/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/ofproto-dpif-xlate.h" #include #include #include #include #include #include "tnl-neigh-cache.h" #include "bfd.h" #include "bitmap.h" #include "bond.h" #include "bundle.h" #include "byte-order.h" #include "cfm.h" #include "connmgr.h" #include "coverage.h" #include "dp-packet.h" #include "dpif.h" #include "openvswitch/dynamic-string.h" #include "in-band.h" #include "lacp.h" #include "learn.h" #include "list.h" #include "ovs-lldp.h" #include "mac-learning.h" #include "mcast-snooping.h" #include "meta-flow.h" #include "multipath.h" #include "netdev-vport.h" #include "netlink.h" #include "nx-match.h" #include "odp-execute.h" #include "ofp-actions.h" #include "ofproto/ofproto-dpif-ipfix.h" #include "ofproto/ofproto-dpif-mirror.h" #include "ofproto/ofproto-dpif-monitor.h" #include "ofproto/ofproto-dpif-sflow.h" #include "ofproto/ofproto-dpif.h" #include "ofproto/ofproto-provider.h" #include "packets.h" #include "ovs-router.h" #include "tnl-ports.h" #include "tunnel.h" #include "openvswitch/vlog.h" COVERAGE_DEFINE(xlate_actions); COVERAGE_DEFINE(xlate_actions_oversize); COVERAGE_DEFINE(xlate_actions_too_many_output); VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate); /* Maximum depth of flow table recursion (due to resubmit actions) in a * flow translation. */ #define MAX_RESUBMIT_RECURSION 64 #define MAX_INTERNAL_RESUBMITS 1 /* Max resbmits allowed using rules in internal table. */ /* Maximum number of resubmit actions in a flow translation, whether they are * recursive or not. */ #define MAX_RESUBMITS (MAX_RESUBMIT_RECURSION * MAX_RESUBMIT_RECURSION) struct xbridge { struct hmap_node hmap_node; /* Node in global 'xbridges' map. */ struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */ struct ovs_list xbundles; /* Owned xbundles. */ struct hmap xports; /* Indexed by ofp_port. */ char *name; /* Name used in log messages. */ struct dpif *dpif; /* Datapath interface. */ struct mac_learning *ml; /* Mac learning handle. */ struct mcast_snooping *ms; /* Multicast Snooping handle. */ struct mbridge *mbridge; /* Mirroring. */ struct dpif_sflow *sflow; /* SFlow handle, or null. */ struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */ struct netflow *netflow; /* Netflow handle, or null. */ struct stp *stp; /* STP or null if disabled. */ struct rstp *rstp; /* RSTP or null if disabled. */ bool has_in_band; /* Bridge has in band control? */ bool forward_bpdu; /* Bridge forwards STP BPDUs? */ /* Datapath feature support. */ struct dpif_backer_support support; }; struct xbundle { struct hmap_node hmap_node; /* In global 'xbundles' map. */ struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */ struct ovs_list list_node; /* In parent 'xbridges' list. */ struct xbridge *xbridge; /* Parent xbridge. */ struct ovs_list xports; /* Contains "struct xport"s. */ char *name; /* Name used in log messages. */ struct bond *bond; /* Nonnull iff more than one port. */ struct lacp *lacp; /* LACP handle or null. */ enum port_vlan_mode vlan_mode; /* VLAN mode. */ int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */ bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */ }; struct xport { struct hmap_node hmap_node; /* Node in global 'xports' map. */ struct ofport_dpif *ofport; /* Key in global 'xports map. */ struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */ ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */ odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */ struct ovs_list bundle_node; /* In parent xbundle (if it exists). */ struct xbundle *xbundle; /* Parent xbundle or null. */ struct netdev *netdev; /* 'ofport''s netdev. */ struct xbridge *xbridge; /* Parent bridge. */ struct xport *peer; /* Patch port peer or null. */ enum ofputil_port_config config; /* OpenFlow port configuration. */ enum ofputil_port_state state; /* OpenFlow port state. */ int stp_port_no; /* STP port number or -1 if not in use. */ struct rstp_port *rstp_port; /* RSTP port or null. */ struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */ bool may_enable; /* May be enabled in bonds. */ bool is_tunnel; /* Is a tunnel port. */ struct cfm *cfm; /* CFM handle or null. */ struct bfd *bfd; /* BFD handle or null. */ struct lldp *lldp; /* LLDP handle or null. */ }; struct xlate_ctx { struct xlate_in *xin; struct xlate_out *xout; const struct xbridge *xbridge; /* Flow tables version at the beginning of the translation. */ cls_version_t tables_version; /* Flow at the last commit. */ struct flow base_flow; /* Tunnel IP destination address as received. This is stored separately * as the base_flow.tunnel is cleared on init to reflect the datapath * behavior. Used to make sure not to send tunneled output to ourselves, * which might lead to an infinite loop. This could happen easily * if a tunnel is marked as 'ip_remote=flow', and the flow does not * actually set the tun_dst field. */ struct in6_addr orig_tunnel_ipv6_dst; /* Stack for the push and pop actions. Each stack element is of type * "union mf_subvalue". */ struct ofpbuf stack; /* The rule that we are currently translating, or NULL. */ struct rule_dpif *rule; /* Flow translation populates this with wildcards relevant in translation. * When 'xin->wc' is nonnull, this is the same pointer. When 'xin->wc' is * null, this is a pointer to uninitialized scratch memory. This allows * code to blindly write to 'ctx->wc' without worrying about whether the * caller really wants wildcards. */ struct flow_wildcards *wc; /* Output buffer for datapath actions. When 'xin->odp_actions' is nonnull, * this is the same pointer. When 'xin->odp_actions' is null, this points * to a scratch ofpbuf. This allows code to add actions to * 'ctx->odp_actions' without worrying about whether the caller really * wants actions. */ struct ofpbuf *odp_actions; /* Resubmit statistics, via xlate_table_action(). */ int recurse; /* Current resubmit nesting depth. */ int resubmits; /* Total number of resubmits. */ bool in_group; /* Currently translating ofgroup, if true. */ bool in_action_set; /* Currently translating action_set, if true. */ uint8_t table_id; /* OpenFlow table ID where flow was found. */ ovs_be64 rule_cookie; /* Cookie of the rule being translated. */ uint32_t orig_skb_priority; /* Priority when packet arrived. */ uint32_t sflow_n_outputs; /* Number of output ports. */ odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */ ofp_port_t nf_output_iface; /* Output interface index for NetFlow. */ bool exit; /* No further actions should be processed. */ mirror_mask_t mirrors; /* Bitmap of associated mirrors. */ /* Freezing Translation * ==================== * * At some point during translation, the code may recognize the need to halt * and checkpoint the translation in a way that it can be restarted again * later. We call the checkpointing process "freezing" and the restarting * process "thawing". * * The use cases for freezing are: * * - "Recirculation", where the translation process discovers that it * doesn't have enough information to complete translation without * actually executing the actions that have already been translated, * which provides the additionally needed information. In these * situations, translation freezes translation and assigns the frozen * data a unique "recirculation ID", which it associates with the data * in a table in userspace (see ofproto-dpif-rid.h). It also adds a * OVS_ACTION_ATTR_RECIRC action specifying that ID to the datapath * actions. When a packet hits that action, the datapath looks its * flow up again using the ID. If there's a miss, it comes back to * userspace, which find the recirculation table entry for the ID, * thaws the associated frozen data, and continues translation from * that point given the additional information that is now known. * * The archetypal example is MPLS. As MPLS is implemented in * OpenFlow, the protocol that follows the last MPLS label becomes * known only when that label is popped by an OpenFlow action. That * means that Open vSwitch can't extract the headers beyond the MPLS * labels until the pop action is executed. Thus, at that point * translation uses the recirculation process to extract the headers * beyond the MPLS labels. * * (OVS also uses OVS_ACTION_ATTR_RECIRC to implement hashing for * output to bonds. OVS pre-populates all the datapath flows for bond * output in the datapath, though, which means that the elaborate * process of coming back to userspace for a second round of * translation isn't needed, and so bonds don't follow the above * process.) * * - "Continuation". A continuation is a way for an OpenFlow controller * to interpose on a packet's traversal of the OpenFlow tables. When * the translation process encounters a "controller" action with the * "pause" flag, it freezes translation, serializes the frozen data, * and sends it to an OpenFlow controller. The controller then * examines and possibly modifies the frozen data and eventually sends * it back to the switch, which thaws it and continues translation. * * The main problem of freezing translation is preserving state, so that * when the translation is thawed later it resumes from where it left off, * without disruption. In particular, actions must be preserved as follows: * * - If we're freezing because an action needed more information, the * action that prompted it. * * - Any actions remaining to be translated within the current flow. * * - If translation was frozen within a NXAST_RESUBMIT, then any actions * following the resubmit action. Resubmit actions can be nested, so * this has to go all the way up the control stack. * * - The OpenFlow 1.1+ action set. * * State that actions and flow table lookups can depend on, such as the * following, must also be preserved: * * - Metadata fields (input port, registers, OF1.1+ metadata, ...). * * - The stack used by NXAST_STACK_PUSH and NXAST_STACK_POP actions. * * - The table ID and cookie of the flow being translated at each level * of the control stack, because these can become visible through * OFPAT_CONTROLLER actions (and other ways). * * Translation allows for the control of this state preservation via these * members. When a need to freeze translation is identified, the * translation process: * * 1. Sets 'freezing' to true. * * 2. Sets 'exit' to true to tell later steps that we're exiting from the * translation process. * * 3. Adds an OFPACT_UNROLL_XLATE action to 'frozen_actions', and points * frozen_actions.header to the action to make it easy to find it later. * This action holds the current table ID and cookie so that they can be * restored during a post-recirculation upcall translation. * * 4. Adds the action that prompted recirculation and any actions following * it within the same flow to 'frozen_actions', so that they can be * executed during a post-recirculation upcall translation. * * 5. Returns. * * 6. The action that prompted recirculation might be nested in a stack of * nested "resubmit"s that have actions remaining. Each of these notices * that we're exiting and freezing and responds by adding more * OFPACT_UNROLL_XLATE actions to 'frozen_actions', as necessary, * followed by any actions that were yet unprocessed. * * If we're freezing because of recirculation, the caller generates a * recirculation ID and associates all the state produced by this process * with it. For post-recirculation upcall translation, the caller passes it * back in for the new translation to execute. The process yielded a set of * ofpacts that can be translated directly, so it is not much of a special * case at that point. */ bool freezing; struct ofpbuf frozen_actions; const struct ofpact_controller *pause; /* True if conntrack has been performed on this packet during processing * on the current bridge. This is used to determine whether conntrack * state from the datapath should be honored after thawing. */ bool conntracked; /* Pointer to an embedded NAT action in a conntrack action, or NULL. */ struct ofpact_nat *ct_nat_action; /* OpenFlow 1.1+ action set. * * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS. * When translation is otherwise complete, ofpacts_execute_action_set() * converts it to a set of "struct ofpact"s that can be translated into * datapath actions. */ bool action_set_has_group; /* Action set contains OFPACT_GROUP? */ struct ofpbuf action_set; /* Action set. */ enum xlate_error error; /* Translation failed. */ }; const char *xlate_strerror(enum xlate_error error) { switch (error) { case XLATE_OK: return "OK"; case XLATE_BRIDGE_NOT_FOUND: return "Bridge not found"; case XLATE_RECURSION_TOO_DEEP: return "Recursion too deep"; case XLATE_TOO_MANY_RESUBMITS: return "Too many resubmits"; case XLATE_STACK_TOO_DEEP: return "Stack too deep"; case XLATE_NO_RECIRCULATION_CONTEXT: return "No recirculation context"; case XLATE_RECIRCULATION_CONFLICT: return "Recirculation conflict"; case XLATE_TOO_MANY_MPLS_LABELS: return "Too many MPLS labels"; } return "Unknown error"; } static void xlate_action_set(struct xlate_ctx *ctx); static void xlate_commit_actions(struct xlate_ctx *ctx); static void ctx_trigger_freeze(struct xlate_ctx *ctx) { ctx->exit = true; ctx->freezing = true; } static bool ctx_first_frozen_action(const struct xlate_ctx *ctx) { return !ctx->frozen_actions.size; } static void ctx_cancel_freeze(struct xlate_ctx *ctx) { if (ctx->freezing) { ctx->freezing = false; ofpbuf_clear(&ctx->frozen_actions); ctx->frozen_actions.header = NULL; } } static void finish_freezing(struct xlate_ctx *ctx); /* A controller may use OFPP_NONE as the ingress port to indicate that * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for * when an input bundle is needed for validation (e.g., mirroring or * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have * any 'port' structs, so care must be taken when dealing with it. */ static struct xbundle ofpp_none_bundle = { .name = "OFPP_NONE", .vlan_mode = PORT_VLAN_TRUNK }; /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from * 'priority' (the datapath's term for QoS queue) to the dscp bits which all * traffic egressing the 'ofport' with that priority should be marked with. */ struct skb_priority_to_dscp { struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */ uint32_t skb_priority; /* Priority of this queue (see struct flow). */ uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */ }; enum xc_type { XC_RULE, XC_BOND, XC_NETDEV, XC_NETFLOW, XC_MIRROR, XC_LEARN, XC_NORMAL, XC_FIN_TIMEOUT, XC_GROUP, XC_TNL_NEIGH, }; /* xlate_cache entries hold enough information to perform the side effects of * xlate_actions() for a rule, without needing to perform rule translation * from scratch. The primary usage of these is to submit statistics to objects * that a flow relates to, although they may be used for other effects as well * (for instance, refreshing hard timeouts for learned flows). */ struct xc_entry { enum xc_type type; union { struct rule_dpif *rule; struct { struct netdev *tx; struct netdev *rx; struct bfd *bfd; } dev; struct { struct netflow *netflow; struct flow *flow; ofp_port_t iface; } nf; struct { struct mbridge *mbridge; mirror_mask_t mirrors; } mirror; struct { struct bond *bond; struct flow *flow; uint16_t vid; } bond; struct { struct ofproto_dpif *ofproto; struct ofputil_flow_mod *fm; struct ofpbuf *ofpacts; } learn; struct { struct ofproto_dpif *ofproto; struct flow *flow; int vlan; } normal; struct { struct rule_dpif *rule; uint16_t idle; uint16_t hard; } fin; struct { struct group_dpif *group; struct ofputil_bucket *bucket; } group; struct { char br_name[IFNAMSIZ]; struct in6_addr d_ipv6; } tnl_neigh_cache; } u; }; #define XC_ENTRY_FOR_EACH(ENTRY, ENTRIES, XCACHE) \ ENTRIES = XCACHE->entries; \ for (ENTRY = ofpbuf_try_pull(&ENTRIES, sizeof *ENTRY); \ ENTRY; \ ENTRY = ofpbuf_try_pull(&ENTRIES, sizeof *ENTRY)) struct xlate_cache { struct ofpbuf entries; }; /* Xlate config contains hash maps of all bridges, bundles and ports. * Xcfgp contains the pointer to the current xlate configuration. * When the main thread needs to change the configuration, it copies xcfgp to * new_xcfg and edits new_xcfg. This enables the use of RCU locking which * does not block handler and revalidator threads. */ struct xlate_cfg { struct hmap xbridges; struct hmap xbundles; struct hmap xports; }; static OVSRCU_TYPE(struct xlate_cfg *) xcfgp = OVSRCU_INITIALIZER(NULL); static struct xlate_cfg *new_xcfg = NULL; static bool may_receive(const struct xport *, struct xlate_ctx *); static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len, struct xlate_ctx *); static void xlate_normal(struct xlate_ctx *); static inline void xlate_report(struct xlate_ctx *, const char *, ...) OVS_PRINTF_FORMAT(2, 3); static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port, uint8_t table_id, bool may_packet_in, bool honor_table_miss); static bool input_vid_is_valid(uint16_t vid, struct xbundle *, bool warn); static uint16_t input_vid_to_vlan(const struct xbundle *, uint16_t vid); static void output_normal(struct xlate_ctx *, const struct xbundle *, uint16_t vlan); /* Optional bond recirculation parameter to compose_output_action(). */ struct xlate_bond_recirc { uint32_t recirc_id; /* !0 Use recirculation instead of output. */ uint8_t hash_alg; /* !0 Compute hash for recirc before. */ uint32_t hash_basis; /* Compute hash for recirc before. */ }; static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port, const struct xlate_bond_recirc *xr); static struct xbridge *xbridge_lookup(struct xlate_cfg *, const struct ofproto_dpif *); static struct xbridge *xbridge_lookup_by_uuid(struct xlate_cfg *, const struct uuid *); static struct xbundle *xbundle_lookup(struct xlate_cfg *, const struct ofbundle *); static struct xport *xport_lookup(struct xlate_cfg *, const struct ofport_dpif *); static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port); static struct skb_priority_to_dscp *get_skb_priority(const struct xport *, uint32_t skb_priority); static void clear_skb_priorities(struct xport *); static size_t count_skb_priorities(const struct xport *); static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority, uint8_t *dscp); static struct xc_entry *xlate_cache_add_entry(struct xlate_cache *xc, enum xc_type type); static void xlate_xbridge_init(struct xlate_cfg *, struct xbridge *); static void xlate_xbundle_init(struct xlate_cfg *, struct xbundle *); static void xlate_xport_init(struct xlate_cfg *, struct xport *); static void xlate_xbridge_set(struct xbridge *, struct dpif *, const struct mac_learning *, struct stp *, struct rstp *, const struct mcast_snooping *, const struct mbridge *, const struct dpif_sflow *, const struct dpif_ipfix *, const struct netflow *, bool