #define MLD_REPORT 131 #define MLD_DONE 132 #define MLD2_REPORT 143 /* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */ #define IPV6_LABEL_MASK 0x000fffff /* Example: * * char *string = "1 ::1 2"; * char ipv6_s[IPV6_SCAN_LEN + 1]; * struct in6_addr ipv6; * * if (ovs_scan(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b) * && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) { * ... * } */ #define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]" #define IPV6_SCAN_LEN 46 extern const struct in6_addr in6addr_exact; #define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } } extern const struct in6_addr in6addr_all_hosts; #define IN6ADDR_ALL_HOSTS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 } } } extern const struct in6_addr in6addr_all_routers; #define IN6ADDR_ALL_ROUTERS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02 } } } static inline bool ipv6_addr_equals(const struct in6_addr *a, const struct in6_addr *b) { #ifdef IN6_ARE_ADDR_EQUAL return IN6_ARE_ADDR_EQUAL(a, b); #else return !memcmp(a, b, sizeof(*a)); #endif } /* Checks the IPv6 address in 'mask' for all zeroes. */ static inline bool ipv6_mask_is_any(const struct in6_addr *mask) { return ipv6_addr_equals(mask, &in6addr_any); } static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) { return ipv6_addr_equals(mask, &in6addr_exact); } static inline bool ipv6_is_all_hosts(const struct in6_addr *addr) { return ipv6_addr_equals(addr, &in6addr_all_hosts); } static inline bool ipv6_addr_is_set(const struct in6_addr *addr) { return !ipv6_addr_equals(addr, &in6addr_any); } static inline bool ipv6_addr_is_multicast(const struct in6_addr *ip) { return ip->s6_addr[0] == 0xff; } static inline struct in6_addr in6_addr_mapped_ipv4(ovs_be32 ip4) { struct in6_addr ip6; memset(&ip6, 0, sizeof(ip6)); ip6.s6_addr[10] = 0xff, ip6.s6_addr[11] = 0xff; memcpy(&ip6.s6_addr[12], &ip4, 4); return ip6; } static inline void in6_addr_set_mapped_ipv4(struct in6_addr *ip6, ovs_be32 ip4) { *ip6 = in6_addr_mapped_ipv4(ip4); } static inline ovs_be32 in6_addr_get_mapped_ipv4(const struct in6_addr *addr) { union ovs_16aligned_in6_addr *taddr = (union ovs_16aligned_in6_addr *) addr; if (IN6_IS_ADDR_V4MAPPED(addr)) { return get_16aligned_be32(&taddr->be32[3]); } else { return INADDR_ANY; } } void in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6); void in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix, struct in6_addr *lla); void in6_generate_lla(struct eth_addr ea, struct in6_addr *lla); /* Returns true if 'addr' is a link local address. Otherwise, false. */ bool in6_is_lla(struct in6_addr *addr); void ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6); static inline bool dl_type_is_ip_any(ovs_be16 dl_type) { return dl_type == htons(ETH_TYPE_IP) || dl_type == htons(ETH_TYPE_IPV6); } /* Tunnel header */ /* GRE protocol header */ struct gre_base_hdr { ovs_be16 flags; ovs_be16 protocol; }; #define GRE_CSUM 0x8000 #define GRE_ROUTING 0x4000 #define GRE_KEY 0x2000 #define GRE_SEQ 0x1000 #define GRE_STRICT 0x0800 #define GRE_REC 0x0700 #define GRE_FLAGS 0x00F8 #define GRE_VERSION 0x0007 /* * ERSPAN protocol header and metadata * * Version 1 (Type II) header (8 octets [42:49]) * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Ver | VLAN | COS | En|T| Session ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Reserved | Index | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * * ERSPAN Version 2 (Type III) header (12 octets [42:49]) * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Ver | VLAN | COS |BSO|T| Session ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Timestamp | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | SGT |P| FT | Hw ID |D|Gra|O| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * */ /* ERSPAN has fixed 8-byte GRE header */ #define ERSPAN_GREHDR_LEN 8 #define ERSPAN_HDR(gre_base_hdr) \ ((struct erspan_base_hdr *)((char *)gre_base_hdr + ERSPAN_GREHDR_LEN)) #define