/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto-dpif-upcall.h" #include #include #include #include "connmgr.h" #include "coverage.h" #include "cmap.h" #include "lib/dpif-provider.h" #include "dpif.h" #include "openvswitch/dynamic-string.h" #include "fail-open.h" #include "guarded-list.h" #include "latch.h" #include "openvswitch/list.h" #include "netlink.h" #include "openvswitch/ofpbuf.h" #include "ofproto-dpif-ipfix.h" #include "ofproto-dpif-sflow.h" #include "ofproto-dpif-xlate.h" #include "ofproto-dpif-xlate-cache.h" #include "ofproto-dpif-trace.h" #include "ovs-rcu.h" #include "packets.h" #include "openvswitch/poll-loop.h" #include "seq.h" #include "tunnel.h" #include "unixctl.h" #include "openvswitch/usdt-probes.h" #include "openvswitch/vlog.h" #include "lib/netdev-provider.h" #define UPCALL_MAX_BATCH 64 #define REVALIDATE_MAX_BATCH 50 #define UINT64_THREE_QUARTERS (UINT64_MAX / 4 * 3) VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall); COVERAGE_DEFINE(dumped_duplicate_flow); COVERAGE_DEFINE(dumped_new_flow); COVERAGE_DEFINE(handler_duplicate_upcall); COVERAGE_DEFINE(revalidate_missed_dp_flow); COVERAGE_DEFINE(ukey_dp_change); COVERAGE_DEFINE(ukey_invalid_stat_reset); COVERAGE_DEFINE(upcall_flow_limit_hit); COVERAGE_DEFINE(upcall_flow_limit_kill); COVERAGE_DEFINE(upcall_ukey_contention); COVERAGE_DEFINE(upcall_ukey_replace); /* A thread that reads upcalls from dpif, forwards each upcall's packet, * and possibly sets up a kernel flow as a cache. */ struct handler { struct udpif *udpif; /* Parent udpif. */ pthread_t thread; /* Thread ID. */ uint32_t handler_id; /* Handler id. */ }; /* In the absence of a multiple-writer multiple-reader datastructure for * storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its * own lock for writing. */ #define N_UMAPS 512 /* per udpif. */ struct umap { struct ovs_mutex mutex; /* Take for writing to the following. */ struct cmap cmap; /* Datapath flow keys. */ }; /* A thread that processes datapath flows, updates OpenFlow statistics, and * updates or removes them if necessary. * * Revalidator threads operate in two phases: "dump" and "sweep". In between * each phase, all revalidators sync up so that all revalidator threads are * either in one phase or the other, but not a combination. * * During the dump phase, revalidators fetch flows from the datapath and * attribute the statistics to OpenFlow rules. Each datapath flow has a * corresponding ukey which caches the most recently seen statistics. If * a flow needs to be deleted (for example, because it is unused over a * period of time), revalidator threads may delete the flow during the * dump phase. The datapath is not guaranteed to reliably dump all flows * from the datapath, and there is no mapping between datapath flows to * revalidators, so a particular flow may be handled by zero or more * revalidators during a single dump phase. To avoid duplicate attribution * of statistics, ukeys are never deleted during this phase. * * During the sweep phase, each revalidator takes ownership of a different * slice of umaps and sweeps through all ukeys in those umaps to figure out * whether they need to be deleted. During this phase, revalidators may * fetch individual flows which were not dumped during the dump phase to * validate them and attribute statistics. */ struct revalidator { struct udpif *udpif; /* Parent udpif. */ pthread_t thread; /* Thread ID. */ unsigned int id; /* ovsthread_id_self(). */ }; /* An upcall handler for ofproto_dpif. * * udpif keeps records of two kind of logically separate units: * * upcall handling * --------------- * * - An array of 'struct handler's for upcall handling and flow * installation. * * flow revalidation * ----------------- * * - Revalidation threads which read the datapath flow table and maintains * them. */ struct udpif { struct ovs_list list_node; /* In all_udpifs list. */ struct dpif *dpif; /* Datapath handle. */ struct dpif_backer *backer; /* Opaque dpif_backer pointer. */ struct handler *handlers; /* Upcall handlers. */ uint32_t n_handlers; struct revalidator *revalidators; /* Flow revalidators. */ uint32_t n_revalidators; struct latch exit_latch; /* Tells child threads to exit. */ /* Revalidation. */ struct seq *reval_seq; /* Incremented to force revalidation. */ bool reval_exit; /* Set by leader on 'exit_latch. */ struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */ struct dpif_flow_dump *dump; /* DPIF flow dump state. */ long long int dump_duration; /* Duration of the last flow dump. */ struct seq *dump_seq; /* Increments each dump iteration. */ atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */ /* These variables provide a mechanism for the main thread to pause * all revalidation without having to completely shut the threads down. * 'pause_latch' is shared between the main thread and the lead * revalidator thread, so when it is desirable to halt revalidation, the * main thread will set the latch. 'pause' and 'pause_barrier' are shared * by revalidator threads. The lead revalidator will set 'pause' when it * observes the latch has been set, and this will cause all revalidator * threads to wait on 'pause_barrier' at the beginning of the next * revalidation round. */ bool pause; /* Set by leader on 'pause_latch. */ struct latch pause_latch; /* Set to force revalidators pause. */ struct ovs_barrier pause_barrier; /* Barrier used to pause all */ /* revalidators by main thread. */ /* There are 'N_UMAPS' maps containing 'struct udpif_key' elements. * * During the flow dump phase, revalidators insert into these with a random * distribution. During the garbage collection phase, each revalidator * takes care of garbage collecting a slice of these maps. */ struct umap *ukeys; /* Datapath flow statistics. */ unsigned int max_n_flows; unsigned int avg_n_flows; /* Following fields are accessed and modified by different threads. */ atomic_uint flow_limit; /* Datapath flow hard limit. */ /* n_flows_mutex prevents multiple threads updating these concurrently. */ atomic_uint n_flows; /* Number of flows in the datapath. */ atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */ struct ovs_mutex n_flows_mutex; /* Following fields are accessed and modified only from the main thread. */ struct unixctl_conn **conns; /* Connections waiting on dump_seq. */ uint64_t conn_seq; /* Corresponds to 'dump_seq' when conns[n_conns-1] was stored. */ size_t n_conns; /* Number of connections waiting. */ long long int offload_rebalance_time; /* Time of last offload rebalance */ }; enum upcall_type { BAD_UPCALL, /* Some kind of bug somewhere. */ MISS_UPCALL, /* A flow miss. */ SLOW_PATH_UPCALL, /* Slow path upcall. */ SFLOW_UPCALL, /* sFlow sample. */ FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */ IPFIX_UPCALL, /* Per-bridge sampling. */ CONTROLLER_UPCALL /* Destined for the controller. */ }; enum reval_result { UKEY_KEEP, UKEY_DELETE, UKEY_MODIFY }; struct upcall { struct ofproto_dpif *ofproto; /* Parent ofproto. */ const struct recirc_id_node *recirc; /* Recirculation context. */ bool have_recirc_ref; /* Reference held on recirc ctx? */ /* The flow and packet are only required to be constant when using * dpif-netdev. If a modification is absolutely necessary, a const cast * may be used with other datapaths. */ const struct flow *flow; /* Parsed representation of the packet. */ enum odp_key_fitness fitness; /* Fitness of 'flow' relative to ODP key. */ const ovs_u128 *ufid; /* Unique identifier for 'flow'. */ unsigned pmd_id; /* Datapath poll mode driver id. */ const struct dp_packet *packet; /* Packet associated with this upcall. */ ofp_port_t ofp_in_port; /* OpenFlow in port, or OFPP_NONE. */ uint16_t mru; /* If !0, Maximum receive unit of fragmented IP packet */ uint64_t hash; enum upcall_type type; /* Type of the upcall. */ const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */ bool xout_initialized; /* True if 'xout' must be uninitialized. */ struct xlate_out xout; /* Result of xlate_actions(). */ struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */ struct flow_wildcards wc; /* Dependencies that megaflow must match. */ struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */ struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */ struct dpif_sflow *sflow; /* SFlow pointer or NULL. */ struct udpif_key *ukey; /* Revalidator flow cache. */ bool ukey_persists; /* Set true to keep 'ukey' beyond the lifetime of this upcall. */ uint64_t reval_seq; /* udpif->reval_seq at translation time. */ /* Not used by the upcall callback interface. */ const struct nlattr *key; /* Datapath flow key. */ size_t key_len; /* Datapath flow key length. */ const struct nlattr *out_tun_key; /* Datapath output tunnel key. */ struct user_action_cookie cookie; uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */ }; /* Ukeys must transition through these states using transition_ukey(). */ enum ukey_state { UKEY_CREATED = 0, UKEY_VISIBLE, /* Ukey is in umap, datapath flow install is queued. */ UKEY_OPERATIONAL, /* Ukey is in umap, datapath flow is installed. */ UKEY_EVICTING, /* Ukey is in umap, datapath flow delete is queued. */ UKEY_EVICTED, /* Ukey is in umap, datapath flow is deleted. */ UKEY_DELETED, /* Ukey removed from umap, ukey free is deferred. */ }; #define N_UKEY_STATES (UKEY_DELETED + 1) /* 'udpif_key's are responsible for tracking the little bit of state udpif * needs to do flow expiration which can't be pulled directly from the * datapath. They may be created by any handler or revalidator thread at any * time, and read by any revalidator during the dump phase. They are however * each owned by a single revalidator which takes care of destroying them * during the garbage-collection phase. * * The mutex within the ukey protects some members of the ukey. The ukey * itself is protected by RCU and is held within a umap in the parent udpif. * Adding or removing a ukey from a umap is only safe when holding the * corresponding umap lock. */ struct udpif_key { struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */ /* These elements are read only once created, and therefore aren't * protected by a mutex. */ const struct nlattr *key; /* Datapath flow key. */ size_t key_len; /* Length of 'key'. */ const struct nlattr *mask; /* Datapath flow mask. */ size_t mask_len; /* Length of 'mask'. */ ovs_u128 ufid; /* Unique flow identifier. */ bool ufid_present; /* True if 'ufid' is in datapath. */ uint32_t hash; /* Pre-computed hash for 'key'. */ unsigned pmd_id; /* Datapath poll mode driver id. */ struct ovs_mutex mutex; /* Guards the following. */ struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/ const char *dp_layer OVS_GUARDED; /* Last known dp_layer. */ long long int created OVS_GUARDED; /* Estimate of creation time. */ uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */ uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */ enum ukey_state state OVS_GUARDED; /* Tracks ukey lifetime. */ /* 'state' debug information. */ unsigned int state_thread OVS_GUARDED; /* Thread that transitions. */ const char *state_where OVS_GUARDED; /* transition_ukey() locator. */ /* Datapath flow actions as nlattrs. Protected by RCU. Read with * ukey_get_actions(), and write with ukey_set_actions(). */ OVSRCU_TYPE(struct ofpbuf *) actions; struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that * are affected by this ukey. * Used for stats and learning.