forward_bpdu, bool has_in_band, const struct dpif_backer_support *); static void xlate_xbundle_set(struct xbundle *xbundle, enum port_vlan_mode vlan_mode, int vlan, unsigned long *trunks, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable); static void xlate_xport_set(struct xport *xport, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, const struct lldp *lldp, int stp_port_no, const struct rstp_port *rstp_port, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable); static void xlate_xbridge_remove(struct xlate_cfg *, struct xbridge *); static void xlate_xbundle_remove(struct xlate_cfg *, struct xbundle *); static void xlate_xport_remove(struct xlate_cfg *, struct xport *); static void xlate_xbridge_copy(struct xbridge *); static void xlate_xbundle_copy(struct xbridge *, struct xbundle *); static void xlate_xport_copy(struct xbridge *, struct xbundle *, struct xport *); static void xlate_xcfg_free(struct xlate_cfg *); static inline void xlate_report(struct xlate_ctx *ctx, const char *format, ...) { if (OVS_UNLIKELY(ctx->xin->report_hook)) { va_list args; va_start(args, format); ctx->xin->report_hook(ctx->xin, ctx->recurse, format, args); va_end(args); } } static struct vlog_rate_limit error_report_rl = VLOG_RATE_LIMIT_INIT(1, 5); #define XLATE_REPORT_ERROR(CTX, ...) \ do { \ if (OVS_UNLIKELY((CTX)->xin->report_hook)) { \ xlate_report(CTX, __VA_ARGS__); \ } else { \ VLOG_ERR_RL(&error_report_rl, __VA_ARGS__); \ } \ } while (0) static inline void xlate_report_actions(struct xlate_ctx *ctx, const char *title, const struct ofpact *ofpacts, size_t ofpacts_len) { if (OVS_UNLIKELY(ctx->xin->report_hook)) { struct ds s = DS_EMPTY_INITIALIZER; ofpacts_format(ofpacts, ofpacts_len, &s); xlate_report(ctx, "%s: %s", title, ds_cstr(&s)); ds_destroy(&s); } } static void xlate_xbridge_init(struct xlate_cfg *xcfg, struct xbridge *xbridge) { list_init(&xbridge->xbundles); hmap_init(&xbridge->xports); hmap_insert(&xcfg->xbridges, &xbridge->hmap_node, hash_pointer(xbridge->ofproto, 0)); } static void xlate_xbundle_init(struct xlate_cfg *xcfg, struct xbundle *xbundle) { list_init(&xbundle->xports); list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node); hmap_insert(&xcfg->xbundles, &xbundle->hmap_node, hash_pointer(xbundle->ofbundle, 0)); } static void xlate_xport_init(struct xlate_cfg *xcfg, struct xport *xport) { hmap_init(&xport->skb_priorities); hmap_insert(&xcfg->xports, &xport->hmap_node, hash_pointer(xport->ofport, 0)); hmap_insert(&xport->xbridge->xports, &xport->ofp_node, hash_ofp_port(xport->ofp_port)); } static void xlate_xbridge_set(struct xbridge *xbridge, struct dpif *dpif, const struct mac_learning *ml, struct stp *stp, struct rstp *rstp, const struct mcast_snooping *ms, const struct mbridge *mbridge, const struct dpif_sflow *sflow, const struct dpif_ipfix *ipfix, const struct netflow *netflow, bool forward_bpdu, bool has_in_band, const struct dpif_backer_support *support) { if (xbridge->ml != ml) { mac_learning_unref(xbridge->ml); xbridge->ml = mac_learning_ref(ml); } if (xbridge->ms != ms) { mcast_snooping_unref(xbridge->ms); xbridge->ms = mcast_snooping_ref(ms); } if (xbridge->mbridge != mbridge) { mbridge_unref(xbridge->mbridge); xbridge->mbridge = mbridge_ref(mbridge); } if (xbridge->sflow != sflow) { dpif_sflow_unref(xbridge->sflow); xbridge->sflow = dpif_sflow_ref(sflow); } if (xbridge->ipfix != ipfix) { dpif_ipfix_unref(xbridge->ipfix); xbridge->ipfix = dpif_ipfix_ref(ipfix); } if (xbridge->stp != stp) { stp_unref(xbridge->stp); xbridge->stp = stp_ref(stp); } if (xbridge->rstp != rstp) { rstp_unref(xbridge->rstp); xbridge->rstp = rstp_ref(rstp); } if (xbridge->netflow != netflow) { netflow_unref(xbridge->netflow); xbridge->netflow = netflow_ref(netflow); } xbridge->dpif = dpif; xbridge->forward_bpdu = forward_bpdu; xbridge->has_in_band = has_in_band; xbridge->support = *support; } static void xlate_xbundle_set(struct xbundle *xbundle, enum port_vlan_mode vlan_mode, int vlan, unsigned long *trunks, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable) { ovs_assert(xbundle->xbridge); xbundle->vlan_mode = vlan_mode; xbundle->vlan = vlan; xbundle->trunks = trunks; xbundle->use_priority_tags = use_priority_tags; xbundle->floodable = floodable; if (xbundle->bond != bond) { bond_unref(xbundle->bond); xbundle->bond = bond_ref(bond); } if (xbundle->lacp != lacp) { lacp_unref(xbundle->lacp); xbundle->lacp = lacp_ref(lacp); } } static void xlate_xport_set(struct xport *xport, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, const struct lldp *lldp, int stp_port_no, const struct rstp_port* rstp_port, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable) { xport->config = config; xport->state = state; xport->stp_port_no = stp_port_no; xport->is_tunnel = is_tunnel; xport->may_enable = may_enable; xport->odp_port = odp_port; if (xport->rstp_port != rstp_port) { rstp_port_unref(xport->rstp_port); xport->rstp_port = rstp_port_ref(rstp_port); } if (xport->cfm != cfm) { cfm_unref(xport->cfm); xport->cfm = cfm_ref(cfm); } if (xport->bfd != bfd) { bfd_unref(xport->bfd); xport->bfd = bfd_ref(bfd); } if (xport->lldp != lldp) { lldp_unref(xport->lldp); xport->lldp = lldp_ref(lldp); } if (xport->netdev != netdev) { netdev_close(xport->netdev); xport->netdev = netdev_ref(netdev); } } static void xlate_xbridge_copy(struct xbridge *xbridge) { struct xbundle *xbundle; struct xport *xport; struct xbridge *new_xbridge = xzalloc(sizeof *xbridge); new_xbridge->ofproto = xbridge->ofproto; new_xbridge->name = xstrdup(xbridge->name); xlate_xbridge_init(new_xcfg, new_xbridge); xlate_xbridge_set(new_xbridge, xbridge->dpif, xbridge->ml, xbridge->stp, xbridge->rstp, xbridge->ms, xbridge->mbridge, xbridge->sflow, xbridge->ipfix, xbridge->netflow, xbridge->forward_bpdu, xbridge->has_in_band, &xbridge->support); LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) { xlate_xbundle_copy(new_xbridge, xbundle); } /* Copy xports which are not part of a xbundle */ HMAP_FOR_EACH (xport, ofp_node, &xbridge->xports) { if (!xport->xbundle) { xlate_xport_copy(new_xbridge, NULL, xport); } } } static void xlate_xbundle_copy(struct xbridge *xbridge, struct xbundle *xbundle) { struct xport *xport; struct xbundle *new_xbundle = xzalloc(sizeof *xbundle); new_xbundle->ofbundle = xbundle->ofbundle; new_xbundle->xbridge = xbridge; new_xbundle->name = xstrdup(xbundle->name); xlate_xbundle_init(new_xcfg, new_xbundle); xlate_xbundle_set(new_xbundle, xbundle->vlan_mode, xbundle->vlan, xbundle->trunks, xbundle->use_priority_tags, xbundle->bond, xbundle->lacp, xbundle->floodable); LIST_FOR_EACH (xport, bundle_node, &xbundle->xports) { xlate_xport_copy(xbridge, new_xbundle, xport); } } static void xlate_xport_copy(struct xbridge *xbridge, struct xbundle *xbundle, struct xport *xport) { struct skb_priority_to_dscp *pdscp, *new_pdscp; struct xport *new_xport = xzalloc(sizeof *xport); new_xport->ofport = xport->ofport; new_xport->ofp_port = xport->ofp_port; new_xport->xbridge = xbridge; xlate_xport_init(new_xcfg, new_xport); xlate_xport_set(new_xport, xport->odp_port, xport->netdev, xport->cfm, xport->bfd, xport->lldp, xport->stp_port_no, xport->rstp_port, xport->config, xport->state, xport->is_tunnel, xport->may_enable); if (xport->peer) { struct xport *peer = xport_lookup(new_xcfg, xport->peer->ofport); if (peer) { new_xport->peer = peer; new_xport->peer->peer = new_xport; } } if (xbundle) { new_xport->xbundle = xbundle; list_insert(&new_xport->xbundle->xports, &new_xport->bundle_node); } HMAP_FOR_EACH (pdscp, hmap_node, &xport->skb_priorities) { new_pdscp = xmalloc(sizeof *pdscp); new_pdscp->skb_priority = pdscp->skb_priority; new_pdscp->dscp = pdscp->dscp; hmap_insert(&new_xport->skb_priorities, &new_pdscp->hmap_node, hash_int(new_pdscp->skb_priority, 0)); } } /* Sets the current xlate configuration to new_xcfg and frees the old xlate * configuration in xcfgp. * * This needs to be called after editing the xlate configuration. * * Functions that edit the new xlate configuration are * xlate__set and xlate__remove. * * A sample workflow: * * xlate_txn_start(); * ... * edit_xlate_configuration(); * ... * xlate_txn_commit(); */ void xlate_txn_commit(void) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); ovsrcu_set(&xcfgp, new_xcfg); ovsrcu_synchronize(); xlate_xcfg_free(xcfg); new_xcfg = NULL; } /* Copies the current xlate configuration in xcfgp to new_xcfg. * * This needs to be called prior to editing the xlate configuration. */ void xlate_txn_start(void) { struct xbridge *xbridge; struct xlate_cfg *xcfg; ovs_assert(!new_xcfg); new_xcfg = xmalloc(sizeof *new_xcfg); hmap_init(&new_xcfg->xbridges); hmap_init(&new_xcfg->xbundles); hmap_init(&new_xcfg->xports); xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); if (!xcfg) { return; } HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) { xlate_xbridge_copy(xbridge); } } static void xlate_xcfg_free(struct xlate_cfg *xcfg) { struct xbridge *xbridge, *next_xbridge; if (!xcfg) { return; } HMAP_FOR_EACH_SAFE (xbridge, next_xbridge, hmap_node, &xcfg->xbridges) { xlate_xbridge_remove(xcfg, xbridge); } hmap_destroy(&xcfg->xbridges); hmap_destroy(&xcfg->xbundles); hmap_destroy(&xcfg->xports); free(xcfg); } void xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name, struct dpif *dpif, const struct mac_learning *ml, struct stp *stp, struct rstp *rstp, const struct mcast_snooping *ms, const struct mbridge *mbridge, const struct dpif_sflow *sflow, const struct dpif_ipfix *ipfix, const struct netflow *netflow, bool forward_bpdu, bool has_in_band, const struct dpif_backer_support *support) { struct xbridge *xbridge; ovs_assert(new_xcfg); xbridge = xbridge_lookup(new_xcfg, ofproto); if (!xbridge) { xbridge = xzalloc(sizeof *xbridge); xbridge->ofproto = ofproto; xlate_xbridge_init(new_xcfg, xbridge); } free(xbridge->name); xbridge->name = xstrdup(name); xlate_xbridge_set(xbridge, dpif, ml, stp, rstp, ms, mbridge, sflow, ipfix, netflow, forward_bpdu, has_in_band, support); } static void xlate_xbridge_remove(struct xlate_cfg *xcfg, struct xbridge *xbridge) { struct xbundle *xbundle, *next_xbundle; struct xport *xport, *next_xport; if (!xbridge) { return; } HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) { xlate_xport_remove(xcfg, xport); } LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) { xlate_xbundle_remove(xcfg, xbundle); } hmap_remove(&xcfg->xbridges, &xbridge->hmap_node); mac_learning_unref(xbridge->ml); mcast_snooping_unref(xbridge->ms); mbridge_unref(xbridge->mbridge); dpif_sflow_unref(xbridge->sflow); dpif_ipfix_unref(xbridge->ipfix); stp_unref(xbridge->stp); rstp_unref(xbridge->rstp); hmap_destroy(&xbridge->xports); free(xbridge->name); free(xbridge); } void xlate_remove_ofproto(struct ofproto_dpif *ofproto) { struct xbridge *xbridge; ovs_assert(new_xcfg); xbridge = xbridge_lookup(new_xcfg, ofproto); xlate_xbridge_remove(new_xcfg, xbridge); } void xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle, const char *name, enum port_vlan_mode vlan_mode, int vlan, unsigned long *trunks, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable) { struct xbundle *xbundle; ovs_assert(new_xcfg); xbundle = xbundle_lookup(new_xcfg, ofbundle); if (!xbundle) { xbundle = xzalloc(sizeof *xbundle); xbundle->ofbundle = ofbundle; xbundle->xbridge = xbridge_lookup(new_xcfg, ofproto); xlate_xbundle_init(new_xcfg, xbundle); } free(xbundle->name); xbundle->name = xstrdup(name); xlate_xbundle_set(xbundle, vlan_mode, vlan, trunks, use_priority_tags, bond, lacp, floodable); } static void xlate_xbundle_remove(struct xlate_cfg *xcfg, struct xbundle *xbundle) { struct xport *xport; if (!xbundle) { return; } LIST_FOR_EACH_POP (xport, bundle_node, &xbundle->xports) { xport->xbundle = NULL; } hmap_remove(&xcfg->xbundles, &xbundle->hmap_node); list_remove(&xbundle->list_node); bond_unref(xbundle->bond); lacp_unref(xbundle->lacp); free(xbundle->name); free(xbundle); } void xlate_bundle_remove(struct ofbundle *ofbundle) { struct xbundle *xbundle; ovs_assert(new_xcfg); xbundle = xbundle_lookup(new_xcfg, ofbundle); xlate_xbundle_remove(new_xcfg, xbundle); } void xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle, struct ofport_dpif *ofport, ofp_port_t ofp_port, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, const struct lldp *lldp, struct ofport_dpif *peer, int stp_port_no, const struct rstp_port *rstp_port, const struct ofproto_port_queue *qdscp_list, size_t n_qdscp, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable) { size_t i; struct xport *xport; ovs_assert(new_xcfg); xport = xport_lookup(new_xcfg, ofport); if (!xport) { xport = xzalloc(sizeof *xport); xport->ofport = ofport; xport->xbridge = xbridge_lookup(new_xcfg, ofproto); xport->ofp_port = ofp_port; xlate_xport_init(new_xcfg, xport); } ovs_assert(xport->ofp_port == ofp_port); xlate_xport_set(xport, odp_port, netdev, cfm, bfd, lldp, stp_port_no, rstp_port, config, state, is_tunnel, may_enable); if (xport->peer) { xport->peer->peer = NULL; } xport->peer = xport_lookup(new_xcfg, peer); if (xport->peer) { xport->peer->peer = xport; } if (xport->xbundle) { list_remove(&xport->bundle_node); } xport->xbundle = xbundle_lookup(new_xcfg, ofbundle); if (xport->xbundle) { list_insert(&xport->xbundle->xports, &xport->bundle_node); } clear_skb_priorities(xport); for (i = 0; i < n_qdscp; i++) { struct skb_priority_to_dscp *pdscp; uint32_t skb_priority; if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue, &skb_priority)) { continue; } pdscp = xmalloc(sizeof *pdscp); pdscp->skb_priority = skb_priority; pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK; hmap_insert(&xport->skb_priorities, &pdscp->hmap_node, hash_int(pdscp->skb_priority, 0)); } } static void xlate_xport_remove(struct xlate_cfg *xcfg, struct xport *xport) { if (!xport) { return; } if (xport->peer) { xport->peer->peer = NULL; xport->peer = NULL; } if (xport->xbundle) { list_remove(&xport->bundle_node); } clear_skb_priorities(xport); hmap_destroy(&xport->skb_priorities); hmap_remove(&xcfg->xports, &xport->hmap_node); hmap_remove(&xport->xbridge->xports, &xport->ofp_node); netdev_close(xport->netdev); rstp_port_unref(xport->rstp_port); cfm_unref(xport->cfm); bfd_unref(xport->bfd); lldp_unref(xport->lldp); free(xport); } void xlate_ofport_remove(struct ofport_dpif *ofport) { struct xport *xport; ovs_assert(new_xcfg); xport = xport_lookup(new_xcfg, ofport); xlate_xport_remove(new_xcfg, xport); } static struct ofproto_dpif * xlate_lookup_ofproto_(const struct dpif_backer *backer, const struct flow *flow, ofp_port_t *ofp_in_port, const struct xport **xportp) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); const struct xport *xport; xport = xport_lookup(xcfg, tnl_port_should_receive(flow) ? tnl_port_receive(flow) : odp_port_to_ofport(backer, flow->in_port.odp_port)); if (OVS_UNLIKELY(!xport)) { return NULL; } *xportp = xport; if (ofp_in_port) { *ofp_in_port = xport->ofp_port; } return xport->xbridge->ofproto; } /* Given a datapath and flow metadata ('backer', and 'flow' respectively) * returns the corresponding struct ofproto_dpif and OpenFlow port number. */ struct ofproto_dpif * xlate_lookup_ofproto(const struct dpif_backer *backer, const struct flow *flow, ofp_port_t *ofp_in_port) { const struct xport *xport; return xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport); } /* Given a datapath and flow metadata ('backer', and 'flow' respectively), * optionally populates 'ofproto' with the ofproto_dpif, 'ofp_in_port' with the * openflow in_port, and 'ipfix', 'sflow', and 'netflow' with the appropriate * handles for those protocols if they're enabled. Caller may use the returned * pointers until quiescing, for longer term use additional references must * be taken. * * Returns 0 if successful, ENODEV if the parsed flow has no associated ofproto. */ int xlate_lookup(const struct dpif_backer *backer, const struct flow *flow, struct ofproto_dpif **ofprotop, struct dpif_ipfix **ipfix, struct dpif_sflow **sflow, struct netflow **netflow, ofp_port_t *ofp_in_port) { struct ofproto_dpif *ofproto; const struct xport *xport; ofproto = xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport); if (!ofproto) { return ENODEV; } if (ofprotop) { *ofprotop = ofproto; } if (ipfix) { *ipfix = xport ? xport->xbridge->ipfix : NULL; } if (sflow) { *sflow = xport ? xport->xbridge->sflow : NULL; } if (netflow) { *netflow = xport ? xport->xbridge->netflow : NULL; } return 0; } static struct xbridge * xbridge_lookup(struct xlate_cfg *xcfg, const struct ofproto_dpif *ofproto) { struct hmap *xbridges; struct xbridge *xbridge; if (!ofproto || !xcfg) { return NULL; } xbridges = &xcfg->xbridges; HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0), xbridges) { if (xbridge->ofproto == ofproto) { return xbridge; } } return NULL; } static struct xbridge * xbridge_lookup_by_uuid(struct xlate_cfg *xcfg, const struct uuid *uuid) { struct xbridge *xbridge; HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) { if (uuid_equals(ofproto_dpif_get_uuid(xbridge->ofproto), uuid)) { return xbridge; } } return NULL; } static struct xbundle * xbundle_lookup(struct xlate_cfg *xcfg, const struct ofbundle *ofbundle) { struct hmap *xbundles; struct xbundle *xbundle; if (!ofbundle || !xcfg) { return NULL; } xbundles = &xcfg->xbundles; HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0), xbundles) { if (xbundle->ofbundle == ofbundle) { return xbundle; } } return NULL; } static struct xport * xport_lookup(struct xlate_cfg *xcfg, const struct ofport_dpif *ofport) { struct hmap *xports; struct xport *xport; if (!ofport || !xcfg) { return NULL; } xports = &xcfg->xports; HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0), xports) { if (xport->ofport == ofport) { return xport; } } return NULL; } static struct stp_port * xport_get_stp_port(const struct xport *xport) { return xport->xbridge->stp && xport->stp_port_no != -1 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no) : NULL; } static bool xport_stp_learn_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return sp ? stp_learn_in_state(stp_port_get_state(sp)) : true; } static bool xport_stp_forward_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return sp ? stp_forward_in_state(stp_port_get_state(sp)) : true; } static bool xport_stp_should_forward_bpdu(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return stp_should_forward_bpdu(sp ? stp_port_get_state(sp) : STP_DISABLED); } /* Returns true if STP should process 'flow'. Sets fields in 'wc' that * were used to make the determination.