/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef PACKETS_H #define PACKETS_H 1 #include #include #include #include #include "compiler.h" #include "openvswitch/geneve.h" #include "openvswitch/packets.h" #include "openvswitch/types.h" #include "odp-netlink.h" #include "random.h" #include "hash.h" #include "tun-metadata.h" #include "unaligned.h" #include "util.h" struct dp_packet; struct ds; /* Purely internal to OVS userspace. These flags should never be exposed to * the outside world and so aren't included in the flags mask. */ /* Tunnel information is in userspace datapath format. */ #define FLOW_TNL_F_UDPIF (1 << 4) static inline bool ipv6_addr_is_set(const struct in6_addr *addr); static inline bool flow_tnl_dst_is_set(const struct flow_tnl *tnl) { return tnl->ip_dst || ipv6_addr_is_set(&tnl->ipv6_dst); } struct in6_addr flow_tnl_dst(const struct flow_tnl *tnl); struct in6_addr flow_tnl_src(const struct flow_tnl *tnl); /* Returns an offset to 'src' covering all the meaningful fields in 'src'. */ static inline size_t flow_tnl_size(const struct flow_tnl *src) { if (!flow_tnl_dst_is_set(src)) { /* Covers ip_dst and ipv6_dst only. */ return offsetof(struct flow_tnl, ip_src); } if (src->flags & FLOW_TNL_F_UDPIF) { /* Datapath format, cover all options we have. */ return offsetof(struct flow_tnl, metadata.opts) + src->metadata.present.len; } if (!src->metadata.present.map) { /* No TLVs, opts is irrelevant. */ return offsetof(struct flow_tnl, metadata.opts); } /* Have decoded TLVs, opts is relevant. */ return sizeof *src; } /* Copy flow_tnl, but avoid copying unused portions of tun_metadata. Unused * data in 'dst' is NOT cleared, so this must not be used in cases where the * uninitialized portion may be hashed over. */ static inline void flow_tnl_copy__(struct flow_tnl *dst, const struct flow_tnl *src) { memcpy(dst, src, flow_tnl_size(src)); } static inline bool flow_tnl_equal(const struct flow_tnl *a, const struct flow_tnl *b) { size_t a_size = flow_tnl_size(a); return a_size == flow_tnl_size(b) && !memcmp(a, b, a_size); } /* Datapath packet metadata */ struct pkt_metadata { uint32_t recirc_id; /* Recirculation id carried with the recirculating packets. 0 for packets received from the wire. */ uint32_t dp_hash; /* hash value computed by the recirculation action. */ uint32_t skb_priority; /* Packet priority for QoS. */ uint32_t pkt_mark; /* Packet mark. */ uint16_t ct_state; /* Connection state. */ uint16_t ct_zone; /* Connection zone. */ uint32_t ct_mark; /* Connection mark. */ ovs_u128 ct_label; /* Connection label. */ union flow_in_port in_port; /* Input port. */ struct flow_tnl tunnel; /* Encapsulating tunnel parameters. Note that * if 'ip_dst' == 0, the rest of the fields may * be uninitialized. */ }; static inline void pkt_metadata_init_tnl(struct pkt_metadata *md) { /* Zero up through the tunnel metadata options. The length and table * are before this and as long as they are empty, the options won't * be looked at. */ memset(md, 0, offsetof(struct pkt_metadata, tunnel.metadata.opts)); } static inline void pkt_metadata_init(struct pkt_metadata *md, odp_port_t port) { /* It can be expensive to zero out all of the tunnel metadata. However, * we can just zero out ip_dst and the rest of the data will never be * looked at. */ memset(md, 0, offsetof(struct pkt_metadata, in_port)); md->tunnel.ip_dst = 0; md->tunnel.ipv6_dst = in6addr_any; md->in_port.odp_port = port; } /* This function prefetches the cachelines touched by pkt_metadata_init() * For performance reasons the two functions should be kept in sync. */ static inline void pkt_metadata_prefetch_init(struct pkt_metadata *md) { ovs_prefetch_range(md, offsetof(struct pkt_metadata, tunnel.ip_src)); } bool dpid_from_string(const char *s, uint64_t *dpidp); #define ETH_ADDR_LEN 6 static const struct eth_addr