/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "socket-util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "openvswitch/dynamic-string.h" #include "ovs-thread.h" #include "packets.h" #include "openvswitch/poll-loop.h" #include "util.h" #include "openvswitch/vlog.h" #ifdef __linux__ #include #endif #ifdef HAVE_NETLINK #include "netlink-protocol.h" #include "netlink-socket.h" #endif #include "dns-resolve.h" VLOG_DEFINE_THIS_MODULE(socket_util); static int getsockopt_int(int fd, int level, int option, const char *optname, int *valuep); static struct sockaddr_in *sin_cast(const struct sockaddr *); static struct sockaddr_in6 *sin6_cast(const struct sockaddr *); static const struct sockaddr *sa_cast(const struct sockaddr_storage *); static bool parse_sockaddr_components(struct sockaddr_storage *ss, char *host_s, const char *port_s, uint16_t default_port, const char *s, bool resolve_host, bool *dns_failure); /* Sets 'fd' to non-blocking mode. Returns 0 if successful, otherwise a * positive errno value. */ int set_nonblocking(int fd) { #ifndef _WIN32 int flags = fcntl(fd, F_GETFL, 0); if (flags != -1) { if (fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1) { return 0; } else { VLOG_ERR("fcntl(F_SETFL) failed: %s", ovs_strerror(errno)); return errno; } } else { VLOG_ERR("fcntl(F_GETFL) failed: %s", ovs_strerror(errno)); return errno; } #else unsigned long arg = 1; if (ioctlsocket(fd, FIONBIO, &arg)) { int error = sock_errno(); VLOG_ERR("set_nonblocking failed: %s", sock_strerror(error)); return error; } return 0; #endif } void xset_nonblocking(int fd) { if (set_nonblocking(fd)) { exit(EXIT_FAILURE); } } void setsockopt_tcp_nodelay(int fd) { int on = 1; int retval; retval = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &on, sizeof on); if (retval) { retval = sock_errno(); VLOG_ERR("setsockopt(TCP_NODELAY): %s", sock_strerror(retval)); } } /* Sets the DSCP value of socket 'fd' to 'dscp', which must be 63 or less. * 'family' must indicate the socket's address family (AF_INET or AF_INET6, to * do anything useful). */ int set_dscp(int fd, int family, uint8_t dscp) { int retval; int val; #ifdef _WIN32 /* XXX: Consider using QoS2 APIs for Windows to set dscp. */ return 0; #endif if (dscp > 63) { return EINVAL; } val = dscp << 2; switch (family) { case AF_INET: retval = setsockopt(fd, IPPROTO_IP, IP_TOS, &val, sizeof val); break; case AF_INET6: retval = setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &val, sizeof val); break; default: return ENOPROTOOPT; } return retval ? sock_errno() : 0; } /* Checks whether 'host_name' is an IPv4 or IPv6 address. It is assumed * that 'host_name' is valid. Returns false if it is IPv4 address, true if * it is IPv6 address. */ bool addr_is_ipv6(const char *host_name) { return strchr(host_name, ':') != NULL; } /* Translates 'host_name', which must be a string representation of an IP * address, into a numeric IP address in '*addr'. Returns 0 if successful, * otherwise a positive errno value. */ int lookup_ip(const char *host_name, struct in_addr *addr) { if (!ip_parse(host_name, &addr->s_addr)) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "\"%s\" is not a valid IP address", host_name); return ENOENT; } return 0; } /* Translates 'host_name', which must be a string representation of an IPv6 * address, into a numeric IPv6 address in '*addr'. Returns 0 if successful, * otherwise a positive errno value. */ int lookup_ipv6(const char *host_name, struct in6_addr *addr) { if (!ipv6_parse(host_name, addr)) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "\"%s\" is not a valid IPv6 address", host_name); return ENOENT; } return 0; } /* Translates 'host_name', which must be a host name or a string representation * of an IP address, into a numeric IP address in '*addr'. Returns 0 if * successful, otherwise a positive errno value. * * Most Open vSwitch code should not use this because it causes