*/ union { struct odputil_keybuf buf; struct nlattr nla; } keybuf, maskbuf; uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */ struct recirc_refs recircs; /* Action recirc IDs with references held. */ #define OFFL_REBAL_INTVL_MSEC 3000 /* dynamic offload rebalance freq */ struct netdev *in_netdev; /* in_odp_port's netdev */ bool offloaded; /* True if flow is offloaded */ uint64_t flow_pps_rate; /* Packets-Per-Second rate */ long long int flow_time; /* last pps update time */ uint64_t flow_packets; /* #pkts seen in interval */ uint64_t flow_backlog_packets; /* prev-mode #pkts (offl or kernel) */ }; /* Datapath operation with optional ukey attached. */ struct ukey_op { struct udpif_key *ukey; struct dpif_flow_stats stats; /* Stats for 'op'. */ struct dpif_op dop; /* Flow operation. */ }; static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs); static size_t recv_upcalls(struct handler *); static int process_upcall(struct udpif *, struct upcall *, struct ofpbuf *odp_actions, struct flow_wildcards *); static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls); static void udpif_stop_threads(struct udpif *, bool delete_flows); static void udpif_start_threads(struct udpif *, uint32_t n_handlers, uint32_t n_revalidators); static void udpif_pause_revalidators(struct udpif *); static void udpif_resume_revalidators(struct udpif *); static void *udpif_upcall_handler(void *); static void *udpif_revalidator(void *); static unsigned long udpif_get_n_flows(struct udpif *); static void revalidate(struct revalidator *); static void revalidator_pause(struct revalidator *); static void revalidator_sweep(struct revalidator *); static void revalidator_purge(struct revalidator *); static void upcall_unixctl_show(struct unixctl_conn *conn, int argc, const char *argv[], void *aux); static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc, const char *argv[], void *aux); static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc, const char *argv[], void *aux); static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc, const char *argv[], void *aux); static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc, const char *argv[], void *aux); static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc, const char *argv[], void *aux); static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc, const char *argv[], void *aux); static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc, const char *argv[], void *aux); static void upcall_unixctl_pause(struct unixctl_conn *conn, int argc, const char *argv[], void *aux); static void upcall_unixctl_resume(struct unixctl_conn *conn, int argc, const char *argv[], void *aux); static struct udpif_key *ukey_create_from_upcall(struct upcall *, struct flow_wildcards *); static int ukey_create_from_dpif_flow(const struct udpif *, const struct dpif_flow *, struct udpif_key **); static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions, size_t *size); static bool ukey_install__(struct udpif *, struct udpif_key *ukey) OVS_TRY_LOCK(true, ukey->mutex); static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey); static void transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst, const char *where) OVS_REQUIRES(ukey->mutex); #define transition_ukey(UKEY, DST) \ transition_ukey_at(UKEY, DST, OVS_SOURCE_LOCATOR) static struct udpif_key *ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id); static int ukey_acquire(struct udpif *, const struct dpif_flow *, struct udpif_key **result, int *error); static void ukey_delete__(struct udpif_key *); static void ukey_delete(struct umap *, struct udpif_key *); static enum upcall_type classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata, struct user_action_cookie *cookie); static void put_op_init(struct ukey_op *op, struct udpif_key *ukey, enum dpif_flow_put_flags flags); static void delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey); static int upcall_receive(struct upcall *, const struct dpif_backer *, const struct dp_packet *packet, enum dpif_upcall_type, const struct nlattr *userdata, const struct flow *, const unsigned int mru, const ovs_u128 *ufid, const unsigned pmd_id, char **errorp); static void upcall_uninit(struct upcall *); static void udpif_flow_rebalance(struct udpif *udpif); static int udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey, enum dpif_offload_type offload_type); static int udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey, enum dpif_offload_type offload_type); static upcall_callback upcall_cb; static dp_purge_callback dp_purge_cb; static atomic_bool enable_megaflows = true; static atomic_bool enable_ufid = true; void udpif_init(void) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; if (ovsthread_once_start(&once)) { unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show, NULL); unixctl_command_register("upcall/disable-megaflows", "", 0, 0, upcall_unixctl_disable_megaflows, NULL); unixctl_command_register("upcall/enable-megaflows", "", 0, 0, upcall_unixctl_enable_megaflows, NULL); unixctl_command_register("upcall/disable-ufid", "", 0, 0, upcall_unixctl_disable_ufid, NULL); unixctl_command_register("upcall/enable-ufid", "", 0, 0, upcall_unixctl_enable_ufid, NULL); unixctl_command_register("upcall/set-flow-limit", "flow-limit-number", 1, 1, upcall_unixctl_set_flow_limit, NULL); unixctl_command_register("revalidator/wait", "", 0, 0, upcall_unixctl_dump_wait, NULL); unixctl_command_register("revalidator/purge", "", 0, 0, upcall_unixctl_purge, NULL); unixctl_command_register("revalidator/pause", NULL, 0, 0, upcall_unixctl_pause, NULL); unixctl_command_register("revalidator/resume", NULL, 0, 0, upcall_unixctl_resume, NULL); ovsthread_once_done(&once); } } struct udpif * udpif_create(struct dpif_backer *backer, struct dpif *dpif) { struct udpif *udpif = xzalloc(sizeof *udpif); udpif->dpif = dpif; udpif->backer = backer; atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000)); udpif->reval_seq = seq_create(); udpif->dump_seq = seq_create(); latch_init(&udpif->exit_latch); latch_init(&udpif->pause_latch); ovs_list_push_back(&all_udpifs, &udpif->list_node); atomic_init(&udpif->enable_ufid, false); atomic_init(&udpif->n_flows, 0); atomic_init(&udpif->n_flows_timestamp, LLONG_MIN); ovs_mutex_init(&udpif->n_flows_mutex); udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys); for (int i = 0; i < N_UMAPS; i++) { cmap_init(&udpif->ukeys[i].cmap); ovs_mutex_init(&udpif->ukeys[i].mutex); } dpif_register_upcall_cb(dpif, upcall_cb, udpif); dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif); return udpif; } void udpif_run(struct udpif *udpif) { if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) { int i; for (i = 0; i < udpif->n_conns; i++) { unixctl_command_reply(udpif->conns[i], NULL); } free(udpif->conns); udpif->conns = NULL; udpif->n_conns = 0; } } void udpif_destroy(struct udpif *udpif) { udpif_stop_threads(udpif, false); dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif); dpif_register_upcall_cb(udpif->dpif, NULL, udpif); for (int i = 0; i < N_UMAPS; i++) { struct udpif_key *ukey; CMAP_FOR_EACH (ukey, cmap_node, &udpif->ukeys[i].cmap) { ukey_delete__(ukey); } cmap_destroy(&udpif->ukeys[i].cmap); ovs_mutex_destroy(&udpif->ukeys[i].mutex); } free(udpif->ukeys); udpif->ukeys = NULL; ovs_list_remove(&udpif->list_node); latch_destroy(&udpif->exit_latch); latch_destroy(&udpif->pause_latch); seq_destroy(udpif->reval_seq); seq_destroy(udpif->dump_seq); ovs_mutex_destroy(&udpif->n_flows_mutex); free(udpif); } /* Stops the handler and revalidator threads. * * If 'delete_flows' is true, we delete ukeys and delete all flows from the * datapath. Otherwise, we end up double-counting stats for flows that remain * in the datapath. If 'delete_flows' is false, we skip this step. This is * appropriate if OVS is about to exit anyway and it is desirable to let * existing network connections continue being forwarded afterward. */ static void udpif_stop_threads(struct udpif *udpif, bool delete_flows) { if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) { size_t i; /* Tell the threads to exit. */ latch_set(&udpif->exit_latch); /* Wait for the threads to exit. Quiesce because this can take a long * time.. */ ovsrcu_quiesce_start(); for (i = 0; i < udpif->n_handlers; i++) { xpthread_join(udpif->handlers[i].thread, NULL); } for (i = 0; i < udpif->n_revalidators; i++) { xpthread_join(udpif->revalidators[i].thread, NULL); } dpif_disable_upcall(udpif->dpif); ovsrcu_quiesce_end(); if (delete_flows) { for (i = 0; i < udpif->n_revalidators; i++) { revalidator_purge(&udpif->revalidators[i]); } } latch_poll(&udpif->exit_latch); ovs_barrier_destroy(&udpif->reval_barrier); ovs_barrier_destroy(&udpif->pause_barrier); free(udpif->revalidators); udpif->revalidators = NULL; udpif->n_revalidators = 0; free(udpif->handlers); udpif->handlers = NULL; udpif->n_handlers = 0; } } /* Starts the handler and revalidator threads. */ static void udpif_start_threads(struct udpif *udpif, uint32_t n_handlers_, uint32_t n_revalidators_) { if (udpif && n_handlers_ && n_revalidators_) { /* Creating a thread can take a significant amount of time on some * systems, even hundred of milliseconds, so quiesce around it. */ ovsrcu_quiesce_start(); udpif->n_handlers = n_handlers_; udpif->n_revalidators = n_revalidators_; udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers); for (size_t i = 0; i < udpif->n_handlers; i++) { struct handler *handler = &udpif->handlers[i]; handler->udpif = udpif; handler->handler_id = i; handler->thread = ovs_thread_create( "handler", udpif_upcall_handler, handler); } atomic_init(&udpif->enable_ufid, udpif->backer->rt_support.ufid); dpif_enable_upcall(udpif->dpif); ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators); ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1); udpif->reval_exit = false; udpif->pause = false; udpif->offload_rebalance_time = time_msec(); udpif->revalidators = xzalloc(udpif->n_revalidators * sizeof *udpif->revalidators); for (size_t i = 0; i < udpif->n_revalidators; i++) { struct revalidator *revalidator = &udpif->revalidators[i]; revalidator->udpif = udpif; revalidator->thread = ovs_thread_create( "revalidator", udpif_revalidator, revalidator); } ovsrcu_quiesce_end(); } } /* Pauses all revalidators. Should only be called by the main thread. * When function returns, all revalidators are paused and will proceed * only after udpif_resume_revalidators() is called. */ static void udpif_pause_revalidators(struct udpif *udpif) { if (udpif->backer->recv_set_enable) { latch_set(&udpif->pause_latch); ovs_barrier_block(&udpif->pause_barrier); } } /* Resumes the pausing of revalidators. Should only be called by the * main thread. */ static void udpif_resume_revalidators(struct udpif *udpif) { if (udpif->backer->recv_set_enable) { latch_poll(&udpif->pause_latch); ovs_barrier_block(&udpif->pause_barrier); } } /* Tells 'udpif' how many threads it should use to handle upcalls. * 'n_handlers_' and 'n_revalidators_' can never be zero. 'udpif''s * datapath handle must have packet reception enabled before starting * threads. */ void udpif_set_threads(struct udpif *udpif, uint32_t n_handlers_, uint32_t n_revalidators_) { ovs_assert(udpif); uint32_t n_handlers_requested; uint32_t n_revalidators_requested; bool forced = false; if (dpif_number_handlers_required(udpif->dpif, &n_handlers_requested)) { forced = true; if (!n_revalidators_) { n_revalidators_requested = n_handlers_requested / 4 + 1; } else { n_revalidators_requested = n_revalidators_; } } else { int threads = MAX(count_cpu_cores(), 2); n_revalidators_requested = MAX(n_revalidators_, 0); n_handlers_requested = MAX(n_handlers_, 0); if (!n_revalidators_requested) { n_revalidators_requested = n_handlers_requested ? MAX(threads - (int) n_handlers_requested, 1) : threads / 4 + 1; } if (!n_handlers_requested) { n_handlers_requested = MAX(threads - (int) n_revalidators_requested, 1); } } if (udpif->n_handlers != n_handlers_requested || udpif->n_revalidators != n_revalidators_requested) { if (forced) { VLOG_INFO("Overriding n-handler-threads to %u, setting " "n-revalidator-threads to %u", n_handlers_requested, n_revalidators_requested); } else { VLOG_INFO("Setting n-handler-threads to %u, setting " "n-revalidator-threads to %u", n_handlers_requested, n_revalidators_requested); } udpif_stop_threads(udpif, true); } if (!udpif->handlers && !udpif->revalidators) { VLOG_INFO("Starting %u threads", n_handlers_requested + n_revalidators_requested); int error; error = dpif_handlers_set(udpif->dpif, n_handlers_requested); if (error) { VLOG_ERR("failed to configure handlers in dpif %s: %s", dpif_name(udpif->dpif), ovs_strerror(error)); return; } udpif_start_threads(udpif, n_handlers_requested, n_revalidators_requested); } } /* Notifies 'udpif' that something changed which may render previous * xlate_actions() results invalid. */ void udpif_revalidate(struct udpif *udpif) { seq_change(udpif->reval_seq); } /* Returns a seq which increments every time 'udpif' pulls stats from the * datapath. Callers can use this to get a sense of when might be a good time * to do periodic work which relies on relatively up to date statistics. */ struct seq * udpif_dump_seq(struct udpif *udpif) { return udpif->dump_seq; } void udpif_get_memory_usage(struct udpif *udpif, struct simap *usage) { size_t i; simap_increase(usage, "handlers", udpif->n_handlers); simap_increase(usage, "revalidators", udpif->n_revalidators); for (i = 0; i < N_UMAPS; i++) { simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap)); } } /* Remove flows from a single datapath. */ void udpif_flush(struct udpif *udpif) { uint32_t n_handlers_ = udpif->n_handlers; uint32_t n_revalidators_ = udpif->n_revalidators; udpif_stop_threads(udpif, true); dpif_flow_flush(udpif->dpif); udpif_start_threads(udpif, n_handlers_, n_revalidators_); } /* Removes all flows from all datapaths. */ static void udpif_flush_all_datapaths(void) { struct udpif *udpif; LIST_FOR_EACH (udpif, list_node, &all_udpifs) { udpif_flush(udpif); } } static bool udpif_use_ufid(struct udpif *udpif) { bool enable; atomic_read_relaxed(&enable_ufid, &enable); return enable && udpif->backer->rt_support.ufid; } static unsigned long udpif_get_n_flows(struct udpif *udpif) { long long int time, now; unsigned long flow_count; now = time_msec(); atomic_read_relaxed(&udpif->n_flows_timestamp, &time); if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) { struct dpif_dp_stats stats; atomic_store_relaxed(&udpif->n_flows_timestamp, now); dpif_get_dp_stats(udpif->dpif, &stats); flow_count = stats.n_flows; if (!dpif_synced_dp_layers(udpif->dpif)) { /* If the dpif layer does not sync the flows, we need to include * the hardware offloaded flows separately. */ uint64_t hw_flows; if (!dpif_get_n_offloaded_flows(udpif->dpif, &hw_flows)) { flow_count += hw_flows; } } atomic_store_relaxed(&udpif->n_flows, flow_count); ovs_mutex_unlock(&udpif->n_flows_mutex); } else { atomic_read_relaxed(&udpif->n_flows, &flow_count); } return flow_count; } /* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH * upcalls from dpif, processes the batch and installs corresponding flows * in dpif. */ static void * udpif_upcall_handler(void *arg) { struct handler *handler = arg; struct udpif *udpif = handler->udpif; while (!latch_is_set(&handler->udpif->exit_latch)) { if (recv_upcalls(handler)) { poll_immediate_wake(); } else { dpif_recv_wait(udpif->dpif, handler->handler_id); latch_wait(&udpif->exit_latch); } poll_block(); } return NULL; } static size_t recv_upcalls(struct handler *handler) { struct udpif *udpif = handler->udpif; uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8]; struct ofpbuf recv_bufs[UPCALL_MAX_BATCH]; struct dpif_upcall dupcalls[UPCALL_MAX_BATCH]; struct upcall upcalls[UPCALL_MAX_BATCH]; struct flow flows[UPCALL_MAX_BATCH]; size_t n_upcalls, i; n_upcalls = 0; while (n_upcalls < UPCALL_MAX_BATCH) { struct ofpbuf *recv_buf = &recv_bufs[n_upcalls]; struct dpif_upcall *dupcall = &dupcalls[n_upcalls]; struct upcall *upcall = &upcalls[n_upcalls]; struct flow *flow = &flows[n_upcalls]; unsigned int mru = 0; char *errorp = NULL; uint64_t hash = 0; int error; ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls], sizeof recv_stubs[n_upcalls]); if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) { ofpbuf_uninit(recv_buf); break; } upcall->fitness = odp_flow_key_to_flow(dupcall->key, dupcall->key_len, flow, NULL); if (upcall->fitness == ODP_FIT_ERROR) { goto free_dupcall; } if (dupcall->mru) { mru = nl_attr_get_u16(dupcall->mru); } if (dupcall->hash) { hash = nl_attr_get_u64(dupcall->hash); } error = upcall_receive(upcall, udpif->backer, &dupcall->packet, dupcall->type, dupcall->userdata, flow, mru, &dupcall->ufid, PMD_ID_NULL, &errorp); if (error) { if (error == ENODEV) { /* Received packet on datapath port for which we couldn't * associate an ofproto. This can happen if a port is removed * while traffic is being received. Print a rate-limited * message in case it happens frequently. */ dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key, dupcall->key_len, NULL, 0, NULL, 0, &dupcall->ufid, PMD_ID_NULL, NULL); VLOG_INFO_RL(&rl, "received packet on unassociated datapath " "port %"PRIu32"%s%s%s", flow->in_port.odp_port, errorp ? " (" : "", errorp ? errorp : "", errorp ? ")" : ""); } free(errorp); goto free_dupcall; } upcall->key = dupcall->key; upcall->key_len = dupcall->key_len; upcall->ufid = &dupcall->ufid; upcall->hash = hash; upcall->out_tun_key = dupcall->out_tun_key; upcall->actions = dupcall->actions; pkt_metadata_from_flow(&dupcall->packet.md, flow); flow_extract(&dupcall->packet, flow); error = process_upcall(udpif, upcall, &upcall->odp_actions, &upcall->wc); if (error) { goto cleanup; } n_upcalls++; continue; cleanup: upcall_uninit(upcall); free_dupcall: dp_packet_uninit(&dupcall->packet); ofpbuf_uninit(recv_buf); } if (n_upcalls) { handle_upcalls(handler->udpif, upcalls, n_upcalls); for (i = 0; i < n_upcalls; i++) { dp_packet_uninit(&dupcalls[i].packet); ofpbuf_uninit(&recv_bufs[i]); upcall_uninit(&upcalls[i]); } } return n_upcalls; } static void udpif_run_flow_rebalance(struct udpif *udpif) { long long int now = 0; /* Don't rebalance if OFFL_REBAL_INTVL_MSEC have not elapsed */ now = time_msec(); if (now < udpif->offload_rebalance_time + OFFL_REBAL_INTVL_MSEC) { return; } if (!netdev_any_oor()) { return; } VLOG_DBG("Offload rebalance: Found OOR netdevs"); udpif->offload_rebalance_time = now; udpif_flow_rebalance(udpif); } static void * udpif_revalidator(void *arg) { /* Used by all revalidators. */ struct revalidator *revalidator = arg; struct udpif *udpif = revalidator->udpif; bool leader = revalidator == &udpif->revalidators[0]; /* Used only by the leader. */ long long int start_time = 0; uint64_t last_reval_seq = 0; size_t n_flows = 0; revalidator->id = ovsthread_id_self(); for (;;) { if (leader) { uint64_t reval_seq; recirc_run(); /* Recirculation cleanup. */ reval_seq = seq_read(udpif->reval_seq); last_reval_seq = reval_seq; n_flows = udpif_get_n_flows(udpif); udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows); udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2; /* Only the leader checks the pause latch to prevent a race where * some threads think it's false and proceed to block on * reval_barrier and others think it's true and block indefinitely * on the pause_barrier */ udpif->pause = latch_is_set(&udpif->pause_latch); /* Only the leader checks the exit latch to prevent a race where * some threads think it's true and exit and others think it's * false and block indefinitely on the reval_barrier */ udpif->reval_exit = latch_is_set(&udpif->exit_latch); start_time = time_msec(); if (!udpif->reval_exit) { bool terse_dump; terse_dump = udpif_use_ufid(udpif); udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump, NULL); OVS_USDT_PROBE(udpif_revalidator, start_dump, udpif, n_flows); } } /* Wait for the leader to start the flow dump. */ ovs_barrier_block(&udpif->reval_barrier); if (udpif->pause) { revalidator_pause(revalidator); } if (udpif->reval_exit) { break; } revalidate(revalidator); /* Wait for all flows to have been dumped before we garbage collect. */ ovs_barrier_block(&udpif->reval_barrier); revalidator_sweep(revalidator); /* Wait for all revalidators to finish garbage collection. */ ovs_barrier_block(&udpif->reval_barrier); if (leader) { unsigned int flow_limit; long long int duration; atomic_read_relaxed(&udpif->flow_limit, &flow_limit); dpif_flow_dump_destroy(udpif->dump); seq_change(udpif->dump_seq); if (netdev_is_offload_rebalance_policy_enabled()) { udpif_run_flow_rebalance(udpif); } duration = MAX(time_msec() - start_time, 1); udpif->dump_duration = duration; if (duration > 2000) { flow_limit /= duration / 1000; } else if (duration > 1300) { flow_limit = flow_limit * 3 / 4; } else if (duration < 1000 && flow_limit < n_flows * 1000 / duration) { flow_limit += 1000; } flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000)); atomic_store_relaxed(&udpif->flow_limit, flow_limit); if (duration > 2000) { VLOG_INFO("Spent an unreasonably long %lldms dumping flows", duration); } OVS_USDT_PROBE(udpif_revalidator, sweep_done, udpif, n_flows, MIN(ofproto_max_idle, ofproto_max_revalidator)); poll_timer_wait_until(start_time + MIN(ofproto_max_idle, ofproto_max_revalidator)); seq_wait(udpif->reval_seq, last_reval_seq); latch_wait(&udpif->exit_latch); latch_wait(&udpif->pause_latch); poll_block(); if (!latch_is_set(&udpif->pause_latch) && !latch_is_set(&udpif->exit_latch)) { long long int now = time_msec(); /* Block again if we are woken up within 5ms of the last start * time. */ start_time += 5; if (now < start_time) { poll_timer_wait_until(start_time); latch_wait(&udpif->exit_latch); latch_wait(&udpif->pause_latch); poll_block(); } } } } return NULL; } static enum upcall_type classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata, struct user_action_cookie *cookie) { /* First look at the upcall type. */ switch (type) { case DPIF_UC_ACTION: break; case DPIF_UC_MISS: return MISS_UPCALL; case DPIF_N_UC_TYPES: default: VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type); return BAD_UPCALL; } /* "action" upcalls need a closer look. */ if (!userdata) { VLOG_WARN_RL(&rl, "action upcall missing cookie"); return BAD_UPCALL; } size_t userdata_len = nl_attr_get_size(userdata); if (userdata_len != sizeof *cookie) { VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE, userdata_len); return BAD_UPCALL; } memcpy(cookie, nl_attr_get(userdata), sizeof *cookie); if (cookie->type == USER_ACTION_COOKIE_SFLOW) { return SFLOW_UPCALL; } else if (cookie->type == USER_ACTION_COOKIE_SLOW_PATH) { return SLOW_PATH_UPCALL; } else if (cookie->type == USER_ACTION_COOKIE_FLOW_SAMPLE) { return FLOW_SAMPLE_UPCALL; } else if (cookie->type == USER_ACTION_COOKIE_IPFIX) { return IPFIX_UPCALL; } else if (cookie->type == USER_ACTION_COOKIE_CONTROLLER) { return CONTROLLER_UPCALL; } else { VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16 " and size %"PRIuSIZE, cookie->type, userdata_len); return BAD_UPCALL; } } /* Calculates slow path actions for 'xout'. 'buf' must statically be * initialized with at least 128 bytes of space. */ static void compose_slow_path(struct udpif *udpif, struct xlate_out *xout, odp_port_t odp_in_port, ofp_port_t ofp_in_port, struct ofpbuf *buf, uint32_t meter_id, struct uuid *ofproto_uuid) { struct user_action_cookie cookie; odp_port_t port; uint32_t pid; memset(&cookie, 0, sizeof cookie); cookie.type = USER_ACTION_COOKIE_SLOW_PATH; cookie.ofp_in_port = ofp_in_port; cookie.ofproto_uuid = *ofproto_uuid; cookie.slow_path.reason = xout->slow; port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP) ? ODPP_NONE : odp_in_port; pid = dpif_port_get_pid(udpif->dpif, port); size_t offset; size_t ac_offset; if (meter_id != UINT32_MAX) { /* If slowpath meter is configured, generate clone(meter, userspace) * action. */ offset = nl_msg_start_nested(buf, OVS_ACTION_ATTR_SAMPLE); nl_msg_put_u32(buf, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX); ac_offset = nl_msg_start_nested(buf, OVS_SAMPLE_ATTR_ACTIONS); nl_msg_put_u32(buf, OVS_ACTION_ATTR_METER, meter_id); } odp_put_userspace_action(pid, &cookie, sizeof cookie, ODPP_NONE, false, buf, NULL); if (meter_id != UINT32_MAX) { nl_msg_end_nested(buf, ac_offset); nl_msg_end_nested(buf, offset); } } /* If there is no error, the upcall must be destroyed with upcall_uninit() * before quiescing, as the referred objects are guaranteed to exist only * until the calling thread quiesces. Otherwise, do not call upcall_uninit() * since the 'upcall->put_actions' remains uninitialized. */ static int upcall_receive(struct upcall *upcall, const struct dpif_backer *backer, const struct dp_packet *packet, enum dpif_upcall_type type, const struct nlattr *userdata, const struct flow *flow, const unsigned int mru, const ovs_u128 *ufid, const unsigned pmd_id, char **errorp) { int error; upcall->type = classify_upcall(type, userdata, &upcall->cookie); if (upcall->type == BAD_UPCALL) { return EAGAIN; } else if (upcall->type == MISS_UPCALL) { error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix, &upcall->sflow, NULL, &upcall->ofp_in_port, errorp); if (error) { return error; } } else { struct ofproto_dpif *ofproto = ofproto_dpif_lookup_by_uuid(&upcall->cookie.ofproto_uuid); if (!ofproto) { if (errorp) { *errorp = xstrdup("upcall could not find ofproto"); } else { VLOG_INFO_RL(&rl, "upcall could not find ofproto"); } return