eth_addr_broadcast OVS_UNUSED = { { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } } }; static const struct eth_addr eth_addr_exact OVS_UNUSED = { { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } } }; static const struct eth_addr eth_addr_zero OVS_UNUSED = { { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }; static const struct eth_addr eth_addr_stp OVS_UNUSED = { { { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x00 } } }; static const struct eth_addr eth_addr_lacp OVS_UNUSED = { { { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x02 } } }; static const struct eth_addr eth_addr_bfd OVS_UNUSED = { { { 0x00, 0x23, 0x20, 0x00, 0x00, 0x01 } } }; static inline bool eth_addr_is_broadcast(const struct eth_addr a) { return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff); } static inline bool eth_addr_is_multicast(const struct eth_addr a) { return a.ea[0] & 1; } static inline bool eth_addr_is_local(const struct eth_addr a) { /* Local if it is either a locally administered address or a Nicira random * address. */ return a.ea[0] & 2 || (a.be16[0] == htons(0x0023) && (a.be16[1] & htons(0xff80)) == htons(0x2080)); } static inline bool eth_addr_is_zero(const struct eth_addr a) { return !(a.be16[0] | a.be16[1] | a.be16[2]); } static inline int eth_mask_is_exact(const struct eth_addr a) { return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff); } static inline int eth_addr_compare_3way(const struct eth_addr a, const struct eth_addr b) { return memcmp(&a, &b, sizeof a); } static inline bool eth_addr_equals(const struct eth_addr a, const struct eth_addr b) { return !eth_addr_compare_3way(a, b); } static inline bool eth_addr_equal_except(const struct eth_addr a, const struct eth_addr b, const struct eth_addr mask) { return !(((a.be16[0] ^ b.be16[0]) & mask.be16[0]) || ((a.be16[1] ^ b.be16[1]) & mask.be16[1]) || ((a.be16[2] ^ b.be16[2]) & mask.be16[2])); } static inline uint64_t eth_addr_to_uint64(const struct eth_addr ea) { return (((uint64_t) ntohs(ea.be16[0]) << 32) | ((uint64_t) ntohs(ea.be16[1]) << 16) | ntohs(ea.be16[2])); } static inline uint64_t eth_addr_vlan_to_uint64(const struct eth_addr ea, uint16_t vlan) { return (((uint64_t)vlan << 48) | eth_addr_to_uint64(ea)); } static inline void eth_addr_from_uint64(uint64_t x, struct eth_addr *ea) { ea->be16[0] = htons(x >> 32); ea->be16[1] = htons((x & 0xFFFF0000) >> 16); ea->be16[2] = htons(x & 0xFFFF); } static inline struct eth_addr eth_addr_invert(const struct eth_addr src) { struct eth_addr dst; for (int i = 0; i < ARRAY_SIZE(src.be16); i++) { dst.be16[i] = ~src.be16[i]; } return dst; } static inline void eth_addr_mark_random(struct eth_addr *ea) { ea->ea[0] &= ~1; /* Unicast. */ ea->ea[0] |= 2; /* Private. */ } static inline void eth_addr_random(struct eth_addr *ea) { random_bytes((uint8_t *)ea, sizeof *ea); eth_addr_mark_random(ea); } static inline void eth_addr_nicira_random(struct eth_addr *ea) { eth_addr_random(ea); /* Set the OUI to the Nicira one. */ ea->ea[0] = 0x00; ea->ea[1] = 0x23; ea->ea[2] = 0x20; /* Set the top bit to indicate random Nicira address. */ ea->ea[3] |= 0x80; } static inline uint32_t hash_mac(const struct eth_addr ea, const uint16_t vlan, const uint32_t basis) { return hash_uint64_basis(eth_addr_vlan_to_uint64(ea, vlan), basis); } bool eth_addr_is_reserved(const struct eth_addr); bool eth_addr_from_string(const char *, struct eth_addr *); void compose_rarp(struct dp_packet *, const struct eth_addr); void eth_push_vlan(struct dp_packet *, ovs_be16 tpid, ovs_be16 tci); void eth_pop_vlan(struct dp_packet *); const char *eth_from_hex(const char *hex, struct dp_packet **packetp); void eth_format_masked(const struct eth_addr ea, const struct eth_addr *mask, struct ds *s); void set_mpls_lse(struct dp_packet *, ovs_be32 label); void