/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "util.h" #include #include #include #include #include #include #include #include #include #ifdef __linux__ #include #endif #include #include #include "bitmap.h" #include "byte-order.h" #include "coverage.h" #include "ovs-rcu.h" #include "ovs-thread.h" #include "socket-util.h" #include "timeval.h" #include "openvswitch/vlog.h" #ifdef HAVE_PTHREAD_SET_NAME_NP #include #endif #ifdef _WIN32 #include #endif VLOG_DEFINE_THIS_MODULE(util); #ifdef __linux__ #define LINUX 1 #include #else #define LINUX 0 #endif COVERAGE_DEFINE(util_xalloc); /* argv[0] without directory names. */ char *program_name; /* Name for the currently running thread or process, for log messages, process * listings, and debuggers. */ DEFINE_PER_THREAD_MALLOCED_DATA(char *, subprogram_name); /* --version option output. */ static char *program_version; /* 'true' if mlockall() succeeded. */ static bool is_memory_locked = false; /* Buffer used by ovs_strerror() and ovs_format_message(). */ DEFINE_STATIC_PER_THREAD_DATA(struct { char s[128]; }, strerror_buffer, { "" }); static char *xreadlink(const char *filename); void ovs_assert_failure(const char *where, const char *function, const char *condition) { /* Prevent an infinite loop (or stack overflow) in case VLOG_ABORT happens * to trigger an assertion failure of its own. */ static int reentry = 0; switch (reentry++) { case 0: VLOG_ABORT("%s: assertion %s failed in %s()", where, condition, function); OVS_NOT_REACHED(); case 1: fprintf(stderr, "%s: assertion %s failed in %s()", where, condition, function); abort(); default: abort(); } } void set_memory_locked(void) { is_memory_locked = true; } bool memory_locked(void) { return is_memory_locked; } void out_of_memory(void) { ovs_abort(0, "virtual memory exhausted"); } void * xcalloc__(size_t count, size_t size) { void *p = count && size ? calloc(count, size) : malloc(1); if (p == NULL) { out_of_memory(); } return p; } void * xzalloc__(size_t size) { return xcalloc__(1, size); } void * xmalloc__(size_t size) { void *p = malloc(size ? size : 1); if (p == NULL) { out_of_memory(); } return p; } void * xrealloc__(void *p, size_t size) { p = realloc(p, size ? size : 1); if (p == NULL) { out_of_memory(); } return p; } void * xcalloc(size_t count, size_t size) { COVERAGE_INC(util_xalloc); return xcalloc__(count, size); } void * xzalloc(size_t size) { COVERAGE_INC(util_xalloc); return xzalloc__(size); } void * xmalloc(size_t size) { COVERAGE_INC(util_xalloc); return xmalloc__(size); } void * xrealloc(void *p, size_t size) { COVERAGE_INC(util_xalloc); return xrealloc__(p, size); } void * xmemdup(const void *p_, size_t size) { void *p = xmalloc(size); nullable_memcpy(p, p_, size); return p; } char * xmemdup0(const char *p_, size_t length) { char *p = xmalloc(length + 1); memcpy(p, p_, length); p[length] = '\0'; return p; } char * xstrdup(const char *s) { return xmemdup0(s, strlen(s)); } char * MALLOC_LIKE nullable_xstrdup(const char *s) { return s ? xstrdup(s) : NULL; } bool nullable_string_is_equal(const char *a, const char *b) { return a ? b && !strcmp(a, b) : !b; } char * xvasprintf(const char *format, va_list args) { va_list args2; size_t needed; char *s; va_copy(args2, args); needed = vsnprintf(NULL, 0, format, args); s = xmalloc(needed + 1); vsnprintf(s, needed + 1, format, args2); va_end(args2); return s; } void * x2nrealloc(void *p, size_t *n, size_t s) { *n = *n == 0 ? 1 : 2 * *n; return xrealloc(p, *n * s); } /* Allocates and returns 'size' bytes of memory aligned to 'alignment' bytes. * 'alignment' must be a power of two and a multiple of sizeof(void *). * * Use free_size_align() to free the returned memory block. */ void * xmalloc_size_align(size_t size, size_t alignment) { #ifdef HAVE_POSIX_MEMALIGN void *p; int error; COVERAGE_INC(util_xalloc); error = posix_memalign(&p, alignment, size ? size : 1); if (error != 0) { out_of_memory(); } return p; #else /* Allocate room for: * * - Header padding: Up to alignment - 1 bytes, to allow the * pointer 'q' to be aligned exactly sizeof(void *) bytes before the * beginning of the alignment. * * - Pointer: A pointer to the start of the header padding, to allow us * to free() the block later. * * - User data: 'size' bytes. * * - Trailer padding: Enough to bring the user data up to a alignment * multiple. * * +---------------+---------+------------------------+---------+ * | header | pointer | user data | trailer | * +---------------+---------+------------------------+---------+ * ^ ^ ^ * | | | * p q r * */ void *p, *r, **q; bool runt; if (!IS_POW2(alignment) || (alignment % sizeof(void *) != 0)) { ovs_abort(0, "Invalid alignment"); } p = xmalloc((alignment - 1) + sizeof(void *) + ROUND_UP(size, alignment)); runt = PAD_SIZE((uintptr_t) p, alignment) < sizeof(void *); /* When the padding size < sizeof(void*), we don't have enough room for * pointer 'q'. As a reuslt, need to move 'r' to the next alignment. * So ROUND_UP when xmalloc above, and ROUND_UP again when calculate 'r' * below. */ r = (void *) ROUND_UP((uintptr_t) p + (runt ? alignment : 0), alignment); q = (void **) r - 1; *q = p; return r; #endif } void free_size_align(void *p) { #ifdef HAVE_POSIX_MEMALIGN free(p); #else if (p) { void **q = (void **) p - 1; free(*q); } #endif } /* Allocates and returns 'size' bytes of memory aligned to a cache line and in * dedicated cache lines. That is, the memory block returned will not share a * cache line with other data, avoiding "false sharing". * * Use free_cacheline() to free the returned memory block. */ void * xmalloc_cacheline(size_t size) { return xmalloc_size_align(size, CACHE_LINE_SIZE); } /* Like xmalloc_cacheline() but clears the allocated memory to all zero * bytes. */ void * xzalloc_cacheline(size_t size) { void *p = xmalloc_cacheline(size); memset(p, 0, size); return p; } /* Frees a memory block allocated with xmalloc_cacheline() or * xzalloc_cacheline(). */ void free_cacheline(void *p) { free_size_align(p); } void * xmalloc_pagealign(size_t size) { return xmalloc_size_align(size, get_page_size()); } void free_pagealign(void *p) { free_size_align(p); } char * xasprintf(const char *format, ...) { va_list args; char *s; va_start(args, format); s = xvasprintf(format, args); va_end(args); return