/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto/ofproto-dpif-xlate.h" #include #include #include #include #include #include "bfd.h" #include "bitmap.h" #include "bond.h" #include "bundle.h" #include "byte-order.h" #include "cfm.h" #include "connmgr.h" #include "coverage.h" #include "csum.h" #include "dp-packet.h" #include "dpif.h" #include "in-band.h" #include "lacp.h" #include "learn.h" #include "mac-learning.h" #include "mcast-snooping.h" #include "multipath.h" #include "netdev-vport.h" #include "netlink.h" #include "nx-match.h" #include "odp-execute.h" #include "ofproto/ofproto-dpif-ipfix.h" #include "ofproto/ofproto-dpif-mirror.h" #include "ofproto/ofproto-dpif-monitor.h" #include "ofproto/ofproto-dpif-sflow.h" #include "ofproto/ofproto-dpif-trace.h" #include "ofproto/ofproto-dpif-xlate-cache.h" #include "ofproto/ofproto-dpif.h" #include "ofproto/ofproto-provider.h" #include "openvswitch/dynamic-string.h" #include "openvswitch/meta-flow.h" #include "openvswitch/list.h" #include "openvswitch/ofp-actions.h" #include "openvswitch/vlog.h" #include "ovs-lldp.h" #include "ovs-router.h" #include "packets.h" #include "tnl-neigh-cache.h" #include "tnl-ports.h" #include "tunnel.h" #include "util.h" COVERAGE_DEFINE(xlate_actions); COVERAGE_DEFINE(xlate_actions_oversize); COVERAGE_DEFINE(xlate_actions_too_many_output); VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate); /* Maximum depth of flow table recursion (due to resubmit actions) in a * flow translation. * * The goal of limiting the depth of resubmits is to ensure that flow * translation eventually terminates. Only resubmits to the same table or an * earlier table count against the maximum depth. This is because resubmits to * strictly monotonically increasing table IDs will eventually terminate, since * any OpenFlow switch has a finite number of tables. OpenFlow tables are most * commonly traversed in numerically increasing order, so this limit has little * effect on conventionally designed OpenFlow pipelines. * * Outputs to patch ports and to groups also count against the depth limit. */ #define MAX_DEPTH 64 /* Maximum number of resubmit actions in a flow translation, whether they are * recursive or not. */ #define MAX_RESUBMITS (MAX_DEPTH * MAX_DEPTH) struct xbridge { struct hmap_node hmap_node; /* Node in global 'xbridges' map. */ struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */ struct ovs_list xbundles; /* Owned xbundles. */ struct hmap xports; /* Indexed by ofp_port. */ char *name; /* Name used in log messages. */ struct dpif *dpif; /* Datapath interface. */ struct mac_learning *ml; /* Mac learning handle. */ struct mcast_snooping *ms; /* Multicast Snooping handle. */ struct mbridge *mbridge; /* Mirroring. */ struct dpif_sflow *sflow; /* SFlow handle, or null. */ struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */ struct netflow *netflow; /* Netflow handle, or null. */ struct stp *stp; /* STP or null if disabled. */ struct rstp *rstp; /* RSTP or null if disabled. */ bool has_in_band; /* Bridge has in band control? */ bool forward_bpdu; /* Bridge forwards STP BPDUs? */ /* Datapath feature support. */ struct dpif_backer_support support; }; struct xbundle { struct hmap_node hmap_node; /* In global 'xbundles' map. */ struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */ struct ovs_list list_node; /* In parent 'xbridges' list. */ struct xbridge *xbridge; /* Parent xbridge. */ struct ovs_list xports; /* Contains "struct xport"s. */ char *name; /* Name used in log messages. */ struct bond *bond; /* Nonnull iff more than one port. */ struct lacp *lacp; /* LACP handle or null. */ enum port_vlan_mode vlan_mode; /* VLAN mode. */ uint16_t qinq_ethtype; /* Ethertype of dot1q-tunnel interface * either 0x8100 or 0x88a8. */ int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */ unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. * NULL if all VLANs are trunked. */ unsigned long *cvlans; /* Bitmap of allowed customer vlans, * NULL if all VLANs are allowed */ bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */ bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */ bool protected; /* Protected port mode */ }; struct xport { struct hmap_node hmap_node; /* Node in global 'xports' map. */ struct ofport_dpif *ofport; /* Key in global 'xports map. */ struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */ ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */ odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */ struct ovs_list bundle_node; /* In parent xbundle (if it exists). */ struct xbundle *xbundle; /* Parent xbundle or null. */ struct netdev *netdev; /* 'ofport''s netdev. */ struct xbridge *xbridge; /* Parent bridge. */ struct xport *peer; /* Patch port peer or null. */ enum ofputil_port_config config; /* OpenFlow port configuration. */ enum ofputil_port_state state; /* OpenFlow port state. */ int stp_port_no; /* STP port number or -1 if not in use. */ struct rstp_port *rstp_port; /* RSTP port or null. */ struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */ bool may_enable; /* May be enabled in bonds. */ bool is_tunnel; /* Is a tunnel port. */ bool is_layer3; /* Is a layer 3 port. */ struct cfm *cfm; /* CFM handle or null. */ struct bfd *bfd; /* BFD handle or null. */ struct lldp *lldp; /* LLDP handle or null. */ }; struct xlate_ctx { struct xlate_in *xin; struct xlate_out *xout; const struct xbridge *xbridge; /* Flow at the last commit. */ struct flow base_flow; /* Tunnel IP destination address as received. This is stored separately * as the base_flow.tunnel is cleared on init to reflect the datapath * behavior. Used to make sure not to send tunneled output to ourselves, * which might lead to an infinite loop. This could happen easily * if a tunnel is marked as 'ip_remote=flow', and the flow does not * actually set the tun_dst field. */ struct in6_addr orig_tunnel_ipv6_dst; /* Stack for the push and pop actions. See comment above nx_stack_push() * in nx-match.c for info on how the stack is stored. */ struct ofpbuf stack; /* The rule that we are currently translating, or NULL. */ struct rule_dpif *rule; /* Flow translation populates this with wildcards relevant in translation. * When 'xin->wc' is nonnull, this is the same pointer. When 'xin->wc' is * null, this is a pointer to a temporary buffer. */ struct flow_wildcards *wc; /* Output buffer for datapath actions. When 'xin->odp_actions' is nonnull, * this is the same pointer. When 'xin->odp_actions' is null, this points * to a scratch ofpbuf. This allows code to add actions to * 'ctx->odp_actions' without worrying about whether the caller really * wants actions. */ struct ofpbuf *odp_actions; /* Statistics maintained by xlate_table_action(). * * These statistics limit the amount of work that a single flow * translation can perform. The goal of the first of these, 'depth', is * primarily to prevent translation from performing an infinite amount of * work. It counts the current depth of nested "resubmit"s (and a few * other activities); when a resubmit returns, it decreases. Resubmits to * tables in strictly monotonically increasing order don't contribute to * 'depth' because they cannot cause a flow translation to take an infinite * amount of time (because the number of tables is finite). Translation * aborts when 'depth' exceeds MAX_DEPTH. * * 'resubmits', on the other hand, prevents flow translation from * performing an extraordinarily large while still finite amount of work. * It counts the total number of resubmits (and a few other activities) * that have been executed. Returning from a resubmit does not affect this * counter. Thus, this limits the amount of work that a particular * translation can perform. Translation aborts when 'resubmits' exceeds * MAX_RESUBMITS (which is much larger than MAX_DEPTH). */ int depth; /* Current resubmit nesting depth. */ int resubmits; /* Total number of resubmits. */ bool in_group; /* Currently translating ofgroup, if true. */ bool in_action_set; /* Currently translating action_set, if true. */ bool in_packet_out; /* Currently translating a packet_out msg, if * true. */ uint8_t table_id; /* OpenFlow table ID where flow was found. */ ovs_be64 rule_cookie; /* Cookie of the rule being translated. */ uint32_t orig_skb_priority; /* Priority when packet arrived. */ uint32_t sflow_n_outputs; /* Number of output ports. */ odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */ ofp_port_t nf_output_iface; /* Output interface index for NetFlow. */ bool exit; /* No further actions should be processed. */ mirror_mask_t mirrors; /* Bitmap of associated mirrors. */ int mirror_snaplen; /* Max size of a mirror packet in byte. */ /* Freezing Translation * ==================== * * At some point during translation, the code may recognize the need to halt * and checkpoint the translation in a way that it can be restarted again * later. We call the checkpointing process "freezing" and the restarting * process "thawing". * * The use cases for freezing are: * * - "Recirculation", where the translation process discovers that it * doesn't have enough information to complete translation without * actually executing the actions that have already been translated, * which provides the additionally needed information. In these * situations, translation freezes translation and assigns the frozen * data a unique "recirculation ID", which it associates with the data * in a table in userspace (see