push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse); void pop_mpls(struct dp_packet *, ovs_be16 ethtype); void set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl); void set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc); void set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label); void set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos); ovs_be32 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label); /* Example: * * struct eth_addr mac; * [...] * printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac)); * */ #define ETH_ADDR_FMT \ "%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8 #define ETH_ADDR_ARGS(EA) ETH_ADDR_BYTES_ARGS((EA).ea) #define ETH_ADDR_BYTES_ARGS(EAB) \ (EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], (EAB)[4], (EAB)[5] #define ETH_ADDR_STRLEN 17 /* Example: * * char *string = "1 00:11:22:33:44:55 2"; * struct eth_addr mac; * int a, b; * * if (ovs_scan(string, "%d"ETH_ADDR_SCAN_FMT"%d", * &a, ETH_ADDR_SCAN_ARGS(mac), &b)) { * ... * } */ #define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8 #define ETH_ADDR_SCAN_ARGS(EA) \ &(EA).ea[0], &(EA).ea[1], &(EA).ea[2], &(EA).ea[3], &(EA).ea[4], &(EA).ea[5] #define ETH_TYPE_IP 0x0800 #define ETH_TYPE_ARP 0x0806 #define ETH_TYPE_TEB 0x6558 #define ETH_TYPE_VLAN_8021Q 0x8100 #define ETH_TYPE_VLAN ETH_TYPE_VLAN_8021Q #define ETH_TYPE_VLAN_8021AD 0x88a8 #define ETH_TYPE_IPV6 0x86dd #define ETH_TYPE_LACP 0x8809 #define ETH_TYPE_RARP 0x8035 #define ETH_TYPE_MPLS 0x8847 #define ETH_TYPE_MPLS_MCAST 0x8848 static inline bool eth_type_mpls(ovs_be16 eth_type) { return eth_type == htons(ETH_TYPE_MPLS) || eth_type == htons(ETH_TYPE_MPLS_MCAST); } static inline bool eth_type_vlan(ovs_be16 eth_type) { return eth_type == htons(ETH_TYPE_VLAN_8021Q) || eth_type == htons(ETH_TYPE_VLAN_8021AD); } /* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame * lengths. */ #define ETH_TYPE_MIN 0x600 #define ETH_HEADER_LEN 14 #define ETH_PAYLOAD_MIN 46 #define ETH_PAYLOAD_MAX 1500 #define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN) #define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX) #define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX) OVS_PACKED( struct eth_header { struct eth_addr eth_dst; struct eth_addr eth_src; ovs_be16 eth_type; }); BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header)); #define LLC_DSAP_SNAP 0xaa #define LLC_SSAP_SNAP 0xaa #define LLC_CNTL_SNAP 3 #define LLC_HEADER_LEN 3 OVS_PACKED( struct llc_header { uint8_t llc_dsap; uint8_t llc_ssap; uint8_t llc_cntl; }); BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header)); /* LLC field values used for STP frames. */ #define STP_LLC_SSAP 0x42 #define STP_LLC_DSAP 0x42 #define STP_LLC_CNTL 0x03 #define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so sizeof(SNAP_ORG_ETHERNET) == 3. */ #define SNAP_HEADER_LEN 5 OVS_PACKED( struct snap_header { uint8_t snap_org[3]; ovs_be16 snap_type; }); BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header)); #define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN) OVS_PACKED( struct llc_snap_header { struct llc_header llc; struct snap_header snap; }); BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header)); #define VLAN_VID_MASK 0x0fff #define VLAN_VID_SHIFT 0 #define VLAN_PCP_MASK 0xe000 #define VLAN_PCP_SHIFT 13 #define VLAN_CFI 0x1000 #define VLAN_CFI_SHIFT 12 /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the VLAN ID in host byte order. */ static inline uint16_t vlan_tci_to_vid(ovs_be16 vlan_tci) { return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT; } /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the priority code point (PCP) in host byte order. */ static inline int vlan_tci_to_pcp(ovs_be16 vlan_tci) { return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT; } /* Given the vlan_tci field