s; } /* Similar to strlcpy() from OpenBSD, but it never reads more than 'size - 1' * bytes from 'src' and doesn't return anything. */ void ovs_strlcpy(char *dst, const char *src, size_t size) { if (size > 0) { size_t len = strnlen(src, size - 1); memcpy(dst, src, len); dst[len] = '\0'; } } /* Copies 'src' to 'dst'. Reads no more than 'size - 1' bytes from 'src'. * Always null-terminates 'dst' (if 'size' is nonzero), and writes a zero byte * to every otherwise unused byte in 'dst'. * * Except for performance, the following call: * ovs_strzcpy(dst, src, size); * is equivalent to these two calls: * memset(dst, '\0', size); * ovs_strlcpy(dst, src, size); * * (Thus, ovs_strzcpy() is similar to strncpy() without some of the pitfalls.) */ void ovs_strzcpy(char *dst, const char *src, size_t size) { if (size > 0) { size_t len = strnlen(src, size - 1); memcpy(dst, src, len); memset(dst + len, '\0', size - len); } } /* * Returns true if 'str' ends with given 'suffix'. */ int string_ends_with(const char *str, const char *suffix) { int str_len = strlen(str); int suffix_len = strlen(suffix); return (str_len >= suffix_len) && (0 == strcmp(str + (str_len - suffix_len), suffix)); } /* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is * nonzero, then it is formatted with ovs_retval_to_string() and appended to * the message inside parentheses. Then, terminates with abort(). * * This function is preferred to ovs_fatal() in a situation where it would make * sense for a monitoring process to restart the daemon. * * 'format' should not end with a new-line, because this function will add one * itself. */ void ovs_abort(int err_no, const char *format, ...) { va_list args; va_start(args, format); ovs_abort_valist(err_no, format, args); } /* Same as ovs_abort() except that the arguments are supplied as a va_list. */ void ovs_abort_valist(int err_no, const char *format, va_list args) { ovs_error_valist(err_no, format, args); abort(); } /* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is * nonzero, then it is formatted with ovs_retval_to_string() and appended to * the message inside parentheses. Then, terminates with EXIT_FAILURE. * * 'format' should not end with a new-line, because this function will add one * itself. */ void ovs_fatal(int err_no, const char *format, ...) { va_list args; va_start(args, format); ovs_fatal_valist(err_no, format, args); } /* Same as ovs_fatal() except that the arguments are supplied as a va_list. */ void ovs_fatal_valist(int err_no, const char *format, va_list args) { ovs_error_valist(err_no, format, args); exit(EXIT_FAILURE); } /* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is * nonzero, then it is formatted with ovs_retval_to_string() and appended to * the message inside parentheses. * * 'format' should not end with a new-line, because this function will add one * itself. */ void ovs_error(int err_no, const char *format, ...) { va_list args; va_start(args, format); ovs_error_valist(err_no, format, args); va_end(args); } /* Same as ovs_error() except that the arguments are supplied as a va_list. */ void ovs_error_valist(int err_no, const char *format, va_list args) { const char *subprogram_name = get_subprogram_name(); int save_errno = errno; if (subprogram_name[0]) { fprintf(stderr, "%s(%s): ", program_name, subprogram_name); } else { fprintf(stderr, "%s: ", program_name); } vfprintf(stderr, format, args); if (err_no != 0) { fprintf(stderr, " (%s)", ovs_retval_to_string(err_no)); } putc('\n', stderr); errno = save_errno; } /* Many OVS functions return an int which is one of: * - 0: no error yet * - >0: errno value * - EOF: end of file (not necessarily an error; depends on the function called) * * Returns the appropriate human-readable string. The caller must copy the * string if it wants to hold onto it, as the storage may be overwritten on * subsequent function calls. */ const char * ovs_retval_to_string(int retval) { return (!retval ? "" : retval == EOF ? "End of file" : ovs_strerror(retval)); } /* This function returns the string describing the error number in 'error' * for POSIX platforms. For Windows, this function can be used for C library * calls. For socket calls that are also used in Windows, use sock_strerror() * instead. For WINAPI calls, look at ovs_lasterror_to_string(). */ const char * ovs_strerror(int error) { enum { BUFSIZE = sizeof strerror_buffer_get()->s }; int save_errno; char *buffer; char *s; if (error == 0) { /* * strerror(0) varies among platforms: * * Success * No error * Undefined error: 0 * * We want to provide a consistent result here because * our testsuite has test cases which strictly matches * log messages containing this string. */ return "Success"; } save_errno = errno; buffer = strerror_buffer_get()->s; #if STRERROR_R_CHAR_P /* GNU style strerror_r() might return an immutable static string, or it * might write and return 'buffer', but in either case we can pass the * returned string directly to the caller. */ s = strerror_r(error, buffer, BUFSIZE); #else /* strerror_r() returns an int. */ s = buffer; if (strerror_r(error, buffer, BUFSIZE)) { /* strerror_r() is only allowed to fail on ERANGE (because the buffer * is too short). We don't check the actual failure reason because * POSIX requires strerror_r() to return the error but old glibc * (before 2.13) returns -1 and sets errno. */ snprintf(buffer, BUFSIZE, "Unknown error %d", error); } #endif errno = save_errno; return s; } /* Sets global "program_name" and "program_version" variables. Should * be called at the beginning of main() with "argv[0]" as the argument * to 'argv0'. * * 'version' should contain the version of the caller's program. If 'version' * is the same as the VERSION #define, the caller is assumed to be part of Open * vSwitch. Otherwise, it is assumed to be an external program linking against * the Open vSwitch libraries. * */ void ovs_set_program_name(const char *argv0, const char *version) { char *basename; #ifdef _WIN32 size_t max_len = strlen(argv0) + 1; SetErrorMode(GetErrorMode() | SEM_NOGPFAULTERRORBOX); #if _MSC_VER < 1900 /* This function is deprecated from 1900 (Visual Studio 2015) */ _set_output_format(_TWO_DIGIT_EXPONENT); #endif basename = xmalloc(max_len); _splitpath_s(argv0, NULL, 0, NULL, 0, basename, max_len, NULL, 0); #else