ofproto-dpif-rid.h). It also adds a * OVS_ACTION_ATTR_RECIRC action specifying that ID to the datapath * actions. When a packet hits that action, the datapath looks its * flow up again using the ID. If there's a miss, it comes back to * userspace, which find the recirculation table entry for the ID, * thaws the associated frozen data, and continues translation from * that point given the additional information that is now known. * * The archetypal example is MPLS. As MPLS is implemented in * OpenFlow, the protocol that follows the last MPLS label becomes * known only when that label is popped by an OpenFlow action. That * means that Open vSwitch can't extract the headers beyond the MPLS * labels until the pop action is executed. Thus, at that point * translation uses the recirculation process to extract the headers * beyond the MPLS labels. * * (OVS also uses OVS_ACTION_ATTR_RECIRC to implement hashing for * output to bonds. OVS pre-populates all the datapath flows for bond * output in the datapath, though, which means that the elaborate * process of coming back to userspace for a second round of * translation isn't needed, and so bonds don't follow the above * process.) * * - "Continuation". A continuation is a way for an OpenFlow controller * to interpose on a packet's traversal of the OpenFlow tables. When * the translation process encounters a "controller" action with the * "pause" flag, it freezes translation, serializes the frozen data, * and sends it to an OpenFlow controller. The controller then * examines and possibly modifies the frozen data and eventually sends * it back to the switch, which thaws it and continues translation. * * The main problem of freezing translation is preserving state, so that * when the translation is thawed later it resumes from where it left off, * without disruption. In particular, actions must be preserved as follows: * * - If we're freezing because an action needed more information, the * action that prompted it. * * - Any actions remaining to be translated within the current flow. * * - If translation was frozen within a NXAST_RESUBMIT, then any actions * following the resubmit action. Resubmit actions can be nested, so * this has to go all the way up the control stack. * * - The OpenFlow 1.1+ action set. * * State that actions and flow table lookups can depend on, such as the * following, must also be preserved: * * - Metadata fields (input port, registers, OF1.1+ metadata, ...). * * - The stack used by NXAST_STACK_PUSH and NXAST_STACK_POP actions. * * - The table ID and cookie of the flow being translated at each level * of the control stack, because these can become visible through * OFPAT_CONTROLLER actions (and other ways). * * Translation allows for the control of this state preservation via these * members. When a need to freeze translation is identified, the * translation process: * * 1. Sets 'freezing' to true. * * 2. Sets 'exit' to true to tell later steps that we're exiting from the * translation process. * * 3. Adds an OFPACT_UNROLL_XLATE action to 'frozen_actions', and points * frozen_actions.header to the action to make it easy to find it later. * This action holds the current table ID and cookie so that they can be * restored during a post-recirculation upcall translation. * * 4. Adds the action that prompted recirculation and any actions following * it within the same flow to 'frozen_actions', so that they can be * executed during a post-recirculation upcall translation. * * 5. Returns. * * 6. The action that prompted recirculation might be nested in a stack of * nested "resubmit"s that have actions remaining. Each of these notices * that we're exiting and freezing and responds by adding more * OFPACT_UNROLL_XLATE actions to 'frozen_actions', as necessary, * followed by any actions that were yet unprocessed. * * If we're freezing because of recirculation, the caller generates a * recirculation ID and associates all the state produced by this process * with it. For post-recirculation upcall translation, the caller passes it * back in for the new translation to execute. The process yielded a set of * ofpacts that can be translated directly, so it is not much of a special * case at that point. */ bool freezing; bool recirc_update_dp_hash; /* Generated recirculation will be preceded * by datapath HASH action to get an updated * dp_hash after recirculation. */ uint32_t dp_hash_alg; uint32_t dp_hash_basis; struct ofpbuf frozen_actions; const struct ofpact_controller *pause; /* True if a packet was but is no longer MPLS (due to an MPLS pop action). * This is a trigger for recirculation in cases where translating an action * or looking up a flow requires access to the fields of the packet