from an 802.1Q header, in network byte order, * returns the Canonical Format Indicator (CFI). */ static inline int vlan_tci_to_cfi(ovs_be16 vlan_tci) { return (vlan_tci & htons(VLAN_CFI)) != 0; } #define VLAN_HEADER_LEN 4 struct vlan_header { ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */ ovs_be16 vlan_next_type; }; BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header)); #define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN) OVS_PACKED( struct vlan_eth_header { struct eth_addr veth_dst; struct eth_addr veth_src; ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */ ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */ ovs_be16 veth_next_type; }); BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header)); /* MPLS related definitions */ #define MPLS_TTL_MASK 0x000000ff #define MPLS_TTL_SHIFT 0 #define MPLS_BOS_MASK 0x00000100 #define MPLS_BOS_SHIFT 8 #define MPLS_TC_MASK 0x00000e00 #define MPLS_TC_SHIFT 9 #define MPLS_LABEL_MASK 0xfffff000 #define MPLS_LABEL_SHIFT 12 #define MPLS_HLEN 4 struct mpls_hdr { ovs_16aligned_be32 mpls_lse; }; BUILD_ASSERT_DECL(MPLS_HLEN == sizeof(struct mpls_hdr)); /* Given a mpls label stack entry in network byte order * return mpls label in host byte order */ static inline uint32_t mpls_lse_to_label(ovs_be32 mpls_lse) { return (ntohl(mpls_lse) & MPLS_LABEL_MASK) >> MPLS_LABEL_SHIFT; } /* Given a mpls label stack entry in network byte order * return mpls tc */ static inline uint8_t mpls_lse_to_tc(ovs_be32 mpls_lse) { return (ntohl(mpls_lse) & MPLS_TC_MASK) >> MPLS_TC_SHIFT; } /* Given a mpls label stack entry in network byte order * return mpls ttl */ static inline uint8_t mpls_lse_to_ttl(ovs_be32 mpls_lse) { return (ntohl(mpls_lse) & MPLS_TTL_MASK) >> MPLS_TTL_SHIFT; } /* Set TTL in mpls lse. */ static inline void flow_set_mpls_lse_ttl(ovs_be32 *mpls_lse, uint8_t ttl) { *mpls_lse &= ~htonl(MPLS_TTL_MASK); *mpls_lse |= htonl(ttl << MPLS_TTL_SHIFT); } /* Given a mpls label stack entry in network byte order * return mpls BoS bit */ static inline uint8_t mpls_lse_to_bos(ovs_be32 mpls_lse) { return (mpls_lse & htonl(MPLS_BOS_MASK)) != 0; } #define IP_FMT "%"PRIu32".%"PRIu32".%"PRIu32".%"PRIu32 #define IP_ARGS(ip) \ ntohl(ip) >> 24, \ (ntohl(ip) >> 16) & 0xff, \ (ntohl(ip) >> 8) & 0xff, \ ntohl(ip) & 0xff /* Example: * * char *string = "1 33.44.55.66 2"; * ovs_be32 ip; * int a, b; * * if (ovs_scan(string, "%d"IP_SCAN_FMT"%d", &a, IP_SCAN_ARGS(&ip), &b)) { * ... * } */ #define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8 #define IP_SCAN_ARGS(ip) \ ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \ &((uint8_t *) ip)[1], \ &((uint8_t *) ip)[2], \ &((uint8_t *) ip)[3] #define IP_PORT_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8":%"SCNu16 #define IP_PORT_SCAN_ARGS(ip, port) \ ((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \ &((uint8_t *) ip)[1], \ &((uint8_t *) ip)[2], \ &((uint8_t *) ip)[3], \ ((void) (ovs_be16) *(port), (uint16_t *) port) /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N * high-order 1-bits and 32-N low-order 0-bits. */ static inline bool ip_is_cidr(ovs_be32 netmask) { uint32_t x = ~ntohl(netmask); return !(x & (x + 1)); } static inline bool ip_is_multicast(ovs_be32 ip) { return (ip & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ip_is_local_multicast(ovs_be32 ip) { return (ip & htonl(0xffffff00)) == htonl(0xe0000000); } int ip_count_cidr_bits(ovs_be32 netmask); void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *); bool ip_parse(const char *s, ovs_be32 *ip); char *ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port) OVS_WARN_UNUSED_RESULT; char *ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask) OVS_WARN_UNUSED_RESULT; char *ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; char *ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip, ovs_be32 *mask) OVS_WARN_UNUSED_RESULT; char *ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; #define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4) #define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15) #define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl)) #ifndef IPPROTO_SCTP #define IPPROTO_SCTP 132 #endif /* TOS fields. */ #define IP_ECN_NOT_ECT 0x0 #define IP_ECN_ECT_1 0x01 #define IP_ECN_ECT_0 0x02 #define IP_ECN_CE 0x03 #define IP_ECN_MASK 0x03 #define IP_DSCP_MASK 0xfc static inline int IP_ECN_is_ce(uint8_t dsfield) { return (dsfield & IP_ECN_MASK) == IP_ECN_CE; } #define IP_VERSION 4 #define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */ #define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */ #define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */ #define IP_IS_FRAGMENT(ip_frag_off) \ ((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK)) #define IP_HEADER_LEN 20 struct ip_header { uint8_t ip_ihl_ver; uint8_t ip_tos; ovs_be16 ip_tot_len; ovs_be16 ip_id; ovs_be16 ip_frag_off; uint8_t ip_ttl; uint8_t ip_proto; ovs_be16 ip_csum; ovs_16aligned_be32 ip_src; ovs_16aligned_be32 ip_dst; }; BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header)); /* ICMPv4 types. */ #define ICMP4_ECHO_REPLY 0 #define ICMP4_DST_UNREACH 3 #define ICMP4_SOURCEQUENCH 4 #define ICMP4_REDIRECT 5 #define ICMP4_ECHO_REQUEST 8 #define ICMP4_TIME_EXCEEDED 11 #define ICMP4_PARAM_PROB 12 #define ICMP4_TIMESTAMP 13 #define ICMP4_TIMESTAMPREPLY 14 #define ICMP4_INFOREQUEST 15 #define ICMP4_INFOREPLY 16 #define ICMP_HEADER_LEN 8 struct icmp_header { uint8_t icmp_type; uint8_t icmp_code; ovs_be16 icmp_csum; union { struct { ovs_be16 id; ovs_be16 seq; } echo; struct { ovs_be16 empty; ovs_be16 mtu; } frag; ovs_16aligned_be32 gateway; } icmp_fields; }; BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header)); #define IGMP_HEADER_LEN 8 struct igmp_header { uint8_t igmp_type; uint8_t igmp_code; ovs_be16 igmp_csum; ovs_16aligned_be32 group; }; BUILD_ASSERT_DECL(IGMP_HEADER_LEN == sizeof(struct igmp_header)); #define IGMPV3_HEADER_LEN 8 struct igmpv3_header { uint8_t type; uint8_t rsvr1; ovs_be16 csum; ovs_be16 rsvr2; ovs_be16 ngrp; }; BUILD_ASSERT_DECL(IGMPV3_HEADER_LEN == sizeof(struct igmpv3_header)); #define IGMPV3_RECORD_LEN 8 struct igmpv3_record { uint8_t type; uint8_t aux_len; ovs_be16 nsrcs; ovs_16aligned_be32 maddr; }; BUILD_ASSERT_DECL(IGMPV3_RECORD_LEN == sizeof(struct igmpv3_record)); #define IGMP_HOST_MEMBERSHIP_QUERY 0x11 /* From RFC1112 */ #define IGMP_HOST_MEMBERSHIP_REPORT 0x12 /* Ditto */ #define IGMPV2_HOST_MEMBERSHIP_REPORT 0x16 /* V2 version of 0x12 */ #define IGMP_HOST_LEAVE_MESSAGE 0x17 #define IGMPV3_HOST_MEMBERSHIP_REPORT 0x22 /* V3 version of 0x12 */ /* * IGMPv3 and MLDv2 use the same codes. */ #define IGMPV3_MODE_IS_INCLUDE 1 #define IGMPV3_MODE_IS_EXCLUDE 2 #define IGMPV3_CHANGE_TO_INCLUDE_MODE 3 #define IGMPV3_CHANGE_TO_EXCLUDE_MODE 4 #define IGMPV3_ALLOW_NEW_SOURCES 5 #define IGMPV3_BLOCK_OLD_SOURCES 6 #define SCTP_HEADER_LEN 12 struct sctp_header { ovs_be16 sctp_src; ovs_be16 sctp_dst; ovs_16aligned_be32 sctp_vtag; ovs_16aligned_be32 sctp_csum; }; BUILD_ASSERT_DECL(SCTP_HEADER_LEN == sizeof(struct sctp_header)); #define UDP_HEADER_LEN 8 struct udp_header { ovs_be16 udp_src; ovs_be16 udp_dst; ovs_be16 udp_len; ovs_be16 udp_csum; }; BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header)); #define TCP_FIN 0x001 #define TCP_SYN 0x002 #define TCP_RST 0x004 #define TCP_PSH 0x008 #define TCP_ACK 0x010 #define TCP_URG 0x020 #define TCP_ECE 0x040 #define TCP_CWR 0x080 #define TCP_NS 0x100 #define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12))) #define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x0fff) #define TCP_FLAGS_BE16(tcp_ctl) ((tcp_ctl) & htons(0x0fff)) #define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12) #define