const char *slash = strrchr(argv0, '/'); basename = xstrdup(slash ? slash + 1 : argv0); #endif assert_single_threaded(); free(program_name); /* Remove libtool prefix, if it is there */ if (strncmp(basename, "lt-", 3) == 0) { char *tmp_name = basename; basename = xstrdup(basename + 3); free(tmp_name); } program_name = basename; free(program_version); if (!strcmp(version, VERSION)) { program_version = xasprintf("%s (Open vSwitch) "VERSION"\n", program_name); } else { program_version = xasprintf("%s %s\n" "Open vSwitch Library "VERSION"\n", program_name, version); } } /* Returns the name of the currently running thread or process. */ const char * get_subprogram_name(void) { const char *name = subprogram_name_get(); return name ? name : ""; } /* Sets 'subprogram_name' as the name of the currently running thread or * process. (This appears in log messages and may also be visible in system * process listings and debuggers.) */ void set_subprogram_name(const char *subprogram_name) { char *pname = xstrdup(subprogram_name ? subprogram_name : program_name); free(subprogram_name_set(pname)); #if HAVE_GLIBC_PTHREAD_SETNAME_NP /* The maximum supported thread name including '\0' is 16. * Add '>' at 0th position to highlight that the name was truncated. */ if (strlen(pname) > 15) { memmove(pname, &pname[strlen(pname) - 15], 15 + 1); pname[0] = '>'; } pthread_setname_np(pthread_self(), pname); #elif HAVE_NETBSD_PTHREAD_SETNAME_NP pthread_setname_np(pthread_self(), "%s", pname); #elif HAVE_PTHREAD_SET_NAME_NP pthread_set_name_np(pthread_self(), pname); #endif } unsigned int get_page_size(void) { static unsigned int cached; if (!cached) { #ifndef _WIN32 long int value = sysconf(_SC_PAGESIZE); #else long int value; SYSTEM_INFO sysinfo; GetSystemInfo(&sysinfo); value = sysinfo.dwPageSize; #endif if (value >= 0) { cached = value; } } return cached; } /* Returns the time at which the system booted, as the number of milliseconds * since the epoch, or 0 if the time of boot cannot be determined. */ long long int get_boot_time(void) { static long long int cache_expiration = LLONG_MIN; static long long int boot_time; ovs_assert(LINUX); if (time_msec() >= cache_expiration) { static const char stat_file[] = "/proc/stat"; char line[128]; FILE *stream; cache_expiration = time_msec() + 5 * 1000; stream = fopen(stat_file, "r"); if (!stream) { VLOG_ERR_ONCE("%s: open failed (%s)", stat_file, ovs_strerror(errno)); return boot_time; } while (fgets(line, sizeof line, stream)) { long long int btime; if (ovs_scan(line, "btime %lld", &btime)) { boot_time = btime * 1000; goto done; } } VLOG_ERR_ONCE("%s: btime not found", stat_file); done: fclose(stream); } return boot_time; } /* This is a wrapper for setting timeout in control utils. * The value of OVS_CTL_TIMEOUT environment variable will be used by * default if 'secs' is not specified. */ void ctl_timeout_setup(unsigned int secs) { if (!secs) { char *env = getenv("OVS_CTL_TIMEOUT"); if (env && env[0]) { str_to_uint(env, 10, &secs); } } if (secs) { time_alarm(secs); } } /* Returns a pointer to a string describing the program version. The * caller must not modify or free the returned string. */ const char * ovs_get_program_version(void) { return program_version; } /* Returns a pointer to a string describing the program name. The * caller must not modify or free the returned string. */ const char * ovs_get_program_name(void) { return program_name; } /* Print the version information for the program. */ void ovs_print_version(uint8_t min_ofp, uint8_t max_ofp) { printf("%s", program_version); if (min_ofp || max_ofp) { printf("OpenFlow versions %#x:%#x\n", min_ofp, max_ofp); } } /* Writes the 'size' bytes in 'buf' to 'stream' as hex bytes arranged 16 per * line. Numeric offsets are also included, starting at 'ofs' for the first * byte in 'buf'. If 'ascii' is true then the corresponding ASCII characters * are also rendered alongside. */ void ovs_hex_dump(FILE *stream, const void *buf_, size_t size, uintptr_t ofs, bool ascii) { const uint8_t *buf = buf_; const size_t per_line = 16; /* Maximum bytes per line. */ while (size > 0) { size_t i; /* Number of bytes on this line. */ size_t start = ofs % per_line; size_t end = per_line; if (end - start > size) { end = start + size; } size_t n = end - start; /* Print line. */ fprintf(stream, "%08"PRIxMAX" ", (uintmax_t) ROUND_DOWN(ofs, per_line)); for (i = 0; i < start; i++) { fprintf(stream, " "); } for (; i < end; i++) { fprintf(stream, "%c%02x", i == per_line / 2 ? '-' : ' ', buf[i - start]); } if (ascii) { fprintf(stream, " "); for (; i < per_line; i++) { fprintf(stream, " "); } fprintf(stream, "|"); for (i = 0; i < start; i++) { fprintf(stream, " "); } for (; i < end; i++) { int c = buf[i - start]; putc(c >= 32 && c < 127 ? c : '.', stream); } for (; i < per_line; i++) { fprintf(stream, " "); } fprintf(stream, "|"); } fprintf(stream, "\n"); ofs += n; buf += n; size -= n; } } bool str_to_int(const char *s, int base, int *i) { long long ll; bool ok = str_to_llong(s, base, &ll); if (!ok || ll < INT_MIN || ll > INT_MAX) { *i = 0; return false; } *i = ll; return true; } bool str_to_long(const char *s, int base, long *li) { long long ll; bool ok = str_to_llong(s, base, &ll); if (!ok || ll < LONG_MIN || ll > LONG_MAX) { *li = 0; return false; } *li = ll; return true; } bool str_to_llong(const char *s, int base, long long *x) { char *tail; bool ok = str_to_llong_with_tail(s, &tail, base, x); if (*tail != '\0') { *x = 0; return false; } return ok; } bool str_to_llong_with_tail(const char *s, char **tail, int base, long long *x) { int save_errno = errno; errno = 0; *x = strtoll(s, tail, base); if (errno == EINVAL || errno == ERANGE || *tail == s) { errno = save_errno; *x = 0; return false; } else { errno = save_errno; return true; } } bool str_to_uint(const char *s, int base, unsigned int *u) { long long ll; bool ok = str_to_llong(s, base, &ll); if (!ok || ll < 0 || ll > UINT_MAX) { *u = 0; return false; } else { *u = ll; return true; } } bool str_to_ullong(const char *s, int base, unsigned long long *x) { int save_errno = errno; char *tail; errno = 0; *x = strtoull(s, &tail, base); if (errno == EINVAL || errno == ERANGE || tail == s || *tail != '\0') { errno = save_errno; *x = 0; return false; } else { errno = save_errno; return true; } } bool str_to_llong_range(const char *s, int base, long long *begin, long long *end) { char *tail; if (str_to_llong_with_tail(s, &tail, base, begin) && *tail == '-' && str_to_llong(tail + 1, base, end)) { return true; } *begin = 0; *end = 0; return false; } /* Converts floating-point string 's' into a double. If successful, stores * the double in '*d' and returns true; on failure, stores 0 in '*d' and * returns false. * * Underflow (e.g. "1e-9999") is not considered an error, but overflow * (e.g. "1e9999)" is. */ bool str_to_double(const char *s, double *d) { int save_errno = errno; char *tail; errno = 0; *d = strtod(s, &tail); if (errno == EINVAL || (errno == ERANGE && *d != 0) || tail == s || *tail != '\0') { errno = save_errno; *d = 0; return false; } else { errno = save_errno; return true; } } /* Returns the value of 'c' as a hexadecimal digit. */ int hexit_value(unsigned char c) { static const signed char tbl[UCHAR_MAX + 1] = { #define TBL(x) \ ( x >= '0' && x <= '9' ? x - '0' \ : x >= 'a' && x <= 'f' ? x - 'a' + 0xa \ : x >= 'A' && x <= 'F' ? x - 'A' + 0xa \ : -1) #define TBL0(x) TBL(x), TBL((x) + 1), TBL((x) + 2), TBL((x) + 3) #define TBL1(x) TBL0(x), TBL0((x) + 4), TBL0((x) + 8), TBL0((x) + 12) #define TBL2(x) TBL1(x), TBL1((x) + 16), TBL1((x) + 32), TBL1((x) + 48) TBL2(0), TBL2(64), TBL2(128), TBL2(192) }; return tbl[c]; } /* Returns the integer value of the 'n' hexadecimal digits starting at 's', or * UINTMAX_MAX if one of those "digits" is not really a hex digit. Sets '*ok' * to true if the conversion succeeds or to false if a non-hex digit is * detected. */ uintmax_t hexits_value(const char *s, size_t n, bool *ok) { uintmax_t value; size_t i; value = 0; for (i = 0; i < n; i++) { int hexit = hexit_value(s[i]); if (hexit < 0) { *ok = false; return UINTMAX_MAX; } value = (value << 4) + hexit; } *ok = true; return value; } /* Parses the string in 's' as an integer in either hex or decimal format and * puts the result right justified in the array 'valuep' that is 'field_width' * big. If the string is in hex format, the value may be arbitrarily large; * integers are limited to 64-bit values. (The rationale is that decimal is * likely to represent a number and 64 bits is a reasonable maximum whereas * hex could either be a number or a byte string.) * * On return 'tail' points to the first character in the string that was * not parsed as part of the value. ERANGE is returned if the value is too * large to fit in the given field. */ int parse_int_string(const char *s, uint8_t *valuep, int field_width, char **tail) { unsigned long long int integer; int i; if (!strncmp(s, "0x", 2) || !strncmp(s, "0X", 2)) { uint8_t *hexit_str; int len = 0; int val_idx; int err = 0; s += 2; hexit_str = xmalloc(field_width * 2); for (;;) { uint8_t hexit; bool ok; s += strspn(s, " \t\r\n"); hexit = hexits_value(s, 1, &ok); if (!ok) { *tail = CONST_CAST(char *, s); break; } if (hexit != 0 || len) { if (DIV_ROUND_UP(len + 1, 2) > field_width) { err = ERANGE; goto free; } hexit_str[len] = hexit; len++; } s++; } val_idx = field_width; for (i = len - 1; i >= 0; i -= 2) { val_idx--; valuep[val_idx] = hexit_str[i]; if (i > 0) { valuep[val_idx] += hexit_str[i - 1] << 4; } } memset(valuep, 0, val_idx); free: free(hexit_str); return err; } errno = 0; integer = strtoull(s, tail, 0); if (errno || s == *tail) { return errno ? errno : EINVAL; } for (i = field_width - 1; i >= 0; i--) { valuep[i] = integer; integer >>= 8; } if (integer) { return ERANGE; } return 0; } /* Returns the current working directory as a malloc()'d string, or a null * pointer if the current working directory cannot be determined. */ char * get_cwd(void) { long int path_max; size_t size; /* Get maximum path length or at least a reasonable estimate. */ #ifndef _WIN32 path_max = pathconf(".", _PC_PATH_MAX); #else path_max = MAX_PATH; #endif size = (path_max < 0 ? 1024 : path_max > 10240 ? 10240 : path_max); /* Get current working directory. */ for (;;) { char *buf = xmalloc(size); if (getcwd(buf, size)) { return xrealloc(buf, strlen(buf) + 1); } else { int error = errno; free(buf); if (error != ERANGE) { VLOG_WARN("getcwd failed (%s)", ovs_strerror(error)); return NULL; } size *= 2; } } } static char * all_slashes_name(const char *s) { return xstrdup(s[0] == '/' && s[1] == '/' && s[2] != '/' ? "//" : s[0] == '/' ? "/" : "."); } #ifndef _WIN32 /* Returns the directory name portion of 'file_name' as a malloc()'d string, * similar to the POSIX dirname() function but thread-safe. */ char * dir_name(const char *file_name) { size_t len = strlen(file_name); while (len > 0 && file_name[len - 1] == '/') { len--; } while (len > 0 && file_name[len - 1] != '/') { len--; } while (len > 0 && file_name[len - 1] == '/') { len--; } return len ? xmemdup0(file_name, len) : all_slashes_name(file_name); } /* Returns the file name portion of 'file_name' as a malloc()'d string, * similar to the POSIX basename() function but thread-safe. */ char * base_name(const char *file_name) { size_t end, start; end = strlen(file_name); while (end > 0 && file_name[end - 1] == '/') { end--; } if (!end) { return all_slashes_name(file_name); } start = end; while (start > 0 && file_name[start - 1] != '/') { start--; } return xmemdup0(file_name + start, end - start); } #endif /* _WIN32 */ bool is_file_name_absolute(const char *fn) { #ifdef _WIN32 /* Use platform specific API */ return !PathIsRelative(fn); #else /* An absolute path begins with /. */ return fn[0] == '/'; #endif } /* If 'file_name' is absolute, returns a copy of 'file_name'. Otherwise, * returns an absolute path to 'file_name' considering it relative to 'dir', * which itself must be absolute. 'dir' may be null or the empty string, in * which case the current working directory is used. * * Returns a null pointer if 'dir' is null and getcwd() fails. */ char * abs_file_name(const char *dir, const char *file_name) { /* If it's already absolute, return a copy. */ if (is_file_name_absolute(file_name)) { return xstrdup(file_name); } /* If a base dir was supplied, use it. We assume, without checking, that * the base dir is absolute.