*/ static bool stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc) { /* is_stp() also checks dl_type, but dl_type is always set in 'wc'. */ memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); return is_stp(flow); } static void stp_process_packet(const struct xport *xport, const struct dp_packet *packet) { struct stp_port *sp = xport_get_stp_port(xport); struct dp_packet payload = *packet; struct eth_header *eth = dp_packet_data(&payload); /* Sink packets on ports that have STP disabled when the bridge has * STP enabled. */ if (!sp || stp_port_get_state(sp) == STP_DISABLED) { return; } /* Trim off padding on payload. */ if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) { dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN); } if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { stp_received_bpdu(sp, dp_packet_data(&payload), dp_packet_size(&payload)); } } static enum rstp_state xport_get_rstp_port_state(const struct xport *xport) { return xport->rstp_port ? rstp_port_get_state(xport->rstp_port) : RSTP_DISABLED; } static bool xport_rstp_learn_state(const struct xport *xport) { return xport->xbridge->rstp && xport->rstp_port ? rstp_learn_in_state(xport_get_rstp_port_state(xport)) : true; } static bool xport_rstp_forward_state(const struct xport *xport) { return xport->xbridge->rstp && xport->rstp_port ? rstp_forward_in_state(xport_get_rstp_port_state(xport)) : true; } static bool xport_rstp_should_manage_bpdu(const struct xport *xport) { return rstp_should_manage_bpdu(xport_get_rstp_port_state(xport)); } static void rstp_process_packet(const struct xport *xport, const struct dp_packet *packet) { struct dp_packet payload = *packet; struct eth_header *eth = dp_packet_data(&payload); /* Sink packets on ports that have no RSTP. */ if (!xport->rstp_port) { return; } /* Trim off padding on payload. */ if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) { dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN); } if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { rstp_port_received_bpdu(xport->rstp_port, dp_packet_data(&payload), dp_packet_size(&payload)); } } static struct xport * get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port) { struct xport *xport; HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port), &xbridge->xports) { if (xport->ofp_port == ofp_port) { return xport; } } return NULL; } static odp_port_t ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port) { const struct xport *xport = get_ofp_port(xbridge, ofp_port); return xport ? xport->odp_port : ODPP_NONE; } static bool odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port) { struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port); return xport && xport->may_enable; } static struct ofputil_bucket * group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *, int depth); static bool group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth) { struct group_dpif *group; if (group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group)) { struct ofputil_bucket *bucket; bucket = group_first_live_bucket(ctx, group, depth); group_dpif_unref(group); return bucket == NULL; } return false; } #define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */ static bool bucket_is_alive(const struct xlate_ctx *ctx, struct ofputil_bucket *bucket, int depth) { if (depth >= MAX_LIVENESS_RECURSION) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&rl, "bucket chaining exceeded %d links", MAX_LIVENESS_RECURSION); return false; } return (!ofputil_bucket_has_liveness(bucket) || (bucket->watch_port != OFPP_ANY && odp_port_is_alive(ctx, bucket->watch_port)) || (bucket->watch_group != OFPG_ANY && group_is_alive(ctx, bucket->watch_group, depth + 1))); } static struct ofputil_bucket * group_first_live_bucket(const struct xlate_ctx *ctx, const struct group_dpif *group, int depth) { struct ofputil_bucket *bucket; const struct ovs_list *buckets; group_dpif_get_buckets(group, &buckets); LIST_FOR_EACH (bucket, list_node, buckets) { if (bucket_is_alive(ctx, bucket, depth)) { return bucket; } } return NULL; } static struct ofputil_bucket * group_best_live_bucket(const struct xlate_ctx *ctx, const struct group_dpif *group, uint32_t basis) { struct ofputil_bucket *best_bucket = NULL; uint32_t best_score = 0; int i = 0; struct ofputil_bucket *bucket; const struct ovs_list *buckets; group_dpif_get_buckets(group, &buckets); LIST_FOR_EACH (bucket, list_node, buckets) { if (bucket_is_alive(ctx, bucket, 0)) { uint32_t score = (hash_int(i, basis) & 0xffff) * bucket->weight; if (score >= best_score) { best_bucket = bucket; best_score = score; } } i++; } return best_bucket; } static bool xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan) { return (bundle->vlan_mode != PORT_VLAN_ACCESS && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan))); } static bool xbundle_includes_vlan(const struct xbundle *xbundle, uint16_t vlan) { return vlan == xbundle->vlan || xbundle_trunks_vlan(xbundle, vlan); } static mirror_mask_t xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle) : 0; } static mirror_mask_t xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle) : 0; } static mirror_mask_t xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle) : 0; } static struct xbundle * lookup_input_bundle(const struct xbridge *xbridge, ofp_port_t in_port, bool warn, struct xport **in_xportp) { struct xport *xport; /* Find the port and bundle for the received packet. */ xport = get_ofp_port(xbridge, in_port); if (in_xportp) { *in_xportp = xport; } if (xport && xport->xbundle) { return xport->xbundle; } /* Special-case OFPP_NONE (OF1.0) and OFPP_CONTROLLER (OF1.1+), * which a controller may use as the ingress port for traffic that * it is sourcing. */ if (in_port == OFPP_CONTROLLER || in_port == OFPP_NONE) { return &ofpp_none_bundle; } /* Odd. A few possible reasons here: * * - We deleted a port but there are still a few packets queued up * from it. * * - Someone externally added a port (e.g. "ovs-dpctl add-if") that * we don't know about. * * - The ofproto client didn't configure the port as part of a bundle. * This is particularly likely to happen if a packet was received on the * port after it was created, but before the client had a chance to * configure its bundle. */ if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown " "port %"PRIu16, xbridge->name, in_port); } return NULL; } /* Mirrors the packet represented by 'ctx' to appropriate mirror destinations, * given the packet is ingressing or egressing on 'xbundle', which has ingress * or egress (as appropriate) mirrors 'mirrors'. */ static void mirror_packet(struct xlate_ctx *ctx, struct xbundle *xbundle, mirror_mask_t mirrors) { /* Figure out what VLAN the packet is in (because mirrors can select * packets on basis of VLAN). */ bool warn = ctx->xin->packet != NULL; uint16_t vid = vlan_tci_to_vid(ctx->xin->flow.vlan_tci); if (!input_vid_is_valid(vid, xbundle, warn)) { return; } uint16_t vlan = input_vid_to_vlan(xbundle, vid); const struct xbridge *xbridge = ctx->xbridge; /* Don't mirror to destinations that we've already mirrored to. */ mirrors &= ~ctx->mirrors; if (!mirrors) { return; } if (ctx->xin->resubmit_stats) { mirror_update_stats(xbridge->mbridge, mirrors, ctx->xin->resubmit_stats->n_packets, ctx->xin->resubmit_stats->n_bytes); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_MIRROR); entry->u.mirror.mbridge = mbridge_ref(xbridge->mbridge); entry->u.mirror.mirrors = mirrors; } /* 'mirrors' is a bit-mask of candidates for mirroring. Iterate as long as * some candidates remain. */ while (mirrors) { const unsigned long *vlans; mirror_mask_t dup_mirrors; struct ofbundle *out; int out_vlan; /* Get the details of the mirror represented by the rightmost 1-bit. */ bool has_mirror = mirror_get(xbridge->mbridge, raw_ctz(mirrors), &vlans, &dup_mirrors, &out, &out_vlan); ovs_assert(has_mirror); /* If this mirror selects on the basis of VLAN, and it does not select * 'vlan', then discard this mirror and go on to the next one. */ if (vlans) { ctx->wc->masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK); } if (vlans && !bitmap_is_set(vlans, vlan)) { mirrors = zero_rightmost_1bit(mirrors); continue; } /* Record the mirror, and the mirrors that output to the same * destination, so that we don't mirror to them again. This must be * done now to ensure that output_normal(), below, doesn't recursively * output to the same mirrors. */ ctx->mirrors |= dup_mirrors; /* Send the packet to the mirror. */ if (out) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbundle *out_xbundle = xbundle_lookup(xcfg, out); if (out_xbundle) { output_normal(ctx, out_xbundle, vlan); } } else if (vlan != out_vlan && !eth_addr_is_reserved(ctx->xin->flow.dl_dst)) { struct xbundle *xbundle; LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) { if (xbundle_includes_vlan(xbundle, out_vlan) && !xbundle_mirror_out(xbridge, xbundle)) { output_normal(ctx, xbundle, out_vlan); } } } /* output_normal() could have recursively output (to different * mirrors), so make sure that we don't send duplicates. */ mirrors &= ~ctx->mirrors; } } static void mirror_ingress_packet(struct xlate_ctx *ctx) { if (mbridge_has_mirrors(ctx->xbridge->mbridge)) { bool warn = ctx->xin->packet != NULL; struct xbundle *xbundle = lookup_input_bundle( ctx->xbridge, ctx->xin->flow.in_port.ofp_port, warn, NULL); if (xbundle) { mirror_packet(ctx, xbundle, xbundle_mirror_src(ctx->xbridge, xbundle)); } } } /* Given 'vid', the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), and 'in_xbundle', * the bundle on which the packet was received, returns the VLAN to which the * packet belongs. * * Both 'vid' and the return value are in the range 0...4095. */ static uint16_t input_vid_to_vlan(const struct xbundle *in_xbundle, uint16_t vid) { switch (in_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: return in_xbundle->vlan; break; case PORT_VLAN_TRUNK: return vid; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: return vid ? vid : in_xbundle->vlan; default: OVS_NOT_REACHED(); } } /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'. * If so, returns true. Otherwise, returns false and, if 'warn' is true, logs * a warning. * * 'vid' should be the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), in the range * 0...4095. */ static bool input_vid_is_valid(uint16_t vid, struct xbundle *in_xbundle, bool warn) { /* Allow any VID on the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return true; } switch (in_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: if (vid) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" tagged " "packet received on port %s configured as VLAN " "%"PRIu16" access port", vid, in_xbundle->name, in_xbundle->vlan); } return false; } return true; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (!vid) { /* Port must always carry its native VLAN. */ return true; } /* Fall through. */ case PORT_VLAN_TRUNK: if (!xbundle_includes_vlan(in_xbundle, vid)) { if (warn) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" packet " "received on port %s not configured for trunking " "VLAN %"PRIu16, vid, in_xbundle->name, vid); } return false; } return true; default: OVS_NOT_REACHED(); } } /* Given 'vlan', the VLAN that a packet belongs to, and * 'out_xbundle', a bundle on which the packet is to be output, returns the VID * that should be included in the 802.1Q header. (If the return value is 0, * then the 802.1Q header should only be included in the packet if there is a * nonzero PCP.) * * Both 'vlan' and the return value are in the range 0...4095. */ static uint16_t output_vlan_to_vid(const struct xbundle *out_xbundle, uint16_t vlan) { switch (out_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: return 0; case PORT_VLAN_TRUNK: case PORT_VLAN_NATIVE_TAGGED: return vlan; case PORT_VLAN_NATIVE_UNTAGGED: return vlan == out_xbundle->vlan ? 0 : vlan; default: OVS_NOT_REACHED(); } } static void output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle, uint16_t vlan) { ovs_be16 *flow_tci = &ctx->xin->flow.vlan_tci; uint16_t vid; ovs_be16 tci, old_tci; struct xport *xport; struct xlate_bond_recirc xr; bool use_recirc = false; vid = output_vlan_to_vid(out_xbundle, vlan); if (list_is_empty(&out_xbundle->xports)) { /* Partially configured bundle with no slaves. Drop the packet. */ return; } else if (!out_xbundle->bond) { xport = CONTAINER_OF(list_front(&out_xbundle->xports), struct xport, bundle_node); } else { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct flow_wildcards *wc = ctx->wc; struct ofport_dpif *ofport; if (ctx->xbridge->support.odp.recirc) { use_recirc = bond_may_recirc( out_xbundle->bond, &xr.recirc_id, &xr.hash_basis); if (use_recirc) { /* Only TCP mode uses recirculation. */ xr.hash_alg = OVS_HASH_ALG_L4; bond_update_post_recirc_rules(out_xbundle->bond, false); /* Recirculation does not require unmasking hash fields. */ wc = NULL; } } ofport = bond_choose_output_slave(out_xbundle->bond, &ctx->xin->flow, wc, vid); xport = xport_lookup(xcfg, ofport); if (!xport) { /* No slaves enabled, so drop packet. */ return; } /* If use_recirc is set, the main thread will handle stats * accounting for this bond. */ if (!use_recirc) { if (ctx->xin->resubmit_stats) { bond_account(out_xbundle->bond, &ctx->xin->flow, vid, ctx->xin->resubmit_stats->n_bytes); } if (ctx->xin->xcache) { struct xc_entry *entry; struct flow *flow; flow = &ctx->xin->flow; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_BOND); entry->u.bond.bond = bond_ref(out_xbundle->bond); entry->u.bond.flow = xmemdup(flow, sizeof *flow); entry->u.bond.vid = vid; } } } old_tci = *flow_tci; tci = htons(vid); if (tci || out_xbundle->use_priority_tags) { tci |= *flow_tci & htons(VLAN_PCP_MASK); if (tci) { tci |= htons(VLAN_CFI); } } *flow_tci = tci; compose_output_action(ctx, xport->ofp_port, use_recirc ? &xr : NULL); *flow_tci = old_tci; } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc) { if (flow->dl_type != htons(ETH_TYPE_ARP)) { return false; } memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (!eth_addr_is_broadcast(flow->dl_dst)) { return false; } memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); if (flow->nw_proto == ARP_OP_REPLY) { return true; } else if (flow->nw_proto == ARP_OP_REQUEST) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); return flow->nw_src == flow->nw_dst; } else { return false; } } /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * 'in_port' must be the xport that corresponds to flow->in_port. * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull). * * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as * checked by input_vid_is_valid(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct xlate_ctx *ctx, struct xport *in_port, uint16_t vlan) { struct xbundle *in_xbundle = in_port->xbundle; const struct xbridge *xbridge = ctx->xbridge; struct flow *flow = &ctx->xin->flow; /* Drop frames for reserved multicast addresses * only if forward_bpdu option is absent. */ if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) { xlate_report(ctx, "packet has reserved destination MAC, dropping"); return false; } if (in_xbundle->bond) { struct mac_entry *mac; switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport, flow->dl_dst)) { case BV_ACCEPT: break; case BV_DROP: xlate_report(ctx, "bonding refused admissibility, dropping"); return false; case BV_DROP_IF_MOVED: ovs_rwlock_rdlock(&xbridge->ml->rwlock); mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan); if (mac && mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle && (!is_gratuitous_arp(flow, ctx->wc) || mac_entry_is_grat_arp_locked(mac))) { ovs_rwlock_unlock(&xbridge->ml->rwlock); xlate_report(ctx, "SLB bond thinks this packet looped back, " "dropping"); return false; } ovs_rwlock_unlock(&xbridge->ml->rwlock); break; } } return true; } /* Checks whether a MAC learning update is necessary for MAC learning table * 'ml' given that a packet matching 'flow' was received on 'in_xbundle' in * 'vlan'. * * Most packets processed through the MAC learning table do not actually * change it in any way. This function requires only a read lock on the MAC * learning table, so it is much cheaper in this common case. * * Keep the code here synchronized with that in update_learning_table__() * below. */ static bool is_mac_learning_update_needed(const struct mac_learning *ml, const struct flow *flow, struct flow_wildcards *wc, int vlan, struct xbundle *in_xbundle) OVS_REQ_RDLOCK(ml->rwlock) { struct mac_entry *mac; if (!mac_learning_may_learn(ml, flow->dl_src, vlan)) { return false; } mac = mac_learning_lookup(ml, flow->dl_src, vlan); if (!mac || mac_entry_age(ml, mac)) { return true; } if (is_gratuitous_arp(flow, wc)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_xbundle->bond) { return true; } else if (mac_entry_is_grat_arp_locked(mac)) { return false; } } return mac_entry_get_port(ml, mac) != in_xbundle->ofbundle; } /* Updates MAC learning table 'ml' given that a packet matching 'flow' was * received on 'in_xbundle' in 'vlan'. * * This code repeats all the checks in is_mac_learning_update_needed() because * the lock was released between there and here and thus the MAC learning state * could have changed. * * Keep the code here synchronized with that in is_mac_learning_update_needed() * above. */ static void update_learning_table__(const struct xbridge *xbridge, const struct flow *flow, struct flow_wildcards *wc, int vlan, struct xbundle *in_xbundle) OVS_REQ_WRLOCK(xbridge->ml->rwlock) { struct mac_entry *mac; if (!mac_learning_may_learn(xbridge->ml, flow->dl_src, vlan)) { return; } mac = mac_learning_insert(xbridge->ml, flow->dl_src, vlan); if (is_gratuitous_arp(flow, wc)) { /* We don't want to learn from gratuitous ARP packets that are * reflected back over bond slaves so we lock the learning table. */ if (!in_xbundle->bond) { mac_entry_set_grat_arp_lock(mac); } else if (mac_entry_is_grat_arp_locked(mac)) { return; } } if (mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle) { /* The log messages here could actually be useful in debugging, * so keep the rate limit relatively high. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", xbridge->name, ETH_ADDR_ARGS(flow->dl_src), in_xbundle->name, vlan); mac_entry_set_port(xbridge->ml, mac, in_xbundle->ofbundle); } } static void update_learning_table(const struct xbridge *xbridge, const struct flow *flow, struct flow_wildcards *wc, int vlan, struct xbundle *in_xbundle) { bool need_update; /* Don't learn the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return; } /* First try the common case: no change to MAC learning table. */ ovs_rwlock_rdlock(&xbridge->ml->rwlock); need_update = is_mac_learning_update_needed(xbridge->ml, flow, wc, vlan, in_xbundle); ovs_rwlock_unlock(&xbridge->ml->rwlock); if (need_update) { /* Slow path: MAC learning table might need an update. */ ovs_rwlock_wrlock(&xbridge->ml->rwlock); update_learning_table__(xbridge, flow, wc, vlan, in_xbundle); ovs_rwlock_unlock(&xbridge->ml->rwlock); } } /* Updates multicast snooping table 'ms' given that a packet matching 'flow' * was received on 'in_xbundle' in 'vlan' and is either Report or Query. */ static void update_mcast_snooping_table4__(const struct xbridge *xbridge, const struct flow *flow, struct mcast_snooping *ms, int vlan, struct xbundle *in_xbundle, const struct dp_packet *packet) OVS_REQ_WRLOCK(ms->rwlock) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 30); int count; ovs_be32 ip4 = flow->igmp_group_ip4; switch (ntohs(flow->tp_src)) { case IGMP_HOST_MEMBERSHIP_REPORT: case IGMPV2_HOST_MEMBERSHIP_REPORT: if (mcast_snooping_add_group4(ms, ip4, vlan, in_xbundle->ofbundle)) { VLOG_DBG_RL(&rl, "bridge %s: multicast snooping learned that " IP_FMT" is on port %s in VLAN %d", xbridge->name, IP_ARGS(ip4), in_xbundle->name, vlan); } break; case IGMP_HOST_LEAVE_MESSAGE: if (mcast_snooping_leave_group4(ms, ip4, vlan, in_xbundle->ofbundle)) { VLOG_DBG_RL(&rl, "bridge %s: multicast snooping leaving " IP_FMT" is on port %s in VLAN %d", xbridge->name, IP_ARGS(ip4), in_xbundle->name, vlan); } break; case IGMP_HOST_MEMBERSHIP_QUERY: if (flow->nw_src && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) { VLOG_DBG_RL(&rl, "bridge %s: multicast snooping query from " IP_FMT" is on port %s in VLAN %d", xbridge->name, IP_ARGS(flow->nw_src), in_xbundle->name, vlan); } break; case IGMPV3_HOST_MEMBERSHIP_REPORT: if ((count = mcast_snooping_add_report(ms, packet, vlan, in_xbundle->ofbundle))) { VLOG_DBG_RL(&rl, "bridge %s: multicast snooping processed %d " "addresses on port %s in VLAN %d", xbridge->name, count, in_xbundle->name, vlan); } break; } } static void update_mcast_snooping_table6__(const struct xbridge *xbridge, const struct flow *flow, struct mcast_snooping *ms, int vlan, struct xbundle *in_xbundle, const struct dp_packet *packet) OVS_REQ_WRLOCK(ms->rwlock) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 30); int count; switch (ntohs(flow->tp_src)) { case MLD_QUERY: if (!ipv6_addr_equals(&flow->ipv6_src, &in6addr_any) && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) { VLOG_DBG_RL(&rl, "bridge %s: multicast snooping query on port %s" "in VLAN %d", xbridge->name, in_xbundle->name, vlan); } break; case MLD_REPORT: case MLD_DONE: case MLD2_REPORT: count = mcast_snooping_add_mld(ms, packet, vlan, in_xbundle->ofbundle); if (count) { VLOG_DBG_RL(&rl, "bridge %s: multicast snooping processed %d " "addresses on port %s in VLAN %d", xbridge->name, count, in_xbundle->name, vlan); } break; } } /* Updates multicast snooping table 'ms' given that a packet matching 'flow' * was received on 'in_xbundle' in 'vlan'. */ static void update_mcast_snooping_table(const struct xbridge *xbridge, const struct flow *flow, int vlan, struct xbundle *in_xbundle, const struct dp_packet *packet) { struct mcast_snooping *ms = xbridge->ms; struct xlate_cfg *xcfg; struct xbundle *mcast_xbundle; struct mcast_port_bundle *fport; /* Don't learn the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return; } /* Don't learn from flood ports */ mcast_xbundle = NULL; ovs_rwlock_wrlock(&ms->rwlock); xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(fport, node, &ms->fport_list) { mcast_xbundle = xbundle_lookup(xcfg, fport->port); if (mcast_xbundle == in_xbundle) { break; } } if (!mcast_xbundle || mcast_xbundle != in_xbundle) { if (flow->dl_type == htons(ETH_TYPE_IP)) { update_mcast_snooping_table4__(xbridge, flow, ms, vlan, in_xbundle, packet); } else { update_mcast_snooping_table6__(xbridge, flow, ms, vlan, in_xbundle, packet); } } ovs_rwlock_unlock(&ms->rwlock); } /* send the packet to ports having the multicast group learned */ static void xlate_normal_mcast_send_group(struct xlate_ctx *ctx, struct mcast_snooping *ms OVS_UNUSED, struct mcast_group *grp, struct xbundle *in_xbundle, uint16_t vlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_group_bundle *b; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(b, bundle_node, &grp->bundle_lru) { mcast_xbundle = xbundle_lookup(xcfg, b->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, "forwarding to mcast group port"); output_normal(ctx, mcast_xbundle, vlan); } else if (!mcast_xbundle) { xlate_report(ctx, "mcast group port is unknown, dropping"); } else { xlate_report(ctx, "mcast group port is input port, dropping"); } } } /* send the packet to ports connected to multicast routers */ static void xlate_normal_mcast_send_mrouters(struct xlate_ctx *ctx, struct mcast_snooping *ms, struct xbundle *in_xbundle, uint16_t vlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_mrouter_bundle *mrouter; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(mrouter, mrouter_node, &ms->mrouter_lru) { mcast_xbundle = xbundle_lookup(xcfg, mrouter->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, "forwarding to mcast router port"); output_normal(ctx, mcast_xbundle, vlan); } else if (!mcast_xbundle) { xlate_report(ctx, "mcast router port is unknown, dropping"); } else { xlate_report(ctx, "mcast router port is input port, dropping"); } } } /* send the packet to ports flagged to be flooded */ static void xlate_normal_mcast_send_fports(struct xlate_ctx *ctx, struct mcast_snooping *ms, struct xbundle *in_xbundle, uint16_t vlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_port_bundle *fport; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(fport, node, &ms->fport_list) { mcast_xbundle = xbundle_lookup(xcfg, fport->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, "forwarding to mcast flood port"); output_normal(ctx, mcast_xbundle, vlan); } else if (!mcast_xbundle) { xlate_report(ctx, "mcast flood port is unknown, dropping"); } else { xlate_report(ctx, "mcast flood port is input port, dropping"); } } } /* forward the Reports to configured ports */ static void xlate_normal_mcast_send_rports(struct xlate_ctx *ctx, struct mcast_snooping *ms, struct xbundle *in_xbundle, uint16_t vlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_port_bundle *rport; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(rport, node, &ms->rport_list) { mcast_xbundle = xbundle_lookup(xcfg, rport->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, "forwarding Report to mcast flagged port"); output_normal(ctx, mcast_xbundle, vlan); } else if (!mcast_xbundle) { xlate_report(ctx, "mcast port is unknown, dropping the Report"); } else { xlate_report(ctx, "mcast port is input port, dropping the Report"); } } } static void xlate_normal_flood(struct xlate_ctx *ctx, struct xbundle *in_xbundle, uint16_t vlan) { struct xbundle *xbundle; LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) { if (xbundle != in_xbundle && xbundle_includes_vlan(xbundle, vlan) && xbundle->floodable && !xbundle_mirror_out(ctx->xbridge, xbundle)) { output_normal(ctx, xbundle, vlan); } } ctx->nf_output_iface = NF_OUT_FLOOD; } static void xlate_normal(struct xlate_ctx *ctx) { struct flow_wildcards *wc = ctx->wc; struct flow *flow = &ctx->xin->flow; struct xbundle *in_xbundle; struct xport *in_port; struct mac_entry *mac; void *mac_port; uint16_t vlan; uint16_t vid; memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); in_xbundle = lookup_input_bundle(ctx->xbridge, flow->in_port.ofp_port, ctx->xin->packet != NULL, &in_port); if (!in_xbundle) { xlate_report(ctx, "no input bundle, dropping"); return; } /* Drop malformed frames. */ if (flow->dl_type == htons(ETH_TYPE_VLAN) && !(flow->vlan_tci & htons(VLAN_CFI))) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial " "VLAN tag received on port %s", ctx->xbridge->name, in_xbundle->name); } xlate_report(ctx, "partial VLAN tag, dropping"); return; } /* Drop frames on bundles reserved for mirroring. */ if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) { if (ctx->xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx->xbridge->name, in_xbundle->name); } xlate_report(ctx, "input port is mirror output port, dropping"); return; } /* Check VLAN. */ vid = vlan_tci_to_vid(flow->vlan_tci); if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) { xlate_report(ctx, "disallowed VLAN VID for this input port, dropping"); return; } vlan = input_vid_to_vlan(in_xbundle, vid); /* Check other admissibility requirements. */ if (in_port && !is_admissible(ctx, in_port, vlan)) { return; } /* Learn source MAC. */ if (ctx->xin->may_learn) { update_learning_table(ctx->xbridge, flow, wc, vlan, in_xbundle); } if (ctx->xin->xcache) { struct xc_entry *entry; /* Save enough info to update mac learning table later. */ entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NORMAL); entry->u.normal.ofproto = ctx->xbridge->ofproto; entry->u.normal.flow = xmemdup(flow, sizeof *flow); entry->u.normal.vlan = vlan; } /* Determine output bundle. */ if (mcast_snooping_enabled(ctx->xbridge->ms) && !eth_addr_is_broadcast(flow->dl_dst) && eth_addr_is_multicast(flow->dl_dst) && is_ip_any(flow)) { struct mcast_snooping *ms = ctx->xbridge->ms; struct mcast_group *grp = NULL; if (is_igmp(flow)) { if (mcast_snooping_is_membership(flow->tp_src) || mcast_snooping_is_query(flow->tp_src)) { if (ctx->xin->may_learn && ctx->xin->packet) { update_mcast_snooping_table(ctx->xbridge, flow, vlan, in_xbundle, ctx->xin->packet); } /* * IGMP packets need to take the slow path, in order to be * processed for mdb updates. That will prevent expires * firing off even after hosts have sent reports. */ ctx->xout->slow |= SLOW_ACTION; } if (mcast_snooping_is_membership(flow->tp_src)) { ovs_rwlock_rdlock(&ms->rwlock); xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan); /* RFC4541: section 2.1.1, item 1: A snooping switch should * forward IGMP Membership Reports only to those ports where * multicast routers are attached. Alternatively stated: a * snooping switch should not forward IGMP Membership Reports * to ports on which only hosts are attached. * An administrative control may be provided to override this * restriction, allowing the report messages to be flooded to * other ports. */ xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, vlan); ovs_rwlock_unlock(&ms->rwlock); } else { xlate_report(ctx, "multicast traffic, flooding"); xlate_normal_flood(ctx, in_xbundle, vlan); } return; } else if (is_mld(flow)) { ctx->xout->slow |= SLOW_ACTION; if (ctx->xin->may_learn && ctx->xin->packet) { update_mcast_snooping_table(ctx->xbridge, flow, vlan, in_xbundle, ctx->xin->packet); } if (is_mld_report(flow)) { ovs_rwlock_rdlock(&ms->rwlock); xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan); xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, vlan); ovs_rwlock_unlock(&ms->rwlock); } else { xlate_report(ctx, "MLD query, flooding"); xlate_normal_flood(ctx, in_xbundle, vlan); } } else { if ((flow->dl_type == htons(ETH_TYPE_IP) && ip_is_local_multicast(flow->nw_dst)) || (flow->dl_type == htons(ETH_TYPE_IPV6) && ipv6_is_all_hosts(&flow->ipv6_dst))) { /* RFC4541: section 2.1.2, item 2: Packets with a dst IP * address in the 224.0.0.x range which are not IGMP must * be forwarded on all ports */ xlate_report(ctx, "RFC4541: section 2.1.2, item 2, flooding"); xlate_normal_flood(ctx, in_xbundle, vlan); return; } } /* forwarding to group base ports */ ovs_rwlock_rdlock(&ms->rwlock); if (flow->dl_type == htons(ETH_TYPE_IP)) { grp = mcast_snooping_lookup4(ms, flow->nw_dst, vlan); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { grp = mcast_snooping_lookup(ms, &flow->ipv6_dst, vlan); } if (grp) { xlate_normal_mcast_send_group(ctx, ms, grp, in_xbundle, vlan); xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, vlan); xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan); } else { if (mcast_snooping_flood_unreg(ms)) { xlate_report(ctx, "unregistered multicast, flooding"); xlate_normal_flood(ctx, in_xbundle, vlan); } else { xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, vlan); xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, vlan); } } ovs_rwlock_unlock(&ms->rwlock); } else { ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock); mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan); mac_port = mac ? mac_entry_get_port(ctx->xbridge->ml, mac) : NULL; ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock); if (mac_port) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbundle *mac_xbundle = xbundle_lookup(xcfg, mac_port); if (mac_xbundle && mac_xbundle != in_xbundle) { xlate_report(ctx, "forwarding to learned port"); output_normal(ctx, mac_xbundle, vlan); } else if (!mac_xbundle) { xlate_report(ctx, "learned port is unknown, dropping"); } else { xlate_report(ctx, "learned port is input port, dropping"); } } else { xlate_report(ctx, "no learned MAC for destination, flooding"); xlate_normal_flood(ctx, in_xbundle, vlan); } } } /* Appends a "sample" action for sFlow or IPFIX to 'ctx->odp_actions'. The * 'probability' is the number of packets out of UINT32_MAX to sample. The * 'cookie' (of length 'cookie_size' bytes) is passed back in the callback for * each sampled packet. 'tunnel_out_port', if not ODPP_NONE, is added as the * OVS_USERSPACE_ATTR_EGRESS_TUN_PORT attribute. If 'include_actions', an * OVS_USERSPACE_ATTR_ACTIONS attribute is added. */ static size_t compose_sample_action(struct xlate_ctx *ctx, const uint32_t probability, const union user_action_cookie *cookie, const size_t cookie_size, const odp_port_t tunnel_out_port, bool include_actions) { size_t sample_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE); nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability); size_t actions_offset = nl_msg_start_nested(ctx->odp_actions, OVS_SAMPLE_ATTR_ACTIONS); odp_port_t odp_port = ofp_port_to_odp_port( ctx->xbridge, ctx->xin->flow.in_port.ofp_port); uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port, flow_hash_5tuple(&ctx->xin->flow, 0)); int cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size, tunnel_out_port, include_actions, ctx->odp_actions); nl_msg_end_nested(ctx->odp_actions, actions_offset); nl_msg_end_nested(ctx->odp_actions, sample_offset); return cookie_offset; } /* If sFLow is not enabled, returns 0 without doing anything. * * If sFlow is enabled, appends a template "sample" action to the ODP actions * in 'ctx'. This action is a template because some of the information needed * to fill it out is not available until flow translation is complete. In this * case, this functions returns an offset, which is always nonzero, to pass * later to fix_sflow_action() to fill in the rest of the template. */ static size_t compose_sflow_action(struct xlate_ctx *ctx) { struct dpif_sflow *sflow = ctx->xbridge->sflow; if (!sflow || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) { return 0; } union user_action_cookie cookie = { .type = USER_ACTION_COOKIE_SFLOW }; return compose_sample_action(ctx, dpif_sflow_get_probability(sflow), &cookie, sizeof cookie.sflow, ODPP_NONE, true); } /* If IPFIX is enabled, this appends a "sample" action to implement IPFIX to * 'ctx->odp_actions'. */ static void compose_ipfix_action(struct xlate_ctx *ctx, odp_port_t output_odp_port) { struct dpif_ipfix *ipfix = ctx->xbridge->ipfix; odp_port_t tunnel_out_port = ODPP_NONE; if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) { return; } /* For input case, output_odp_port is ODPP_NONE, which is an invalid port * number. */ if (output_odp_port == ODPP_NONE && !dpif_ipfix_get_bridge_exporter_input_sampling(ipfix)) { return; } /* For output case, output_odp_port is valid*/ if (output_odp_port != ODPP_NONE) { if (!dpif_ipfix_get_bridge_exporter_output_sampling(ipfix)) { return; } /* If tunnel sampling is enabled, put an additional option attribute: * OVS_USERSPACE_ATTR_TUNNEL_OUT_PORT */ if (dpif_ipfix_get_bridge_exporter_tunnel_sampling(ipfix) && dpif_ipfix_get_tunnel_port(ipfix, output_odp_port) ) { tunnel_out_port = output_odp_port; } } union user_action_cookie cookie = { .ipfix = { .type = USER_ACTION_COOKIE_IPFIX, .output_odp_port = output_odp_port, } }; compose_sample_action(ctx, dpif_ipfix_get_bridge_exporter_probability(ipfix), &cookie, sizeof cookie.ipfix, tunnel_out_port, false); } /* Fix "sample" action according to data collected while composing ODP actions, * as described in compose_sflow_action(). * * 'user_cookie_offset' must be the offset returned by add_sflow_action(). */ static void fix_sflow_action(struct xlate_ctx *ctx, unsigned int user_cookie_offset) { const struct flow *base = &ctx->base_flow; union user_action_cookie *cookie; cookie = ofpbuf_at(ctx->odp_actions, user_cookie_offset, sizeof cookie->sflow); ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW); cookie->type = USER_ACTION_COOKIE_SFLOW; cookie->sflow.vlan_tci = base->vlan_tci; /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output * port information") for the interpretation of cookie->output. */ switch (ctx->sflow_n_outputs) { case 0: /* 0x40000000 | 256 means "packet dropped for unknown reason". */ cookie->sflow.output = 0x40000000 | 256; break; case 1: cookie->sflow.output = dpif_sflow_odp_port_to_ifindex( ctx->xbridge->sflow, ctx->sflow_odp_port); if (cookie->sflow.output) { break; } /* Fall through. */ default: /* 0x80000000 means "multiple output ports. */ cookie->sflow.output = 0x80000000 | ctx->sflow_n_outputs; break; } } static bool process_special(struct xlate_ctx *ctx, const struct xport *xport) { const struct flow *flow = &ctx->xin->flow; struct flow_wildcards *wc = ctx->wc; const struct xbridge *xbridge = ctx->xbridge; const struct dp_packet *packet = ctx->xin->packet; enum slow_path_reason slow; if (!xport) { slow = 0; } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) { if (packet) { cfm_process_heartbeat(xport->cfm, packet); } slow = SLOW_CFM; } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) { if (packet) { bfd_process_packet(xport->bfd, flow, packet); /* If POLL received, immediately sends FINAL back. */ if (bfd_should_send_packet(xport->bfd)) { ofproto_dpif_monitor_port_send_soon(xport->ofport); } } slow = SLOW_BFD; } else if (xport->xbundle && xport->xbundle->lacp && flow->dl_type == htons(ETH_TYPE_LACP)) { if (packet) { lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet); } slow = SLOW_LACP; } else if ((xbridge->stp || xbridge->rstp) && stp_should_process_flow(flow, wc)) { if (packet) { xbridge->stp ? stp_process_packet(xport, packet) : rstp_process_packet(xport, packet); } slow = SLOW_STP; } else if (xport->lldp && lldp_should_process_flow(xport->lldp, flow)) { if (packet) { lldp_process_packet(xport->lldp, packet); } slow = SLOW_LLDP; } else { slow = 0; } if (slow) { ctx->xout->slow |= slow; return true; } else { return false; } } static int tnl_route_lookup_flow(const struct flow *oflow, struct in6_addr *ip, struct in6_addr *src, struct xport **out_port) { char out_dev[IFNAMSIZ]; struct xbridge *xbridge; struct xlate_cfg *xcfg; struct in6_addr gw; struct in6_addr dst; dst = flow_tnl_dst(&oflow->tunnel); if (!ovs_router_lookup(&dst, out_dev, src, &gw)) { return -ENOENT; } if (ipv6_addr_is_set(&gw) && (!IN6_IS_ADDR_V4MAPPED(&gw) || in6_addr_get_mapped_ipv4(&gw))) { *ip = gw; } else { *ip = dst; } xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); ovs_assert(xcfg); HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) { if (!strncmp(xbridge->name, out_dev, IFNAMSIZ)) { struct xport *port; HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) { if (!strncmp(netdev_get_name(port->netdev), out_dev, IFNAMSIZ)) { *out_port = port; return 0; } } } } return -ENOENT; } static int compose_table_xlate(struct xlate_ctx *ctx, const struct xport *out_dev, struct dp_packet *packet) { struct xbridge *xbridge = out_dev->xbridge; struct ofpact_output output; struct flow flow; ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output); flow_extract(packet, &flow); flow.in_port.ofp_port = out_dev->ofp_port; output.port = OFPP_TABLE; output.max_len = 0; return ofproto_dpif_execute_actions__(xbridge->ofproto, &flow, NULL, &output.ofpact, sizeof output, ctx->recurse, ctx->resubmits, packet); } static void tnl_send_nd_request(struct xlate_ctx *ctx, const struct xport *out_dev, const struct eth_addr eth_src, struct in6_addr * ipv6_src, struct in6_addr * ipv6_dst) { struct dp_packet packet; dp_packet_init(&packet, 0); compose_nd(&packet, eth_src, ipv6_src, ipv6_dst); compose_table_xlate(ctx, out_dev, &packet); dp_packet_uninit(&packet); } static void tnl_send_arp_request(struct xlate_ctx *ctx, const struct xport *out_dev, const struct eth_addr eth_src, ovs_be32 ip_src, ovs_be32 ip_dst) { struct dp_packet packet; dp_packet_init(&packet, 0); compose_arp(&packet, ARP_OP_REQUEST, eth_src, eth_addr_zero, true, ip_src, ip_dst); compose_table_xlate(ctx, out_dev, &packet); dp_packet_uninit(&packet); } static int build_tunnel_send(struct xlate_ctx *ctx, const struct xport *xport, const struct flow *flow, odp_port_t tunnel_odp_port) { struct ovs_action_push_tnl tnl_push_data; struct xport *out_dev = NULL; ovs_be32 s_ip = 0, d_ip = 0; struct in6_addr s_ip6 = in6addr_any; struct in6_addr d_ip6 = in6addr_any; struct eth_addr smac; struct eth_addr dmac; int err; char buf_sip6[INET6_ADDRSTRLEN]; char buf_dip6[INET6_ADDRSTRLEN]; err = tnl_route_lookup_flow(flow, &d_ip6, &s_ip6, &out_dev); if (err) { xlate_report(ctx, "native tunnel routing failed"); return err; } xlate_report(ctx, "tunneling to %s via %s", ipv6_string_mapped(buf_dip6, &d_ip6), netdev_get_name(out_dev->netdev)); /* Use mac addr of bridge port of the peer. */ err = netdev_get_etheraddr(out_dev->netdev, &smac); if (err) { xlate_report(ctx, "tunnel output device lacks Ethernet address"); return err; } d_ip = in6_addr_get_mapped_ipv4(&d_ip6); if (d_ip) { s_ip = in6_addr_get_mapped_ipv4(&s_ip6); } err = tnl_neigh_lookup(out_dev->xbridge->name, &d_ip6, &dmac); if (err) { xlate_report(ctx, "neighbor cache miss for %s on bridge %s, " "sending %s request", buf_dip6, out_dev->xbridge->name, d_ip ? "ARP" : "ND"); if (d_ip) { tnl_send_arp_request(ctx, out_dev, smac, s_ip, d_ip); } else { tnl_send_nd_request(ctx, out_dev, smac, &s_ip6, &d_ip6); } return err; } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TNL_NEIGH); ovs_strlcpy(entry->u.tnl_neigh_cache.br_name, out_dev->xbridge->name, sizeof entry->u.tnl_neigh_cache.br_name); entry->u.tnl_neigh_cache.d_ipv6 = d_ip6; } xlate_report(ctx, "tunneling from "ETH_ADDR_FMT" %s" " to "ETH_ADDR_FMT" %s", ETH_ADDR_ARGS(smac), ipv6_string_mapped(buf_sip6, &s_ip6), ETH_ADDR_ARGS(dmac), buf_dip6); err = tnl_port_build_header(xport->ofport, flow, dmac, smac, &s_ip6, &tnl_push_data); if (err) { return err; } tnl_push_data.tnl_port = odp_to_u32(tunnel_odp_port); tnl_push_data.out_port = odp_to_u32(out_dev->odp_port); odp_put_tnl_push_action(ctx->odp_actions, &tnl_push_data); return 0; } static void xlate_commit_actions(struct xlate_ctx *ctx) { bool use_masked = ctx->xbridge->support.masked_set_action; ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow, ctx->odp_actions, ctx->wc, use_masked); } static void clear_conntrack(struct flow *flow) { flow->ct_state = 0; flow->ct_zone = 0; flow->ct_mark = 0; memset(&flow->ct_label, 0, sizeof flow->ct_label); } static void compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port, const struct xlate_bond_recirc *xr, bool check_stp) { const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port); struct flow_wildcards *wc = ctx->wc; struct flow *flow = &ctx->xin->flow; struct flow_tnl flow_tnl; ovs_be16 flow_vlan_tci; uint32_t flow_pkt_mark; uint8_t flow_nw_tos; odp_port_t out_port, odp_port; bool tnl_push_pop_send = false; uint8_t dscp; /* If 'struct flow' gets additional metadata, we'll need to zero it out * before traversing a patch port. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); memset(&flow_tnl, 0, sizeof flow_tnl); if (!xport) { xlate_report(ctx, "Nonexistent output port"); return; } else if (xport->config & OFPUTIL_PC_NO_FWD) { xlate_report(ctx, "OFPPC_NO_FWD set, skipping output"); return; } else if (check_stp) { if (is_stp(&ctx->base_flow)) { if (!xport_stp_should_forward_bpdu(xport) && !xport_rstp_should_manage_bpdu(xport)) { if (ctx->xbridge->stp != NULL) { xlate_report(ctx, "STP not in listening state, " "skipping bpdu output"); } else if (ctx->xbridge->rstp != NULL) { xlate_report(ctx, "RSTP not managing BPDU in this state, " "skipping bpdu output"); } return; } } else if (!xport_stp_forward_state(xport) || !xport_rstp_forward_state(xport)) { if (ctx->xbridge->stp != NULL) { xlate_report(ctx, "STP not in forwarding state, " "skipping output"); } else if (ctx->xbridge->rstp != NULL) { xlate_report(ctx, "RSTP not in forwarding state, " "skipping output"); } return; } } if (xport->peer) { const struct xport *peer = xport->peer; struct flow old_flow = ctx->xin->flow; bool old_conntrack = ctx->conntracked; cls_version_t old_version = ctx->tables_version; struct ofpbuf old_stack = ctx->stack; union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)]; struct ofpbuf old_action_set = ctx->action_set; uint64_t actset_stub[1024 / 8]; ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack); ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub); ctx->xbridge = peer->xbridge; flow->in_port.ofp_port = peer->ofp_port; flow->metadata = htonll(0); memset(&flow->tunnel, 0, sizeof flow->tunnel); memset(flow->regs, 0, sizeof flow->regs); flow->actset_output = OFPP_UNSET; ctx->conntracked = false; clear_conntrack(flow); /* The bridge is now known so obtain its table version. */ ctx->tables_version = ofproto_dpif_get_tables_version(ctx->xbridge->ofproto); if (!process_special(ctx, peer) && may_receive(peer, ctx)) { if (xport_stp_forward_state(peer) && xport_rstp_forward_state(peer)) { xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true); if (!ctx->freezing) { xlate_action_set(ctx); } if (ctx->freezing) { finish_freezing(ctx); } } else { /* Forwarding is disabled by STP and RSTP. Let OFPP_NORMAL and * the learning action look at the packet, then drop it. */ struct flow old_base_flow = ctx->base_flow; size_t old_size = ctx->odp_actions->size; mirror_mask_t old_mirrors = ctx->mirrors; xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true); ctx->mirrors = old_mirrors; ctx->base_flow = old_base_flow; ctx->odp_actions->size = old_size; /* Undo changes that may have been done for freezing. */ ctx_cancel_freeze(ctx); } } ctx->xin->flow = old_flow; ctx->xbridge = xport->xbridge; ofpbuf_uninit(&ctx->action_set); ctx->action_set = old_action_set; ofpbuf_uninit(&ctx->stack); ctx->stack = old_stack; /* Restore calling bridge's lookup version. */ ctx->tables_version = old_version; /* The peer bridge's conntrack execution should have no effect on the * original bridge. */ ctx->conntracked = old_conntrack; /* The fact that the peer bridge exits (for any reason) does not mean * that the original bridge should exit. Specifically, if the peer * bridge freezes translation, the original bridge must continue * processing with the original, not the frozen packet! */ ctx->exit = false; /* Peer bridge errors do not propagate back. */ ctx->error = XLATE_OK; if (ctx->xin->resubmit_stats) { netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats); netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats); if (peer->bfd) { bfd_account_rx(peer->bfd, ctx->xin->resubmit_stats); } } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV); entry->u.dev.tx = netdev_ref(xport->netdev); entry->u.dev.rx = netdev_ref(peer->netdev); entry->u.dev.bfd = bfd_ref(peer->bfd); } return; } flow_vlan_tci = flow->vlan_tci; flow_pkt_mark = flow->pkt_mark; flow_nw_tos = flow->nw_tos; if (count_skb_priorities(xport)) { memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) { wc->masks.nw_tos |= IP_DSCP_MASK; flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= dscp; } } if (xport->is_tunnel) { struct in6_addr dst; /* Save tunnel metadata so that changes made due to * the Logical (tunnel) Port are not visible for any further * matches, while explicit set actions on tunnel metadata are. */ flow_tnl = flow->tunnel; odp_port = tnl_port_send(xport->ofport, flow, ctx->wc); if (odp_port == ODPP_NONE) { xlate_report(ctx, "Tunneling decided against output"); goto out; /* restore flow_nw_tos */ } dst = flow_tnl_dst(&flow->tunnel); if (ipv6_addr_equals(&dst, &ctx->orig_tunnel_ipv6_dst)) { xlate_report(ctx, "Not tunneling to our own address"); goto out; /* restore flow_nw_tos */ } if (ctx->xin->resubmit_stats) { netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV); entry->u.dev.tx = netdev_ref(xport->netdev); } out_port = odp_port; if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { xlate_report(ctx, "output to native tunnel"); tnl_push_pop_send = true; } else { xlate_report(ctx, "output to kernel tunnel"); commit_odp_tunnel_action(flow, &ctx->base_flow, ctx->odp_actions); flow->tunnel = flow_tnl; /* Restore tunnel metadata */ } } else { odp_port = xport->odp_port; out_port = odp_port; if (ofproto_has_vlan_splinters(ctx->xbridge->ofproto)) { ofp_port_t vlandev_port; wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); vlandev_port = vsp_realdev_to_vlandev(ctx->xbridge->ofproto, ofp_port, flow->vlan_tci); if (vlandev_port != ofp_port) { out_port = ofp_port_to_odp_port(ctx->xbridge, vlandev_port); flow->vlan_tci = htons(0); } } } if (out_port != ODPP_NONE) { xlate_commit_actions(ctx); if (xr) { struct ovs_action_hash *act_hash; /* Hash action. */ act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions, OVS_ACTION_ATTR_HASH, sizeof *act_hash); act_hash->hash_alg = xr->hash_alg; act_hash->hash_basis = xr->hash_basis; /* Recirc action. */ nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, xr->recirc_id); } else { if (tnl_push_pop_send) { build_tunnel_send(ctx, xport, flow, odp_port); flow->tunnel = flow_tnl; /* Restore tunnel metadata */ } else { odp_port_t odp_tnl_port = ODPP_NONE; /* XXX: Write better Filter for tunnel port. We can use inport * int tunnel-port flow to avoid these checks completely. */ if (ofp_port == OFPP_LOCAL && ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { odp_tnl_port = tnl_port_map_lookup(flow, wc); } if (odp_tnl_port != ODPP_NONE) { nl_msg_put_odp_port(ctx->odp_actions, OVS_ACTION_ATTR_TUNNEL_POP, odp_tnl_port); } else { /* Tunnel push-pop action is not compatible with * IPFIX action. */ compose_ipfix_action(ctx, out_port); nl_msg_put_odp_port(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port); } } } ctx->sflow_odp_port = odp_port; ctx->sflow_n_outputs++; ctx->nf_output_iface = ofp_port; } if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) { mirror_packet(ctx, xport->xbundle, xbundle_mirror_dst(xport->xbundle->xbridge, xport->xbundle)); } out: /* Restore flow */ flow->vlan_tci = flow_vlan_tci; flow->pkt_mark = flow_pkt_mark; flow->nw_tos = flow_nw_tos; } static void compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port, const struct xlate_bond_recirc *xr) { compose_output_action__(ctx, ofp_port, xr, true); } static void xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule) { struct rule_dpif *old_rule = ctx->rule; ovs_be64 old_cookie = ctx->rule_cookie; const struct rule_actions *actions; if (ctx->xin->resubmit_stats) { rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats); } ctx->resubmits++; ctx->recurse++; ctx->rule = rule; ctx->rule_cookie = rule_dpif_get_flow_cookie(rule); actions = rule_dpif_get_actions(rule); do_xlate_actions(actions->ofpacts, actions->ofpacts_len, ctx); ctx->rule_cookie = old_cookie; ctx->rule = old_rule; ctx->recurse--; } static bool xlate_resubmit_resource_check(struct xlate_ctx *ctx) { if (ctx->recurse >= MAX_RESUBMIT_RECURSION + MAX_INTERNAL_RESUBMITS) { XLATE_REPORT_ERROR(ctx, "resubmit actions recursed over %d times", MAX_RESUBMIT_RECURSION); ctx->error = XLATE_RECURSION_TOO_DEEP; } else if (ctx->resubmits >= MAX_RESUBMITS + MAX_INTERNAL_RESUBMITS) { XLATE_REPORT_ERROR(ctx, "over %d resubmit actions", MAX_RESUBMITS); ctx->error = XLATE_TOO_MANY_RESUBMITS; } else if (ctx->odp_actions->size > UINT16_MAX) { XLATE_REPORT_ERROR(ctx, "resubmits yielded over 64 kB of actions"); /* NOT an error, as we'll be slow-pathing the flow in this case? */ ctx->exit = true; /* XXX: translation still terminated! */ } else if (ctx->stack.size >= 65536) { XLATE_REPORT_ERROR(ctx, "resubmits yielded over 64 kB of stack"); ctx->error = XLATE_STACK_TOO_DEEP; } else { return true; } return false; } static void xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id, bool may_packet_in, bool honor_table_miss) { if (xlate_resubmit_resource_check(ctx)) { uint8_t old_table_id = ctx->table_id; struct rule_dpif *rule; ctx->table_id = table_id; rule = rule_dpif_lookup_from_table(ctx->xbridge->ofproto, ctx->tables_version, &ctx->xin->flow, ctx->xin->wc, ctx->xin->resubmit_stats, &ctx->table_id, in_port, may_packet_in, honor_table_miss); if (OVS_UNLIKELY(ctx->xin->resubmit_hook)) { ctx->xin->resubmit_hook(ctx->xin, rule, ctx->recurse + 1); } if (rule) { /* Fill in the cache entry here instead of xlate_recursively * to make the reference counting more explicit. We take a * reference in the lookups above if we are going to cache the * rule. */ if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_RULE); entry->u.rule = rule; rule_dpif_ref(rule); } xlate_recursively(ctx, rule); } ctx->table_id = old_table_id; return; } } static void xlate_group_stats(struct xlate_ctx *ctx, struct group_dpif *group, struct ofputil_bucket *bucket) { if (ctx->xin->resubmit_stats) { group_dpif_credit_stats(group, bucket, ctx->xin->resubmit_stats); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_GROUP); entry->u.group.group = group_dpif_ref(group); entry->u.group.bucket = bucket; } } static void xlate_group_bucket(struct xlate_ctx *ctx, struct ofputil_bucket *bucket) { uint64_t action_list_stub[1024 / 8]; struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub); struct ofpbuf action_set = ofpbuf_const_initializer(bucket->ofpacts, bucket->ofpacts_len); struct flow old_flow = ctx->xin->flow; ofpacts_execute_action_set(&action_list, &action_set); ctx->recurse++; do_xlate_actions(action_list.data, action_list.size, ctx); ctx->recurse--; ofpbuf_uninit(&action_list); /* Check if need to freeze. */ if (ctx->freezing) { finish_freezing(ctx); } /* Roll back flow to previous state. * This is equivalent to cloning the packet for each bucket. * * As a side effect any subsequently applied actions will * also effectively be applied to a clone of the packet taken * just before applying the all or indirect group. * * Note that group buckets are action sets, hence they cannot modify the * main action set. Also any stack actions are ignored when executing an * action set, so group buckets cannot change the stack either. * However, we do allow resubmit actions in group buckets, which could * break the above assumptions. It is up to the controller to not mess up * with the action_set and stack in the tables resubmitted to from * group buckets. */ ctx->xin->flow = old_flow; /* The fact that the group bucket exits (for any reason) does not mean that * the translation after the group action should exit. Specifically, if * the group bucket freezes translation, the actions after the group action * must continue processing with the original, not the frozen packet! */ ctx->exit = false; } static void xlate_all_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct ofputil_bucket *bucket; const struct ovs_list *buckets; group_dpif_get_buckets(group, &buckets); LIST_FOR_EACH (bucket, list_node, buckets) { xlate_group_bucket(ctx, bucket); } xlate_group_stats(ctx, group, NULL); } static void xlate_ff_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct ofputil_bucket *bucket; bucket = group_first_live_bucket(ctx, group, 0); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } } static void xlate_default_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct flow_wildcards *wc = ctx->wc; struct ofputil_bucket *bucket; uint32_t basis; basis = flow_hash_symmetric_l4(&ctx->xin->flow, 0); flow_mask_hash_fields(&ctx->xin->flow, wc, NX_HASH_FIELDS_SYMMETRIC_L4); bucket = group_best_live_bucket(ctx, group, basis); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } } static void xlate_hash_fields_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct mf_bitmap hash_fields = MF_BITMAP_INITIALIZER; const struct field_array *fields; struct ofputil_bucket *bucket; uint32_t basis; int i; fields = group_dpif_get_fields(group); basis = hash_uint64(group_dpif_get_selection_method_param(group)); /* Determine which fields to hash */ for (i = 0; i < MFF_N_IDS; i++) { if (bitmap_is_set(fields->used.bm, i)) { const struct mf_field *mf; /* If the field is already present in 'hash_fields' then * this loop has already checked that it and its pre-requisites * are present in the flow and its pre-requisites have * already been added to 'hash_fields'. There is nothing more * to do here and as an optimisation the loop can continue. */ if (bitmap_is_set(hash_fields.bm, i)) { continue; } mf = mf_from_id(i); /* Only hash a field if it and its pre-requisites are present * in the flow. */ if (!mf_are_prereqs_ok(mf, &ctx->xin->flow)) { continue; } /* Hash both the field and its pre-requisites */ mf_bitmap_set_field_and_prereqs(mf, &hash_fields); } } /* Hash the fields */ for (i = 0; i < MFF_N_IDS; i++) { if (bitmap_is_set(hash_fields.bm, i)) { const struct mf_field *mf = mf_from_id(i); union mf_value value; int j; mf_get_value(mf, &ctx->xin->flow, &value); /* This