ERSPAN_V1_MDSIZE 4 #define ERSPAN_V2_MDSIZE 8 #define ERSPAN_SID_MASK 0x03ff /* 10-bit Session ID. */ #define ERSPAN_IDX_MASK 0xfffff /* v1 Index */ #define ERSPAN_HWID_MASK 0x03f0 #define ERSPAN_DIR_MASK 0x0008 struct erspan_base_hdr { #ifdef WORDS_BIGENDIAN uint8_t ver:4, vlan_upper:4; uint8_t vlan:8; uint8_t cos:3, en:2, t:1, session_id_upper:2; uint8_t session_id:8; #else uint8_t vlan_upper:4, ver:4; uint8_t vlan:8; uint8_t session_id_upper:2, t:1, en:2, cos:3; uint8_t session_id:8; #endif }; struct erspan_md2 { ovs_16aligned_be32 timestamp; ovs_be16 sgt; #ifdef WORDS_BIGENDIAN uint8_t p:1, ft:5, hwid_upper:2; uint8_t hwid:4, dir:1, gra:2, o:1; #else uint8_t hwid_upper:2, ft:5, p:1; uint8_t o:1, gra:2, dir:1, hwid:4; #endif }; struct erspan_metadata { int version; union { ovs_be32 index; /* Version 1 (type II)*/ struct erspan_md2 md2; /* Version 2 (type III) */ } u; }; static inline uint16_t get_sid(const struct erspan_base_hdr *ershdr) { return (ershdr->session_id_upper << 8) + ershdr->session_id; } static inline void set_sid(struct erspan_base_hdr *ershdr, uint16_t id) { ershdr->session_id = id & 0xff; ershdr->session_id_upper = (id >> 8) &0x3; } static inline uint8_t get_hwid(const struct erspan_md2 *md2) { return (md2->hwid_upper << 4) + md2->hwid; } static inline void set_hwid(struct erspan_md2 *md2, uint8_t hwid) { md2->hwid = hwid & 0xf; md2->hwid_upper = (hwid >> 4) & 0x3; } /* ERSPAN timestamp granularity * 00b --> granularity = 100 microseconds * 01b --> granularity = 100 nanoseconds * 10b --> granularity = IEEE 1588 * Here we only support 100 microseconds. */ enum erspan_ts_gra { ERSPAN_100US, ERSPAN_100NS, ERSPAN_IEEE1588, }; static inline ovs_be32 get_erspan_ts(enum erspan_ts_gra gra) { ovs_be32 ts = 0; switch (gra) { case ERSPAN_100US: ts = htonl((uint32_t)(time_wall_usec() / 100)); break; case ERSPAN_100NS: /* fall back */ case ERSPAN_IEEE1588: /* fall back */ default: OVS_NOT_REACHED(); break; } return ts; } /* * GTP-U protocol header and metadata * See: * User Plane Protocol and Architectural Analysis on 3GPP 5G System * draft-hmm-dmm-5g-uplane-analysis-00 * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Ver |P|R|E|S|N| Message Type| Length | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Tunnel Endpoint Identifier | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Sequence Number | N-PDU Number | Next-Ext-Hdr | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * GTP-U Flags: * P: Protocol Type (Set to '1') * R: Reserved Bit (Set to '0') * E: Extension Header Flag (Set to '1' if extension header exists) * S: Sequence Number Flag (Set to '1' if sequence number exists) * N: N-PDU Number Flag (Set to '1' if N-PDU number exists) * * GTP-U Message Type: * Indicates the type of GTP-U message. * * GTP-U Length: * Indicates the length in octets of the payload. * * User payload is transmitted in G-PDU packets. */ #define GTPU_VER_MASK 0xe0 #define GTPU_P_MASK 0x10 #define GTPU_E_MASK 0x04 #define GTPU_S_MASK 0x02 /* GTP-U UDP port. */ #define GTPU_DST_PORT 2152 /* Default GTP-U flags: Ver = 1 and P = 1. */ #define GTPU_FLAGS_DEFAULT 0x30 /* GTP-U message type for normal user plane PDU. */ #define GTPU_MSGTYPE_REQ 1 /* Echo Request. */ #define GTPU_MSGTYPE_REPL 2 /* Echo Reply. */ #define GTPU_MSGTYPE_GPDU 255 /* User Payload. */ struct gtpu_metadata { uint8_t flags; uint8_t msgtype; }; BUILD_ASSERT_DECL(sizeof(struct gtpu_metadata) == 2); struct gtpuhdr { struct gtpu_metadata md; ovs_be16 len; ovs_16aligned_be32 teid; }; BUILD_ASSERT_DECL(sizeof(struct gtpuhdr) == 8); struct gtpuhdr_opt { ovs_be16 seqno; uint8_t pdu_number; uint8_t next_ext_type; }; BUILD_ASSERT_DECL(sizeof(struct gtpuhdr_opt) == 4); /* VXLAN protocol header */ struct vxlanhdr { union { ovs_16aligned_be32 vx_flags; /* VXLAN flags. */ struct { uint8_t flags; /* VXLAN GPE flags. */ uint8_t reserved[2]; /* 16 bits reserved. */ uint8_t next_protocol; /* Next Protocol field for VXLAN GPE. */ } vx_gpe; }; ovs_16aligned_be32 vx_vni; }; BUILD_ASSERT_DECL(sizeof(struct vxlanhdr) == 8); #define VXLAN_FLAGS 0x08000000 /* struct vxlanhdr.vx_flags required value. */ /* * VXLAN Generic Protocol Extension (VXLAN_F_GPE): * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |R|R|Ver|I|P|R|O| Reserved |Next Protocol | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | VXLAN Network Identifier (VNI) | Reserved | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Ver = Version. Indicates VXLAN GPE protocol version. * * P = Next Protocol Bit. The P bit is set to indicate that the * Next Protocol field is present. * * O = OAM Flag Bit. The O bit is set to indicate that the packet * is an OAM packet. * * Next Protocol = This 8 bit field indicates the protocol header * immediately following the VXLAN GPE header. * * https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-01 */ /* Fields in struct vxlanhdr.vx_gpe.flags */ #define VXLAN_GPE_FLAGS_VER 0x30 /* Version. */ #define VXLAN_GPE_FLAGS_P 0x04 /* Next Protocol Bit. */ #define VXLAN_GPE_FLAGS_O 0x01 /* OAM Bit. */ /* VXLAN-GPE header flags. */ #define VXLAN_HF_VER ((1U <<29) | (1U <<28)) #define VXLAN_HF_NP (1U <<26) #define VXLAN_HF_OAM (1U <<24) #define VXLAN_GPE_USED_BITS (VXLAN_HF_VER | VXLAN_HF_NP | VXLAN_HF_OAM | \ 0xff) /* VXLAN-GPE header Next Protocol. */ #define VXLAN_GPE_NP_IPV4 0x01 #define VXLAN_GPE_NP_IPV6 0x02 #define VXLAN_GPE_NP_ETHERNET 0x03 #define VXLAN_GPE_NP_NSH 0x04 #define VXLAN_F_GPE 0x4000 #define VXLAN_HF_GPE 0x04000000 /* SRv6 protocol header. */ #define IPV6_SRCRT_TYPE_4 4 #define SRV6_BASE_HDR_LEN 8 struct srv6_base_hdr { struct ip6_rt_hdr rt_hdr; uint8_t last_entry; uint8_t flags; ovs_be16 tag; }; BUILD_ASSERT_DECL(sizeof(struct srv6_base_hdr) == SRV6_BASE_HDR_LEN); /* Input values for PACKET_TYPE macros have to be in host byte order. * The _BE postfix indicates result is in network byte order. Otherwise result * is in host byte order. */ #define PACKET_TYPE(NS, NS_TYPE) ((uint32_t) ((NS) << 16 | (NS_TYPE))) #define PACKET_TYPE_BE(NS, NS_TYPE) (htonl((NS) << 16 | (NS_TYPE))) /* Returns the host byte ordered namespace of 'packet type'. */ static inline uint16_t pt_ns(ovs_be32 packet_type) { return ntohl(packet_type) >> 16; } /* Returns the network byte ordered namespace type of 'packet type'. */ static inline ovs_be16 pt_ns_type_be(ovs_be32 packet_type) { return be32_to_be16(packet_type); } /* Returns the host byte ordered namespace type of 'packet type'. */ static inline uint16_t pt_ns_type(ovs_be32 packet_type) { return ntohs(pt_ns_type_be(packet_type)); } /* Well-known packet_type field values. */ enum packet_type { PT_ETH = PACKET_TYPE(OFPHTN_ONF, 0x0000), /* Default PT: Ethernet */ PT_USE_NEXT_PROTO = PACKET_TYPE(OFPHTN_ONF, 0xfffe), /* Pseudo PT for decap. */ PT_IPV4 = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_IP), PT_IPV6 = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_IPV6), PT_MPLS = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_MPLS), PT_MPLS_MC = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_MPLS_MCAST), PT_NSH = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_NSH), PT_UNKNOWN = PACKET_TYPE(0xffff, 0xffff), /* Unknown packet type. */ }; void ipv6_format_addr(const struct in6_addr *addr, struct ds *); void ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *, bool bracket); void ipv6_format_mapped(const struct in6_addr *addr, struct ds *); void ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask, struct ds *); const char * ipv6_string_mapped(char *addr_str, const struct in6_addr *addr); struct in6_addr ipv6_addr_bitand(const struct in6_addr *src, const struct in6_addr *mask); struct in6_addr ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b); bool ipv6_is_zero(const struct in6_addr *a); struct in6_addr ipv6_create_mask(int mask); int ipv6_count_cidr_bits(const struct in6_addr *netmask); bool ipv6_is_cidr(const struct in6_addr *netmask); bool