*/ if (dir && dir[0]) { char *separator = dir[strlen(dir) - 1] == '/' ? "" : "/"; return xasprintf("%s%s%s", dir, separator, file_name); } #if _WIN32 /* It's a little complicated to make an absolute path on Windows because a * relative path might still specify a drive letter. The OS has a function * to do the job for us, so use it. */ char abs_path[MAX_PATH]; DWORD n = GetFullPathName(file_name, sizeof abs_path, abs_path, NULL); return n > 0 && n <= sizeof abs_path ? xmemdup0(abs_path, n) : NULL; #else /* Outside Windows, do the job ourselves. */ char *cwd = get_cwd(); if (!cwd) { return NULL; } char *abs_name = xasprintf("%s/%s", cwd, file_name); free(cwd); return abs_name; #endif } /* Like readlink(), but returns the link name as a null-terminated string in * allocated memory that the caller must eventually free (with free()). * Returns NULL on error, in which case errno is set appropriately. */ static char * xreadlink(const char *filename) { #ifdef _WIN32 errno = ENOENT; return NULL; #else size_t size; for (size = 64; ; size *= 2) { char *buf = xmalloc(size); ssize_t retval = readlink(filename, buf, size); int error = errno; if (retval >= 0 && retval < size) { buf[retval] = '\0'; return buf; } free(buf); if (retval < 0) { errno = error; return NULL; } } #endif } /* Returns a version of 'filename' with symlinks in the final component * dereferenced. This differs from realpath() in that: * * - 'filename' need not exist. * * - If 'filename' does exist as a symlink, its referent need not exist. * * - Only symlinks in the final component of 'filename' are dereferenced. * * For Windows platform, this function returns a string that has the same * value as the passed string. * * The caller must eventually free the returned string (with free()). */ char * follow_symlinks(const char *filename) { #ifndef _WIN32 struct stat s; char *fn; int i; fn = xstrdup(filename); for (i = 0; i < 10; i++) { char *linkname; char *next_fn; if (lstat(fn, &s) != 0 || !S_ISLNK(s.st_mode)) { return fn; } linkname = xreadlink(fn); if (!linkname) { VLOG_WARN("%s: readlink failed (%s)", filename, ovs_strerror(errno)); return fn; } if (linkname[0] == '/') { /* Target of symlink is absolute so use it raw. */ next_fn = linkname; } else { /* Target of symlink is relative so add to 'fn''s directory. */ char *dir = dir_name(fn); if (!strcmp(dir, ".")) { next_fn = linkname; } else { char *separator = dir[strlen(dir) - 1] == '/' ? "" : "/"; next_fn = xasprintf("%s%s%s", dir, separator, linkname); free(linkname); } free(dir); } free(fn); fn = next_fn; } VLOG_WARN("%s: too many levels of symlinks", filename); free(fn); #endif return xstrdup(filename); } /* Pass a value to this function if it is marked with * __attribute__((warn_unused_result)) and you genuinely want to ignore * its return value. (Note that every scalar type can be implicitly * converted to bool.) */ void ignore(bool x OVS_UNUSED) { } /* Returns an appropriate delimiter for inserting just before the 0-based item * 'index' in a list that has 'total' items in it. */ const char * english_list_delimiter(size_t index, size_t total) { return (index == 0 ? "" : index < total - 1 ? ", " : total > 2 ? ", and " : " and "); } /* Returns the number of trailing 0-bits in 'n'. Undefined if 'n' == 0. */ #if __GNUC__ >= 4 || _MSC_VER /* Defined inline in util.h. */ #else /* Returns the number of trailing 0-bits in 'n'. Undefined if 'n' == 0. */ int raw_ctz(uint64_t n) { uint64_t k; int count = 63; #define CTZ_STEP(X) \ k = n << (X); \ if (k) { \ count -= X; \ n = k; \ } CTZ_STEP(32); CTZ_STEP(16); CTZ_STEP(8); CTZ_STEP(4); CTZ_STEP(2); CTZ_STEP(1); #undef CTZ_STEP return count; } /* Returns the number of leading 0-bits in 'n'. Undefined if 'n' == 0. */ int raw_clz64(uint64_t n) { uint64_t k; int count = 63; #define CLZ_STEP(X) \ k = n >> (X); \ if (k) { \ count -= X; \ n = k; \ } CLZ_STEP(32); CLZ_STEP(16); CLZ_STEP(8); CLZ_STEP(4); CLZ_STEP(2); CLZ_STEP(1); #undef CLZ_STEP return count; } #endif #if NEED_COUNT_1BITS_8 #define INIT1(X) \ ((((X) & (1 << 0)) != 0) + \ (((X) & (1 << 1)) != 0) + \ (((X) & (1 << 2)) != 0) + \ (((X) & (1 << 3)) != 0) + \ (((X) & (1 << 4)) != 0) + \ (((X) & (1 << 5)) != 0) + \ (((X) & (1 << 6)) != 0) + \ (((X) & (1 << 7)) != 0)) #define INIT2(X) INIT1(X), INIT1((X) + 1) #define INIT4(X) INIT2(X), INIT2((X) + 2) #define INIT8(X) INIT4(X), INIT4((X) + 4) #define INIT16(X) INIT8(X), INIT8((X) + 8) #define INIT32(X) INIT16(X), INIT16((X) + 16) #define INIT64(X) INIT32(X), INIT32((X) + 32) const uint8_t count_1bits_8[256] = { INIT64(0), INIT64(64), INIT64(128), INIT64(192) }; #endif /* Returns true if the 'n' bytes starting at 'p' are 'byte'. */ bool is_all_byte(const void *p_, size_t n, uint8_t byte) { const uint8_t *p = p_; size_t i; for (i = 0; i < n; i++) { if (p[i] != byte) { return false; } } return true; } /* Returns true if the 'n' bytes starting at 'p' are zeros. */ bool is_all_zeros(const void *p, size_t n) { return is_all_byte(p, n, 0); } /* Returns true if the 'n' bytes starting at 'p' are 0xff. */ bool is_all_ones(const void *p, size_t n) { return is_all_byte(p, n, 0xff); } /* *dst |= *src for 'n' bytes. */ void or_bytes(void *dst_, const void *src_, size_t n) { const uint8_t *src = src_; uint8_t *dst = dst_; size_t i; for (i = 0; i < n; i++) { *dst++ |= *src++; } } /* Copies 'n_bits' bits starting from bit 'src_ofs' in 'src' to the 'n_bits' * starting from bit 'dst_ofs' in 'dst'. 'src' is 'src_len' bytes long and * 'dst' is 'dst_len' bytes long. * * If you consider all of 'src' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in src[src_len - 1], bit 1 is the bit with value 2, bit 2 is * the bit with value 4, ..., bit 8 is the bit with value 1 in src[src_len - * 2], and so on. Similarly for 'dst'. * * Required invariants: * src_ofs + n_bits <= src_len * 8 * dst_ofs + n_bits <= dst_len * 8 * 'src' and 'dst' must not overlap. */ void bitwise_copy(const void *src_, unsigned int src_len, unsigned int src_ofs, void *dst_, unsigned int dst_len, unsigned int dst_ofs, unsigned int n_bits) { const uint8_t *src = src_; uint8_t *dst = dst_; src += src_len - (src_ofs / 8 + 1); src_ofs %= 8; dst += dst_len - (dst_ofs / 8 + 1); dst_ofs %= 8; if (src_ofs == 0 && dst_ofs == 0) { unsigned int n_bytes = n_bits / 8; if (n_bytes) { dst -= n_bytes - 1; src -= n_bytes - 1; memcpy(dst, src, n_bytes); n_bits %= 8; src--; dst--; } if (n_bits) { uint8_t mask = (1 << n_bits) - 1; *dst = (*dst & ~mask) | (*src & mask); } } else { while (n_bits > 0) { unsigned int max_copy = 8 - MAX(src_ofs, dst_ofs); unsigned int chunk = MIN(n_bits, max_copy); uint8_t mask = ((1 << chunk) - 1) << dst_ofs; *dst &= ~mask; *dst |= ((*src >> src_ofs) << dst_ofs) & mask; src_ofs += chunk; if (src_ofs == 8) { src--; src_ofs = 0; } dst_ofs += chunk; if (dst_ofs == 8) { dst--; dst_ofs = 0; } n_bits -= chunk; } } } /* Zeros the 'n_bits' bits starting from bit 'dst_ofs' in 'dst'. 