deadlocks: * getaddrinfo() sends out a DNS request but that starts a new flow for which * OVS must set up a flow, but it can't because it's waiting for a DNS reply. * The synchronous lookup also delays other activity. (Of course we can solve * this but it doesn't seem worthwhile quite yet.) */ int lookup_hostname(const char *host_name, struct in_addr *addr) { struct addrinfo *result; struct addrinfo hints; if (ip_parse(host_name, &addr->s_addr)) { return 0; } memset(&hints, 0, sizeof hints); hints.ai_family = AF_INET; switch (getaddrinfo(host_name, NULL, &hints, &result)) { case 0: *addr = ALIGNED_CAST(struct sockaddr_in *, result->ai_addr)->sin_addr; freeaddrinfo(result); return 0; #ifdef EAI_ADDRFAMILY case EAI_ADDRFAMILY: #endif case EAI_NONAME: case EAI_SERVICE: return ENOENT; case EAI_AGAIN: return EAGAIN; case EAI_BADFLAGS: case EAI_FAMILY: case EAI_SOCKTYPE: return EINVAL; case EAI_FAIL: return EIO; case EAI_MEMORY: return ENOMEM; #if defined (EAI_NODATA) && EAI_NODATA != EAI_NONAME case EAI_NODATA: return ENXIO; #endif #ifdef EAI_SYSTEM case EAI_SYSTEM: return sock_errno(); #endif default: return EPROTO; } } int check_connection_completion(int fd) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 10); struct pollfd pfd; int retval; pfd.fd = fd; pfd.events = POLLOUT; #ifndef _WIN32 do { retval = poll(&pfd, 1, 0); } while (retval < 0 && errno == EINTR); #else fd_set wrset, exset; FD_ZERO(&wrset); FD_ZERO(&exset); FD_SET(fd, &exset); FD_SET(fd, &wrset); pfd.revents = 0; struct timeval tv = { 0, 0 }; /* WSAPoll is broken on Windows, instead do a select */ retval = select(0, NULL, &wrset, &exset, &tv); if (retval == 1) { if (FD_ISSET(fd, &wrset)) { pfd.revents |= pfd.events; } if (FD_ISSET(fd, &exset)) { pfd.revents |= POLLERR; } } #endif if (retval == 1) { if (pfd.revents & (POLLERR | POLLHUP)) { ssize_t n = send(fd, "", 1, 0); if (n < 0) { return sock_errno(); } else { VLOG_ERR_RL(&rl, "poll return POLLERR but send succeeded"); return EPROTO; } } return 0; } else if (retval < 0) { VLOG_ERR_RL(&rl, "poll: %s", sock_strerror(sock_errno())); return errno; } else { return EAGAIN; } } /* Returns the size of socket 'sock''s receive buffer (SO_RCVBUF), or a * negative errno value if an error occurs. */ int get_socket_rcvbuf(int sock) { int rcvbuf; int error; error = getsockopt_int(sock, SOL_SOCKET, SO_RCVBUF, "SO_RCVBUF", &rcvbuf); return error ? -error : rcvbuf; } /* Reads and discards up to 'n' datagrams from 'fd', stopping as soon as no * more data can be immediately read. ('fd' should therefore be in * non-blocking mode.)*/ void drain_fd(int fd, size_t n_packets) { for (; n_packets > 0; n_packets--) { /* 'buffer' only needs to be 1 byte long in most circumstances. This * size is defensive against the possibility that we someday want to * use a Linux tap device without TUN_NO_PI, in which case a buffer * smaller than sizeof(struct tun_pi) will give EINVAL on read. */ char buffer[128]; if (read(fd, buffer, sizeof buffer) <= 0) { break; } } } ovs_be32 guess_netmask(ovs_be32 ip_) { uint32_t ip = ntohl(ip_); return ((ip >> 31) == 0 ? htonl(0xff000000) /* Class A */ : (ip >> 30) == 2 ? htonl(0xffff0000) /* Class B */ : (ip >> 29) == 6 ? htonl(0xffffff00) /* Class C */ : htonl(0)); /* ??? */ } static char * unbracket(char *s) { if (*s == '[') { s++; char *end = strchr(s, '\0'); if (end[-1] == ']') { end[-1] = '\0'; } } return s; } /* 'host_index' is 0 if the host precedes the port within 's', 1 otherwise. */ static void inet_parse_tokens__(char *s, int host_index, char **hostp, char **portp) { char *colon = NULL; bool in_brackets = false; int n_colons = 0; for (char *p = s; *p; p++) { if (*p == '[') { in_brackets = true; } else if (*p == ']') { in_brackets = false; } else if (*p == ':' && !in_brackets) { n_colons++; colon = p; } } *hostp = *portp = NULL; if (n_colons > 1) { *hostp = s; } else { char **tokens[2]; tokens[host_index] = hostp; tokens[!host_index] = portp; if (colon) { *colon = '\0'; *tokens[1] = unbracket(colon + 1); } *tokens[0] = unbracket(s); } } /* Parses 's', a string in the form "[:]", into its (required) host * and (optional) port components, and stores pointers to them in '*hostp' and * '*portp' respectively. Always sets '*hostp' nonnull, although possibly to * an empty string. Can set '*portp' to the null string. * * Supports both IPv4 and IPv6. IPv6 addresses may be quoted with square * brackets. Resolves ambiguous cases that might represent an IPv6 address or * an IPv6 address and a port as representing just a host, e.g. "::1:2:3:4:80" * is a host but "[::1:2:3:4]:80" is a host and a port. * * Modifies 's' and points '*hostp' and '*portp' (if nonnull) into it. */ void inet_parse_host_port_tokens(char *s, char **hostp, char **portp) { inet_parse_tokens__(s, 0, hostp, portp); } /* Parses 's', a string in the form "[:]", into its port and host * components, and stores pointers to them in '*portp' and '*hostp' * respectively. Either '*portp' and '*hostp' (but not both) can end up null. * * Supports both IPv4 and IPv6. IPv6 addresses may be quoted with square * brackets. Resolves ambiguous cases that might represent an IPv6 address or * an IPv6 address and a port as representing just a host, e.g. "::1:2:3:4:80" * is a host but "[::1:2:3:4]:80" is a host and a port. * * Modifies 's' and points '*hostp' and '*portp' (if nonnull) into it. */ void inet_parse_port_host_tokens(char *s, char **portp, char **hostp) { inet_parse_tokens__(s, 1, hostp, portp); } static bool parse_sockaddr_components_dns(struct sockaddr_storage *ss OVS_UNUSED, char *host_s, const char *port_s OVS_UNUSED, uint16_t default_port OVS_UNUSED, const char *s OVS_UNUSED) { char *tmp_host_s; dns_resolve(host_s, &tmp_host_s); if (tmp_host_s != NULL) { parse_sockaddr_components(ss, tmp_host_s, port_s, default_port, s, false, NULL); free(tmp_host_s); return true; } return false; } static bool parse_sockaddr_components(struct sockaddr_storage *ss, char *host_s, const char *port_s, uint16_t default_port, const char *s, bool resolve_host, bool *dns_failure) { struct sockaddr_in *sin = sin_cast(sa_cast(ss)); int port; if (dns_failure) { *dns_failure = false; } if (port_s && port_s[0]) { if (!str_to_int(port_s, 10, &port) || port < 0 || port > 65535) { VLOG_ERR("%s: bad port number \"%s\"", s, port_s); goto exit; } } else { port = default_port; } memset(ss, 0, sizeof *ss); if (host_s && strchr(host_s, ':')) { struct sockaddr_in6 *sin6 = sin6_cast(sa_cast(ss)); char *addr = strsep(&host_s, "%"); sin6->sin6_family = AF_INET6; sin6->sin6_port = htons(port); if (!addr || !*addr || !ipv6_parse(addr, &sin6->sin6_addr)) { goto exit; } #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID char *scope = strsep(&host_s, "%"); if (scope && *scope) { if (!scope[strspn(scope, "0123456789")]) { sin6->sin6_scope_id = atoi(scope); } else { sin6->sin6_scope_id = if_nametoindex(scope); if (!sin6->sin6_scope_id) { VLOG_ERR("%s: bad IPv6 scope \"%s\" (%s)", s, scope, ovs_strerror(errno)); goto exit; } } } #endif } else { sin->sin_family = AF_INET; sin->sin_port = htons(port); if (host_s && !ip_parse(host_s, &sin->sin_addr.s_addr)) { goto resolve; } } return true; resolve: if (resolve_host) { if (parse_sockaddr_components_dns(ss, host_s, port_s, default_port, s)) { return true; } if (dns_failure) { *dns_failure = true; } } else { VLOG_ERR("%s: bad IP address \"%s\"", s, host_s); } exit: memset(ss, 0, sizeof *ss); return false; } /* Parses 'target', which should be a string in the format "[:]". * , which is required, may be an IPv4 address or an IPv6 address * enclosed in square brackets. If 'default_port' is nonnegative then * is optional and defaults to 'default_port' (use 0 to make the kernel choose * an available port, although this isn't usually appropriate for active * connections). If 'default_port' is