TCP_HEADER_LEN 20 struct tcp_header { ovs_be16 tcp_src; ovs_be16 tcp_dst; ovs_16aligned_be32 tcp_seq; ovs_16aligned_be32 tcp_ack; ovs_be16 tcp_ctl; ovs_be16 tcp_winsz; ovs_be16 tcp_csum; ovs_be16 tcp_urg; }; BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header)); /* Connection states */ enum { CS_NEW_BIT = 0, CS_ESTABLISHED_BIT = 1, CS_RELATED_BIT = 2, CS_REPLY_DIR_BIT = 3, CS_INVALID_BIT = 4, CS_TRACKED_BIT = 5, CS_SRC_NAT_BIT = 6, CS_DST_NAT_BIT = 7, }; enum { CS_NEW = (1 << CS_NEW_BIT), CS_ESTABLISHED = (1 << CS_ESTABLISHED_BIT), CS_RELATED = (1 << CS_RELATED_BIT), CS_REPLY_DIR = (1 << CS_REPLY_DIR_BIT), CS_INVALID = (1 << CS_INVALID_BIT), CS_TRACKED = (1 << CS_TRACKED_BIT), CS_SRC_NAT = (1 << CS_SRC_NAT_BIT), CS_DST_NAT = (1 << CS_DST_NAT_BIT), }; /* Undefined connection state bits. */ #define CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \ | CS_INVALID | CS_REPLY_DIR | CS_TRACKED \ | CS_SRC_NAT | CS_DST_NAT) #define CS_UNSUPPORTED_MASK (~(uint32_t)CS_SUPPORTED_MASK) #define ARP_HRD_ETHERNET 1 #define ARP_PRO_IP 0x0800 #define ARP_OP_REQUEST 1 #define ARP_OP_REPLY 2 #define ARP_OP_RARP 3 #define ARP_ETH_HEADER_LEN 28 struct arp_eth_header { /* Generic members. */ ovs_be16 ar_hrd; /* Hardware type. */ ovs_be16 ar_pro; /* Protocol type. */ uint8_t ar_hln; /* Hardware address length. */ uint8_t ar_pln; /* Protocol address length. */ ovs_be16 ar_op; /* Opcode. */ /* Ethernet+IPv4 specific members. */ struct eth_addr ar_sha; /* Sender hardware address. */ ovs_16aligned_be32 ar_spa; /* Sender protocol address. */ struct eth_addr ar_tha; /* Target hardware address. */ ovs_16aligned_be32 ar_tpa; /* Target protocol address. */ }; BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header)); #define IPV6_HEADER_LEN 40 /* Like struct in6_addr, but whereas that struct requires 32-bit alignment on * most implementations, this one only requires 16-bit alignment. */ union ovs_16aligned_in6_addr { ovs_be16 be16[8]; ovs_16aligned_be32 be32[4]; }; /* Like struct in6_hdr, but whereas that struct requires 32-bit alignment, this * one only requires 16-bit alignment. */ struct ovs_16aligned_ip6_hdr { union { struct ovs_16aligned_ip6_hdrctl { ovs_16aligned_be32 ip6_un1_flow; ovs_be16 ip6_un1_plen; uint8_t ip6_un1_nxt; uint8_t ip6_un1_hlim; } ip6_un1; uint8_t ip6_un2_vfc; } ip6_ctlun; union ovs_16aligned_in6_addr ip6_src; union ovs_16aligned_in6_addr ip6_dst; }; /* Like struct in6_frag, but whereas that struct requires 32-bit alignment, * this one only requires 16-bit alignment. */ struct ovs_16aligned_ip6_frag { uint8_t ip6f_nxt; uint8_t ip6f_reserved; ovs_be16 ip6f_offlg; ovs_16aligned_be32 ip6f_ident; }; #define ICMP6_HEADER_LEN 4 struct icmp6_header { uint8_t icmp6_type; uint8_t icmp6_code; ovs_be16 icmp6_cksum; }; BUILD_ASSERT_DECL(ICMP6_HEADER_LEN == sizeof(struct icmp6_header)); uint32_t packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *); /* Neighbor Discovery option field. * ND options are always a multiple of 8 bytes in size. */ #define ND_OPT_LEN 8 struct ovs_nd_opt { uint8_t nd_opt_type; /* Values defined in icmp6.h */ uint8_t nd_opt_len; /* in units of 8 octets (the size of this struct) */ struct eth_addr nd_opt_mac; /* Ethernet address in the case of SLL or TLL options */ }; BUILD_ASSERT_DECL(ND_OPT_LEN == sizeof(struct ovs_nd_opt)); /* Like struct nd_msg (from ndisc.h), but whereas that struct requires 32-bit * alignment, this one only requires 16-bit alignment. */ #define ND_MSG_LEN 24 struct ovs_nd_msg { struct icmp6_header icmph; ovs_16aligned_be32 rso_flags; union ovs_16aligned_in6_addr target; struct ovs_nd_opt options[0]; }; BUILD_ASSERT_DECL(ND_MSG_LEN == sizeof(struct ovs_nd_msg)); #define ND_RSO_ROUTER 0x80000000 #define ND_RSO_SOLICITED 0x40000000 #define ND_RSO_OVERRIDE 