'dst' is * 'dst_len' bytes long. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is * the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len - * 2], and so on. * * Required invariant: * dst_ofs + n_bits <= dst_len * 8 */ void bitwise_zero(void *dst_, unsigned int dst_len, unsigned dst_ofs, unsigned int n_bits) { uint8_t *dst = dst_; if (!n_bits) { return; } dst += dst_len - (dst_ofs / 8 + 1); dst_ofs %= 8; if (dst_ofs) { unsigned int chunk = MIN(n_bits, 8 - dst_ofs); *dst &= ~(((1 << chunk) - 1) << dst_ofs); n_bits -= chunk; if (!n_bits) { return; } dst--; } while (n_bits >= 8) { *dst-- = 0; n_bits -= 8; } if (n_bits) { *dst &= ~((1 << n_bits) - 1); } } /* Sets to 1 all of the 'n_bits' bits starting from bit 'dst_ofs' in 'dst'. * 'dst' is 'dst_len' bytes long. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is * the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len - * 2], and so on. * * Required invariant: * dst_ofs + n_bits <= dst_len * 8 */ void bitwise_one(void *dst_, unsigned int dst_len, unsigned dst_ofs, unsigned int n_bits) { uint8_t *dst = dst_; if (!n_bits) { return; } dst += dst_len - (dst_ofs / 8 + 1); dst_ofs %= 8; if (dst_ofs) { unsigned int chunk = MIN(n_bits, 8 - dst_ofs); *dst |= ((1 << chunk) - 1) << dst_ofs; n_bits -= chunk; if (!n_bits) { return; } dst--; } while (n_bits >= 8) { *dst-- = 0xff; n_bits -= 8; } if (n_bits) { *dst |= (1 << n_bits) - 1; } } /* Scans the 'n_bits' bits starting from bit 'dst_ofs' in 'dst' for 1-bits. * Returns false if any 1-bits are found, otherwise true. 'dst' is 'dst_len' * bytes long. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is * the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len - * 2], and so on. * * Required invariant: * dst_ofs + n_bits <= dst_len * 8 */ bool bitwise_is_all_zeros(const void *p_, unsigned int len, unsigned int ofs, unsigned int n_bits) { const uint8_t *p = p_; if (!n_bits) { return true; } p += len - (ofs / 8 + 1); ofs %= 8; if (ofs) { unsigned int chunk = MIN(n_bits, 8 - ofs); if (*p & (((1 << chunk) - 1) << ofs)) { return false; } n_bits -= chunk; if (!n_bits) { return true; } p--; } while (n_bits >= 8) { if (*p) { return false; } n_bits -= 8; p--; } if (n_bits && *p & ((1 << n_bits) - 1)) { return false; } return true; } /* Scans the bits in 'p' that have bit offsets 'start' (inclusive) through * 'end' (exclusive) for the first bit with value 'target'. If one is found, * returns its offset, otherwise 'end'. 'p' is 'len' bytes long. * * If you consider all of 'p' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in p[len - 1], bit 1 is the bit with value 2, bit 2 is the bit * with value 4, ..., bit 8 is the bit with value 1 in p[len - 2], and so on. * * Required invariant: * start <= end */ unsigned int bitwise_scan(const void *p, unsigned int len, bool target, unsigned int start, unsigned int end) { unsigned int ofs; for (ofs = start; ofs < end; ofs++) { if (bitwise_get_bit(p, len, ofs) == target) { break; } } return ofs; } /* Scans the bits in 'p' that have bit offsets 'start' (inclusive) through * 'end' (exclusive) for the first bit with value 'target', in reverse order. * If one is found, returns its offset, otherwise 'end'. 'p' is 'len' bytes * long. * * If you consider all of 'p' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in p[len - 1], bit 1 is the bit with value 2, bit 2 is the bit * with value 4, ..., bit 8 is the bit with value 1 in p[len - 2], and so on. * * To scan an entire bit array in reverse order, specify start == len * 8 - 1 * and end == -1, in which case the return value is nonnegative if successful * and -1 if no 'target' match is found. * * Required invariant: * start >= end */ int bitwise_rscan(const void *p, unsigned int len, bool target, int start, int end) { const uint8_t *s = p; int start_byte = len - (start / 8 + 1); int end_byte = len - (end / 8 + 1); int ofs_byte; int ofs; uint8_t the_byte; /* Find the target in the start_byte from starting offset */ ofs_byte = start_byte; the_byte = s[ofs_byte]; for (ofs = start % 8; ofs >= 0; ofs--) { if (((the_byte & (1u << ofs)) != 0) == target) { break; } } if (ofs < 0) { /* Target not found in start byte, continue searching byte by byte */ for (ofs_byte = start_byte + 1; ofs_byte <= end_byte; ofs_byte++) { if ((target && s[ofs_byte]) || (!target && (s[ofs_byte] != 0xff))) { break; } } if (ofs_byte > end_byte) { return end; } the_byte = s[ofs_byte]; /* Target is in the_byte, find it bit by bit */ for (ofs = 7; ofs >= 0; ofs--) { if (((the_byte & (1u << ofs)) != 0) == target) { break; } } } int ret = (len - ofs_byte) * 8 - (8 - ofs); if (ret < end) { return end; } return ret; } /* Copies the 'n_bits' low-order bits of 'value' into the 'n_bits' bits * starting at bit 'dst_ofs' in 'dst', which is 'dst_len' bytes long. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is * the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len - * 2], and so on. * * Required invariants: * dst_ofs + n_bits <= dst_len * 8 * n_bits <= 64 */ void bitwise_put(uint64_t value, void *dst, unsigned int dst_len, unsigned int dst_ofs, unsigned int n_bits) { ovs_be64 n_value = htonll(value); bitwise_copy(&n_value, sizeof n_value, 0, dst, dst_len, dst_ofs, n_bits); } /* Returns the value of the 'n_bits' bits starting at bit 'src_ofs' in 'src', * which is 'src_len' bytes long. * * If you consider all of 'src' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in src[src_len - 1], bit 1 is the bit with value 2, bit 2 is * the bit with value 4, ..., bit 8 is the bit with value 1 in src[src_len - * 2], and so on. * * Required invariants: * src_ofs + n_bits <= src_len * 8 * n_bits <= 64 */ uint64_t bitwise_get(const void *src, unsigned int src_len, unsigned int src_ofs, unsigned int n_bits) { ovs_be64 value = htonll(0); bitwise_copy(src, src_len, src_ofs, &value, sizeof value, 0, n_bits); return ntohll(value); } /* Returns the value of the bit with offset 'ofs' in 'src', which is 'len' * bytes long. * * If you consider all of 'src' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in src[len - 1], bit 1 is the bit with value 2, bit 2 is the * bit with value 4, ..., bit 8 is the bit with value 1 in src[len - 2], and so * on. * * Required invariants: * ofs < len * 8 */ bool bitwise_get_bit(const void *src_, unsigned int len, unsigned int ofs) { const uint8_t *src = src_; return (src[len - (ofs / 8 + 1)] & (1u << (ofs % 8))) != 0; } /* Sets the bit with offset 'ofs' in 'dst', which is 'len' bytes long, to 0. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[len - 1], bit 1 is the bit with value 2, bit 2 is the * bit with value 4, ..., bit 8 is the bit with value 1 in dst[len - 2], and so * on. * * Required invariants: * ofs < len * 8 */ void bitwise_put0(void *dst_, unsigned int len, unsigned int ofs) { uint8_t *dst = dst_; dst[len - (ofs / 8 + 1)] &= ~(1u << (ofs % 8)); } /* Sets the bit with offset 'ofs' in 'dst', which is 'len' bytes long, to 1. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[len - 1], bit 1 is the bit with value 2, bit 2 is the * bit with value 4, ..., bit 8 is the bit with value 1 in dst[len - 2], and so * on. * * Required invariants: * ofs < len * 8 */ void bitwise_put1(void *dst_, unsigned int len, unsigned int ofs) { uint8_t *dst = dst_; dst[len - (ofs / 8 + 1)] |= 1u << (ofs % 8); } /* Sets the bit with offset 'ofs' in 'dst', which is 'len' bytes long, to 'b'. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[len - 1], bit 1 is the bit with value 2, bit 2 is the * bit with value 4, ..., bit 8 is the bit with value 1 in dst[len - 2], and so * on. * * Required invariants: * ofs < len * 8 */ void bitwise_put_bit(void *dst, unsigned int len, unsigned int ofs, bool b) { if (b) { bitwise_put1(dst, len, ofs); } else { bitwise_put0(dst, len, ofs); } } /* Flips the bit with offset 'ofs' in 'dst', which is 'len' bytes long. * * If you consider all of 'dst' to be a single unsigned integer in network byte * order, then bit N is the bit with value 2**N. That is, bit 0 is the bit * with value 1 in dst[len - 1], bit 1 is the bit with value 2, bit 2 is the * bit with value 4, ..., bit 8 is the bit with value 1 in dst[len - 2], and so * on. * * Required invariants: * ofs < len * 8 */ void bitwise_toggle_bit(void *dst_, unsigned int len, unsigned int ofs) { uint8_t *dst = dst_; dst[len - (ofs / 8 + 1)] ^= 1u << (ofs % 8); } /* ovs_scan */ struct scan_spec { unsigned int width; enum { SCAN_DISCARD, SCAN_CHAR, SCAN_SHORT, SCAN_INT, SCAN_LONG, SCAN_LLONG, SCAN_INTMAX_T, SCAN_PTRDIFF_T, SCAN_SIZE_T } type; }; static const char * skip_spaces(const char *s) { while (isspace((unsigned char) *s)) { s++; } return s; } static const char * scan_int(const char *s, const struct scan_spec *spec, int base, va_list *args) { const char *start = s; uintmax_t value; bool negative; int n_digits; negative = *s == '-'; s += *s == '-' || *s == '+'; if ((!base || base == 16) && *s == '0' && (s[1] == 'x' || s[1] == 'X')) { base = 16; s += 2; } else if (!base) { base = *s == '0' ? 8 : 10; } if (s - start >= spec->width) { return NULL; } value = 0; n_digits = 0; while (s - start < spec->width) { int digit = hexit_value(*s); if (digit < 0 || digit >= base) { break; } value = value * base + digit; n_digits++; s++; } if (!n_digits) { return NULL; } if (negative) { value = -value; } switch (spec->type) { case SCAN_DISCARD: break; case SCAN_CHAR: *va_arg(*args, char *) = value; break; case SCAN_SHORT: *va_arg(*args, short int *) = value; break; case SCAN_INT: *va_arg(*args, int *) = value; break; case SCAN_LONG: *va_arg(*args, long int *) = value; break; case SCAN_LLONG: *va_arg(*args, long long int *) = value; break; case SCAN_INTMAX_T: *va_arg(*args, intmax_t *) = value; break; case SCAN_PTRDIFF_T: *va_arg(*args, ptrdiff_t *) = value; break; case SCAN_SIZE_T: *va_arg(*args, size_t *) = value; break; } return s; } static const char * skip_digits(const char *s) { while (*s >= '0' && *s <= '9') { s++; } return s; } static const char * scan_float(const char *s, const struct scan_spec *spec, va_list *args) { const char *start = s; long double value; char *tail; char *copy; bool ok; s += *s == '+' || *s == '-'; s = skip_digits(s); if (*s == '.') { s = skip_digits(s + 1); } if (*s == 'e' || *s == 'E') { s++; s += *s == '+' || *s == '-'; s = skip_digits(s); } if (s - start > spec->width) { s = start + spec->width; } copy = xmemdup0(start, s - start); value = strtold(copy, &tail); ok = *tail == '\0'; free(copy); if (!ok) { return NULL; } switch (spec->type) { case SCAN_DISCARD: break; case SCAN_INT: *va_arg(*args, float *) = value; break; case SCAN_LONG: *va_arg(*args, double *) = value; break; case SCAN_LLONG: *va_arg(*args, long double *) = value; break; case SCAN_CHAR: case SCAN_SHORT: case SCAN_INTMAX_T: case SCAN_PTRDIFF_T: case SCAN_SIZE_T: OVS_NOT_REACHED(); } return s; } static void scan_output_string(const struct scan_spec *spec, const char *s, size_t n, va_list *args) { if (spec->type != SCAN_DISCARD) { char *out = va_arg(*args, char *); memcpy(out, s, n); out[n] = '\0'; } } static const char * scan_string(const char *s, const struct scan_spec *spec, va_list *args) { size_t n; for (n = 0; n < spec->width; n++) { if (!s[n] || isspace((unsigned char) s[n])) { break; } } if (!n) { return NULL; } scan_output_string(spec, s, n, args); return s + n; } static const char * parse_scanset(const char *p_, unsigned long *set, bool *complemented) { const uint8_t *p = (const uint8_t *) p_; *complemented = *p == '^'; p += *complemented; if (*p == ']') { bitmap_set1(set, ']'); p++; } while (*p && *p != ']') { if (p[1] == '-' && p[2] != ']' && p[2] > *p) { bitmap_set_multiple(set, *p, p[2] - *p + 1, true); p += 3; } else { bitmap_set1(set, *p++); } } if (*p == ']') { p++; } return (const char *) p; } static const char * scan_set(const char *s, const struct scan_spec *spec, const char **pp, va_list *args) { unsigned long set[BITMAP_N_LONGS(UCHAR_MAX + 1)]; bool complemented; unsigned int n; /* Parse the scan set. */ memset(set, 0, sizeof set); *pp = parse_scanset(*pp, set, &complemented); /* Parse the data. */ n = 0; while (s[n] && bitmap_is_set(set, (unsigned char) s[n]) == !complemented && n < spec->width) { n++; } if (!n) { return NULL; } scan_output_string(spec, s, n, args); return s + n; } static const char * scan_chars(const char *s, const struct scan_spec *spec, va_list *args) { unsigned int n = spec->width == UINT_MAX ? 