negative, then is required. * It resolves the host if 'resolve_host' is true. * * On success, returns true and stores the parsed remote address into '*ss'. * On failure, logs an error, stores zeros into '*ss', and returns false, * '*dns_failure' indicates if the host resolution failed. */ bool inet_parse_active(const char *target_, int default_port, struct sockaddr_storage *ss, bool resolve_host, bool *dns_failure) { char *target = xstrdup(target_); char *port, *host; bool ok; inet_parse_host_port_tokens(target, &host, &port); if (!host) { VLOG_ERR("%s: host must be specified", target_); ok = false; } else if (!port && default_port < 0) { VLOG_ERR("%s: port must be specified", target_); ok = false; } else { ok = parse_sockaddr_components(ss, host, port, default_port, target_, resolve_host, dns_failure); } if (!ok) { memset(ss, 0, sizeof *ss); } free(target); return ok; } /* Opens a non-blocking IPv4 or IPv6 socket of the specified 'style' and * connects to 'target', which should be a string in the format * "[:]". , which is required, may be an IPv4 address or an * IPv6 address enclosed in square brackets. If 'default_port' is nonnegative * then is optional and defaults to 'default_port'. * * 'style' should be SOCK_STREAM (for TCP) or SOCK_DGRAM (for UDP). * * On success, returns 0 (indicating connection complete) or EAGAIN (indicating * connection in progress), in which case the new file descriptor is stored * into '*fdp'. On failure, returns a positive errno value other than EAGAIN * and stores -1 into '*fdp'. * * If 'ss' is non-null, then on success stores the target address into '*ss'. * * 'dscp' becomes the DSCP bits in the IP headers for the new connection. It * should be in the range [0, 63] and will automatically be shifted to the * appropriately place in the IP tos field. */ int inet_open_active(int style, const char *target, int default_port, struct sockaddr_storage *ssp, int *fdp, uint8_t dscp) { struct sockaddr_storage ss; int fd = -1; int error; /* Parse. */ if (!inet_parse_active(target, default_port, &ss, true, NULL)) { error = EAFNOSUPPORT; goto exit; } /* Create non-blocking socket. */ fd = socket(ss.ss_family, style, 0); if (fd < 0) { error = sock_errno(); VLOG_ERR("%s: socket: %s", target, sock_strerror(error)); goto exit; } error = set_nonblocking(fd); if (error) { goto exit; } /* The dscp bits must be configured before connect() to ensure that the * TOS field is set during the connection establishment. If set after * connect(), the handshake SYN frames will be sent with a TOS of 0. */ error = set_dscp(fd, ss.ss_family, dscp); if (error) { VLOG_ERR("%s: set_dscp: %s", target, sock_strerror(error)); goto exit; } /* Connect. */ error = connect(fd, (struct sockaddr *) &ss, ss_length(&ss)) == 0 ? 0 : sock_errno(); if (error == EINPROGRESS #ifdef _WIN32 || error == WSAEALREADY || error == WSAEWOULDBLOCK #endif ) { error = EAGAIN; } exit: if (error && error != EAGAIN) { if (ssp) { memset(ssp, 0, sizeof *ssp); } if (fd >= 0) { closesocket(fd); fd = -1; } } else { if (ssp) { *ssp = ss; } } *fdp = fd; return error; } /* Parses 'target', which should be a string in the format "[][:]": * * - If 'default_port' is -1, then is required. Otherwise, if * is omitted, then 'default_port' is used instead. * * - If (or 'default_port', if used) is 0, then no port is bound * and the TCP/IP stack will select a port. * * - is optional. If supplied, it may be an IPv4 address or an * IPv6 address enclosed in square brackets. If omitted, the IP address * is wildcarded. * * If successful, stores the address into '*ss' and returns true; otherwise * zeros '*ss' and returns false. */ bool inet_parse_passive(const char *target_, int default_port, struct sockaddr_storage *ss, bool resolve_host, bool *dns_failure) { char *target = xstrdup(target_); char *port, *host; bool ok; inet_parse_port_host_tokens(target, &port, &host); if (!port && default_port < 0) { VLOG_ERR("%s: port must be specified", target_); ok = false; } else { ok = parse_sockaddr_components(ss, host, port, default_port, target_, resolve_host, dns_failure); } if (!ok) { memset(ss, 0, sizeof *ss); } free(target); return ok; } /* Opens a non-blocking IPv4 or IPv6 socket of the specified 'style', binds to * 'target', and listens for incoming connections. Parses 'target' in the same * way was inet_parse_passive(). * * 'style' should be SOCK_STREAM (for TCP) or SOCK_DGRAM (for UDP). * * For TCP, the socket will have SO_REUSEADDR turned on. * * On success, returns a non-negative file descriptor. On failure, returns a * negative errno value. * * If 'ss' is non-null, then on success stores the bound address into '*ss'. * * 'dscp' becomes the DSCP bits in the IP headers for the new connection. It * should be in the range [0, 63] and will automatically be shifted to the * appropriately place in the IP tos field. * * If 'kernel_print_port' is true and the port is dynamically assigned by * the kernel, print the chosen port. */ int inet_open_passive(int style, const char *target, int default_port, struct sockaddr_storage *ssp, uint8_t dscp, bool kernel_print_port) { bool kernel_chooses_port; struct sockaddr_storage ss; int fd = 0, error; unsigned int yes = 1; bool dns_failure; if (!inet_parse_passive(target, default_port, &ss, true, &dns_failure)) { if (dns_failure) { /* DNS failure means asynchronous DNS resolution is in progress, * or that the name does currently not resolve. */ return -EAGAIN; } return -EAFNOSUPPORT; } kernel_chooses_port = ss_get_port(&ss) == 0; /* Create non-blocking socket, set SO_REUSEADDR. */ fd = socket(ss.ss_family, style, 0); if (fd < 0) { error = sock_errno(); VLOG_ERR("%s: socket: %s", target, sock_strerror(error)); return -error; } error = set_nonblocking(fd); if (error) { goto error; } if (style == SOCK_STREAM && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof yes) < 0) { error = sock_errno(); VLOG_ERR("%s: setsockopt(SO_REUSEADDR): %s", target, sock_strerror(error)); goto error; } /* Bind. */ if (bind(fd, (struct sockaddr *) &ss, ss_length(&ss)) < 0) { error = sock_errno(); static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_ERR_RL(&rl, "%s: bind: %s", target, sock_strerror(error)); goto error; } /* The dscp bits must be configured before connect() to ensure that the TOS * field is set during the connection establishment. If set after * connect(), the handshake SYN frames will be sent with a TOS of 0. */ error = set_dscp(fd, ss.ss_family, dscp); if (error) { VLOG_ERR("%s: set_dscp: %s", target, sock_strerror(error)); goto error; } /* Listen. */ if (style == SOCK_STREAM && listen(fd, 10) < 0) { error = sock_errno(); VLOG_ERR("%s: listen: %s", target, sock_strerror(error)); goto error; } if (ssp || kernel_chooses_port) { socklen_t ss_len = sizeof ss; if (getsockname(fd, (struct sockaddr *) &ss, &ss_len) < 0) { error = sock_errno(); VLOG_ERR("%s: getsockname: %s", target, sock_strerror(error)); goto error; } if (kernel_chooses_port && kernel_print_port) { VLOG_INFO("%s: listening on port %"PRIu16, target, ss_get_port(&ss)); } if (ssp) { *ssp = ss; } } return fd; error: if (ssp) { memset(ssp, 0, sizeof *ssp); } closesocket(fd); return -error; } /* Parses 'target', which may be an IPv4 address or an IPv6 address * enclosed in square brackets. * * On success, returns true and stores the parsed remote address into '*ss'. * On failure, logs an error, stores zeros into '*ss', and returns false. */ bool inet_parse_address(const char *target_, struct sockaddr_storage *ss) { char *target = xstrdup(target_); char *host = unbracket(target); bool ok = parse_sockaddr_components(ss, host, NULL, 0, target_, false, NULL); if (!ok) { memset(ss, 0, sizeof *ss); } free(target); return ok; } int read_fully(int fd, void *p_, size_t size, size_t *bytes_read) { uint8_t *p = p_; *bytes_read = 0; while (size > 0) { ssize_t retval = read(fd, p, size); if (retval > 0) { *bytes_read += retval; size -= retval; p += retval; } else if (retval == 0) { return EOF; } else if (errno != EINTR) { return errno; } } return 0; } int write_fully(int fd, const void *p_, size_t size, size_t *bytes_written) { const uint8_t *p = p_; *bytes_written = 0; while (size > 0) { ssize_t retval = write(fd, p, size); if (retval > 0) { *bytes_written += retval; size -= retval; p += retval; } else if (retval == 0) { VLOG_WARN("write returned 0"); return EPROTO; } else if (errno != EINTR) { return errno; } } return 0; } /* Given file name 'file_name', fsyncs the directory in which it is contained. * Returns 0 if successful, otherwise a positive errno value. */ int fsync_parent_dir(const char *file_name) { int error = 0; #ifndef _WIN32 char *dir; int fd; dir = dir_name(file_name); fd = open(dir, O_RDONLY); if (fd >= 0) { if (fsync(fd)) { if (errno == EINVAL || errno == EROFS) { /* This directory does not support synchronization. Not * really an error. */ } else { error = errno; VLOG_ERR("%s: fsync failed (%s)", dir, ovs_strerror(error)); } } close(fd); } else { error = errno; VLOG_ERR("%s: open failed (%s)", dir, ovs_strerror(error)); } free(dir); #endif return error; } /* Obtains the modification time of the file named 'file_name' to the greatest * supported precision. If successful, stores the mtime in '*mtime' and * returns 0. On error, returns a positive errno value and stores zeros in * '*mtime'. */ int get_mtime(const char *file_name, struct timespec *mtime) { struct stat s; if (!stat(file_name, &s)) { mtime->tv_sec = s.st_mtime; #if HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC mtime->tv_nsec = s.st_mtim.tv_nsec; #elif HAVE_STRUCT_STAT_ST_MTIMENSEC mtime->tv_nsec = s.st_mtimensec; #else mtime->tv_nsec = 0; #endif return 0; } else { mtime->tv_sec = mtime->tv_nsec = 0; return errno; } } static int getsockopt_int(int fd, int level, int option, const char *optname, int *valuep) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 10); socklen_t len; int value; int error; len = sizeof value; if (getsockopt(fd, level, option, &value, &len)) { error = sock_errno(); VLOG_ERR_RL(&rl, "getsockopt(%s): %s", optname, sock_strerror(error)); } else if (len != sizeof value) { error = EINVAL; VLOG_ERR_RL(&rl, "getsockopt(%s): value is %u bytes (expected %"PRIuSIZE")", optname, (unsigned int) len, sizeof value); } else { error = 0; } *valuep = error ? 0 : value; return error; } static void describe_sockaddr(struct ds *string, int fd, int (*getaddr)(int, struct sockaddr *, socklen_t *)) { struct sockaddr_storage ss; socklen_t len = sizeof ss; if (!getaddr(fd, (struct sockaddr *) &ss, &len)) { if (ss.ss_family == AF_INET || ss.ss_family == AF_INET6) { ss_format_address(&ss, string); ds_put_format(string, ":%"PRIu16, ss_get_port(&ss)); #ifndef _WIN32 } else if (ss.ss_family == AF_UNIX) { struct sockaddr_un sun; const char *null; size_t maxlen; memcpy(&sun, &ss, sizeof sun); maxlen = len - offsetof(struct sockaddr_un, sun_path); null = memchr(sun.sun_path, '\0', maxlen); ds_put_buffer(string, sun.sun_path, null ? null - sun.sun_path : maxlen); #endif } #ifdef HAVE_NETLINK else if (ss.ss_family == AF_NETLINK) { int protocol; /* SO_PROTOCOL was introduced in 2.6.32. Support it regardless of the version * of the Linux kernel headers in use at build time. */ #ifndef SO_PROTOCOL #define SO_PROTOCOL 38 #endif if (!getsockopt_int(fd, SOL_SOCKET, SO_PROTOCOL, "SO_PROTOCOL", &protocol)) { switch (protocol) { case NETLINK_ROUTE: ds_put_cstr(string, "NETLINK_ROUTE"); break; case NETLINK_GENERIC: ds_put_cstr(string, "NETLINK_GENERIC"); break; default: ds_put_format(string, "AF_NETLINK family %d", protocol); break; } } else { ds_put_cstr(string, "AF_NETLINK"); } } #endif #if __linux__ else if (ss.ss_family == AF_PACKET) { struct sockaddr_ll sll; memcpy(&sll, &ss, sizeof