ENODEV; } upcall->ofproto = ofproto; upcall->ipfix = ofproto->ipfix; upcall->sflow = ofproto->sflow; upcall->ofp_in_port = upcall->cookie.ofp_in_port; } upcall->recirc = NULL; upcall->have_recirc_ref = false; upcall->flow = flow; upcall->packet = packet; upcall->ufid = ufid; upcall->pmd_id = pmd_id; ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub, sizeof upcall->odp_actions_stub); ofpbuf_init(&upcall->put_actions, 0); upcall->xout_initialized = false; upcall->ukey_persists = false; upcall->ukey = NULL; upcall->key = NULL; upcall->key_len = 0; upcall->mru = mru; upcall->out_tun_key = NULL; upcall->actions = NULL; return 0; } static void upcall_xlate(struct udpif *udpif, struct upcall *upcall, struct ofpbuf *odp_actions, struct flow_wildcards *wc) { struct dpif_flow_stats stats; enum xlate_error xerr; struct xlate_in xin; struct ds output; stats.n_packets = 1; stats.n_bytes = dp_packet_size(upcall->packet); stats.used = time_msec(); stats.tcp_flags = ntohs(upcall->flow->tcp_flags); xlate_in_init(&xin, upcall->ofproto, ofproto_dpif_get_tables_version(upcall->ofproto), upcall->flow, upcall->ofp_in_port, NULL, stats.tcp_flags, upcall->packet, wc, odp_actions); if (upcall->type == MISS_UPCALL) { xin.resubmit_stats = &stats; if (xin.frozen_state) { /* We may install a datapath flow only if we get a reference to the * recirculation context (otherwise we could have recirculation * upcalls using recirculation ID for which no context can be * found). We may still execute the flow's actions even if we * don't install the flow. */ upcall->recirc = recirc_id_node_from_state(xin.frozen_state); upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc); } } else { /* For non-miss upcalls, we are either executing actions (one of which * is an userspace action) for an upcall, in which case the stats have * already been taken care of, or there's a flow in the datapath which * this packet was accounted to. Presumably the revalidators will deal * with pushing its stats eventually. */ } upcall->reval_seq = seq_read(udpif->reval_seq); xerr = xlate_actions(&xin, &upcall->xout); /* Translate again and log the ofproto trace for * these two error types. */ if (xerr == XLATE_RECURSION_TOO_DEEP || xerr == XLATE_TOO_MANY_RESUBMITS) { static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1); /* This is a huge log, so be conservative. */ if (!VLOG_DROP_WARN(&rll)) { ds_init(&output); ofproto_trace(upcall->ofproto, upcall->flow, upcall->packet, NULL, 0, NULL, &output, false); VLOG_WARN("%s", ds_cstr(&output)); ds_destroy(&output); } } if (wc) { /* Convert the input port wildcard from OFP to ODP format. There's no * real way to do this for arbitrary bitmasks since the numbering spaces * aren't the same. However, flow translation always exact matches the * whole thing, so we can do the same here. */ WC_MASK_FIELD(wc, in_port.odp_port); } upcall->xout_initialized = true; if (upcall->fitness == ODP_FIT_TOO_LITTLE) { upcall->xout.slow |= SLOW_MATCH; } if (!upcall->xout.slow) { ofpbuf_use_const(&upcall->put_actions, odp_actions->data, odp_actions->size); } else { /* upcall->put_actions already initialized by upcall_receive(). */ compose_slow_path(udpif, &upcall->xout, upcall->flow->in_port.odp_port, upcall->ofp_in_port, &upcall->put_actions, upcall->ofproto->up.slowpath_meter_id, &upcall->ofproto->uuid); } /* This function is also called for slow-pathed flows. As we are only * going to create new datapath flows for actual datapath misses, there is * no point in creating a ukey otherwise. */ if (upcall->type == MISS_UPCALL) { upcall->ukey = ukey_create_from_upcall(upcall, wc); } } static void upcall_uninit(struct upcall *upcall) { if (upcall) { if (upcall->xout_initialized) { xlate_out_uninit(&upcall->xout); } ofpbuf_uninit(&upcall->odp_actions); ofpbuf_uninit(&upcall->put_actions); if (upcall->ukey) { if (!upcall->ukey_persists) { ukey_delete__(upcall->ukey); } } else if (upcall->have_recirc_ref) { /* The reference was transferred to the ukey if one was created. */ recirc_id_node_unref(upcall->recirc); } } } /* If there are less flows than the limit, and this is a miss upcall which * * - Has no recirc_id, OR * - Has a recirc_id and we can get a reference on the recirc ctx, * * Then we should install the flow (true). Otherwise, return false. */ static bool should_install_flow(struct udpif *udpif, struct upcall *upcall) { unsigned int flow_limit; if (upcall->type != MISS_UPCALL) { return false; } else if (upcall->recirc && !upcall->have_recirc_ref) { VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow"); return false; } atomic_read_relaxed(&udpif->flow_limit, &flow_limit); if (udpif_get_n_flows(udpif) >= flow_limit) { COVERAGE_INC(upcall_flow_limit_hit); VLOG_WARN_RL(&rl, "upcall: datapath reached the dynamic limit of %u flows.", flow_limit); return false; } return true; } static int upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid, unsigned pmd_id, enum dpif_upcall_type type, const struct nlattr *userdata, struct ofpbuf *actions, struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux) { struct udpif *udpif = aux; struct upcall upcall; bool megaflow; int error; atomic_read_relaxed(&enable_megaflows, &megaflow); error = upcall_receive(&upcall, udpif->backer, packet, type, userdata, flow, 0, ufid, pmd_id, NULL); if (error) { return error; } upcall.fitness = ODP_FIT_PERFECT; error = process_upcall(udpif, &upcall, actions, wc); if (error) { goto out; } if (upcall.xout.slow && put_actions) { ofpbuf_put(put_actions, upcall.put_actions.data, upcall.put_actions.size); } if (OVS_UNLIKELY(!megaflow && wc)) { flow_wildcards_init_for_packet(wc, flow); } if (!should_install_flow(udpif, &upcall)) { error = ENOSPC; goto out; } if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) { static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&rll, "upcall_cb failure: ukey installation fails"); error = ENOSPC; } out: if (!error) { upcall.ukey_persists = true; } upcall_uninit(&upcall); return error; } static size_t dpif_get_actions(struct udpif *udpif, struct upcall *upcall, const struct nlattr **actions) { size_t actions_len = 0; if (upcall->actions) { /* Actions were passed up from datapath. */ *actions = nl_attr_get(upcall->actions); actions_len = nl_attr_get_size(upcall->actions); } if (actions_len == 0) { /* Lookup actions in userspace cache. */ struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid, upcall->pmd_id); if (ukey) { ukey_get_actions(ukey, actions, &actions_len); } } return actions_len; } static size_t dpif_read_actions(struct udpif *udpif, struct upcall *upcall, const struct flow *flow, enum upcall_type type, void *upcall_data) { const struct nlattr *actions = NULL; size_t actions_len = dpif_get_actions(udpif, upcall, &actions); if (!actions || !actions_len) { return 0; } switch (type) { case SFLOW_UPCALL: dpif_sflow_read_actions(flow, actions, actions_len, upcall_data, true); break; case FLOW_SAMPLE_UPCALL: case IPFIX_UPCALL: dpif_ipfix_read_actions(flow, actions, actions_len, upcall_data); break; case BAD_UPCALL: case MISS_UPCALL: case SLOW_PATH_UPCALL: case CONTROLLER_UPCALL: default: break; } return actions_len; } static int process_upcall(struct udpif *udpif, struct upcall *upcall, struct ofpbuf *odp_actions, struct flow_wildcards *wc) { const struct dp_packet *packet = upcall->packet; const struct flow *flow = upcall->flow; size_t actions_len = 0; switch (upcall->type) { case MISS_UPCALL: case SLOW_PATH_UPCALL: upcall_xlate(udpif, upcall, odp_actions, wc); return 0; case SFLOW_UPCALL: if (upcall->sflow) { struct dpif_sflow_actions sflow_actions; memset(&sflow_actions, 0, sizeof sflow_actions); actions_len = dpif_read_actions(udpif, upcall, flow, upcall->type, &sflow_actions); dpif_sflow_received(upcall->sflow, packet, flow, flow->in_port.odp_port, &upcall->cookie, actions_len > 0 ? &sflow_actions : NULL); } break; case IPFIX_UPCALL: case FLOW_SAMPLE_UPCALL: if (upcall->ipfix) { struct flow_tnl output_tunnel_key; struct dpif_ipfix_actions ipfix_actions; memset(&ipfix_actions, 0, sizeof ipfix_actions); if (upcall->out_tun_key) { odp_tun_key_from_attr(upcall->out_tun_key, &output_tunnel_key, NULL); } actions_len = dpif_read_actions(udpif, upcall, flow, upcall->type, &ipfix_actions); if (upcall->type == IPFIX_UPCALL) { dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow, flow->in_port.odp_port, upcall->cookie.ipfix.output_odp_port, upcall->out_tun_key ? &output_tunnel_key : NULL, actions_len > 0 ? &ipfix_actions: NULL); } else { /* The flow reflects exactly the contents of the packet. * Sample the packet using it. */ dpif_ipfix_flow_sample(upcall->ipfix, packet, flow, &upcall->cookie, flow->in_port.odp_port, upcall->out_tun_key ? &output_tunnel_key : NULL, actions_len > 0 ? &ipfix_actions: NULL); } } break; case CONTROLLER_UPCALL: { struct user_action_cookie *cookie = &upcall->cookie; if (cookie->controller.dont_send) { return 0; } uint32_t recirc_id = cookie->controller.recirc_id; if (!recirc_id) { break; } const struct recirc_id_node *recirc_node = recirc_id_node_find(recirc_id); if (!recirc_node) { break; } const struct frozen_state *state = &recirc_node->state; struct ofproto_async_msg *am = xmalloc(sizeof *am); *am = (struct ofproto_async_msg) { .controller_id = cookie->controller.controller_id, .oam = OAM_PACKET_IN, .pin = { .up = { .base = { .packet = xmemdup(dp_packet_data(packet), dp_packet_size(packet)), .packet_len = dp_packet_size(packet), .reason = cookie->controller.reason, .table_id = state->table_id, .cookie = get_32aligned_be64( &cookie->controller.rule_cookie), .userdata = (recirc_node->state.userdata_len ? xmemdup(recirc_node->state.userdata, recirc_node->state.userdata_len) : NULL), .userdata_len = recirc_node->state.userdata_len, }, }, .max_len = cookie->controller.max_len, }, }; if (cookie->controller.continuation) { am->pin.up.stack = (state->stack_size ? xmemdup(state->stack, state->stack_size) : NULL), am->pin.up.stack_size = state->stack_size, am->pin.up.mirrors = state->mirrors, am->pin.up.conntracked = state->conntracked, am->pin.up.actions = (state->ofpacts_len ? xmemdup(state->ofpacts, state->ofpacts_len) : NULL), am->pin.up.actions_len = state->ofpacts_len, am->pin.up.action_set = (state->action_set_len ? xmemdup(state->action_set, state->action_set_len) : NULL), am->pin.up.action_set_len = state->action_set_len, am->pin.up.bridge = upcall->ofproto->uuid; am->pin.up.odp_port = upcall->packet->md.in_port.odp_port; } /* We don't want to use the upcall 'flow', since it may be * more specific than the point at which the "controller" * action was specified. */ struct flow frozen_flow; frozen_flow = *flow; if (!state->conntracked) { flow_clear_conntrack(&frozen_flow); } frozen_metadata_to_flow(&upcall->ofproto->up, &state->metadata, &frozen_flow); flow_get_metadata(&frozen_flow, &am->pin.up.base.flow_metadata); ofproto_dpif_send_async_msg(upcall->ofproto, am); } break; case BAD_UPCALL: break; } return EAGAIN; } static void handle_upcalls(struct udpif *udpif, struct upcall *upcalls, size_t n_upcalls) { struct dpif_op *opsp[UPCALL_MAX_BATCH * 2]; struct ukey_op ops[UPCALL_MAX_BATCH * 2]; size_t n_ops, n_opsp, i; /* Handle the packets individually in order of arrival. * * - For SLOW_CFM, SLOW_LACP, SLOW_STP, SLOW_BFD, and SLOW_LLDP, * translation is what processes received packets for these * protocols. * * - For SLOW_ACTION, translation executes the actions directly. * * The loop fills 'ops' with an array of operations to execute in the * datapath. */ n_ops = 0; for (i = 0; i < n_upcalls; i++) { struct upcall *upcall = &upcalls[i]; const struct dp_packet *packet = upcall->packet; struct ukey_op *op; if (should_install_flow(udpif, upcall)) { struct udpif_key *ukey = upcall->ukey; if (ukey_install(udpif, ukey)) { upcall->ukey_persists = true; put_op_init(&ops[n_ops++], ukey, DPIF_FP_CREATE); } } if (upcall->odp_actions.size) { op = &ops[n_ops++]; op->ukey = NULL; op->dop.type = DPIF_OP_EXECUTE; op->dop.execute.packet = CONST_CAST(struct dp_packet *, packet); op->dop.execute.flow = upcall->flow; odp_key_to_dp_packet(upcall->key, upcall->key_len, op->dop.execute.packet); op->dop.execute.actions = upcall->odp_actions.data; op->dop.execute.actions_len = upcall->odp_actions.size; op->dop.