seems inefficient but so does apply_mask() */ for (j = 0; j < mf->n_bytes; j++) { ((uint8_t *) &value)[j] &= ((uint8_t *) &fields->value[i])[j]; } basis = hash_bytes(&value, mf->n_bytes, basis); /* For tunnels, hash in whether the field is present. */ if (mf_is_tun_metadata(mf)) { basis = hash_boolean(mf_is_set(mf, &ctx->xin->flow), basis); } mf_mask_field(mf, &ctx->wc->masks); } } bucket = group_best_live_bucket(ctx, group, basis); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } } static void xlate_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { const char *selection_method = group_dpif_get_selection_method(group); if (selection_method[0] == '\0') { xlate_default_select_group(ctx, group); } else if (!strcasecmp("hash", selection_method)) { xlate_hash_fields_select_group(ctx, group); } else { /* Parsing of groups should ensure this never happens */ OVS_NOT_REACHED(); } } static void xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group) { bool was_in_group = ctx->in_group; ctx->in_group = true; switch (group_dpif_get_type(group)) { case OFPGT11_ALL: case OFPGT11_INDIRECT: xlate_all_group(ctx, group); break; case OFPGT11_SELECT: xlate_select_group(ctx, group); break; case OFPGT11_FF: xlate_ff_group(ctx, group); break; default: OVS_NOT_REACHED(); } group_dpif_unref(group); ctx->in_group = was_in_group; } static bool xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id) { if (xlate_resubmit_resource_check(ctx)) { struct group_dpif *group; bool got_group; got_group = group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group); if (got_group) { xlate_group_action__(ctx, group); } else { return true; } } return false; } static void xlate_ofpact_resubmit(struct xlate_ctx *ctx, const struct ofpact_resubmit *resubmit) { ofp_port_t in_port; uint8_t table_id; bool may_packet_in = false; bool honor_table_miss = false; if (ctx->rule && rule_dpif_is_internal(ctx->rule)) { /* Still allow missed packets to be sent to the controller * if resubmitting from an internal table. */ may_packet_in = true; honor_table_miss = true; } in_port = resubmit->in_port; if (in_port == OFPP_IN_PORT) { in_port = ctx->xin->flow.in_port.ofp_port; } table_id = resubmit->table_id; if (table_id == 255) { table_id = ctx->table_id; } xlate_table_action(ctx, in_port, table_id, may_packet_in, honor_table_miss); } static void flood_packets(struct xlate_ctx *ctx, bool all) { const struct xport *xport; HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) { if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) { continue; } if (all) { compose_output_action__(ctx, xport->ofp_port, NULL, false); } else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) { compose_output_action(ctx, xport->ofp_port, NULL); } } ctx->nf_output_iface = NF_OUT_FLOOD; } static void execute_controller_action(struct xlate_ctx *ctx, int len, enum ofp_packet_in_reason reason, uint16_t controller_id, const uint8_t *userdata, size_t userdata_len) { struct dp_packet *packet; ctx->xout->slow |= SLOW_CONTROLLER; xlate_commit_actions(ctx); if (!ctx->xin->packet) { return; } packet = dp_packet_clone(ctx->xin->packet); odp_execute_actions(NULL, &packet, 1, false, ctx->odp_actions->data, ctx->odp_actions->size, NULL); /* A packet sent by an action in a table-miss rule is considered an * explicit table miss. OpenFlow before 1.3 doesn't have that concept so * it will get translated back to OFPR_ACTION for those versions. */ if (reason == OFPR_ACTION && ctx->rule && rule_dpif_is_table_miss(ctx->rule)) { reason = OFPR_EXPLICIT_MISS; } size_t packet_len = dp_packet_size(packet); struct ofproto_async_msg *am = xmalloc(sizeof *am); *am = (struct ofproto_async_msg) { .controller_id = controller_id, .oam = OAM_PACKET_IN, .pin = { .up = { .public = { .packet = dp_packet_steal_data(packet), .packet_len = packet_len, .reason = reason, .table_id = ctx->table_id, .cookie = ctx->rule_cookie, .userdata = (userdata_len ? xmemdup(userdata, userdata_len) : NULL), .userdata_len = userdata_len, } }, .max_len = len, }, }; flow_get_metadata(&ctx->xin->flow, &am->pin.up.public.flow_metadata); ofproto_dpif_send_async_msg(ctx->xbridge->ofproto, am); dp_packet_delete(packet); } static void emit_continuation(struct xlate_ctx *ctx, const struct frozen_state *state) { struct ofproto_async_msg *am = xmalloc(sizeof *am); *am = (struct ofproto_async_msg) { .controller_id = ctx->pause->controller_id, .oam = OAM_PACKET_IN, .pin = { .up = { .public = { .userdata = xmemdup(ctx->pause->userdata, ctx->pause->userdata_len), .userdata_len = ctx->pause->userdata_len, .packet = xmemdup(dp_packet_data(ctx->xin->packet), dp_packet_size(ctx->xin->packet)), .packet_len = dp_packet_size(ctx->xin->packet), .reason = ctx->pause->reason, }, .bridge = *ofproto_dpif_get_uuid(ctx->xbridge->ofproto), .stack = xmemdup(state->stack, state->n_stack * sizeof *state->stack), .n_stack = state->n_stack, .mirrors = state->mirrors, .conntracked = state->conntracked, .actions = xmemdup(state->ofpacts, state->ofpacts_len), .actions_len = state->ofpacts_len, .action_set = xmemdup(state->action_set, state->action_set_len), .action_set_len = state->action_set_len, }, .max_len = UINT16_MAX, }, }; flow_get_metadata(&ctx->xin->flow, &am->pin.up.public.flow_metadata); ofproto_dpif_send_async_msg(ctx->xbridge->ofproto, am); } static void finish_freezing__(struct xlate_ctx *ctx, uint8_t table) { ovs_assert(ctx->freezing); struct frozen_state state = { .table_id = table, .ofproto_uuid = *ofproto_dpif_get_uuid(ctx->xbridge->ofproto), .stack = ctx->stack.data, .n_stack = ctx->stack.size / sizeof(union mf_subvalue), .mirrors = ctx->mirrors, .conntracked = ctx->conntracked, .ofpacts = ctx->frozen_actions.data, .ofpacts_len = ctx->frozen_actions.size, .action_set = ctx->action_set.data, .action_set_len = ctx->action_set.size, }; frozen_metadata_from_flow(&state.metadata, &ctx->xin->flow); if (ctx->pause) { if (ctx->xin->packet) { emit_continuation(ctx, &state); } } else { /* Allocate a unique recirc id for the given metadata state in the * flow. An existing id, with a new reference to the corresponding * recirculation context, will be returned if possible. * The life-cycle of this recirc id is managed by associating it * with the udpif key ('ukey') created for each new datapath flow. */ uint32_t id = recirc_alloc_id_ctx(&state); if (!id) { XLATE_REPORT_ERROR(ctx, "Failed to allocate recirculation id"); ctx->error = XLATE_NO_RECIRCULATION_CONTEXT; return; } recirc_refs_add(&ctx->xout->recircs, id); nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, id); } /* Undo changes done by freezing. */ ctx_cancel_freeze(ctx); } /* Called only when we're freezing. */ static void finish_freezing(struct xlate_ctx *ctx) { xlate_commit_actions(ctx); finish_freezing__(ctx, 0); } /* Fork the pipeline here. The current packet will continue processing the * current action list. A clone of the current packet will recirculate, skip * the remainder of the current action list and asynchronously resume pipeline * processing in 'table' with the current metadata and action set. */ static void compose_recirculate_and_fork(struct xlate_ctx *ctx, uint8_t table) { ctx->freezing = true; finish_freezing__(ctx, table); } static void compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls) { struct flow *flow = &ctx->xin->flow; int n; ovs_assert(eth_type_mpls(mpls->ethertype)); n = flow_count_mpls_labels(flow, ctx->wc); if (!n) { xlate_commit_actions(ctx); } else if (n >= FLOW_MAX_MPLS_LABELS) { if (ctx->xin->packet != NULL) { XLATE_REPORT_ERROR(ctx, "bridge %s: dropping packet on which an " "MPLS push action can't be performed as it would " "have more MPLS LSEs than the %d supported.", ctx->xbridge->name, FLOW_MAX_MPLS_LABELS); } ctx->error = XLATE_TOO_MANY_MPLS_LABELS; return; } flow_push_mpls(flow, n, mpls->ethertype, ctx->wc); } static void compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type) { struct flow *flow = &ctx->xin->flow; int n = flow_count_mpls_labels(flow, ctx->wc); if (flow_pop_mpls(flow, n, eth_type, ctx->wc)) { if (!eth_type_mpls(eth_type) && ctx->xbridge->support.odp.recirc) { ctx_trigger_freeze(ctx); } } else if (n >= FLOW_MAX_MPLS_LABELS) { if (ctx->xin->packet != NULL) { XLATE_REPORT_ERROR(ctx, "bridge %s: dropping packet on which an " "MPLS pop action can't be performed as it has " "more MPLS LSEs than the %d supported.", ctx->xbridge->name, FLOW_MAX_MPLS_LABELS); } ctx->error = XLATE_TOO_MANY_MPLS_LABELS; ofpbuf_clear(ctx->odp_actions); } } static bool compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids) { struct flow *flow = &ctx->xin->flow; if (!is_ip_any(flow)) { return false; } ctx->wc->masks.nw_ttl = 0xff; if (flow->nw_ttl > 1) { flow->nw_ttl--; return false; } else { size_t i; for (i = 0; i < ids->n_controllers; i++) { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, ids->cnt_ids[i], NULL, 0); } /* Stop processing for current table. */ return true; } } static void compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK); set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label); } } static void compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TC_MASK); set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc); } } static void compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK); set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl); } } static bool compose_dec_mpls_ttl_action(struct xlate_ctx *ctx) { struct flow *flow = &ctx->xin->flow; if (eth_type_mpls(flow->dl_type)) { uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]); ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK); if (ttl > 1) { ttl--; set_mpls_lse_ttl(&flow->mpls_lse[0], ttl); return false; } else { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0, NULL, 0); } } /* Stop processing for current table. */ return true; } static void xlate_output_action(struct xlate_ctx *ctx, ofp_port_t port, uint16_t max_len, bool may_packet_in) { ofp_port_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port, NULL); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port, 0, may_packet_in, true); break; case OFPP_NORMAL: xlate_normal(ctx); break; case OFPP_FLOOD: flood_packets(ctx, false); break; case OFPP_ALL: flood_packets(ctx, true); break; case OFPP_CONTROLLER: execute_controller_action(ctx, max_len, (ctx->in_group ? OFPR_GROUP : ctx->in_action_set ? OFPR_ACTION_SET : OFPR_ACTION), 0, NULL, 0); break; case OFPP_NONE: break; case OFPP_LOCAL: default: if (port != ctx->xin->flow.in_port.ofp_port) { compose_output_action(ctx, port, NULL); } else { xlate_report(ctx, "skipping output to input port"); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_reg_action(struct xlate_ctx *ctx, const struct ofpact_output_reg *or) { uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow); if (port <= UINT16_MAX) { union mf_subvalue value; memset(&value, 0xff, sizeof value); mf_write_subfield_flow(&or->src, &value, &ctx->wc->masks); xlate_output_action(ctx, u16_to_ofp(port), or->max_len, false); } } static void xlate_enqueue_action(struct xlate_ctx *ctx, const struct ofpact_enqueue *enqueue) { ofp_port_t ofp_port = enqueue->port; uint32_t queue_id = enqueue->queue; uint32_t flow_priority, priority; int error; /* Translate queue to priority. */ error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action(ctx, enqueue->port, 0, false); return; } /* Check output port. */ if (ofp_port == OFPP_IN_PORT) { ofp_port = ctx->xin->flow.in_port.ofp_port; } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) { return; } /* Add datapath actions. */ flow_priority = ctx->xin->flow.skb_priority; ctx->xin->flow.skb_priority = priority; compose_output_action(ctx, ofp_port, NULL); ctx->xin->flow.skb_priority = flow_priority; /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = ofp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id) { uint32_t skb_priority; if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) { ctx->xin->flow.skb_priority = skb_priority; } else { /* Couldn't translate queue to a priority. Nothing to do. A warning * has already been logged. */ } } static bool slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_) { const struct xbridge *xbridge = xbridge_; struct xport *port; switch (ofp_port) { case OFPP_IN_PORT: case OFPP_TABLE: case OFPP_NORMAL: case OFPP_FLOOD: case OFPP_ALL: case OFPP_NONE: return true; case OFPP_CONTROLLER: /* Not supported by the bundle action. */ return false; default: port = get_ofp_port(xbridge, ofp_port); return port ? port->may_enable : false; } } static void xlate_bundle_action(struct xlate_ctx *ctx, const struct ofpact_bundle *bundle) { ofp_port_t port; port = bundle_execute(bundle, &ctx->xin->flow, ctx->wc, slave_enabled_cb, CONST_CAST(struct xbridge *, ctx->xbridge)); if (bundle->dst.field) { nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow, ctx->wc); } else { xlate_output_action(ctx, port, 0, false); } } static void xlate_learn_action__(struct xlate_ctx *ctx, const struct ofpact_learn *learn, struct ofputil_flow_mod *fm, struct ofpbuf *ofpacts) { learn_execute(learn, &ctx->xin->flow, fm, ofpacts); if (ctx->xin->may_learn) { ofproto_dpif_flow_mod(ctx->xbridge->ofproto, fm); } } static void xlate_learn_action(struct xlate_ctx *ctx, const struct ofpact_learn *learn) { learn_mask(learn, ctx->wc); if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_LEARN); entry->u.learn.ofproto = ctx->xbridge->ofproto; entry->u.learn.fm = xmalloc(sizeof *entry->u.learn.fm); entry->u.learn.ofpacts = ofpbuf_new(64); xlate_learn_action__(ctx, learn, entry->u.learn.fm, entry->u.learn.ofpacts); } else if (ctx->xin->may_learn) { uint64_t ofpacts_stub[1024 / 8]; struct ofputil_flow_mod fm; struct ofpbuf ofpacts; ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); xlate_learn_action__(ctx, learn, &fm, &ofpacts); ofpbuf_uninit(&ofpacts); } } static void xlate_fin_timeout__(struct rule_dpif *rule, uint16_t tcp_flags, uint16_t idle_timeout, uint16_t hard_timeout) { if (tcp_flags & (TCP_FIN | TCP_RST)) { rule_dpif_reduce_timeouts(rule, idle_timeout, hard_timeout); } } static void xlate_fin_timeout(struct xlate_ctx *ctx, const struct ofpact_fin_timeout *oft) { if (ctx->rule) { xlate_fin_timeout__(ctx->rule, ctx->xin->tcp_flags, oft->fin_idle_timeout, oft->fin_hard_timeout); if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_FIN_TIMEOUT); /* XC_RULE already holds a reference on the rule, none is taken * here. */ entry->u.fin.rule = ctx->rule; entry->u.fin.idle = oft->fin_idle_timeout; entry->u.fin.hard = oft->fin_hard_timeout; } } } static void xlate_sample_action(struct xlate_ctx *ctx, const struct ofpact_sample *os) { /* Scale the probability from 16-bit to 32-bit while representing * the same percentage. */ uint32_t probability = (os->probability << 16) | os->probability; if (!ctx->xbridge->support.variable_length_userdata) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_ERR_RL(&rl, "ignoring NXAST_SAMPLE action because datapath " "lacks support (needs Linux 3.10+ or kernel module from " "OVS 1.11+)"); return; } xlate_commit_actions(ctx); union user_action_cookie cookie = { .flow_sample = { .type = USER_ACTION_COOKIE_FLOW_SAMPLE, .probability = os->probability, .collector_set_id = os->collector_set_id, .obs_domain_id = os->obs_domain_id, .obs_point_id = os->obs_point_id, } }; compose_sample_action(ctx, probability, &cookie, sizeof cookie.flow_sample, ODPP_NONE, false); } static bool may_receive(const struct xport *xport, struct xlate_ctx *ctx) { if (xport->config & (is_stp(&ctx->xin->flow) ? OFPUTIL_PC_NO_RECV_STP : OFPUTIL_PC_NO_RECV)) { return false; } /* Only drop packets here if both forwarding and learning are * disabled. If just learning is enabled, we need to have * OFPP_NORMAL and the learning action have a look at the packet * before we can drop it. */ if ((!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) || (!xport_rstp_forward_state(xport) && !xport_rstp_learn_state(xport))) { return false; } return true; } static void xlate_write_actions__(struct xlate_ctx *ctx, const struct ofpact *ofpacts, size_t ofpacts_len) { /* Maintain actset_output depending on the contents of the action set: * * - OFPP_UNSET, if there is no "output" action. * * - The output port, if there is an "output" action and no "group" * action. * * - OFPP_UNSET, if there is a "group" action. */ if (!ctx->action_set_has_group) { const struct ofpact *a; OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) { if (a->type == OFPACT_OUTPUT) { ctx->xin->flow.actset_output = ofpact_get_OUTPUT(a)->port; } else if (a->type == OFPACT_GROUP) { ctx->xin->flow.actset_output = OFPP_UNSET; ctx->action_set_has_group = true; break; } } } ofpbuf_put(&ctx->action_set, ofpacts, ofpacts_len); } static void xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact_nest *a) { xlate_write_actions__(ctx, a->actions, ofpact_nest_get_action_len(a)); } static void xlate_action_set(struct xlate_ctx *ctx) { uint64_t action_list_stub[1024 / 64]; struct ofpbuf action_list; ctx->in_action_set = true; ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub); ofpacts_execute_action_set(&action_list, &ctx->action_set); /* Clear the action set, as it is not needed any more. */ ofpbuf_clear(&ctx->action_set); do_xlate_actions(action_list.data, action_list.size, ctx); ctx->in_action_set = false; ofpbuf_uninit(&action_list); } static void freeze_put_unroll_xlate(struct xlate_ctx *ctx) { struct ofpact_unroll_xlate *unroll = ctx->frozen_actions.header; /* Restore the table_id and rule cookie for a potential PACKET * IN if needed. */ if (!unroll || (ctx->table_id != unroll->rule_table_id || ctx->rule_cookie != unroll->rule_cookie)) { unroll = ofpact_put_UNROLL_XLATE(&ctx->frozen_actions); unroll->rule_table_id = ctx->table_id; unroll->rule_cookie = ctx->rule_cookie; ctx->frozen_actions.header = unroll; } } /* Copy actions 'a' through 'end' to ctx->frozen_actions, which will be * executed after thawing. Inserts an UNROLL_XLATE action, if none is already * present, before any action that may depend on the current table ID or flow * cookie. */ static void freeze_unroll_actions(const struct ofpact *a, const struct ofpact *end, struct xlate_ctx *ctx) { for (; a < end; a = ofpact_next(a)) { switch (a->type) { case OFPACT_OUTPUT_REG: case OFPACT_GROUP: case OFPACT_OUTPUT: case OFPACT_CONTROLLER: case OFPACT_DEC_MPLS_TTL: case OFPACT_DEC_TTL: /* These actions may generate asynchronous messages, which include * table ID and flow cookie information. */ freeze_put_unroll_xlate(ctx); break; case OFPACT_RESUBMIT: if (ofpact_get_RESUBMIT(a)->table_id == 0xff) { /* This resubmit action is relative to the current table, so we * need to track what table that is.