ipv6_parse(const char *s, struct in6_addr *ip); char *ipv6_parse_masked(const char *s, struct in6_addr *ipv6, struct in6_addr *mask); char *ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; char *ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ipv6, struct in6_addr *mask); char *ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; void *eth_compose(struct dp_packet *, const struct eth_addr eth_dst, const struct eth_addr eth_src, uint16_t eth_type, size_t size); void *snap_compose(struct dp_packet *, const struct eth_addr eth_dst, const struct eth_addr eth_src, unsigned int oui, uint16_t snap_type, size_t size); void packet_set_ipv4(struct dp_packet *, ovs_be32 src, ovs_be32 dst, uint8_t tos, uint8_t ttl); void packet_set_ipv4_addr(struct dp_packet *packet, ovs_16aligned_be32 *addr, ovs_be32 new_addr); void packet_set_ipv6(struct dp_packet *, const struct in6_addr *src, const struct in6_addr *dst, uint8_t tc, ovs_be32 fl, uint8_t hlmit); void packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto, ovs_16aligned_be32 addr[4], const struct in6_addr *new_addr, bool recalculate_csum); void packet_set_tcp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst); void packet_set_udp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst); void packet_set_sctp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst); void packet_set_icmp(struct dp_packet *, uint8_t type, uint8_t code); void packet_set_nd(struct dp_packet *, const struct in6_addr *target, const struct eth_addr sll, const struct eth_addr tll); void packet_set_nd_ext(struct dp_packet *packet, const ovs_16aligned_be32 rso_flags, const uint8_t opt_type); void packet_set_igmp3_query(struct dp_packet *, uint8_t max_resp, ovs_be32 group, bool srs, uint8_t qrv, uint8_t qqic); void packet_format_tcp_flags(struct ds *, uint16_t); const char *packet_tcp_flag_to_string(uint32_t flag); void *compose_ipv6(struct dp_packet *packet, uint8_t proto, const struct in6_addr *src, const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size); void compose_arp__(struct dp_packet *); void compose_arp(struct dp_packet *, uint16_t arp_op, const struct eth_addr arp_sha, const struct eth_addr arp_tha, bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa); void compose_nd_ns(struct dp_packet *, const struct eth_addr eth_src, const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst); void compose_nd_na(struct dp_packet *, const struct eth_addr eth_src, const struct eth_addr eth_dst, const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst, ovs_be32 rso_flags); void compose_nd_ra(struct dp_packet *, const struct eth_addr eth_src, const struct eth_addr eth_dst, const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst, uint8_t cur_hop_limit, uint8_t mo_flags, ovs_be16 router_lt, ovs_be32 reachable_time, ovs_be32 retrans_timer, uint32_t mtu); void packet_put_ra_prefix_opt(struct dp_packet *, uint8_t plen, uint8_t la_flags, ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime, const ovs_be128 router_prefix); uint32_t packet_csum_pseudoheader(const struct ip_header *); bool packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr, bool *first_frag); void IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6); #define DNS_HEADER_LEN 12 struct dns_header { ovs_be16 id; uint8_t lo_flag; /* QR (1), OPCODE (4), AA (1), TC (1) and RD (1) */ uint8_t hi_flag; /* RA (1), Z (3) and RCODE (4) */ ovs_be16 qdcount; /* Num of entries in the question section. */ ovs_be16 ancount; /* Num of resource records in the answer section. */ /* Num of name server records in the authority record section. */ ovs_be16 nscount; /* Num of resource records in the additional records section. */ ovs_be16 arcount; }; BUILD_ASSERT_DECL(DNS_HEADER_LEN == sizeof(struct dns_header)); #define DNS_QUERY_TYPE_A 0x01 #define DNS_QUERY_TYPE_AAAA 0x1c #define DNS_QUERY_TYPE_ANY 0xff #define DNS_CLASS_IN 0x01 #define DNS_DEFAULT_RR_TTL 3600 #endif /* packets.h */