sll); ds_put_cstr(string, "AF_PACKET"); if (sll.sll_ifindex) { char name[IFNAMSIZ]; if (if_indextoname(sll.sll_ifindex, name)) { ds_put_format(string, "(%s)", name); } else { ds_put_format(string, "(ifindex=%d)", sll.sll_ifindex); } } if (sll.sll_protocol) { ds_put_format(string, "(protocol=0x%"PRIu16")", ntohs(sll.sll_protocol)); } } #endif else if (ss.ss_family == AF_UNSPEC) { ds_put_cstr(string, "AF_UNSPEC"); } else { ds_put_format(string, "AF_%d", (int) ss.ss_family); } } } #ifdef __linux__ static void put_fd_filename(struct ds *string, int fd) { char buf[1024]; char *linkname; int n; linkname = xasprintf("/proc/self/fd/%d", fd); n = readlink(linkname, buf, sizeof buf); if (n > 0) { ds_put_char(string, ' '); ds_put_buffer(string, buf, n); if (n > sizeof buf) { ds_put_cstr(string, "..."); } } free(linkname); } #endif /* Returns a malloc()'d string describing 'fd', for use in logging. */ char * describe_fd(int fd) { struct ds string; struct stat s; ds_init(&string); #ifndef _WIN32 if (fstat(fd, &s)) { ds_put_format(&string, "fstat failed (%s)", ovs_strerror(errno)); } else if (S_ISSOCK(s.st_mode)) { describe_sockaddr(&string, fd, getsockname); ds_put_cstr(&string, "<->"); describe_sockaddr(&string, fd, getpeername); } else { ds_put_cstr(&string, (isatty(fd) ? "tty" : S_ISDIR(s.st_mode) ? "directory" : S_ISCHR(s.st_mode) ? "character device" : S_ISBLK(s.st_mode) ? "block device" : S_ISREG(s.st_mode) ? "file" : S_ISFIFO(s.st_mode) ? "FIFO" : S_ISLNK(s.st_mode) ? "symbolic link" : "unknown")); #ifdef __linux__ put_fd_filename(&string, fd); #endif } #else ds_put_format(&string,"file descriptor"); #endif /* _WIN32 */ return ds_steal_cstr(&string); } /* sockaddr helpers. */ static struct sockaddr_in * sin_cast(const struct sockaddr *sa) { return ALIGNED_CAST(struct sockaddr_in *, sa); } static struct sockaddr_in6 * sin6_cast(const struct sockaddr *sa) { return ALIGNED_CAST(struct sockaddr_in6 *, sa); } /* Returns true if 'sa' represents an IPv4 or IPv6 address, false otherwise. */ bool sa_is_ip(const struct sockaddr *sa) { return sa->sa_family == AF_INET || sa->sa_family == AF_INET6; } /* Returns the IPv4 or IPv6 address in 'sa'. Returns IPv4 addresses as * v6-mapped. */ struct in6_addr sa_get_address(const struct sockaddr *sa) { ovs_assert(sa_is_ip(sa)); return (sa->sa_family == AF_INET ? in6_addr_mapped_ipv4(sin_cast(sa)->sin_addr.s_addr) : sin6_cast(sa)->sin6_addr); } /* Returns the IPv4 or IPv6 port in 'sa'. */ uint16_t sa_get_port(const struct sockaddr *sa) { ovs_assert(sa_is_ip(sa)); return ntohs(sa->sa_family == AF_INET ? sin_cast(sa)->sin_port : sin6_cast(sa)->sin6_port); } /* Returns true if 'name' is safe to include inside a network address field. * We want to avoid names that include confusing punctuation, etc. */ static bool OVS_UNUSED is_safe_name(const char *name) { if (!name[0] || isdigit((unsigned char) name[0])) { return false; } for (const char *p = name; *p; p++) { if (!isalnum((unsigned char) *p) && *p != '-' && *p != '_') { return false; } } return true; } static void sa_format_address__(const struct sockaddr *sa, const char *lbrack, const char *rbrack, struct ds *s) { ovs_assert(sa_is_ip(sa)); if (sa->sa_family == AF_INET) { ds_put_format(s, IP_FMT, IP_ARGS(sin_cast(sa)->sin_addr.s_addr)); } else { const struct sockaddr_in6 *sin6 = sin6_cast(sa); ds_put_cstr(s, lbrack); ds_reserve(s, s->length + INET6_ADDRSTRLEN); char *tail = &s->string[s->length]; inet_ntop(AF_INET6, sin6->sin6_addr.s6_addr, tail, INET6_ADDRSTRLEN); s->length += strlen(tail); #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID uint32_t scope = sin6->sin6_scope_id; if (scope) { char namebuf[IF_NAMESIZE]; char *name = if_indextoname(scope, namebuf); ds_put_char(s, '%'); if (name && is_safe_name(name)) { ds_put_cstr(s, name); } else { ds_put_format(s, "%"PRIu32, scope); } } #endif ds_put_cstr(s, rbrack); } } /* Formats the IPv4 or IPv6 address in 'sa' into 's'. If 