*/ freeze_put_unroll_xlate(ctx); } break; case OFPACT_SET_TUNNEL: case OFPACT_REG_MOVE: case OFPACT_SET_FIELD: case OFPACT_STACK_PUSH: case OFPACT_STACK_POP: case OFPACT_LEARN: case OFPACT_WRITE_METADATA: case OFPACT_GOTO_TABLE: case OFPACT_ENQUEUE: case OFPACT_SET_VLAN_VID: case OFPACT_SET_VLAN_PCP: case OFPACT_STRIP_VLAN: case OFPACT_PUSH_VLAN: case OFPACT_SET_ETH_SRC: case OFPACT_SET_ETH_DST: case OFPACT_SET_IPV4_SRC: case OFPACT_SET_IPV4_DST: case OFPACT_SET_IP_DSCP: case OFPACT_SET_IP_ECN: case OFPACT_SET_IP_TTL: case OFPACT_SET_L4_SRC_PORT: case OFPACT_SET_L4_DST_PORT: case OFPACT_SET_QUEUE: case OFPACT_POP_QUEUE: case OFPACT_PUSH_MPLS: case OFPACT_POP_MPLS: case OFPACT_SET_MPLS_LABEL: case OFPACT_SET_MPLS_TC: case OFPACT_SET_MPLS_TTL: case OFPACT_MULTIPATH: case OFPACT_BUNDLE: case OFPACT_EXIT: case OFPACT_UNROLL_XLATE: case OFPACT_FIN_TIMEOUT: case OFPACT_CLEAR_ACTIONS: case OFPACT_WRITE_ACTIONS: case OFPACT_METER: case OFPACT_SAMPLE: case OFPACT_DEBUG_RECIRC: case OFPACT_CT: case OFPACT_NAT: /* These may not generate PACKET INs. */ break; case OFPACT_NOTE: case OFPACT_CONJUNCTION: /* These need not be copied for restoration. */ continue; } /* Copy the action over. */ ofpbuf_put(&ctx->frozen_actions, a, OFPACT_ALIGN(a->len)); } } static void put_ct_mark(const struct flow *flow, struct flow *base_flow, struct ofpbuf *odp_actions, struct flow_wildcards *wc) { struct { uint32_t key; uint32_t mask; } odp_attr; odp_attr.key = flow->ct_mark; odp_attr.mask = wc->masks.ct_mark; if (odp_attr.mask && odp_attr.key != base_flow->ct_mark) { nl_msg_put_unspec(odp_actions, OVS_CT_ATTR_MARK, &odp_attr, sizeof(odp_attr)); } } static void put_ct_label(const struct flow *flow, struct flow *base_flow, struct ofpbuf *odp_actions, struct flow_wildcards *wc) { if (!ovs_u128_is_zero(&wc->masks.ct_label) && !ovs_u128_equals(&flow->ct_label, &base_flow->ct_label)) { struct { ovs_u128 key; ovs_u128 mask; } *odp_ct_label; odp_ct_label = nl_msg_put_unspec_uninit(odp_actions, OVS_CT_ATTR_LABELS, sizeof(*odp_ct_label)); odp_ct_label->key = flow->ct_label; odp_ct_label->mask = wc->masks.ct_label; } } static void put_ct_helper(struct ofpbuf *odp_actions, struct ofpact_conntrack *ofc) { if (ofc->alg) { if (ofc->alg == IPPORT_FTP) { nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "ftp"); } else { VLOG_WARN("Cannot serialize ct_helper %d\n", ofc->alg); } } } static void put_ct_nat(struct xlate_ctx *ctx) { struct ofpact_nat *ofn = ctx->ct_nat_action; size_t nat_offset; if (!ofn) { return; } nat_offset = nl_msg_start_nested(ctx->odp_actions, OVS_CT_ATTR_NAT); if (ofn->flags & NX_NAT_F_SRC || ofn->flags & NX_NAT_F_DST) { nl_msg_put_flag(ctx->odp_actions, ofn->flags & NX_NAT_F_SRC ? OVS_NAT_ATTR_SRC : OVS_NAT_ATTR_DST); if (ofn->flags & NX_NAT_F_PERSISTENT) { nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PERSISTENT); } if (ofn->flags & NX_NAT_F_PROTO_HASH) { nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_HASH); } else if (ofn->flags & NX_NAT_F_PROTO_RANDOM) { nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_RANDOM); } if (ofn->range_af == AF_INET) { nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN, ofn->range.addr.ipv4.min); if (ofn->range.addr.ipv4.max && (ntohl(ofn->range.addr.ipv4.max) > ntohl(ofn->range.addr.ipv4.min))) { nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX, ofn->range.addr.ipv4.max); } } else if (ofn->range_af == AF_INET6) { nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN, &ofn->range.addr.ipv6.min, sizeof ofn->range.addr.ipv6.min); if (!ipv6_mask_is_any(&ofn->range.addr.ipv6.max) && memcmp(&ofn->range.addr.ipv6.max, &ofn->range.addr.ipv6.min, sizeof ofn->range.addr.ipv6.max) > 0) { nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX, &ofn->range.addr.ipv6.max, sizeof ofn->range.addr.ipv6.max); } } if (ofn->range_af != AF_UNSPEC && ofn->range.proto.min) { nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MIN, ofn->range.proto.min); if (ofn->range.proto.max && ofn->range.proto.max > ofn->range.proto.min) { nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MAX, ofn->range.proto.max); } } } nl_msg_end_nested(ctx->odp_actions, nat_offset); } static void compose_conntrack_action(struct xlate_ctx *ctx, struct ofpact_conntrack *ofc) { ovs_u128 old_ct_label = ctx->base_flow.ct_label; uint32_t old_ct_mark = ctx->base_flow.ct_mark; size_t ct_offset; uint16_t zone; /* Ensure that any prior actions are applied before composing the new * conntrack action. */ xlate_commit_actions(ctx); /* Process nested actions first, to populate the key. */ ctx->ct_nat_action = NULL; do_xlate_actions(ofc->actions, ofpact_ct_get_action_len(ofc), ctx); if (ofc->zone_src.field) { zone = mf_get_subfield(&ofc->zone_src, &ctx->xin->flow); } else { zone = ofc->zone_imm; } ct_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CT); if (ofc->flags & NX_CT_F_COMMIT) { nl_msg_put_flag(ctx->odp_actions, OVS_CT_ATTR_COMMIT); } nl_msg_put_u16(ctx->odp_actions, OVS_CT_ATTR_ZONE, zone); put_ct_mark(&ctx->xin->flow, &ctx->base_flow, ctx->odp_actions, ctx->wc); put_ct_label(&ctx->xin->flow, &ctx->base_flow, ctx->odp_actions, ctx->wc); put_ct_helper(ctx->odp_actions, ofc); put_ct_nat(ctx); ctx->ct_nat_action = NULL; nl_msg_end_nested(ctx->odp_actions, ct_offset); /* Restore the original ct fields in the key. These should only be exposed * after recirculation to another table. */ ctx->base_flow.ct_mark = old_ct_mark; ctx->base_flow.ct_label = old_ct_label; if (ofc->recirc_table == NX_CT_RECIRC_NONE) { /* If we do not recirculate as part of this action, hide the results of * connection tracking from subsequent recirculations. */ ctx->conntracked = false; } else { /* Use ct_* fields from datapath during recirculation upcall. */ ctx->conntracked = true; compose_recirculate_and_fork(ctx, ofc->recirc_table); } } static void do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len, struct xlate_ctx *ctx) { struct flow_wildcards *wc = ctx->wc; struct flow *flow = &ctx->xin->flow; const struct ofpact *a; if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { tnl_neigh_snoop(flow, wc, ctx->xbridge->name); } /* dl_type already in the mask, not set below. */ OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) { struct ofpact_controller *controller; const struct ofpact_metadata *metadata; const struct ofpact_set_field *set_field; const struct mf_field *mf; if (ctx->error) { break; } if (ctx->exit) { /* Check if need to store the remaining actions for later * execution. */ if (ctx->freezing) { freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len), ctx); } break; } switch (a->type) { case OFPACT_OUTPUT: xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port, ofpact_get_OUTPUT(a)->max_len, true); break; case OFPACT_GROUP: if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id)) { /* Group could not be found. */ return; } break; case OFPACT_CONTROLLER: controller = ofpact_get_CONTROLLER(a); if (controller->pause) { ctx->pause = controller; ctx->xout->slow |= SLOW_CONTROLLER; ctx_trigger_freeze(ctx); a = ofpact_next(a); } else { execute_controller_action(ctx, controller->max_len, controller->reason, controller->controller_id, controller->userdata, controller->userdata_len); } break; case OFPACT_ENQUEUE: memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a)); break; case OFPACT_SET_VLAN_VID: wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); if (flow->vlan_tci & htons(VLAN_CFI) || ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) { flow->vlan_tci &= ~htons(VLAN_VID_MASK); flow->vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid) | htons(VLAN_CFI)); } break; case OFPACT_SET_VLAN_PCP: wc->masks.vlan_tci |= htons(VLAN_PCP_MASK | VLAN_CFI); if (flow->vlan_tci & htons(VLAN_CFI) || ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) { flow->vlan_tci &= ~htons(VLAN_PCP_MASK); flow->vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } break; case OFPACT_STRIP_VLAN: memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci); flow->vlan_tci = htons(0); break; case OFPACT_PUSH_VLAN: /* XXX 802.1AD(QinQ) */ memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci); flow->vlan_tci = htons(VLAN_CFI); break; case OFPACT_SET_ETH_SRC: WC_MASK_FIELD(wc, dl_src); flow->dl_src = ofpact_get_SET_ETH_SRC(a)->mac; break; case OFPACT_SET_ETH_DST: WC_MASK_FIELD(wc, dl_dst); flow->dl_dst = ofpact_get_SET_ETH_DST(a)->mac; break; case OFPACT_SET_IPV4_SRC: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4; } break; case OFPACT_SET_IPV4_DST: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4; } break; case OFPACT_SET_IP_DSCP: if (is_ip_any(flow)) { wc->masks.nw_tos |= IP_DSCP_MASK; flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp; } break; case OFPACT_SET_IP_ECN: if (is_ip_any(flow)) { wc->masks.nw_tos |= IP_ECN_MASK; flow->nw_tos &= ~IP_ECN_MASK; flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn; } break; case OFPACT_SET_IP_TTL: if (is_ip_any(flow)) { wc->masks.nw_ttl = 0xff; flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl; } break; case OFPACT_SET_L4_SRC_PORT: if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port); } break; case OFPACT_SET_L4_DST_PORT: if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port); } break; case OFPACT_RESUBMIT: /* Freezing complicates resubmit. Some action in the flow * entry found by resubmit might trigger freezing. If that * happens, then we do not want to execute the resubmit again after * during thawing, so we want to skip back to the head of the loop * to avoid that, only adding any actions that follow the resubmit * to the frozen actions. */ xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a)); continue; case OFPACT_SET_TUNNEL: flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id); break; case OFPACT_SET_QUEUE: memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id); break; case OFPACT_POP_QUEUE: memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); flow->skb_priority = ctx->orig_skb_priority; break; case OFPACT_REG_MOVE: nxm_execute_reg_move(ofpact_get_REG_MOVE(a), flow, wc); break; case OFPACT_SET_FIELD: set_field = ofpact_get_SET_FIELD(a); mf = set_field->field; /* Set field action only ever overwrites packet's outermost * applicable header fields. Do nothing if no header exists. */ if (mf->id == MFF_VLAN_VID) { wc->masks.vlan_tci |= htons(VLAN_CFI); if (!(flow->vlan_tci & htons(VLAN_CFI))) { break; } } else if ((mf->id == MFF_MPLS_LABEL || mf->id == MFF_MPLS_TC) /* 'dl_type' is already unwildcarded. */ && !eth_type_mpls(flow->dl_type)) { break; } /* A flow may wildcard nw_frag. Do nothing if setting a transport * header field on a packet that does not have them. */ mf_mask_field_and_prereqs(mf, wc); if (mf_are_prereqs_ok(mf, flow)) { mf_set_flow_value_masked(mf, &set_field->value, &set_field->mask, flow); } break; case OFPACT_STACK_PUSH: nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc, &ctx->stack); break; case OFPACT_STACK_POP: nxm_execute_stack_pop(ofpact_get_STACK_POP(a), flow, wc, &ctx->stack); break; case OFPACT_PUSH_MPLS: compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)); break; case OFPACT_POP_MPLS: compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype); break; case OFPACT_SET_MPLS_LABEL: compose_set_mpls_label_action( ctx, ofpact_get_SET_MPLS_LABEL(a)->label); break; case OFPACT_SET_MPLS_TC: compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc); break; case OFPACT_SET_MPLS_TTL: compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl); break; case OFPACT_DEC_MPLS_TTL: if (compose_dec_mpls_ttl_action(ctx)) { return; } break; case OFPACT_DEC_TTL: wc->masks.nw_ttl = 0xff; if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) { return; } break; case OFPACT_NOTE: /* Nothing to do. */ break; case OFPACT_MULTIPATH: multipath_execute(ofpact_get_MULTIPATH(a), flow, wc); break; case OFPACT_BUNDLE: xlate_bundle_action(ctx, ofpact_get_BUNDLE(a)); break; case OFPACT_OUTPUT_REG: xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a)); break; case OFPACT_LEARN: xlate_learn_action(ctx, ofpact_get_LEARN(a)); break; case OFPACT_CONJUNCTION: { /* A flow with a "conjunction" action represents part of a special * kind of "set membership match". Such a flow should not actually * get executed, but it could via, say, a "packet-out", even though * that wouldn't be useful. Log it to help debugging. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_INFO_RL(&rl, "executing no-op conjunction action"); break; } case OFPACT_EXIT: ctx->exit = true; break; case OFPACT_UNROLL_XLATE: { struct ofpact_unroll_xlate *unroll = ofpact_get_UNROLL_XLATE(a); /* Restore translation context data that was stored earlier. */ ctx->table_id = unroll->rule_table_id; ctx->rule_cookie = unroll->rule_cookie; break; } case OFPACT_FIN_TIMEOUT: memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a)); break; case OFPACT_CLEAR_ACTIONS: ofpbuf_clear(&ctx->action_set); ctx->xin->flow.actset_output = OFPP_UNSET; ctx->action_set_has_group = false; break; case OFPACT_WRITE_ACTIONS: xlate_write_actions(ctx, ofpact_get_WRITE_ACTIONS(a)); break; case OFPACT_WRITE_METADATA: metadata = ofpact_get_WRITE_METADATA(a); flow->metadata &= ~metadata->mask; flow->metadata |= metadata->metadata & metadata->mask; break; case OFPACT_METER: /* Not implemented yet. */ break; case OFPACT_GOTO_TABLE: { struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a); ovs_assert(ctx->table_id < ogt->table_id); xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port, ogt->table_id, true, true); break; } case OFPACT_SAMPLE: xlate_sample_action(ctx, ofpact_get_SAMPLE(a)); break; case OFPACT_CT: compose_conntrack_action(ctx, ofpact_get_CT(a)); break; case OFPACT_NAT: /* This will be processed by compose_conntrack_action(). */ ctx->ct_nat_action = ofpact_get_NAT(a); break; case OFPACT_DEBUG_RECIRC: ctx_trigger_freeze(ctx); a = ofpact_next(a); break; } /* Check if need to store this and the remaining actions for later * execution. */ if (!ctx->error && ctx->exit && ctx_first_frozen_action(ctx)) { freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len), ctx); break; } } } void xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto, const struct flow *flow, ofp_port_t in_port, struct rule_dpif *rule, uint16_t tcp_flags, const struct dp_packet *packet, struct flow_wildcards *wc, struct ofpbuf *odp_actions) { xin->ofproto = ofproto; xin->flow = *flow; xin->flow.in_port.ofp_port = in_port; xin->flow.actset_output = OFPP_UNSET; xin->packet = packet; xin->may_learn = packet != NULL; xin->rule = rule; xin->xcache = NULL; xin->ofpacts = NULL; xin->ofpacts_len = 0; xin->tcp_flags = tcp_flags; xin->resubmit_hook = NULL; xin->report_hook = NULL; xin->resubmit_stats = NULL; xin->recurse = 0; xin->resubmits = 0; xin->wc = wc; xin->odp_actions = odp_actions; /* Do recirc lookup. */ xin->frozen_state = NULL; if (flow->recirc_id) { const struct recirc_id_node *node = recirc_id_node_find(flow->recirc_id); if (node) { xin->frozen_state = &node->state; } } } void xlate_out_uninit(struct xlate_out *xout) { if (xout) { recirc_refs_unref(&xout->recircs); } } /* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts' * into datapath actions, using 'ctx', and discards the datapath actions. */ void xlate_actions_for_side_effects(struct xlate_in *xin) { struct xlate_out xout; enum xlate_error error; error = xlate_actions(xin, &xout); if (error) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "xlate_actions failed (%s)!", xlate_strerror(error)); } xlate_out_uninit(&xout); } static struct skb_priority_to_dscp * get_skb_priority(const struct xport *xport, uint32_t skb_priority) { struct skb_priority_to_dscp *pdscp; uint32_t hash; hash = hash_int(skb_priority, 0); HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) { if (pdscp->skb_priority == skb_priority) { return pdscp; } } return NULL; } static bool dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority, uint8_t *dscp) { struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority); *dscp = pdscp ? pdscp->dscp : 0; return pdscp != NULL; } static size_t count_skb_priorities(const struct xport *xport) { return hmap_count(&xport->skb_priorities); } static void clear_skb_priorities(struct xport *xport) { struct skb_priority_to_dscp *pdscp, *next; HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &xport->skb_priorities) { hmap_remove(&xport->skb_priorities, &pdscp->hmap_node); free(pdscp); } } static bool actions_output_to_local_port(const struct xlate_ctx *ctx) { odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL); const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->odp_actions->data, ctx->odp_actions->size) { if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT && nl_attr_get_odp_port(a) == local_odp_port) { return true; } } return false; } #if defined(__linux__) /* Returns the maximum number of packets that the Linux kernel is willing to * queue up internally to certain kinds of software-implemented ports, or the * default (and rarely modified) value if it cannot be determined. */ static int netdev_max_backlog(void) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; static int max_backlog = 1000; /* The normal default value. */ if (ovsthread_once_start(&once)) { static const char filename[] = "/proc/sys/net/core/netdev_max_backlog"; FILE *stream; int n; stream = fopen(filename, "r"); if (!stream) { VLOG_INFO("%s: open failed (%s)", filename, ovs_strerror(errno)); } else { if (fscanf(stream, "%d", &n) != 1) { VLOG_WARN("%s: read error", filename); } else if (n <= 100) { VLOG_WARN("%s: unexpectedly small value %d", filename, n); } else { max_backlog = n; } fclose(stream); } ovsthread_once_done(&once); VLOG_DBG("%s: using %d max_backlog", filename, max_backlog); } return max_backlog; } /* Counts and returns the number of OVS_ACTION_ATTR_OUTPUT actions in * 'odp_actions'. */ static int count_output_actions(const struct ofpbuf *odp_actions) { const struct nlattr *a; size_t left; int n = 0; NL_ATTR_FOR_EACH_UNSAFE (a, left, odp_actions->data, odp_actions->size) { if (a->nla_type == OVS_ACTION_ATTR_OUTPUT) { n++; } } return n; } #endif /* defined(__linux__) */ /* Returns true if 'odp_actions' contains more output actions than the datapath * can reliably handle in one go. On Linux, this is the value of the * net.core.netdev_max_backlog sysctl, which limits the maximum number of * packets that the kernel is willing to queue up for processing while the * datapath is processing a set of actions. */ static bool too_many_output_actions(const struct ofpbuf *odp_actions OVS_UNUSED) { #ifdef __linux__ return (odp_actions->size / NL_A_U32_SIZE > netdev_max_backlog() && count_output_actions(odp_actions) > netdev_max_backlog()); #else /* OSes other than Linux might have similar limits, but we don't know how * to determine them.