after * the MPLS label stack that was originally present. */ bool was_mpls; /* True if conntrack has been performed on this packet during processing * on the current bridge. This is used to determine whether conntrack * state from the datapath should be honored after thawing. */ bool conntracked; /* Pointer to an embedded NAT action in a conntrack action, or NULL. */ struct ofpact_nat *ct_nat_action; /* OpenFlow 1.1+ action set. * * 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS. * When translation is otherwise complete, ofpacts_execute_action_set() * converts it to a set of "struct ofpact"s that can be translated into * datapath actions. */ bool action_set_has_group; /* Action set contains OFPACT_GROUP? */ struct ofpbuf action_set; /* Action set. */ enum xlate_error error; /* Translation failed. */ }; /* Structure to track VLAN manipulation */ struct xvlan_single { uint16_t tpid; uint16_t vid; uint16_t pcp; }; struct xvlan { struct xvlan_single v[FLOW_MAX_VLAN_HEADERS]; }; const char *xlate_strerror(enum xlate_error error) { switch (error) { case XLATE_OK: return "OK"; case XLATE_BRIDGE_NOT_FOUND: return "Bridge not found"; case XLATE_RECURSION_TOO_DEEP: return "Recursion too deep"; case XLATE_TOO_MANY_RESUBMITS: return "Too many resubmits"; case XLATE_STACK_TOO_DEEP: return "Stack too deep"; case XLATE_NO_RECIRCULATION_CONTEXT: return "No recirculation context"; case XLATE_RECIRCULATION_CONFLICT: return "Recirculation conflict"; case XLATE_TOO_MANY_MPLS_LABELS: return "Too many MPLS labels"; case XLATE_INVALID_TUNNEL_METADATA: return "Invalid tunnel metadata"; } return "Unknown error"; } static void xlate_action_set(struct xlate_ctx *ctx); static void xlate_commit_actions(struct xlate_ctx *ctx); static void ctx_trigger_freeze(struct xlate_ctx *ctx) { ctx->exit = true; ctx->freezing = true; } static void ctx_trigger_recirculate_with_hash(struct xlate_ctx *ctx, uint32_t type, uint32_t basis) { ctx->exit = true; ctx->freezing = true; ctx->recirc_update_dp_hash = true; ctx->dp_hash_alg = type; ctx->dp_hash_basis = basis; } static bool ctx_first_frozen_action(const struct xlate_ctx *ctx) { return !ctx->frozen_actions.size; } static void ctx_cancel_freeze(struct xlate_ctx *ctx) { if (ctx->freezing) { ctx->freezing = false; ctx->recirc_update_dp_hash = false; ofpbuf_clear(&ctx->frozen_actions); ctx->frozen_actions.header = NULL; } } static void finish_freezing(struct xlate_ctx *ctx); /* A controller may use OFPP_NONE as the ingress port to indicate that * it did not arrive on a "real" port. 'ofpp_none_bundle' exists for * when an input bundle is needed for validation (e.g., mirroring or * OFPP_NORMAL processing). It is not connected to an 'ofproto' or have * any 'port' structs, so care must be taken when dealing with it. */ static struct xbundle ofpp_none_bundle = { .name = "OFPP_NONE", .vlan_mode = PORT_VLAN_TRUNK }; /* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from * 'priority' (the datapath's term for QoS queue) to the dscp bits which all * traffic egressing the 'ofport' with that priority should be marked with. */ struct skb_priority_to_dscp { struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */ uint32_t skb_priority; /* Priority of this queue (see struct flow). */ uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */ }; /* Xlate config contains hash maps of all bridges, bundles and ports. * Xcfgp contains the pointer to the current xlate configuration. * When the main thread needs to change the configuration, it copies xcfgp to * new_xcfg and edits new_xcfg. This enables the use of RCU locking which * does not block handler and revalidator threads. */ struct xlate_cfg { struct hmap xbridges; struct hmap xbundles; struct hmap xports; }; static OVSRCU_TYPE(struct xlate_cfg *) xcfgp = OVSRCU_INITIALIZER(NULL); static struct xlate_cfg *new_xcfg = NULL; static bool may_receive(const struct xport *, struct xlate_ctx *); static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len, struct xlate_ctx *); static void xlate_normal(struct xlate_ctx *); static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port, uint8_t table_id, bool may_packet_in, bool honor_table_miss, bool with_ct_orig); static bool input_vid_is_valid(const struct xlate_ctx *, uint16_t vid, struct xbundle *); static void xvlan_copy(struct xvlan *dst, const struct xvlan *src); static void xvlan_pop(struct xvlan *src); static void xvlan_push_uninit(struct xvlan *src); static void xvlan_extract(const struct flow *, struct xvlan *); static void xvlan_put(struct flow *, const struct xvlan *); static void xvlan_input_translate(const struct xbundle *, const struct xvlan *in, struct xvlan *xvlan); static void xvlan_output_translate(const struct xbundle *, const struct xvlan *xvlan, struct xvlan *out); static void output_normal(struct xlate_ctx *, const struct xbundle *, const struct xvlan *); /* Optional bond recirculation parameter to compose_output_action(). */ struct xlate_bond_recirc { uint32_t recirc_id; /* !0 Use recirculation instead of output. */ uint8_t hash_alg; /* !0 Compute hash for recirc before. */ uint32_t hash_basis; /* Compute hash for recirc before. */ }; static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port, const struct xlate_bond_recirc *xr); static struct xbridge *xbridge_lookup(struct xlate_cfg *, const struct ofproto_dpif *); static struct xbridge *xbridge_lookup_by_uuid(struct xlate_cfg *, const struct uuid *); static struct xbundle *xbundle_lookup(struct xlate_cfg *, const struct ofbundle *); static struct xport *xport_lookup(struct xlate_cfg *, const struct ofport_dpif *); static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port); static struct skb_priority_to_dscp *get_skb_priority(const struct xport *, uint32_t skb_priority); static void clear_skb_priorities(struct xport *); static size_t count_skb_priorities(const struct xport *); static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority, uint8_t *dscp); static void xlate_xbridge_init(struct xlate_cfg *, struct xbridge *); static void xlate_xbundle_init(struct xlate_cfg *, struct xbundle *); static void xlate_xport_init(struct xlate_cfg *, struct xport *); static void xlate_xbridge_set(struct xbridge *, struct dpif *, const struct mac_learning *, struct stp *, struct rstp *, const struct mcast_snooping *, const struct mbridge *, const struct dpif_sflow *, const struct dpif_ipfix *, const struct netflow *, bool forward_bpdu, bool has_in_band, const struct dpif_backer_support *); static void xlate_xbundle_set(struct xbundle *xbundle, enum port_vlan_mode vlan_mode, uint16_t qinq_ethtype, int vlan, unsigned long *trunks, unsigned long *cvlans, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable, bool protected); static void xlate_xport_set(struct xport *xport, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, const struct lldp *lldp, int stp_port_no, const struct rstp_port *rstp_port, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable); static void xlate_xbridge_remove(struct xlate_cfg *, struct xbridge *); static void xlate_xbundle_remove(struct xlate_cfg *, struct xbundle *); static void xlate_xport_remove(struct xlate_cfg *, struct xport *); static void xlate_xbridge_copy(struct xbridge *); static void xlate_xbundle_copy(struct xbridge *, struct xbundle *); static void xlate_xport_copy(struct xbridge *, struct xbundle *, struct xport *); static void xlate_xcfg_free(struct xlate_cfg *); /* Tracing helpers. */ /* If tracing is enabled in 'ctx', creates a new trace node and appends it to * the list of nodes maintained in ctx->xin. The new node has type 'type' and * its text is created from 'format' by treating it as a printf format string. * Returns the list of nodes embedded within the new trace node; ordinarily, * the calleer can ignore this, but it is useful if the caller needs to nest * more trace nodes within the new node. * * If tracing is not enabled, does nothing and returns NULL. */ static struct ovs_list * OVS_PRINTF_FORMAT(3, 4) xlate_report(const struct xlate_ctx *ctx, enum oftrace_node_type type, const char *format, ...) { struct ovs_list *subtrace = NULL; if (OVS_UNLIKELY(ctx->xin->trace)) { va_list args; va_start(args, format); char *text = xvasprintf(format, args); subtrace = &oftrace_report(ctx->xin->trace, type, text)->subs; va_end(args); free(text); } return subtrace; } /* This is like xlate_report() for errors that are serious enough that we * should log them even if we are not tracing. */ static void OVS_PRINTF_FORMAT(2, 3) xlate_report_error(const struct xlate_ctx *ctx, const char *format, ...) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); if (!OVS_UNLIKELY(ctx->xin->trace) && (!ctx->xin->packet || VLOG_DROP_WARN(&rl))) { return; } struct ds s = DS_EMPTY_INITIALIZER; va_list args; va_start(args, format); ds_put_format_valist(&s, format, args); va_end(args); if (ctx->xin->trace) { oftrace_report(ctx->xin->trace, OFT_ERROR, ds_cstr(&s)); } else { ds_put_cstr(&s, " while processing "); flow_format(&s, &ctx->base_flow, NULL); ds_put_format(&s, " on bridge %s", ctx->xbridge->name); VLOG_WARN("%s", ds_cstr(&s)); } ds_destroy(&s); } /* This is like xlate_report() for messages that should be logged at debug * level (even if we are not tracing) because they can be valuable for * debugging. */ static void OVS_PRINTF_FORMAT(3, 4) xlate_report_debug(const struct xlate_ctx *ctx, enum oftrace_node_type type, const char *format, ...) { static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300); if (!OVS_UNLIKELY(ctx->xin->trace) && (!ctx->xin->packet || VLOG_DROP_DBG(&rl))) { return; } struct ds s = DS_EMPTY_INITIALIZER; va_list args; va_start(args, format); ds_put_format_valist(&s, format, args); va_end(args); if (ctx->xin->trace) { oftrace_report(ctx->xin->trace, type, ds_cstr(&s)); } else { VLOG_DBG("bridge %s: %s", ctx->xbridge->name, ds_cstr(&s)); } ds_destroy(&s); } /* If tracing is enabled in 'ctx', appends a node of the given 'type' to the * trace, whose text is 'title' followed by a formatted version of the * 'ofpacts_len' OpenFlow actions in 'ofpacts'. * * If tracing is not enabled, does nothing. */ static void xlate_report_actions(const struct xlate_ctx *ctx, enum oftrace_node_type type, const char *title, const struct ofpact *ofpacts, size_t ofpacts_len) { if (OVS_UNLIKELY(ctx->xin->trace)) { struct ds s = DS_EMPTY_INITIALIZER; ds_put_format(&s, "%s: ", title); ofpacts_format(ofpacts, ofpacts_len, NULL, &s); oftrace_report(ctx->xin->trace, type, ds_cstr(&s)); ds_destroy(&s); } } /* If tracing is enabled in 'ctx', appends a node of type OFT_DETAIL to the * trace, whose the message is a formatted version of the OpenFlow action set. * 'verb' should be "was" or "is", depending on whether the action set reported * is the new action set or the old one. * * If tracing is not enabled, does nothing. */ static void xlate_report_action_set(const struct xlate_ctx *ctx, const char *verb) { if (OVS_UNLIKELY(ctx->xin->trace)) { struct ofpbuf action_list; ofpbuf_init(&action_list, 0); ofpacts_execute_action_set(&action_list, &ctx->action_set); if (action_list.size) { struct ds s = DS_EMPTY_INITIALIZER; ofpacts_format(action_list.data, action_list.size, NULL, &s); xlate_report(ctx, OFT_DETAIL, "action set %s: %s", verb, ds_cstr(&s)); ds_destroy(&s); } else { xlate_report(ctx, OFT_DETAIL, "action set %s empty", verb); } ofpbuf_uninit(&action_list); } } /* If tracing is enabled in 'ctx', appends a node representing 'rule' (in * OpenFlow table 'table_id') to the trace and makes this node the parent for * future trace nodes. The caller should save ctx->xin->trace before calling * this function, then after tracing all of the activities under the table, * restore its previous value. * * If tracing is not enabled, does nothing. */ static void xlate_report_table(const struct xlate_ctx *ctx, struct rule_dpif *rule, uint8_t table_id) { if (OVS_LIKELY(!ctx->xin->trace)) { return; } struct ds s = DS_EMPTY_INITIALIZER; ds_put_format(&s, "%2d. ", table_id); if (rule == ctx->xin->ofproto->miss_rule) { ds_put_cstr(&s, "No match, and a \"packet-in\" is called for."); } else if (rule == ctx->xin->ofproto->no_packet_in_rule) { ds_put_cstr(&s, "No match."); } else if (rule == ctx->xin->ofproto->drop_frags_rule) { ds_put_cstr(&s, "Packets are IP fragments and " "the fragment handling mode is \"drop\"."); } else { minimatch_format(&rule->up.cr.match, ofproto_get_tun_tab(&ctx->xin->ofproto->up), NULL, &s, OFP_DEFAULT_PRIORITY); if (ds_last(&s) != ' ') { ds_put_cstr(&s, ", "); } ds_put_format(&s, "priority %d", rule->up.cr.priority); if (rule->up.flow_cookie) { ds_put_format(&s, ", cookie %#"PRIx64, ntohll(rule->up.flow_cookie)); } } ctx->xin->trace = &oftrace_report(ctx->xin->trace, OFT_TABLE, ds_cstr(&s))->subs; ds_destroy(&s); } /* If tracing is enabled in 'ctx', adds an OFT_DETAIL trace node to 'ctx' * reporting the value of subfield 'sf'. * * If tracing is not enabled, does nothing. */ static void xlate_report_subfield(const struct xlate_ctx *ctx, const struct mf_subfield *sf) { if (OVS_UNLIKELY(ctx->xin->trace)) { struct ds s = DS_EMPTY_INITIALIZER; mf_format_subfield(sf, &s); ds_put_cstr(&s, " is now "); if (sf->ofs == 0 && sf->n_bits >= sf->field->n_bits) { union mf_value value; mf_get_value(sf->field, &ctx->xin->flow, &value); mf_format(sf->field, &value, NULL, NULL, &s); } else { union mf_subvalue cst; mf_read_subfield(sf, &ctx->xin->flow, &cst); ds_put_hex(&s, &cst, sizeof cst); } xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s)); ds_destroy(&s); } } static void xlate_xbridge_init(struct xlate_cfg *xcfg, struct xbridge *xbridge) { ovs_list_init(&xbridge->xbundles); hmap_init(&xbridge->xports); hmap_insert(&xcfg->xbridges, &xbridge->hmap_node, hash_pointer(xbridge->ofproto, 0)); } static void xlate_xbundle_init(struct xlate_cfg *xcfg, struct xbundle *xbundle) { ovs_list_init(&xbundle->xports); ovs_list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node); hmap_insert(&xcfg->xbundles, &xbundle->hmap_node, hash_pointer(xbundle->ofbundle, 0)); } static void xlate_xport_init(struct xlate_cfg *xcfg, struct xport *xport) { hmap_init(&xport->skb_priorities); hmap_insert(&xcfg->xports, &xport->hmap_node, hash_pointer(xport->ofport, 