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0; op->dop.execute.probe = false; op->dop.execute.mtu = upcall->mru; op->dop.execute.hash = upcall->hash; } } /* Execute batch. */ n_opsp = 0; for (i = 0; i < n_ops; i++) { opsp[n_opsp++] = &ops[i].dop; } dpif_operate(udpif->dpif, opsp, n_opsp, DPIF_OFFLOAD_AUTO); for (i = 0; i < n_ops; i++) { struct udpif_key *ukey = ops[i].ukey; if (ukey) { ovs_mutex_lock(&ukey->mutex); if (ops[i].dop.error) { transition_ukey(ukey, UKEY_EVICTED); } else if (ukey->state < UKEY_OPERATIONAL) { transition_ukey(ukey, UKEY_OPERATIONAL); } ovs_mutex_unlock(&ukey->mutex); } } } static uint32_t get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id) { return hash_2words(ufid->u32[0], pmd_id); } static struct udpif_key * ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id) { struct udpif_key *ukey; int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS; struct cmap *cmap = &udpif->ukeys[idx].cmap; CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node, get_ukey_hash(ufid, pmd_id), cmap) { if (ovs_u128_equals(ukey->ufid, *ufid)) { return ukey; } } return NULL; } /* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may * alternatively access the field directly if they take 'ukey->mutex'. */ static void ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size) { const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions); *actions = buf->data; *size = buf->size; } static void ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions) { struct ofpbuf *old_actions = ovsrcu_get_protected(struct ofpbuf *, &ukey->actions); if (old_actions) { ovsrcu_postpone(ofpbuf_delete, old_actions); } ovsrcu_set(&ukey->actions, ofpbuf_clone(actions)); } static struct udpif_key * ukey_create__(const struct nlattr *key, size_t key_len, const struct nlattr *mask, size_t mask_len, bool ufid_present, const ovs_u128 *ufid, const unsigned pmd_id, const struct ofpbuf *actions, uint64_t reval_seq, long long int used, uint32_t key_recirc_id, struct xlate_out *xout) OVS_NO_THREAD_SAFETY_ANALYSIS { struct udpif_key *ukey = xmalloc(sizeof *ukey); memcpy(&ukey->keybuf, key, key_len); ukey->key = &ukey->keybuf.nla; ukey->key_len = key_len; memcpy(&ukey->maskbuf, mask, mask_len); ukey->mask = &ukey->maskbuf.nla; ukey->mask_len = mask_len; ukey->ufid_present = ufid_present; ukey->ufid = *ufid; ukey->pmd_id = pmd_id; ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id); ovsrcu_init(&ukey->actions, NULL); ukey_set_actions(ukey, actions); ovs_mutex_init(&ukey->mutex); ukey->dump_seq = 0; /* Not yet dumped */ ukey->reval_seq = reval_seq; ukey->state = UKEY_CREATED; ukey->state_thread = ovsthread_id_self(); ukey->state_where = OVS_SOURCE_LOCATOR; ukey->created = ukey->flow_time = time_msec(); memset(&ukey->stats, 0, sizeof ukey->stats); ukey->stats.used = used; ukey->dp_layer = NULL; ukey->xcache = NULL; ukey->offloaded = false; ukey->in_netdev = NULL; ukey->flow_packets = ukey->flow_backlog_packets = 0; ukey->key_recirc_id = key_recirc_id; recirc_refs_init(&ukey->recircs); if (xout) { /* Take ownership of the action recirc id references. */ recirc_refs_swap(&ukey->recircs, &xout->recircs); } return ukey; } static struct udpif_key * ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc) { struct odputil_keybuf keystub, maskstub; struct ofpbuf keybuf, maskbuf; bool megaflow; struct odp_flow_key_parms odp_parms = { .flow = upcall->flow, .mask = wc ? &wc->masks : NULL, }; odp_parms.support = upcall->ofproto->backer->rt_support.odp; if (upcall->key_len) { ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len); } else { /* dpif-netdev doesn't provide a netlink-formatted flow key in the * upcall, so convert the upcall's flow here. */ ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub); odp_flow_key_from_flow(&odp_parms, &keybuf); } atomic_read_relaxed(&enable_megaflows, &megaflow); ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub); if (megaflow && wc) { odp_parms.key_buf = &keybuf; odp_flow_key_from_mask(&odp_parms, &maskbuf); } return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size, true, upcall->ufid, upcall->pmd_id, &upcall->put_actions, upcall->reval_seq, 0, upcall->have_recirc_ref ? upcall->recirc->id : 0, &upcall->xout); } static int ukey_create_from_dpif_flow(const struct udpif *udpif, const struct dpif_flow *flow, struct udpif_key **ukey) { struct dpif_flow full_flow; struct ofpbuf actions; uint64_t reval_seq; uint64_t stub[DPIF_FLOW_BUFSIZE / 8]; const struct nlattr *a; unsigned int left; if (!flow->key_len || !flow->actions_len) { struct ofpbuf buf; int err; /* If the key or actions were not provided by the datapath, fetch the * full flow. */ ofpbuf_use_stack(&buf, &stub, sizeof stub); err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len, flow->ufid_present ? &flow->ufid : NULL, flow->pmd_id, &buf, &full_flow); if (err) { return err; } flow = &full_flow; } /* Check the flow actions for recirculation action. As recirculation * relies on OVS userspace internal state, we need to delete all old * datapath flows with either a non-zero recirc_id in the key, or any * recirculation actions upon OVS restart. */ NL_ATTR_FOR_EACH (a, left, flow->key, flow->key_len) { if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID && nl_attr_get_u32(a) != 0) { return EINVAL; } } NL_ATTR_FOR_EACH (a, left, flow->actions, flow->actions_len) { if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) { return EINVAL; } } reval_seq = seq_read(udpif->reval_seq) - 1; /* Ensure revalidation. */ ofpbuf_use_const(&actions, flow->actions, flow->actions_len); *ukey = ukey_create__(flow->key, flow->key_len, flow->mask, flow->mask_len, flow->ufid_present, &flow->ufid, flow->pmd_id, &actions, reval_seq, flow->stats.used, 0, NULL); return 0; } static bool try_ukey_replace(struct umap *umap, struct udpif_key *old_ukey, struct udpif_key *new_ukey) OVS_REQUIRES(umap->mutex) OVS_TRY_LOCK(true, new_ukey->mutex) { bool replaced = false; if (!ovs_mutex_trylock(&old_ukey->mutex)) { if (old_ukey->state == UKEY_EVICTED) { /* The flow was deleted during the current revalidator dump, * but its ukey won't be fully cleaned up until the sweep phase. * In the mean time, we are receiving upcalls for this traffic. * Expedite the (new) flow install by replacing the ukey. */ ovs_mutex_lock(&new_ukey->mutex); cmap_replace(&umap->cmap, &old_ukey->cmap_node, &new_ukey->cmap_node, new_ukey->hash); new_ukey->dump_seq = old_ukey->dump_seq; ovsrcu_postpone(ukey_delete__, old_ukey); transition_ukey(old_ukey, UKEY_DELETED); transition_ukey(new_ukey, UKEY_VISIBLE); replaced = true; } ovs_mutex_unlock(&old_ukey->mutex); } if (replaced) { COVERAGE_INC(upcall_ukey_replace); } else { COVERAGE_INC(handler_duplicate_upcall); } return replaced; } /* Attempts to insert a ukey into the shared ukey maps. * * On success, returns true, installs the ukey and returns it in a locked * state. Otherwise, returns false. */ static bool ukey_install__(struct udpif *udpif, struct udpif_key *new_ukey) OVS_TRY_LOCK(true, new_ukey->mutex) { struct umap *umap; struct udpif_key *old_ukey; uint32_t idx; bool locked = false; idx = new_ukey->hash % N_UMAPS; umap = &udpif->ukeys[idx]; ovs_mutex_lock(&umap->mutex); old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id); if (old_ukey) { /* Uncommon case: A ukey is already installed with the same UFID. */ if (old_ukey->key_len == new_ukey->key_len && !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) { locked = try_ukey_replace(umap, old_ukey, new_ukey); } else { struct ds ds = DS_EMPTY_INITIALIZER; odp_format_ufid(&old_ukey->ufid, &ds); ds_put_cstr(&ds, " "); odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds); ds_put_cstr(&ds, "\n"); odp_format_ufid(&new_ukey->ufid, &ds); ds_put_cstr(&ds, " "); odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds); VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds)); ds_destroy(&ds); } } else { ovs_mutex_lock(&new_ukey->mutex); cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash); transition_ukey(new_ukey, UKEY_VISIBLE); locked = true; } ovs_mutex_unlock(&umap->mutex); return locked; } static void transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst, const char *where) OVS_REQUIRES(ukey->mutex) { if (dst < ukey->state) { VLOG_ABORT("Invalid ukey transition %d->%d (last transitioned from " "thread %u at %s)", ukey->state, dst, ukey->state_thread, ukey->state_where); } if (ukey->state == dst && dst == UKEY_OPERATIONAL) { return; } /* Valid state transitions: * UKEY_CREATED -> UKEY_VISIBLE * Ukey is now visible in the umap. * UKEY_VISIBLE -> UKEY_OPERATIONAL * A handler has installed the flow, and the flow is in the datapath. * UKEY_VISIBLE -> UKEY_EVICTING * A handler installs the flow, then revalidator sweeps the ukey before * the flow is dumped. Most likely the flow was installed; start trying * to delete it. * UKEY_VISIBLE -> UKEY_EVICTED * A handler attempts to install the flow, but the datapath rejects it. * Consider that the datapath has already destroyed it. * UKEY_OPERATIONAL -> UKEY_EVICTING * A revalidator decides to evict the datapath flow. * UKEY_EVICTING -> UKEY_EVICTED * A revalidator has evicted the datapath flow. * UKEY_EVICTED -> UKEY_DELETED * A revalidator has removed the ukey from the umap and is deleting it. */ if (ukey->state == dst - 1 || (ukey->state == UKEY_VISIBLE && dst < UKEY_DELETED)) { ukey->state = dst; } else { struct ds ds = DS_EMPTY_INITIALIZER; odp_format_ufid(&ukey->ufid, &ds); VLOG_WARN_RL(&rl, "Invalid state transition for ukey %s: %d -> %d", ds_cstr(&ds), ukey->state, dst); ds_destroy(&ds); } ukey->state_thread = ovsthread_id_self(); ukey->state_where = where; } static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey) { bool installed; installed = ukey_install__(udpif, ukey); if (installed) { ovs_mutex_unlock(&ukey->mutex); } return installed; } /* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to * lock the ukey. If the ukey does not exist, create it. * * Returns 0 on success, setting *result to the matching ukey and returning it * in a locked state. Otherwise, returns an errno and clears *result. EBUSY * indicates that another thread is handling this flow. Other errors indicate * an unexpected condition creating a new ukey. * * *error is an output parameter provided to appease the threadsafety analyser, * and its value matches the return value. */ static int ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow, struct udpif_key **result, int *error) OVS_TRY_LOCK(0, (*result)->mutex) { struct udpif_key *ukey; int retval; ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id); if (ukey) { retval = ovs_mutex_trylock(&ukey->mutex); } else { /* Usually we try to avoid installing flows from revalidator threads, * because locking on a umap may cause handler threads to block. * However there are certain cases, like when ovs-vswitchd is * restarted, where it is desirable to handle flows that exist in the * datapath gracefully (ie, don't just clear the datapath). */ bool install; retval = ukey_create_from_dpif_flow(udpif, flow, &ukey); if (retval) { goto done; } install = ukey_install__(udpif, ukey); if (install) { retval = 0; } else { ukey_delete__(ukey); retval = EBUSY; } } done: *error = retval; if (retval) { *result = NULL; } else { *result = ukey; } return retval; } static void ukey_delete__(struct udpif_key *ukey) OVS_NO_THREAD_SAFETY_ANALYSIS { if (ukey) { if (ukey->key_recirc_id) { recirc_free_id(ukey->key_recirc_id); } recirc_refs_unref(&ukey->recircs); xlate_cache_delete(ukey->xcache); ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions)); ovs_mutex_destroy(&ukey->mutex); free(ukey); } } static void ukey_delete(struct umap *umap, struct udpif_key *ukey) OVS_REQUIRES(umap->mutex) { ovs_mutex_lock(&ukey->mutex); if (ukey->state < UKEY_DELETED) { cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash); ovsrcu_postpone(ukey_delete__, ukey); transition_ukey(ukey, UKEY_DELETED); } ovs_mutex_unlock(&ukey->mutex); } static bool should_revalidate(const struct udpif *udpif, const struct udpif_key *ukey, uint64_t packets) OVS_REQUIRES(ukey->mutex) { long long int metric, now, duration; long long int used = ukey->stats.used; if (!ofproto_min_revalidate_pps) { return true; } if (!used) { /* Always revalidate the first time a flow is dumped. */ return true; } if (udpif->dump_duration < ofproto_max_revalidator / 2) { /* We are likely to handle full revalidation for the flows. */ return true; } /* Calculate the mean time between seeing these packets. If this * exceeds the threshold, then delete the flow rather than performing * costly revalidation for flows that aren't being hit frequently. * * This is targeted at situations where the dump_duration is high (~1s), * and revalidation is triggered by a call to udpif_revalidate(). In * these situations, revalidation of all flows causes fluctuations in the * flow_limit due to the interaction with the dump_duration and max_idle. * This tends to result in deletion of low-throughput flows anyway, so * skip the revalidation and just delete those flows. */ packets = MAX(packets, 1); now = MAX(used, time_msec()); duration = now - used; metric = duration / packets; if (metric < 1000 / ofproto_min_revalidate_pps || (ukey->offloaded && duration < ofproto_offloaded_stats_delay)) { /* The flow is receiving more than min-revalidate-pps, so keep it. * Or it's a hardware offloaded flow that might take up to X seconds * to update its statistics. Until we are sure the statistics had a * chance to be updated, also keep it. */ return true; } return false; } struct reval_context { /* Optional output parameters */ struct flow_wildcards *wc; struct ofpbuf *odp_actions; struct netflow **netflow; struct xlate_cache *xcache; /* Required output parameters */ struct xlate_out xout; struct flow flow; }; /* Translates 'key' into a flow, populating 'ctx' as it goes along. * * Returns 0 on success, otherwise a positive errno value. * * The caller is responsible for uninitializing ctx->xout on success. */ static int xlate_key(struct udpif *udpif, const struct nlattr *key, unsigned int len, const struct dpif_flow_stats *push, struct reval_context *ctx) { struct ofproto_dpif *ofproto; ofp_port_t ofp_in_port; enum odp_key_fitness fitness; struct xlate_in xin; int error; fitness = odp_flow_key_to_flow(key, len, &ctx->flow, NULL); if (fitness == ODP_FIT_ERROR) { return EINVAL; } error = xlate_lookup(udpif->backer, &ctx->flow, &ofproto, NULL, NULL, ctx->netflow, &ofp_in_port, NULL); if (error) { return error; } xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto), &ctx->flow, ofp_in_port, NULL, push->tcp_flags, NULL, ctx->wc, ctx->odp_actions); if (push->n_packets) { xin.resubmit_stats = push; xin.allow_side_effects = true; } xin.xcache = ctx->xcache; xlate_actions(&xin, &ctx->xout); if (fitness == ODP_FIT_TOO_LITTLE) { ctx->xout.slow |= SLOW_MATCH; } return 0; } static int xlate_ukey(struct udpif *udpif, const struct udpif_key *ukey, uint16_t tcp_flags, struct reval_context *ctx) { struct dpif_flow_stats push = { .tcp_flags = tcp_flags, }; return xlate_key(udpif, ukey->key, ukey->key_len, &push, ctx); } static int populate_xcache(struct udpif *udpif, struct udpif_key *ukey, uint16_t tcp_flags) OVS_REQUIRES(ukey->mutex) { struct reval_context ctx = { .odp_actions = NULL, .netflow = NULL, .wc = NULL, }; int error; ovs_assert(!ukey->xcache); ukey->xcache = ctx.xcache = xlate_cache_new(); error = xlate_ukey(udpif, ukey, tcp_flags, &ctx); if (error) { return error; } xlate_out_uninit(&ctx.xout); return 0; } static enum reval_result revalidate_ukey__(struct udpif *udpif, const struct udpif_key *ukey, uint16_t tcp_flags, struct ofpbuf *odp_actions, struct recirc_refs *recircs, struct xlate_cache *xcache) { struct xlate_out *xoutp; struct netflow *netflow; struct flow_wildcards dp_mask, wc; enum reval_result result; struct reval_context ctx = { .odp_actions = odp_actions, .netflow = &netflow, .xcache = xcache, .wc = &wc, }; OVS_USDT_PROBE(revalidate_ukey__, entry, udpif, ukey, tcp_flags, odp_actions, recircs, xcache); result = UKEY_DELETE; xoutp = NULL; netflow = NULL; if (xlate_ukey(udpif, ukey, tcp_flags, &ctx)) { goto exit; } xoutp = &ctx.xout; if (xoutp->avoid_caching) { goto exit; } if (xoutp->slow) { struct ofproto_dpif *ofproto; ofp_port_t ofp_in_port; ofproto = xlate_lookup_ofproto(udpif->backer, &ctx.flow, &ofp_in_port, NULL); ofpbuf_clear(odp_actions); if (!ofproto) { goto exit; } compose_slow_path(udpif, xoutp, ctx.flow.in_port.odp_port, ofp_in_port, odp_actions, ofproto->up.slowpath_meter_id, &ofproto->uuid); } if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, &dp_mask, &ctx.flow, NULL) == ODP_FIT_ERROR) { goto exit; } /* Do not modify if any bit is wildcarded by the installed datapath flow, * but not the newly revalidated wildcard mask (wc), i.e., if revalidation * tells that the datapath flow is now too generic and must be narrowed * down. Note that we do not know if the datapath has ignored any of the * wildcarded bits, so we may be overly conservative here. */ if (flow_wildcards_has_extra(&dp_mask, ctx.wc)) { goto exit; } if (!ofpbuf_equal(odp_actions, ovsrcu_get(struct ofpbuf *, &ukey->actions))) { /* The datapath mask was OK, but the actions seem to have changed. * Let's modify it in place. */ result = UKEY_MODIFY; /* Transfer recirc action ID references to the caller. */ recirc_refs_swap(recircs, &xoutp->recircs); goto exit; } result = UKEY_KEEP; exit: if (netflow && result == UKEY_DELETE) { netflow_flow_clear(netflow, &ctx.flow); } xlate_out_uninit(xoutp); OVS_USDT_PROBE(revalidate_ukey__, exit, udpif, ukey, result); return result; } /* Verifies that the datapath actions of 'ukey' are still correct, and pushes * 'stats' for it. * * Returns a recommended action for 'ukey', options include: * UKEY_DELETE The ukey should be deleted. * UKEY_KEEP The ukey is fine as is. * UKEY_MODIFY The ukey's actions should be changed but is otherwise * fine. Callers should change the actions to those found * in the caller supplied 'odp_actions' buffer. The * recirculation references can be found in 'recircs' and * must be handled by the caller. * * If the result is UKEY_MODIFY, then references to all recirc_ids used by the * new flow will be held within 'recircs' (which may be none). * * The caller is responsible for both initializing 'recircs' prior this call, * and ensuring any references are eventually freed. */ static enum reval_result revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey, const struct dpif_flow_stats *stats, struct ofpbuf *odp_actions, uint64_t reval_seq, struct recirc_refs *recircs) OVS_REQUIRES(ukey->mutex) { bool need_revalidate = ukey->reval_seq != reval_seq; enum reval_result result = UKEY_DELETE; struct dpif_flow_stats push; ofpbuf_clear(odp_actions); push.used = stats->used; push.tcp_flags = stats->tcp_flags; push.n_packets = (stats->n_packets > ukey->stats.n_packets ? stats->n_packets - ukey->stats.n_packets : 0); push.n_bytes = (stats->n_bytes > ukey->stats.n_bytes ? stats->n_bytes - ukey->stats.n_bytes : 0); if (stats->n_packets < ukey->stats.n_packets && ukey->stats.n_packets < UINT64_THREE_QUARTERS) { /* Report cases where the packet counter is lower than the previous * instance, but exclude the potential wrapping of an uint64_t. */ COVERAGE_INC(ukey_invalid_stat_reset); } if (need_revalidate) { if (should_revalidate(udpif, ukey, push.n_packets)) { if (!ukey->xcache) { ukey->xcache = xlate_cache_new(); } else { xlate_cache_clear(ukey->xcache); } result = revalidate_ukey__(udpif, ukey, push.tcp_flags, odp_actions, recircs, ukey->xcache); } /* else delete; too expensive to revalidate */ } else if (!push.n_packets || ukey->xcache || !populate_xcache(udpif, ukey, push.tcp_flags)) { result = UKEY_KEEP; } /* Stats for deleted flows will be attributed upon flow deletion. Skip. */ if (result != UKEY_DELETE) { xlate_push_stats(ukey->xcache, &push, ukey->offloaded); ukey->stats = *stats; ukey->reval_seq = reval_seq; } return result; } static void delete_op_init__(struct udpif *udpif, struct ukey_op *op, const struct dpif_flow *flow) { op->ukey = NULL; op->dop.type = DPIF_OP_FLOW_DEL; op->dop.flow_del.key = flow->key; op->dop.flow_del.key_len = flow->key_len; op->dop.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL; op->dop.flow_del.pmd_id = flow->pmd_id; op->dop.flow_del.stats = &op->stats; op->dop.flow_del.terse = udpif_use_ufid(udpif); } static void delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey) { op->ukey = ukey; op->dop.type = DPIF_OP_FLOW_DEL; op->dop.flow_del.key = ukey->key; op->dop.flow_del.key_len = ukey->key_len; op->dop.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL; op->dop.flow_del.pmd_id = ukey->pmd_id; op->dop.flow_del.stats = &op->stats; op->dop.flow_del.terse = udpif_use_ufid(udpif); } static void put_op_init(struct ukey_op *op, struct udpif_key *ukey, enum dpif_flow_put_flags flags) { op->ukey = ukey; op->dop.type = DPIF_OP_FLOW_PUT; op->dop.flow_put.flags = flags; op->dop.flow_put.key = ukey->key; op->dop.flow_put.key_len = ukey->key_len; op->dop.flow_put.mask = ukey->mask; op->dop.flow_put.mask_len = ukey->mask_len; op->dop.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL; op->dop.flow_put.pmd_id = ukey->pmd_id; op->dop.flow_put.stats = NULL; ukey_get_actions(ukey, &op->dop.flow_put.actions, &op->dop.flow_put.actions_len); } /* Executes datapath operations 'ops' and attributes stats retrieved from the * datapath as part of those operations. */ static void push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops) { struct dpif_op *opsp[REVALIDATE_MAX_BATCH]; size_t i; ovs_assert(n_ops <= REVALIDATE_MAX_BATCH); for (i = 0; i < n_ops; i++) { opsp[i] = &ops[i].dop; } dpif_operate(udpif->dpif, opsp, n_ops, DPIF_OFFLOAD_AUTO); for (i = 0; i < n_ops; i++) { struct ukey_op *op = &ops[i]; struct dpif_flow_stats *push, *stats, push_buf; stats = op->dop.flow_del.stats; push = &push_buf; if (op->dop.type != DPIF_OP_FLOW_DEL) { /* Only deleted flows need their stats pushed. */ continue; } if (op->dop.error) { /* flow_del error, 'stats' is unusable. */ if (op->ukey) { ovs_mutex_lock(&op->ukey->mutex); transition_ukey(op->ukey, UKEY_EVICTED); ovs_mutex_unlock(&op->ukey->mutex); } continue; } if (op->ukey) { ovs_mutex_lock(&op->ukey->mutex); transition_ukey(op->ukey, UKEY_EVICTED); push->used = MAX(stats->used, op->ukey->stats.used); push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags; push->n_packets = stats->n_packets - op->ukey->stats.n_packets; push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes; if (stats->n_packets < op->ukey->stats.n_packets && op->ukey->stats.n_packets < UINT64_THREE_QUARTERS) { /* Report cases where the packet counter is lower than the * previous instance, but exclude the potential wrapping of an * uint64_t. */ COVERAGE_INC(ukey_invalid_stat_reset); } ovs_mutex_unlock(&op->ukey->mutex); } else { push = stats; } if (push->n_packets || netflow_exists()) { const struct nlattr *key = op->dop.flow_del.key; size_t key_len = op->dop.flow_del.key_len; struct netflow *netflow; struct reval_context ctx = { .netflow = &netflow, }; int error; if (op->ukey) { ovs_mutex_lock(&op->ukey->mutex); if (op->ukey->xcache) { xlate_push_stats(op->ukey->xcache, push, false); ovs_mutex_unlock(&op->ukey->mutex); continue; } ovs_mutex_unlock(&op->ukey->mutex); key = op->ukey->key; key_len = op->ukey->key_len; } error = xlate_key(udpif, key, key_len, push, &ctx); if (error) { static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rll, "xlate_key failed (%s)!", ovs_strerror(error)); } else { xlate_out_uninit(&ctx.xout); if (netflow) { netflow_flow_clear(netflow, &ctx.flow); } } } } } /* Executes datapath operations 'ops', attributes stats retrieved from the * datapath, and deletes ukeys corresponding to deleted flows. */ static void push_ukey_ops(struct udpif *udpif, struct umap *umap, struct ukey_op *ops, size_t n_ops) { int i; push_dp_ops(udpif, ops, n_ops); ovs_mutex_lock(&umap->mutex); for (i = 0; i < n_ops; i++) { if (ops[i].dop.type == DPIF_OP_FLOW_DEL) { ukey_delete(umap, ops[i].ukey); } } ovs_mutex_unlock(&umap->mutex); } static void log_unexpected_flow(const struct dpif_flow *flow, int error) { struct ds ds = DS_EMPTY_INITIALIZER; ds_put_format(&ds, "Failed to acquire udpif_key corresponding to " "unexpected flow (%s): ", ovs_strerror(error)); odp_format_ufid(&flow->ufid, &ds); static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(10, 60); VLOG_WARN_RL(&rll, "%s", ds_cstr(&ds)); ds_destroy(&ds); } static void reval_op_init(struct ukey_op *op, enum reval_result result, struct udpif *udpif, struct udpif_key *ukey, struct recirc_refs *recircs, struct ofpbuf *odp_actions) OVS_REQUIRES(ukey->mutex) { if (result == UKEY_DELETE) { delete_op_init(udpif, op, ukey); transition_ukey(ukey, UKEY_EVICTING); } else if (result == UKEY_MODIFY) { /* Store the new recircs. */ recirc_refs_swap(&ukey->recircs, recircs); /* Release old recircs. */ recirc_refs_unref(recircs); /* ukey->key_recirc_id remains, as the key is the same as before. */ ukey_set_actions(ukey, odp_actions); put_op_init(op, ukey, DPIF_FP_MODIFY); } } static void ukey_netdev_unref(struct udpif_key *ukey) { if (!ukey->in_netdev) { return; } netdev_close(ukey->in_netdev); ukey->in_netdev = NULL; } /* * Given a udpif_key, get its input port (netdev) by parsing the flow keys * and actions. The flow may not contain flow attributes if it is a terse * dump; read its attributes from the ukey and then parse the flow to get * the port info. Save them in udpif_key. */ static void ukey_to_flow_netdev(struct udpif *udpif, struct udpif_key *ukey) { const char *dpif_type_str = dpif_normalize_type(dpif_type(udpif->dpif)); const struct nlattr *k; unsigned int left; /* Remove existing references to netdev */ ukey_netdev_unref(ukey); /* Find the input port and get a reference to its netdev */ NL_ATTR_FOR_EACH (k, left, ukey->key, ukey->key_len) { enum ovs_key_attr type = nl_attr_type(k); if (type == OVS_KEY_ATTR_IN_PORT) { ukey->in_netdev = netdev_ports_get(nl_attr_get_odp_port(k), dpif_type_str); } else if (type == OVS_KEY_ATTR_TUNNEL) { struct flow_tnl tnl; enum odp_key_fitness res; if (ukey->in_netdev) { netdev_close(ukey->in_netdev); ukey->in_netdev = NULL; } res = odp_tun_key_from_attr(k, &tnl, NULL); if (res != ODP_FIT_ERROR) { ukey->in_netdev = flow_get_tunnel_netdev(&tnl); break; } } } } static uint64_t udpif_flow_packet_delta(struct udpif_key *ukey, const struct dpif_flow *f) { return f->stats.n_packets + ukey->flow_backlog_packets - ukey->flow_packets; } static long long int udpif_flow_time_delta(struct udpif *udpif, struct udpif_key *ukey) { return (udpif->dpif->current_ms - ukey->flow_time) / 1000; } /* * Save backlog packet count while switching modes * between offloaded and kernel datapaths. */ static void udpif_set_ukey_backlog_packets(struct udpif_key *ukey) { ukey->flow_backlog_packets = ukey->flow_packets; } /* Gather pps-rate for the given dpif_flow and save it in its ukey */ static void udpif_update_flow_pps(struct udpif *udpif, struct udpif_key *ukey, const struct dpif_flow *f) { uint64_t pps; /* Update pps-rate only when we are close to rebalance interval */ if (udpif->dpif->current_ms - ukey->flow_time < OFFL_REBAL_INTVL_MSEC) { return; } ukey->offloaded = f->attrs.offloaded; pps = udpif_flow_packet_delta(ukey, f) / udpif_flow_time_delta(udpif, ukey); ukey->flow_pps_rate = pps; ukey->flow_packets = ukey->flow_backlog_packets + f->stats.n_packets; ukey->flow_time = udpif->dpif->current_ms; } static long long int udpif_update_used(struct udpif *udpif, struct udpif_key *ukey, struct dpif_flow_stats *stats) OVS_REQUIRES(ukey->mutex) { if (!udpif->dump->terse) { return ukey->created; } if (stats->n_packets > ukey->stats.n_packets) { stats->used = udpif->dpif->current_ms; } else if (ukey->stats.used) { stats->used = ukey->stats.used; } else { stats->used = ukey->created; } return stats->used; } static void revalidate(struct revalidator *revalidator) { uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub); struct udpif *udpif = revalidator->udpif; struct dpif_flow_dump_thread *dump_thread; uint64_t dump_seq, reval_seq; bool kill_warn_print = true; unsigned int flow_limit; dump_seq = seq_read(udpif->dump_seq); reval_seq = seq_read(udpif->reval_seq); atomic_read_relaxed(&udpif->flow_limit, &flow_limit); dump_thread = dpif_flow_dump_thread_create(udpif->dump); for (;;) { struct ukey_op ops[REVALIDATE_MAX_BATCH]; int n_ops = 0; struct dpif_flow flows[REVALIDATE_MAX_BATCH]; const struct dpif_flow *f; int n_dumped; long long int max_idle; long long int now; size_t kill_all_limit; size_t n_dp_flows; bool kill_them_all; n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows)); if (!n_dumped) { break; } /* In normal operation we want to keep flows around until they have * been idle for 'ofproto_max_idle' milliseconds. However: * * - If the number of datapath flows climbs above 'flow_limit', * drop that down to 100 ms to try to bring the flows down to * the limit. * * - If the number of datapath flows climbs above twice * 'flow_limit', delete all the datapath flows as an emergency * measure. (We reassess this condition for the next batch of * datapath flows, so we will recover before all the flows are * gone.) */ n_dp_flows = udpif_get_n_flows(udpif); if (n_dp_flows >= flow_limit) { COVERAGE_INC(upcall_flow_limit_hit); } kill_them_all = false; kill_all_limit = flow_limit * 2; if (OVS_UNLIKELY(n_dp_flows > kill_all_limit)) { static struct vlog_rate_limit rlem = VLOG_RATE_LIMIT_INIT(1, 1); kill_them_all = true; COVERAGE_INC(upcall_flow_limit_kill); if (kill_warn_print) { kill_warn_print = false; VLOG_WARN_RL(&rlem, "Number of datapath flows (%"PRIuSIZE") twice as high as " "current dynamic flow limit (%"PRIuSIZE"). " "Starting to delete flows unconditionally " "as an emergency measure.", n_dp_flows, kill_all_limit); } } max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle; udpif->dpif->current_ms = now = time_msec(); for (f = flows; f < &flows[n_dumped]; f++) { long long int used = f->stats.used; struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER; struct dpif_flow_stats stats = f->stats; enum reval_result result; struct udpif_key *ukey; bool already_dumped; int error; if (ukey_acquire(udpif, f, &ukey, &error)) { if (error == EBUSY) { /* Another thread is processing this flow, so don't bother * processing it.*/ COVERAGE_INC(upcall_ukey_contention); } else { log_unexpected_flow(f, error); if (error != ENOENT) { delete_op_init__(udpif, &ops[n_ops++], f); } } continue; } ukey->offloaded = f->attrs.offloaded; if (!ukey->dp_layer || (!dpif_synced_dp_layers(udpif->dpif) && strcmp(ukey->dp_layer, f->attrs.dp_layer))) { if (ukey->dp_layer) { /* The dp_layer has changed this is probably due to an * earlier revalidate cycle moving it to/from hw offload. * In this case we should reset the ukey stored statistics, * as they are from the deleted DP flow. */ COVERAGE_INC(ukey_dp_change); memset(&ukey->stats, 0, sizeof ukey->stats); } ukey->dp_layer = f->attrs.dp_layer; } already_dumped = ukey->dump_seq == dump_seq; if (already_dumped) { /* The flow has already been handled during this flow dump * operation. Skip it. */ if (ukey->xcache) { COVERAGE_INC(dumped_duplicate_flow); } else { COVERAGE_INC(dumped_new_flow); } ovs_mutex_unlock(&ukey->mutex); continue; } if (ukey->state <= UKEY_OPERATIONAL) { /* The flow is now confirmed to be in the datapath. */ transition_ukey(ukey, UKEY_OPERATIONAL); } else { VLOG_INFO("Unexpected ukey transition from state %d " "(last transitioned from thread %u at %s)", ukey->state, ukey->state_thread, ukey->state_where); ovs_mutex_unlock(&ukey->mutex); continue; } if (!used) { used = udpif_update_used(udpif, ukey, &stats); } if (kill_them_all || (used && used < now - max_idle)) { result = UKEY_DELETE; } else { result = revalidate_ukey(udpif, ukey, &stats, &odp_actions, reval_seq, &recircs); } ukey->dump_seq = dump_seq; if (netdev_is_offload_rebalance_policy_enabled() && result != UKEY_DELETE) { udpif_update_flow_pps(udpif, ukey, f); } if (result != UKEY_KEEP) { /* Takes ownership of 'recircs'. */ reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs, &odp_actions); } ovs_mutex_unlock(&ukey->mutex); } if (n_ops) { /* Push datapath ops but defer ukey deletion to 'sweep' phase. */ push_dp_ops(udpif, ops, n_ops); } ovsrcu_quiesce(); } dpif_flow_dump_thread_destroy(dump_thread); ofpbuf_uninit(&odp_actions); } /* Pauses the 'revalidator', can only proceed after main thread * calls udpif_resume_revalidators(). */ static void revalidator_pause(struct revalidator *revalidator) { /* The first block is for sync'ing the pause with main thread. */ ovs_barrier_block(&revalidator->udpif->pause_barrier); /* The second block is for pausing until main thread resumes. */ ovs_barrier_block(&revalidator->udpif->pause_barrier); } static void revalidator_sweep__(struct revalidator *revalidator, bool purge) { struct udpif *udpif; uint64_t dump_seq, reval_seq; int slice; udpif = revalidator->udpif; dump_seq = seq_read(udpif->dump_seq); reval_seq = seq_read(udpif->reval_seq); slice = revalidator - udpif->revalidators; ovs_assert(slice < udpif->n_revalidators); for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) { uint64_t odp_actions_stub[1024 / 8]; struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub); struct ukey_op ops[REVALIDATE_MAX_BATCH]; struct udpif_key *ukey; struct umap *umap = &udpif->ukeys[i]; size_t n_ops = 0; CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) { enum ukey_state ukey_state; /* Handler threads could be holding a ukey lock while it installs a * new flow, so don't hang around waiting for access to it. */ if (ovs_mutex_trylock(&ukey->mutex)) { continue; } ukey_state = ukey->state; if (ukey_state == UKEY_OPERATIONAL || (ukey_state == UKEY_VISIBLE && purge)) { struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER; bool seq_mismatch = (ukey->dump_seq != dump_seq && ukey->reval_seq != reval_seq); enum reval_result result; if (purge) { result = UKEY_DELETE; } else if (!seq_mismatch) { result = UKEY_KEEP; } else { struct dpif_flow_stats stats; COVERAGE_INC(revalidate_missed_dp_flow); memcpy(&stats, &ukey->stats, sizeof stats); result = revalidate_ukey(udpif, ukey, &stats, &odp_actions, reval_seq, &recircs); } if (result != UKEY_KEEP) { /* Clears 'recircs' if filled by revalidate_ukey(). */ reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs, &odp_actions); } } ovs_mutex_unlock(&ukey->mutex); if (ukey_state == UKEY_EVICTED) { /* The common flow deletion case involves deletion of the flow * during the dump phase and ukey deletion here. */ ovs_mutex_lock(&umap->mutex); ukey_delete(umap, ukey); ovs_mutex_unlock(&umap->mutex); } if (n_ops == REVALIDATE_MAX_BATCH) { /* Update/delete missed flows and clean up corresponding ukeys * if necessary. */ push_ukey_ops(udpif, umap, ops, n_ops); n_ops = 0; } } if (n_ops) { push_ukey_ops(udpif, umap, ops, n_ops); } ofpbuf_uninit(&odp_actions); ovsrcu_quiesce(); } } static void revalidator_sweep(struct revalidator *revalidator) { revalidator_sweep__(revalidator, false); } static void revalidator_purge(struct revalidator *revalidator) { revalidator_sweep__(revalidator, true); } /* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */ static void dp_purge_cb(void *aux, unsigned pmd_id) OVS_NO_THREAD_SAFETY_ANALYSIS { struct udpif *udpif = aux; size_t i; udpif_pause_revalidators(udpif); for (i = 0; i < N_UMAPS; i++) { struct ukey_op ops[REVALIDATE_MAX_BATCH]; struct udpif_key *ukey; struct umap *umap = &udpif->ukeys[i]; size_t n_ops = 0; CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) { if (ukey->pmd_id == pmd_id) { delete_op_init(udpif, &ops[n_ops++], ukey); transition_ukey(ukey, UKEY_EVICTING); if (n_ops == REVALIDATE_MAX_BATCH) { push_ukey_ops(udpif, umap, ops, n_ops); n_ops = 0; } } } if (n_ops) { push_ukey_ops(udpif, umap, ops, n_ops); } ovsrcu_quiesce(); } udpif_resume_revalidators(udpif); } static void upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; uint64_t n_offloaded_flows; struct udpif *udpif; LIST_FOR_EACH (udpif, list_node, &all_udpifs) { unsigned int flow_limit; bool ufid_enabled; size_t i; atomic_read_relaxed(&udpif->flow_limit, &flow_limit); ufid_enabled = udpif_use_ufid(udpif); ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif)); ds_put_format(&ds, " flows : (current %lu)" " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif), udpif->avg_n_flows, udpif->max_n_flows, flow_limit); if (!dpif_get_n_offloaded_flows(udpif->dpif, &n_offloaded_flows)) { ds_put_format(&ds, " offloaded flows : %"PRIu64"\n", n_offloaded_flows); } ds_put_format(&ds, " dump duration : %lldms\n", udpif->dump_duration); ds_put_format(&ds, " ufid enabled : "); if (ufid_enabled) { ds_put_format(&ds, "true\n"); } else { ds_put_format(&ds, "false\n"); } ds_put_char(&ds, '\n'); for (i = 0; i < udpif->n_revalidators; i++) { struct revalidator *revalidator = &udpif->revalidators[i]; int j, elements = 0; for (j = i; j < N_UMAPS; j += udpif->n_revalidators) { elements += cmap_count(&udpif->ukeys[j].cmap); } ds_put_format(&ds, " %u: (keys %d)\n", revalidator->id, elements); } } unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } /* Disable using the megaflows. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void upcall_unixctl_disable_megaflows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { atomic_store_relaxed(&enable_megaflows, false); udpif_flush_all_datapaths(); unixctl_command_reply(conn, "megaflows disabled"); } /* Re-enable using megaflows. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void upcall_unixctl_enable_megaflows(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { atomic_store_relaxed(&enable_megaflows, true); udpif_flush_all_datapaths(); unixctl_command_reply(conn, "megaflows enabled"); } /* Disable skipping flow attributes during flow dump. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { atomic_store_relaxed(&enable_ufid, false); unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled"); } /* Re-enable skipping flow attributes during flow dump. * * This command is only needed for advanced debugging, so it's not documented * in the man page. */ static void upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { atomic_store_relaxed(&enable_ufid, true); unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled " "for supported datapaths"); } /* Set the flow limit. * * This command is only needed for advanced debugging, so it's not * documented in the man page. */ static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED) { struct ds ds = DS_EMPTY_INITIALIZER; struct udpif *udpif; unsigned int flow_limit = atoi(argv[1]); LIST_FOR_EACH (udpif, list_node, &all_udpifs) { atomic_store_relaxed(&udpif->flow_limit, flow_limit); } ds_put_format(&ds, "set flow_limit to %u\n", flow_limit); unixctl_command_reply(conn, ds_cstr(&ds)); ds_destroy(&ds); } static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { if (ovs_list_is_singleton(&all_udpifs)) { struct udpif *udpif = NULL; size_t len; udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node); len = (udpif->n_conns + 1) * sizeof *udpif->conns; udpif->conn_seq = seq_read(udpif->dump_seq); udpif->conns = xrealloc(udpif->conns, len); udpif->conns[udpif->n_conns++] = conn; } else { unixctl_command_reply_error(conn, "can't wait on multiple udpifs."); } } static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct udpif *udpif; LIST_FOR_EACH (udpif, list_node, &all_udpifs) { int n; for (n = 0; n < udpif->n_revalidators; n++) { revalidator_purge(&udpif->revalidators[n]); } } unixctl_command_reply(conn, ""); } static void upcall_unixctl_pause(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct udpif *udpif; LIST_FOR_EACH (udpif, list_node, &all_udpifs) { udpif_pause_revalidators(udpif); } unixctl_command_reply(conn, ""); } static void upcall_unixctl_resume(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct udpif *udpif; LIST_FOR_EACH (udpif, list_node, &all_udpifs) { udpif_resume_revalidators(udpif); } unixctl_command_reply(conn, ""); } /* Flows are sorted in the following order: * netdev, flow state (offloaded/kernel path), flow_pps_rate. */ static int flow_compare_rebalance(const void *elem1, const void *elem2) { const struct udpif_key *f1 = *(struct udpif_key **)elem1; const struct udpif_key *f2 = *(struct udpif_key **)elem2; int64_t diff; if (f1->in_netdev < f2->in_netdev) { return -1; } else if (f1->in_netdev > f2->in_netdev) { return 1; } if (f1->offloaded != f2->offloaded) { return f2->offloaded - f1->offloaded; } diff = (f1->offloaded == true) ? f1->flow_pps_rate - f2->flow_pps_rate : f2->flow_pps_rate - f1->flow_pps_rate; return (diff < 0) ? -1 : 1; } /* Insert flows from pending array during rebalancing */ static int rebalance_insert_pending(struct udpif *udpif, struct udpif_key **pending_flows, int pending_count, int insert_count, uint64_t rate_threshold) { int count = 0; for (int i = 0; i < pending_count; i++) { struct udpif_key *flow = pending_flows[i]; int err; /* Stop offloading pending flows if the insert count is * reached and the flow rate is less than the threshold */ if (count >= insert_count && flow->flow_pps_rate < rate_threshold) { break; } /* Offload the flow to netdev */ err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_ALWAYS); if (err == ENOSPC) { /* Stop if we are out of resources */ break; } if (err) { continue; } /* Offload succeeded; delete it from the kernel datapath */ udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER); /* Change the state of the flow, adjust dpif counters */ flow->offloaded = true; udpif_set_ukey_backlog_packets(flow); count++; } return count; } /* Remove flows from offloaded array during rebalancing */ static void rebalance_remove_offloaded(struct udpif *udpif, struct udpif_key **offloaded_flows, int offload_count) { for (int i = 0; i < offload_count; i++) { struct udpif_key *flow = offloaded_flows[i]; int err; /* Install the flow into kernel path first */ err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_NEVER); if (err) { continue; } /* Success; now remove offloaded flow from netdev */ err = udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_ALWAYS); if (err) { udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER); continue; } udpif_set_ukey_backlog_packets(flow); flow->offloaded = false; } } /* * Rebalance offloaded flows on a netdev that's in OOR state. * * The rebalancing is done in two phases. In the first phase, we check if * the pending flows can be offloaded (if some resources became available * in the meantime) by trying to offload each pending flow. If all pending * flows get successfully offloaded, the OOR state is cleared on the netdev * and there's nothing to rebalance. * * If some of the pending flows could not be offloaded, i.e, we still see * the OOR error, then we move to the second phase of rebalancing. In this * phase, the rebalancer compares pps-rate of an offloaded flow with the * least pps-rate with that of a pending flow with the highest pps-rate from * their respective sorted arrays. If pps-rate of the offloaded flow is less * than the pps-rate of the pending flow, then it deletes the offloaded flow * from the HW/netdev and adds it to kernel datapath and then offloads pending * to HW/netdev. This process is repeated for every pair of offloaded and * pending flows in the ordered list. The process stops when we encounter an * offloaded flow that has a higher pps-rate than the corresponding pending * flow. The entire rebalancing process is repeated in the next iteration. */ static bool rebalance_device(struct udpif *udpif, struct udpif_key **offloaded_flows, int offload_count, struct udpif_key **pending_flows, int pending_count) { /* Phase 1 */ int num_inserted = rebalance_insert_pending(udpif, pending_flows, pending_count, pending_count, 0); if (num_inserted) { VLOG_DBG("Offload rebalance: Phase1: inserted %d pending flows", num_inserted); } /* Adjust pending array */ pending_flows = &pending_flows[num_inserted]; pending_count -= num_inserted; if (!pending_count) { /* * Successfully offloaded all pending flows. The device * is no longer in OOR state; done rebalancing this device. */ return false; } /* * Phase 2; determine how many offloaded flows to churn. */ #define OFFL_REBAL_MAX_CHURN 1024 int churn_count = 0; while (churn_count < OFFL_REBAL_MAX_CHURN && churn_count < offload_count && churn_count < pending_count) { if (pending_flows[churn_count]->flow_pps_rate <= offloaded_flows[churn_count]->flow_pps_rate) break; churn_count++; } if (churn_count) { VLOG_DBG("Offload rebalance: Phase2: removing %d offloaded flows", churn_count); } /* Bail early if nothing to churn */ if (!churn_count) { return true; } /* Remove offloaded flows */ rebalance_remove_offloaded(udpif, offloaded_flows, churn_count); /* Adjust offloaded array */ offloaded_flows = &offloaded_flows[churn_count]; offload_count -= churn_count; /* Replace offloaded flows with pending flows */ num_inserted = rebalance_insert_pending(udpif, pending_flows, pending_count, churn_count, offload_count ? offloaded_flows[0]->flow_pps_rate : 0); if (num_inserted) { VLOG_DBG("Offload rebalance: Phase2: inserted %d pending flows", num_inserted); } return true; } static struct udpif_key ** udpif_add_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count, size_t *alloc_flow_count, struct udpif_key *ukey) { if (*total_flow_count >= *alloc_flow_count) { sort_flows = x2nrealloc(sort_flows, alloc_flow_count, sizeof ukey); } sort_flows[(*total_flow_count)++] = ukey; return sort_flows; } /* * Build sort_flows[] initially with flows that * reference an 'OOR' netdev as their input port. */ static struct udpif_key ** udpif_build_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count, size_t *alloc_flow_count, struct udpif_key *ukey, int *oor_netdev_count) { struct netdev *netdev; int count; /* Input netdev must be available for the flow */ netdev = ukey->in_netdev; if (!netdev) { return sort_flows; } /* Is the in-netdev for this flow in OOR state ? */ if (!netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR)) { ukey_netdev_unref(ukey); return sort_flows; } /* Add the flow to sort_flows[] */ sort_flows = udpif_add_oor_flows(sort_flows, total_flow_count, alloc_flow_count, ukey); if (ukey->offloaded) { count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT); ovs_assert(count >= 0); if (count++ == 0) { (*oor_netdev_count)++; } netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, count); } else { count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT); ovs_assert(count >= 0); netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, ++count); } return sort_flows; } /* * Rebalance offloaded flows on HW netdevs that are in OOR state. */ static void udpif_flow_rebalance(struct udpif *udpif) { struct udpif_key **sort_flows = NULL; size_t alloc_flow_count = 0; size_t total_flow_count = 0; int oor_netdev_count = 0; int offload_index = 0; int pending_index; /* Collect flows (offloaded and pending) that reference OOR netdevs */ for (size_t i = 0; i < N_UMAPS; i++) { struct udpif_key *ukey; struct umap *umap = &udpif->ukeys[i]; CMAP_FOR_EACH (ukey, cmap_node, &umap->cmap) { ukey_to_flow_netdev(udpif, ukey); sort_flows = udpif_build_oor_flows(sort_flows, &total_flow_count, &alloc_flow_count, ukey, &oor_netdev_count); } } /* Sort flows by OOR netdevs, state (offloaded/pending) and pps-rate */ qsort(sort_flows, total_flow_count, sizeof(struct udpif_key *), flow_compare_rebalance); /* * We now have flows referencing OOR netdevs, that are sorted. We also * have a count of offloaded and pending flows on each of the netdevs * that are in OOR state. Now rebalance each oor-netdev. */ while (oor_netdev_count) { struct netdev *netdev; int offload_count; int pending_count; bool oor; netdev = sort_flows[offload_index]->in_netdev; ovs_assert(netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR) == true); VLOG_DBG("Offload rebalance: netdev: %s is OOR", netdev->name); offload_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT); pending_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT); pending_index = offload_index + offload_count; oor = rebalance_device(udpif, &sort_flows[offload_index], offload_count, &sort_flows[pending_index], pending_count); netdev_set_hw_info(netdev, HW_INFO_TYPE_OOR, oor); offload_index = pending_index + pending_count; netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, 0); netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, 0); oor_netdev_count--; } for (int i = 0; i < total_flow_count; i++) { struct udpif_key *ukey = sort_flows[i]; ukey_netdev_unref(ukey); } free(sort_flows); } static int udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey, enum dpif_offload_type offload_type) { struct dpif_op *opsp; struct ukey_op uop; opsp = &uop.dop; put_op_init(&uop, ukey, DPIF_FP_CREATE); dpif_operate(udpif->dpif, &opsp, 1, offload_type); return opsp->error; } static int udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey, enum dpif_offload_type offload_type) { struct dpif_op *opsp; struct ukey_op uop; opsp = &uop.dop; delete_op_init(udpif, &uop, ukey); dpif_operate(udpif->dpif, &opsp, 1, offload_type); return opsp->error; }