*/ return false; #endif } static void xlate_wc_init(struct xlate_ctx *ctx) { flow_wildcards_init_catchall(ctx->wc); /* Some fields we consider to always be examined. */ WC_MASK_FIELD(ctx->wc, in_port); WC_MASK_FIELD(ctx->wc, dl_type); if (is_ip_any(&ctx->xin->flow)) { WC_MASK_FIELD_MASK(ctx->wc, nw_frag, FLOW_NW_FRAG_MASK); } if (ctx->xbridge->support.odp.recirc) { /* Always exactly match recirc_id when datapath supports * recirculation. */ WC_MASK_FIELD(ctx->wc, recirc_id); } if (ctx->xbridge->netflow) { netflow_mask_wc(&ctx->xin->flow, ctx->wc); } tnl_wc_init(&ctx->xin->flow, ctx->wc); } static void xlate_wc_finish(struct xlate_ctx *ctx) { /* Clear the metadata and register wildcard masks, because we won't * use non-header fields as part of the cache. */ flow_wildcards_clear_non_packet_fields(ctx->wc); /* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow * uses the low 8 bits of the 16-bit tp_src and tp_dst members to * represent these fields. The datapath interface, on the other hand, * represents them with just 8 bits each. This means that if the high * 8 bits of the masks for these fields somehow become set, then they * will get chopped off by a round trip through the datapath, and * revalidation will spot that as an inconsistency and delete the flow. * Avoid the problem here by making sure that only the low 8 bits of * either field can be unwildcarded for ICMP. */ if (is_icmpv4(&ctx->xin->flow) || is_icmpv6(&ctx->xin->flow)) { ctx->wc->masks.tp_src &= htons(UINT8_MAX); ctx->wc->masks.tp_dst &= htons(UINT8_MAX); } /* VLAN_TCI CFI bit must be matched if any of the TCI is matched. */ if (ctx->wc->masks.vlan_tci) { ctx->wc->masks.vlan_tci |= htons(VLAN_CFI); } } /* Translates the flow, actions, or rule in 'xin' into datapath actions in * 'xout'. * The caller must take responsibility for eventually freeing 'xout', with * xlate_out_uninit(). * Returns 'XLATE_OK' if translation was successful. In case of an error an * empty set of actions will be returned in 'xin->odp_actions' (if non-NULL), * so that most callers may ignore the return value and transparently install a * drop flow when the translation fails. */ enum xlate_error xlate_actions(struct xlate_in *xin, struct xlate_out *xout) { *xout = (struct xlate_out) { .slow = 0, .recircs = RECIRC_REFS_EMPTY_INITIALIZER, }; struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbridge *xbridge = xbridge_lookup(xcfg, xin->ofproto); if (!xbridge) { return XLATE_BRIDGE_NOT_FOUND; } struct flow *flow = &xin->flow; union mf_subvalue stack_stub[1024 / sizeof(union mf_subvalue)]; uint64_t action_set_stub[1024 / 8]; uint64_t frozen_actions_stub[1024 / 8]; struct flow_wildcards scratch_wc; uint64_t actions_stub[256 / 8]; struct ofpbuf scratch_actions = OFPBUF_STUB_INITIALIZER(actions_stub); struct xlate_ctx ctx = { .xin = xin, .xout = xout, .base_flow = *flow, .orig_tunnel_ipv6_dst = flow_tnl_dst(&flow->tunnel), .xbridge = xbridge, .stack = OFPBUF_STUB_INITIALIZER(stack_stub), .rule = xin->rule, .wc = xin->wc ? xin->wc : &scratch_wc, .odp_actions = xin->odp_actions ? xin->odp_actions : &scratch_actions, .recurse = xin->recurse, .resubmits = xin->resubmits, .in_group = false, .in_action_set = false, .table_id = 0, .rule_cookie = OVS_BE64_MAX, .orig_skb_priority = flow->skb_priority, .sflow_n_outputs = 0, .sflow_odp_port = 0, .nf_output_iface = NF_OUT_DROP, .exit = false, .error = XLATE_OK, .mirrors = 0, .freezing = false, .frozen_actions = OFPBUF_STUB_INITIALIZER(frozen_actions_stub), .pause = NULL, .conntracked = false, .ct_nat_action = NULL, .action_set_has_group = false, .action_set = OFPBUF_STUB_INITIALIZER(action_set_stub), }; /* 'base_flow' reflects the packet as it came in, but we need it to reflect * the packet as the datapath will treat it for output actions: * * - Our datapath doesn't retain tunneling information without us * re-setting it, so clear the tunnel data. * * - For VLAN splinters, a higher layer may pretend that the packet * came in on 'flow->in_port.ofp_port' with 'flow->vlan_tci' * attached, because that's how we want to treat it from an OpenFlow * perspective. But from the datapath's perspective it actually came * in on a VLAN device without any VLAN attached. So here we put the * datapath's view of the VLAN information in 'base_flow' to ensure * correct treatment. */ memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel); if (flow->in_port.ofp_port != vsp_realdev_to_vlandev(xbridge->ofproto, flow->in_port.ofp_port, flow->vlan_tci)) { ctx.base_flow.vlan_tci = 0; } ofpbuf_reserve(ctx.odp_actions, NL_A_U32_SIZE); if (xin->wc) { xlate_wc_init(&ctx); } COVERAGE_INC(xlate_actions); if (xin->frozen_state) { const struct frozen_state *state = xin->frozen_state; xlate_report(&ctx, "Thawing frozen state:"); if (xin->ofpacts_len > 0 || ctx.rule) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); const char *conflict = xin->ofpacts_len ? "actions" : "rule"; VLOG_WARN_RL(&rl, "Recirculation conflict (%s)!", conflict); xlate_report(&ctx, "- Recirculation conflict (%s)!", conflict); ctx.error = XLATE_RECIRCULATION_CONFLICT; goto exit; } /* Set the bridge for post-recirculation processing if needed. */ if (!uuid_equals(ofproto_dpif_get_uuid(ctx.xbridge->ofproto), &state->ofproto_uuid)) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); const struct xbridge *new_bridge = xbridge_lookup_by_uuid(xcfg, &state->ofproto_uuid); if (OVS_UNLIKELY(!new_bridge)) { /* Drop the packet if the bridge cannot be found. */ static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&rl, "Frozen bridge no longer exists."); xlate_report(&ctx, "- Frozen bridge no longer exists."); ctx.error = XLATE_BRIDGE_NOT_FOUND; goto exit; } ctx.xbridge = new_bridge; } /* Set the thawed table id. Note: A table lookup is done only if there * are no frozen actions. */ ctx.table_id = state->table_id; xlate_report(&ctx, "- Resuming from table %"PRIu8, ctx.table_id); if (!state->conntracked) { clear_conntrack(flow); } /* Restore pipeline metadata. May change flow's in_port and other * metadata to the values that existed when freezing was triggered. */ frozen_metadata_to_flow(&state->metadata, flow); /* Restore stack, if any. */ if (state->stack) { ofpbuf_put(&ctx.stack, state->stack, state->n_stack * sizeof *state->stack); } /* Restore mirror state. */ ctx.mirrors = state->mirrors; /* Restore action set, if any. */ if (state->action_set_len) { xlate_report_actions(&ctx, "- Restoring action set", state->action_set, state->action_set_len); flow->actset_output = OFPP_UNSET; xlate_write_actions__(&ctx, state->action_set, state->action_set_len); } /* Restore frozen actions. If there are no actions, processing will * start with a lookup in the table set above. */ xin->ofpacts = state->ofpacts; xin->ofpacts_len = state->ofpacts_len; if (state->ofpacts_len) { xlate_report_actions(&ctx, "- Restoring actions", xin->ofpacts, xin->ofpacts_len); } } else if (OVS_UNLIKELY(flow->recirc_id)) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&rl, "Recirculation context not found for ID %"PRIx32, flow->recirc_id); ctx.error = XLATE_NO_RECIRCULATION_CONTEXT; goto exit; } /* The bridge is now known so obtain its table version. */ ctx.tables_version = ofproto_dpif_get_tables_version(ctx.xbridge->ofproto); if (!xin->ofpacts && !ctx.rule) { ctx.rule = rule_dpif_lookup_from_table( ctx.xbridge->ofproto, ctx.tables_version, flow, xin->wc, ctx.xin->resubmit_stats, &ctx.table_id, flow->in_port.ofp_port, true, true); if (ctx.xin->resubmit_stats) { rule_dpif_credit_stats(ctx.rule, ctx.xin->resubmit_stats); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_RULE); entry->u.rule = ctx.rule; rule_dpif_ref(ctx.rule); } if (OVS_UNLIKELY(ctx.xin->resubmit_hook)) { ctx.xin->resubmit_hook(ctx.xin, ctx.rule, 0); } } /* Get the proximate input port of the packet. (If xin->frozen_state, * flow->in_port is the ultimate input port of the packet.) */ struct xport *in_port = get_ofp_port(xbridge, ctx.base_flow.in_port.ofp_port); /* Tunnel stats only for not-thawed packets. */ if (!xin->frozen_state && in_port && in_port->is_tunnel) { if (ctx.xin->resubmit_stats) { netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats); if (in_port->bfd) { bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats); } } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETDEV); entry->u.dev.rx = netdev_ref(in_port->netdev); entry->u.dev.bfd = bfd_ref(in_port->bfd); } } if (!xin->frozen_state && process_special(&ctx, in_port)) { /* process_special() did all the processing for this packet. * * We do not perform special processing on thawed packets, since that * was done before they were frozen and should not be redone. */ } else if (in_port && in_port->xbundle && xbundle_mirror_out(xbridge, in_port->xbundle)) { if (ctx.xin->packet != NULL) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port " "%s, which is reserved exclusively for mirroring", ctx.xbridge->name, in_port->xbundle->name); } } else { /* Sampling is done on initial reception; don't redo after thawing. */ unsigned int user_cookie_offset = 0; if (!xin->frozen_state) { user_cookie_offset = compose_sflow_action(&ctx); compose_ipfix_action(&ctx, ODPP_NONE); } size_t sample_actions_len = ctx.odp_actions->size; if (tnl_process_ecn(flow) && (!in_port || may_receive(in_port, &ctx))) { const struct ofpact *ofpacts; size_t ofpacts_len; if (xin->ofpacts) { ofpacts = xin->ofpacts; ofpacts_len = xin->ofpacts_len; } else if (ctx.rule) { const struct rule_actions *actions = rule_dpif_get_actions(ctx.rule); ofpacts = actions->ofpacts; ofpacts_len = actions->ofpacts_len; ctx.rule_cookie = rule_dpif_get_flow_cookie(ctx.rule); } else { OVS_NOT_REACHED(); } mirror_ingress_packet(&ctx); do_xlate_actions(ofpacts, ofpacts_len, &ctx); if (ctx.error) { goto exit; } /* We've let OFPP_NORMAL and the learning action look at the * packet, so cancel all actions and freezing if forwarding is * disabled. */ if (in_port && (!xport_stp_forward_state(in_port) || !xport_rstp_forward_state(in_port))) { ctx.odp_actions->size = sample_actions_len; ctx_cancel_freeze(&ctx); ofpbuf_clear(&ctx.action_set); } if (!ctx.freezing) { xlate_action_set(&ctx); } if (ctx.freezing) { finish_freezing(&ctx); } } /* Output only fully processed packets. */ if (!ctx.freezing && xbridge->has_in_band && in_band_must_output_to_local_port(flow) && !actions_output_to_local_port(&ctx)) { compose_output_action(&ctx, OFPP_LOCAL, NULL); } if (user_cookie_offset) { fix_sflow_action(&ctx, user_cookie_offset); } } if (nl_attr_oversized(ctx.odp_actions->size)) { /* These datapath actions are too big for a Netlink attribute, so we * can't hand them to the kernel directly. dpif_execute() can execute * them one by one with help, so just mark the result as SLOW_ACTION to * prevent the flow from being installed. */ COVERAGE_INC(xlate_actions_oversize); ctx.xout->slow |= SLOW_ACTION; } else if (too_many_output_actions(ctx.odp_actions)) { COVERAGE_INC(xlate_actions_too_many_output); ctx.xout->slow |= SLOW_ACTION; } /* Do netflow only for packets on initial reception, that are not sent to * the controller. We consider packets sent to the controller to be part * of the control plane rather than the data plane. */ if (!xin->frozen_state && xbridge->netflow && !(xout->slow & SLOW_CONTROLLER)) { if (ctx.xin->resubmit_stats) { netflow_flow_update(xbridge->netflow, flow, ctx.nf_output_iface, ctx.xin->resubmit_stats); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETFLOW); entry->u.nf.netflow = netflow_ref(xbridge->netflow); entry->u.nf.flow = xmemdup(flow, sizeof *flow); entry->u.nf.iface = ctx.nf_output_iface; } } if (xin->wc) { xlate_wc_finish(&ctx); } exit: ofpbuf_uninit(&ctx.stack); ofpbuf_uninit(&ctx.action_set); ofpbuf_uninit(&ctx.frozen_actions); ofpbuf_uninit(&scratch_actions); /* Make sure we return a "drop flow" in case of an error. */ if (ctx.error) { xout->slow = 0; if (xin->odp_actions) { ofpbuf_clear(xin->odp_actions); } } return ctx.error; } enum ofperr xlate_resume(struct ofproto_dpif *ofproto, const struct ofputil_packet_in_private *pin, struct ofpbuf *odp_actions, enum slow_path_reason *slow) { struct dp_packet packet; dp_packet_use_const(&packet, pin->public.packet, pin->public.packet_len); struct flow flow; flow_extract(&packet, &flow); struct xlate_in xin; xlate_in_init(&xin, ofproto, &flow, 0, NULL, ntohs(flow.tcp_flags), &packet, NULL, odp_actions); struct ofpact_note noop; ofpact_init_NOTE(&noop); noop.length = 0; bool any_actions = pin->actions_len > 0; struct frozen_state state = { .table_id = 0, /* Not the table where NXAST_PAUSE was executed. */ .ofproto_uuid = pin->bridge, .stack = pin->stack, .n_stack = pin->n_stack, .mirrors = pin->mirrors, .conntracked = pin->conntracked, /* When there are no actions, xlate_actions() will search the flow * table. We don't want it to do that (we want it to resume), so * supply a no-op action if there aren't any. * * (We can't necessarily avoid translating actions entirely if there * aren't any actions, because there might be some finishing-up to do * at the end of the pipeline, and we don't check for those * conditions.) */ .ofpacts = any_actions ? pin->actions : &noop.ofpact, .ofpacts_len = any_actions ? pin->actions_len : sizeof noop, .action_set = pin->action_set, .action_set_len = pin->action_set_len, }; frozen_metadata_from_flow(&state.metadata, &pin->public.flow_metadata.flow); xin.frozen_state = &state; struct xlate_out xout; enum xlate_error error = xlate_actions(&xin, &xout); *slow = xout.slow; xlate_out_uninit(&xout); /* xlate_actions() can generate a number of errors, but only * XLATE_BRIDGE_NOT_FOUND really stands out to me as one that we should be * sure to report over OpenFlow. The others could come up in packet-outs * or regular flow translation and I don't think that it's going to be too * useful to report them to the controller. */ return error == XLATE_BRIDGE_NOT_FOUND ? OFPERR_NXR_STALE : 0; } /* Sends 'packet' out 'ofport'. * May modify 'packet'. * Returns 0 if successful, otherwise a positive errno value. */ int xlate_send_packet(const struct ofport_dpif *ofport, struct dp_packet *packet) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xport *xport; struct ofpact_output output; struct flow flow; ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output); /* Use OFPP_NONE as the in_port to avoid special packet processing. */ flow_extract(packet, &flow); flow.in_port.ofp_port = OFPP_NONE; xport = xport_lookup(xcfg, ofport); if (!xport) { return EINVAL; } output.port = xport->ofp_port; output.max_len = 0; return ofproto_dpif_execute_actions(xport->xbridge->ofproto, &flow, NULL, &output.ofpact, sizeof output, packet); } struct xlate_cache * xlate_cache_new(void) { struct xlate_cache *xcache = xmalloc(sizeof *xcache); ofpbuf_init(&xcache->entries, 512); return xcache; } static struct xc_entry * xlate_cache_add_entry(struct xlate_cache *xcache, enum xc_type type) { struct xc_entry *entry; entry = ofpbuf_put_zeros(&xcache->entries, sizeof *entry); entry->type = type; return entry; } static void xlate_cache_netdev(struct xc_entry *entry, const struct dpif_flow_stats *stats) { if (entry->u.dev.tx) { netdev_vport_inc_tx(entry->u.dev.tx, stats); } if (entry->u.dev.rx) { netdev_vport_inc_rx(entry->u.dev.rx, stats); } if (entry->u.dev.bfd) { bfd_account_rx(entry->u.dev.bfd, stats); } } static void xlate_cache_normal(struct ofproto_dpif *ofproto, struct flow *flow, int vlan) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbridge *xbridge; struct xbundle *xbundle; struct flow_wildcards wc; xbridge = xbridge_lookup(xcfg, ofproto); if (!xbridge) { return; } xbundle = lookup_input_bundle(xbridge, flow->in_port.ofp_port, false, NULL); if (!xbundle) { return; } update_learning_table(xbridge, flow, &wc, vlan, xbundle); } /* Push stats and perform side effects of flow translation. */ void xlate_push_stats(struct xlate_cache *xcache, const struct dpif_flow_stats *stats) { struct xc_entry *entry; struct ofpbuf entries = xcache->entries; struct eth_addr dmac; if (!stats->n_packets) { return; } XC_ENTRY_FOR_EACH (entry, entries, xcache) { switch (entry->type) { case XC_RULE: rule_dpif_credit_stats(entry->u.rule, stats); break; case XC_BOND: bond_account(entry->u.bond.bond, entry->u.bond.flow, entry->u.bond.vid, stats->n_bytes); break; case XC_NETDEV: xlate_cache_netdev(entry, stats); break; case XC_NETFLOW: netflow_flow_update(entry->u.nf.netflow, entry->u.nf.flow, entry->u.nf.iface, stats); break; case XC_MIRROR: mirror_update_stats(entry->u.mirror.mbridge, entry->u.mirror.mirrors, stats->n_packets, stats->n_bytes); break; case XC_LEARN: ofproto_dpif_flow_mod(entry->u.learn.ofproto, entry->u.learn.fm); break; case XC_NORMAL: xlate_cache_normal(entry->u.normal.ofproto, entry->u.normal.flow, entry->u.normal.vlan); break; case XC_FIN_TIMEOUT: xlate_fin_timeout__(entry->u.fin.rule, stats->tcp_flags, entry->u.fin.idle, entry->u.fin.hard); break; case XC_GROUP: group_dpif_credit_stats(entry->u.group.group, entry->u.group.bucket, stats); break; case XC_TNL_NEIGH: /* Lookup neighbor to avoid timeout. */ tnl_neigh_lookup(entry->u.tnl_neigh_cache.br_name, &entry->u.tnl_neigh_cache.d_ipv6, &dmac); break; default: OVS_NOT_REACHED(); } } } static void xlate_dev_unref(struct xc_entry *entry) { if (entry->u.dev.tx) { netdev_close(entry->u.dev.tx); } if (entry->u.dev.rx) { netdev_close(entry->u.dev.rx); } if (entry->u.dev.bfd) { bfd_unref(entry->u.dev.bfd); } } static void xlate_cache_clear_netflow(struct netflow *netflow, struct flow *flow) { netflow_flow_clear(netflow, flow); netflow_unref(netflow); free(flow); } void xlate_cache_clear(struct xlate_cache *xcache) { struct xc_entry *entry; struct ofpbuf entries; if (!xcache) { return; } XC_ENTRY_FOR_EACH (entry, entries, xcache) { switch (entry->type) { case XC_RULE: rule_dpif_unref(entry->u.rule); break; case XC_BOND: free(entry->u.bond.flow); bond_unref(entry->u.bond.bond); break; case XC_NETDEV: xlate_dev_unref(entry); break; case XC_NETFLOW: xlate_cache_clear_netflow(entry->u.nf.netflow, entry->u.nf.flow); break; case XC_MIRROR: mbridge_unref(entry->u.mirror.mbridge); break; case XC_LEARN: free(entry->u.learn.fm); ofpbuf_delete(entry->u.learn.ofpacts); break; case XC_NORMAL: free(entry->u.normal.flow); break; case XC_FIN_TIMEOUT: /* 'u.fin.rule' is always already held as a XC_RULE, which * has already released it's reference above. */ break; case XC_GROUP: group_dpif_unref(entry->u.group.group); break; case XC_TNL_NEIGH: break; default: OVS_NOT_REACHED(); } } ofpbuf_clear(&xcache->entries); } void xlate_cache_delete(struct xlate_cache *xcache) { xlate_cache_clear(xcache); ofpbuf_uninit(&xcache->entries); free(xcache); }