0x20000000 /* * Use the same struct for MLD and MLD2, naming members as the defined fields in * in the corresponding version of the protocol, though they are reserved in the * other one. */ #define MLD_HEADER_LEN 8 struct mld_header { uint8_t type; uint8_t code; ovs_be16 csum; ovs_be16 mrd; ovs_be16 ngrp; }; BUILD_ASSERT_DECL(MLD_HEADER_LEN == sizeof(struct mld_header)); #define MLD2_RECORD_LEN 20 struct mld2_record { uint8_t type; uint8_t aux_len; ovs_be16 nsrcs; union ovs_16aligned_in6_addr maddr; }; BUILD_ASSERT_DECL(MLD2_RECORD_LEN == sizeof(struct mld2_record)); #define MLD_QUERY 130 #define MLD_REPORT 131 #define MLD_DONE 132 #define MLD2_REPORT 143 /* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */ #define IPV6_LABEL_MASK 0x000fffff /* Example: * * char *string = "1 ::1 2"; * char ipv6_s[IPV6_SCAN_LEN + 1]; * struct in6_addr ipv6; * * if (ovs_scan(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b) * && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) { * ... * } */ #define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]" #define IPV6_SCAN_LEN 46 extern const struct in6_addr in6addr_exact; #define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } } extern const struct in6_addr in6addr_all_hosts; #define IN6ADDR_ALL_HOSTS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 } } } static inline bool ipv6_addr_equals(const struct in6_addr *a, const struct in6_addr *b) { #ifdef IN6_ARE_ADDR_EQUAL return IN6_ARE_ADDR_EQUAL(a, b); #else return !memcmp(a, b, sizeof(*a)); #endif } /* Checks the IPv6 address in 'mask' for all zeroes. */ static inline bool ipv6_mask_is_any(const struct in6_addr *mask) { return ipv6_addr_equals(mask, &in6addr_any); } static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) { return ipv6_addr_equals(mask, &in6addr_exact); } static inline bool ipv6_is_all_hosts(const struct in6_addr *addr) { return ipv6_addr_equals(addr, &in6addr_all_hosts); } static inline bool ipv6_addr_is_set(const struct in6_addr *addr) { return !ipv6_addr_equals(addr, &in6addr_any); } static inline bool ipv6_addr_is_multicast(const struct in6_addr *ip) { return ip->s6_addr[0] == 0xff; } static inline struct in6_addr in6_addr_mapped_ipv4(ovs_be32 ip4) { struct in6_addr ip6 = { .s6_addr = { [10] = 0xff, [11] = 0xff } }; memcpy(&ip6.s6_addr[12], &ip4, 4); return ip6; } static inline void in6_addr_set_mapped_ipv4(struct in6_addr *ip6, ovs_be32 ip4) { *ip6 = in6_addr_mapped_ipv4(ip4); } static inline ovs_be32 in6_addr_get_mapped_ipv4(const struct in6_addr *addr) { union ovs_16aligned_in6_addr *taddr = (void *) addr; if (IN6_IS_ADDR_V4MAPPED(addr)) { return get_16aligned_be32(&taddr->be32[3]); } else { return INADDR_ANY; } } static inline void in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6) { union ovs_16aligned_in6_addr *taddr = (void *) addr; memset(taddr->be16, 0, sizeof(taddr->be16)); taddr->be16[0] = htons(0xff02); taddr->be16[5] = htons(0x1); taddr->be16[6] = htons(0xff00); memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3); } /* * Generates ipv6 link local address from the given eth addr * with prefix 'fe80::/64' and stores it in 'lla' */ static inline void in6_generate_lla(struct eth_addr ea, struct in6_addr *lla) { union ovs_16aligned_in6_addr *taddr = (void *) lla; memset(taddr->be16, 0, sizeof(taddr->be16)); taddr->be16[0] = htons(0xfe80); taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]); taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff); taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]); taddr->be16[7] = ea.be16[2]; } /* Returns true if 'addr' is a link local address. Otherwise, false. */ static inline bool in6_is_lla(struct in6_addr *addr) { #ifdef s6_addr32 return addr->s6_addr32[0] == htonl(0xfe800000) && !(addr->s6_addr32[1]); #else return addr->s6_addr[0] == 0xfe && addr->s6_addr[1] == 0x80 && !