1 : spec->width; if (strlen(s) < n) { return NULL; } if (spec->type != SCAN_DISCARD) { memcpy(va_arg(*args, char *), s, n); } return s + n; } static bool ovs_scan__(const char *s, int *n, const char *format, va_list *args) { const char *const start = s; bool ok = false; const char *p; p = format; while (*p != '\0') { struct scan_spec spec; unsigned char c = *p++; bool discard; if (isspace(c)) { s = skip_spaces(s); continue; } else if (c != '%') { if (*s != c) { goto exit; } s++; continue; } else if (*p == '%') { if (*s++ != '%') { goto exit; } p++; continue; } /* Parse '*' flag. */ discard = *p == '*'; p += discard; /* Parse field width. */ spec.width = 0; while (*p >= '0' && *p <= '9') { spec.width = spec.width * 10 + (*p++ - '0'); } if (spec.width == 0) { spec.width = UINT_MAX; } /* Parse type modifier. */ switch (*p) { case 'h': if (p[1] == 'h') { spec.type = SCAN_CHAR; p += 2; } else { spec.type = SCAN_SHORT; p++; } break; case 'j': spec.type = SCAN_INTMAX_T; p++; break; case 'l': if (p[1] == 'l') { spec.type = SCAN_LLONG; p += 2; } else { spec.type = SCAN_LONG; p++; } break; case 'L': case 'q': spec.type = SCAN_LLONG; p++; break; case 't': spec.type = SCAN_PTRDIFF_T; p++; break; case 'z': spec.type = SCAN_SIZE_T; p++; break; default: spec.type = SCAN_INT; break; } if (discard) { spec.type = SCAN_DISCARD; } c = *p++; if (c != 'c' && c != 'n' && c != '[') { s = skip_spaces(s); } switch (c) { case 'd': s = scan_int(s, &spec, 10, args); break; case 'i': s = scan_int(s, &spec, 0, args); break; case 'o': s = scan_int(s, &spec, 8, args); break; case 'u': s = scan_int(s, &spec, 10, args); break; case 'x': case 'X': s = scan_int(s, &spec, 16, args); break; case 'e': case 'f': case 'g': case 'E': case 'G': s = scan_float(s, &spec, args); break; case 's': s = scan_string(s, &spec, args); break; case '[': s = scan_set(s, &spec, &p, args); break; case 'c': s = scan_chars(s, &spec, args); break; case 'n': if (spec.type != SCAN_DISCARD) { *va_arg(*args, int *) = s - start; } break; } if (!s) { goto exit; } } if (n) { *n = s - start; } ok = true; exit: return ok; } /* This is an implementation of the standard sscanf() function, with the * following exceptions: * * - It returns true if the entire format was successfully scanned and * converted, false if any conversion failed. * * - The standard doesn't define sscanf() behavior when an out-of-range value * is scanned, e.g. if a "%"PRIi8 conversion scans "-1" or "0x1ff". Some * implementations consider this an error and stop scanning. This * implementation never considers an out-of-range value an error; instead, * it stores the least-significant bits of the converted value in the * destination, e.g. the value 255 for both examples earlier. * * - Only single-byte characters are supported, that is, the 'l' modifier * on %s, %[, and %c is not supported. The GNU extension 'a' modifier is * also not supported. * * - %p is not supported. */ bool ovs_scan(const char *s, const char *format, ...) { va_list args; bool res; va_start(args, format); res = ovs_scan__(s, NULL, format, &args); va_end(args); return res; } /* * This function is similar to ovs_scan(), with an extra parameter `n` added to * return the number of scanned characters. */ bool ovs_scan_len(const char *s, int *n, const char *format, ...) { va_list args; bool success; int n1; va_start(args, format); success = ovs_scan__(s + *n, &n1, format, &args); va_end(args); if (success) { *n = *n + n1; } return success; } void xsleep(unsigned int seconds) { ovsrcu_quiesce_start(); #ifdef _WIN32 Sleep(seconds * 1000); #else sleep(seconds); #endif ovsrcu_quiesce_end(); } static void xnanosleep__(uint64_t nanoseconds) { #ifndef _WIN32 int retval; struct timespec ts_sleep; nsec_to_timespec(nanoseconds, &ts_sleep); int error = 0; do { retval = nanosleep(&ts_sleep, NULL); error = retval < 0 ? errno : 0; } while (error == EINTR); #else HANDLE timer = CreateWaitableTimer(NULL, FALSE, NULL); if (timer) { LARGE_INTEGER duetime; duetime.QuadPart = -nanoseconds; if (SetWaitableTimer(timer, &duetime, 0, NULL, NULL, FALSE)) { WaitForSingleObject(timer, INFINITE); } else { VLOG_ERR_ONCE("SetWaitableTimer Failed (%s)", ovs_lasterror_to_string()); } CloseHandle(timer); } else { VLOG_ERR_ONCE("CreateWaitableTimer Failed (%s)", ovs_lasterror_to_string()); } #endif } /* High resolution sleep with thread quiesce. */ void xnanosleep(uint64_t nanoseconds) { ovsrcu_quiesce_start(); xnanosleep__(nanoseconds); ovsrcu_quiesce_end(); } /* High resolution sleep without thread quiesce. */ void xnanosleep_no_quiesce(uint64_t nanoseconds) { xnanosleep__(nanoseconds); } #if __linux__ void set_timer_resolution(unsigned long nanoseconds) { prctl(PR_SET_TIMERSLACK, nanoseconds); } #else void set_timer_resolution(unsigned long nanoseconds OVS_UNUSED) { } #endif /* Determine whether standard output is a tty or not. This is useful to decide * whether to use color output or not when --color option for utilities is set * to `auto`. */ bool is_stdout_a_tty(void) { char const *t = getenv("TERM"); return (isatty(STDOUT_FILENO) && t && strcmp(t, "dumb") != 0); } #ifdef _WIN32 char * ovs_format_message(int error) { enum { BUFSIZE = sizeof strerror_buffer_get()->s }; char *buffer = strerror_buffer_get()->s; if (error == 0) { /* See ovs_strerror */ return "Success"; } FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, error, 0, buffer, BUFSIZE, NULL); return buffer; } /* Returns a null-terminated string that explains the last error. * Use this function to get the error string for WINAPI calls. */ char * ovs_lasterror_to_string(void) { return ovs_format_message(GetLastError()); } int ftruncate(int fd, off_t length) { int error; error = _chsize_s(fd, length); if (error) { return -1; } return 0; } OVS_CONSTRUCTOR(winsock_start) { WSADATA wsaData; int error; error = WSAStartup(MAKEWORD(2, 2), &wsaData); if (error != 0) { VLOG_FATAL("WSAStartup failed: %s", sock_strerror(sock_errno())); } } #endif