'sa' is an IPv6 * address, puts square brackets around the address. */ void sa_format_address(const struct sockaddr *sa, struct ds *s) { sa_format_address__(sa, "[", "]", s); } /* Formats the IPv4 or IPv6 address in 'sa' into 's'. Does not add square * brackets around IPv6 addresses. */ void sa_format_address_nobracks(const struct sockaddr *sa, struct ds *s) { sa_format_address__(sa, "", "", s); } size_t sa_length(const struct sockaddr *sa) { switch (sa->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); default: OVS_NOT_REACHED(); } } /* sockaddr_storage helpers. */ static const struct sockaddr * sa_cast(const struct sockaddr_storage *ss) { return ALIGNED_CAST(const struct sockaddr *, ss); } bool ss_is_ip(const struct sockaddr_storage *ss) { return sa_is_ip(sa_cast(ss)); } uint16_t ss_get_port(const struct sockaddr_storage *ss) { return sa_get_port(sa_cast(ss)); } struct in6_addr ss_get_address(const struct sockaddr_storage *ss) { return sa_get_address(sa_cast(ss)); } void ss_format_address(const struct sockaddr_storage *ss, struct ds *s) { sa_format_address(sa_cast(ss), s); } void ss_format_address_nobracks(const struct sockaddr_storage *ss, struct ds *s) { sa_format_address_nobracks(sa_cast(ss), s); } size_t ss_length(const struct sockaddr_storage *ss) { return sa_length(sa_cast(ss)); } /* For Windows socket calls, 'errno' is not set. One has to call * WSAGetLastError() to get the error number and then pass it to * this function to get the correct error string. * * ovs_strerror() calls strerror_r() and would not get the correct error * string for Windows sockets, but is good for POSIX. */ const char * sock_strerror(int error) { #ifdef _WIN32 return ovs_format_message(error); #else return ovs_strerror(error); #endif } #ifdef __linux__ static int emulate_sendmmsg(int fd, struct mmsghdr *msgs, unsigned int n, unsigned int flags) { for (unsigned int i = 0; i < n; i++) { ssize_t retval = sendmsg(fd, &msgs[i].msg_hdr, flags); if (retval < 0) { return i ? i : retval; } msgs[i].msg_len = retval; } return n; } #ifndef HAVE_SENDMMSG int sendmmsg(int fd, struct mmsghdr *msgs, unsigned int n, unsigned int flags) { return emulate_sendmmsg(fd, msgs, n, flags); } #else /* sendmmsg was redefined in lib/socket-util.c, should undef sendmmsg here * to avoid recursion */ #undef sendmmsg int wrap_sendmmsg(int fd, struct mmsghdr *msgs, unsigned int n, unsigned int flags) { static bool sendmmsg_broken = false; if (!sendmmsg_broken) { int save_errno = errno; int retval = sendmmsg(fd, msgs, n, flags); if (retval >= 0 || errno != ENOSYS) { return retval; } sendmmsg_broken = true; errno = save_errno; } return emulate_sendmmsg(fd, msgs, n, flags); } #endif static int emulate_recvmmsg(int fd, struct mmsghdr *msgs, unsigned int n, int flags, struct timespec *timeout OVS_UNUSED) { ovs_assert(!timeout); /* XXX not emulated */ bool waitforone = flags & MSG_WAITFORONE; flags &= ~MSG_WAITFORONE; for (unsigned int i = 0; i < n; i++) { ssize_t retval = recvmsg(fd, &msgs[i].msg_hdr, flags); if (retval < 0) { return i ? i : retval; } msgs[i].msg_len = retval; if (waitforone) { flags |= MSG_DONTWAIT; } } return n; } #ifndef HAVE_SENDMMSG int recvmmsg(int fd, struct mmsghdr *msgs, unsigned int n, int flags, struct timespec *timeout) { return emulate_recvmmsg(fd, msgs, n, flags, timeout); } #else /* recvmmsg was redefined in lib/socket-util.c, should undef recvmmsg here * to avoid recursion */ #undef recvmmsg int wrap_recvmmsg(int fd, struct mmsghdr *msgs, unsigned int n, int flags, struct timespec *timeout) { ovs_assert(!timeout); /* XXX not emulated */ static bool recvmmsg_broken = false; if (!recvmmsg_broken) { int save_errno = errno; int retval = recvmmsg(fd, msgs, n, flags, timeout); if (retval >= 0 || errno != ENOSYS) { return retval; } recvmmsg_broken = true; errno = save_errno; } return emulate_recvmmsg(fd, msgs, n, flags, timeout); } #endif #endif /* __linux__ */