(addr->s6_addr[2] | addr->s6_addr[3] | addr->s6_addr[4] | addr->s6_addr[5] | addr->s6_addr[6] | addr->s6_addr[7]); #endif } static inline void ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6) { eth->ea[0] = 0x33; eth->ea[1] = 0x33; eth->ea[2] = ip6->s6_addr[12]; eth->ea[3] = ip6->s6_addr[13]; eth->ea[4] = ip6->s6_addr[14]; eth->ea[5] = ip6->s6_addr[15]; } static inline bool dl_type_is_ip_any(ovs_be16 dl_type) { return dl_type == htons(ETH_TYPE_IP) || dl_type == htons(ETH_TYPE_IPV6); } /* Tunnel header */ /* GRE protocol header */ struct gre_base_hdr { ovs_be16 flags; ovs_be16 protocol; }; #define GRE_CSUM 0x8000 #define GRE_ROUTING 0x4000 #define GRE_KEY 0x2000 #define GRE_SEQ 0x1000 #define GRE_STRICT 0x0800 #define GRE_REC 0x0700 #define GRE_FLAGS 0x00F8 #define GRE_VERSION 0x0007 /* VXLAN protocol header */ struct vxlanhdr { ovs_16aligned_be32 vx_flags; ovs_16aligned_be32 vx_vni; }; #define VXLAN_FLAGS 0x08000000 /* struct vxlanhdr.vx_flags required value. */ void ipv6_format_addr(const struct in6_addr *addr, struct ds *); void ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *, bool bracket); void ipv6_format_mapped(const struct in6_addr *addr, struct ds *); void ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask, struct ds *); const char * ipv6_string_mapped(char *addr_str, const struct in6_addr *addr); struct in6_addr ipv6_addr_bitand(const struct in6_addr *src, const struct in6_addr *mask); struct in6_addr ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b); bool ipv6_is_zero(const struct in6_addr *a); struct in6_addr ipv6_create_mask(int mask); int ipv6_count_cidr_bits(const struct in6_addr *netmask); bool ipv6_is_cidr(const struct in6_addr *netmask); bool ipv6_parse(const char *s, struct in6_addr *ip); char *ipv6_parse_masked(const char *s, struct in6_addr *ipv6, struct in6_addr *mask); char *ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; char *ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ipv6, struct in6_addr *mask); char *ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip, unsigned int *plen) OVS_WARN_UNUSED_RESULT; void *eth_compose(struct dp_packet *, const struct eth_addr eth_dst, const struct eth_addr eth_src, uint16_t eth_type, size_t size); void *snap_compose(struct dp_packet *, const struct eth_addr eth_dst, const struct eth_addr eth_src, unsigned int oui, uint16_t snap_type, size_t size); void packet_set_ipv4(struct dp_packet *, ovs_be32 src, ovs_be32 dst, uint8_t tos, uint8_t ttl); void packet_set_ipv6(struct dp_packet *, const ovs_be32 src[4], const ovs_be32 dst[4], uint8_t tc, ovs_be32 fl, uint8_t hlmit); void packet_set_tcp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst); void packet_set_udp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst); void packet_set_sctp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst); void packet_set_icmp(struct dp_packet *, uint8_t type, uint8_t code); void packet_set_nd(struct dp_packet *, const ovs_be32 target[4], const struct eth_addr sll, const struct eth_addr tll); void packet_format_tcp_flags(struct ds *, uint16_t); const char *packet_tcp_flag_to_string(uint32_t flag); void compose_arp__(struct dp_packet *); void compose_arp(struct dp_packet *, uint16_t arp_op, const struct eth_addr arp_sha, const struct eth_addr arp_tha, bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa); void compose_nd_ns(struct dp_packet *, const struct eth_addr eth_src, const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst); void compose_nd_na(struct dp_packet *, const struct eth_addr eth_src, const struct eth_addr eth_dst, const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst, ovs_be32 rso_flags); uint32_t packet_csum_pseudoheader(const struct ip_header *); void IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6); #endif /* packets.h */