0)); hmap_insert(&xport->xbridge->xports, &xport->ofp_node, hash_ofp_port(xport->ofp_port)); } static void xlate_xbridge_set(struct xbridge *xbridge, struct dpif *dpif, const struct mac_learning *ml, struct stp *stp, struct rstp *rstp, const struct mcast_snooping *ms, const struct mbridge *mbridge, const struct dpif_sflow *sflow, const struct dpif_ipfix *ipfix, const struct netflow *netflow, bool forward_bpdu, bool has_in_band, const struct dpif_backer_support *support) { if (xbridge->ml != ml) { mac_learning_unref(xbridge->ml); xbridge->ml = mac_learning_ref(ml); } if (xbridge->ms != ms) { mcast_snooping_unref(xbridge->ms); xbridge->ms = mcast_snooping_ref(ms); } if (xbridge->mbridge != mbridge) { mbridge_unref(xbridge->mbridge); xbridge->mbridge = mbridge_ref(mbridge); } if (xbridge->sflow != sflow) { dpif_sflow_unref(xbridge->sflow); xbridge->sflow = dpif_sflow_ref(sflow); } if (xbridge->ipfix != ipfix) { dpif_ipfix_unref(xbridge->ipfix); xbridge->ipfix = dpif_ipfix_ref(ipfix); } if (xbridge->stp != stp) { stp_unref(xbridge->stp); xbridge->stp = stp_ref(stp); } if (xbridge->rstp != rstp) { rstp_unref(xbridge->rstp); xbridge->rstp = rstp_ref(rstp); } if (xbridge->netflow != netflow) { netflow_unref(xbridge->netflow); xbridge->netflow = netflow_ref(netflow); } xbridge->dpif = dpif; xbridge->forward_bpdu = forward_bpdu; xbridge->has_in_band = has_in_band; xbridge->support = *support; } static void xlate_xbundle_set(struct xbundle *xbundle, enum port_vlan_mode vlan_mode, uint16_t qinq_ethtype, int vlan, unsigned long *trunks, unsigned long *cvlans, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable, bool protected) { ovs_assert(xbundle->xbridge); xbundle->vlan_mode = vlan_mode; xbundle->qinq_ethtype = qinq_ethtype; xbundle->vlan = vlan; xbundle->trunks = trunks; xbundle->cvlans = cvlans; xbundle->use_priority_tags = use_priority_tags; xbundle->floodable = floodable; xbundle->protected = protected; if (xbundle->bond != bond) { bond_unref(xbundle->bond); xbundle->bond = bond_ref(bond); } if (xbundle->lacp != lacp) { lacp_unref(xbundle->lacp); xbundle->lacp = lacp_ref(lacp); } } static void xlate_xport_set(struct xport *xport, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, const struct lldp *lldp, int stp_port_no, const struct rstp_port* rstp_port, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable) { xport->config = config; xport->state = state; xport->stp_port_no = stp_port_no; xport->is_tunnel = is_tunnel; xport->is_layer3 = netdev_vport_is_layer3(netdev); xport->may_enable = may_enable; xport->odp_port = odp_port; if (xport->rstp_port != rstp_port) { rstp_port_unref(xport->rstp_port); xport->rstp_port = rstp_port_ref(rstp_port); } if (xport->cfm != cfm) { cfm_unref(xport->cfm); xport->cfm = cfm_ref(cfm); } if (xport->bfd != bfd) { bfd_unref(xport->bfd); xport->bfd = bfd_ref(bfd); } if (xport->lldp != lldp) { lldp_unref(xport->lldp); xport->lldp = lldp_ref(lldp); } if (xport->netdev != netdev) { netdev_close(xport->netdev); xport->netdev = netdev_ref(netdev); } } static void xlate_xbridge_copy(struct xbridge *xbridge) { struct xbundle *xbundle; struct xport *xport; struct xbridge *new_xbridge = xzalloc(sizeof *xbridge); new_xbridge->ofproto = xbridge->ofproto; new_xbridge->name = xstrdup(xbridge->name); xlate_xbridge_init(new_xcfg, new_xbridge); xlate_xbridge_set(new_xbridge, xbridge->dpif, xbridge->ml, xbridge->stp, xbridge->rstp, xbridge->ms, xbridge->mbridge, xbridge->sflow, xbridge->ipfix, xbridge->netflow, xbridge->forward_bpdu, xbridge->has_in_band, &xbridge->support); LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) { xlate_xbundle_copy(new_xbridge, xbundle); } /* Copy xports which are not part of a xbundle */ HMAP_FOR_EACH (xport, ofp_node, &xbridge->xports) { if (!xport->xbundle) { xlate_xport_copy(new_xbridge, NULL, xport); } } } static void xlate_xbundle_copy(struct xbridge *xbridge, struct xbundle *xbundle) { struct xport *xport; struct xbundle *new_xbundle = xzalloc(sizeof *xbundle); new_xbundle->ofbundle = xbundle->ofbundle; new_xbundle->xbridge = xbridge; new_xbundle->name = xstrdup(xbundle->name); xlate_xbundle_init(new_xcfg, new_xbundle); xlate_xbundle_set(new_xbundle, xbundle->vlan_mode, xbundle->qinq_ethtype, xbundle->vlan, xbundle->trunks, xbundle->cvlans, xbundle->use_priority_tags, xbundle->bond, xbundle->lacp, xbundle->floodable, xbundle->protected); LIST_FOR_EACH (xport, bundle_node, &xbundle->xports) { xlate_xport_copy(xbridge, new_xbundle, xport); } } static void xlate_xport_copy(struct xbridge *xbridge, struct xbundle *xbundle, struct xport *xport) { struct skb_priority_to_dscp *pdscp, *new_pdscp; struct xport *new_xport = xzalloc(sizeof *xport); new_xport->ofport = xport->ofport; new_xport->ofp_port = xport->ofp_port; new_xport->xbridge = xbridge; xlate_xport_init(new_xcfg, new_xport); xlate_xport_set(new_xport, xport->odp_port, xport->netdev, xport->cfm, xport->bfd, xport->lldp, xport->stp_port_no, xport->rstp_port, xport->config, xport->state, xport->is_tunnel, xport->may_enable); if (xport->peer) { struct xport *peer = xport_lookup(new_xcfg, xport->peer->ofport); if (peer) { new_xport->peer = peer; new_xport->peer->peer = new_xport; } } if (xbundle) { new_xport->xbundle = xbundle; ovs_list_insert(&new_xport->xbundle->xports, &new_xport->bundle_node); } HMAP_FOR_EACH (pdscp, hmap_node, &xport->skb_priorities) { new_pdscp = xmalloc(sizeof *pdscp); new_pdscp->skb_priority = pdscp->skb_priority; new_pdscp->dscp = pdscp->dscp; hmap_insert(&new_xport->skb_priorities, &new_pdscp->hmap_node, hash_int(new_pdscp->skb_priority, 0)); } } /* Sets the current xlate configuration to new_xcfg and frees the old xlate * configuration in xcfgp. * * This needs to be called after editing the xlate configuration. * * Functions that edit the new xlate configuration are * xlate__set and xlate__remove. * * A sample workflow: * * xlate_txn_start(); * ... * edit_xlate_configuration(); * ... * xlate_txn_commit(); */ void xlate_txn_commit(void) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); ovsrcu_set(&xcfgp, new_xcfg); ovsrcu_synchronize(); xlate_xcfg_free(xcfg); new_xcfg = NULL; } /* Copies the current xlate configuration in xcfgp to new_xcfg. * * This needs to be called prior to editing the xlate configuration. */ void xlate_txn_start(void) { struct xbridge *xbridge; struct xlate_cfg *xcfg; ovs_assert(!new_xcfg); new_xcfg = xmalloc(sizeof *new_xcfg); hmap_init(&new_xcfg->xbridges); hmap_init(&new_xcfg->xbundles); hmap_init(&new_xcfg->xports); xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); if (!xcfg) { return; } HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) { xlate_xbridge_copy(xbridge); } } static void xlate_xcfg_free(struct xlate_cfg *xcfg) { struct xbridge *xbridge, *next_xbridge; if (!xcfg) { return; } HMAP_FOR_EACH_SAFE (xbridge, next_xbridge, hmap_node, &xcfg->xbridges) { xlate_xbridge_remove(xcfg, xbridge); } hmap_destroy(&xcfg->xbridges); hmap_destroy(&xcfg->xbundles); hmap_destroy(&xcfg->xports); free(xcfg); } void xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name, struct dpif *dpif, const struct mac_learning *ml, struct stp *stp, struct rstp *rstp, const struct mcast_snooping *ms, const struct mbridge *mbridge, const struct dpif_sflow *sflow, const struct dpif_ipfix *ipfix, const struct netflow *netflow, bool forward_bpdu, bool has_in_band, const struct dpif_backer_support *support) { struct xbridge *xbridge; ovs_assert(new_xcfg); xbridge = xbridge_lookup(new_xcfg, ofproto); if (!xbridge) { xbridge = xzalloc(sizeof *xbridge); xbridge->ofproto = ofproto; xlate_xbridge_init(new_xcfg, xbridge); } free(xbridge->name); xbridge->name = xstrdup(name); xlate_xbridge_set(xbridge, dpif, ml, stp, rstp, ms, mbridge, sflow, ipfix, netflow, forward_bpdu, has_in_band, support); } static void xlate_xbridge_remove(struct xlate_cfg *xcfg, struct xbridge *xbridge) { struct xbundle *xbundle, *next_xbundle; struct xport *xport, *next_xport; if (!xbridge) { return; } HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) { xlate_xport_remove(xcfg, xport); } LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) { xlate_xbundle_remove(xcfg, xbundle); } hmap_remove(&xcfg->xbridges, &xbridge->hmap_node); mac_learning_unref(xbridge->ml); mcast_snooping_unref(xbridge->ms); mbridge_unref(xbridge->mbridge); dpif_sflow_unref(xbridge->sflow); dpif_ipfix_unref(xbridge->ipfix); netflow_unref(xbridge->netflow); stp_unref(xbridge->stp); rstp_unref(xbridge->rstp); hmap_destroy(&xbridge->xports); free(xbridge->name); free(xbridge); } void xlate_remove_ofproto(struct ofproto_dpif *ofproto) { struct xbridge *xbridge; ovs_assert(new_xcfg); xbridge = xbridge_lookup(new_xcfg, ofproto); xlate_xbridge_remove(new_xcfg, xbridge); } void xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle, const char *name, enum port_vlan_mode vlan_mode, uint16_t qinq_ethtype, int vlan, unsigned long *trunks, unsigned long *cvlans, bool use_priority_tags, const struct bond *bond, const struct lacp *lacp, bool floodable, bool protected) { struct xbundle *xbundle; ovs_assert(new_xcfg); xbundle = xbundle_lookup(new_xcfg, ofbundle); if (!xbundle) { xbundle = xzalloc(sizeof *xbundle); xbundle->ofbundle = ofbundle; xbundle->xbridge = xbridge_lookup(new_xcfg, ofproto); xlate_xbundle_init(new_xcfg, xbundle); } free(xbundle->name); xbundle->name = xstrdup(name); xlate_xbundle_set(xbundle, vlan_mode, qinq_ethtype, vlan, trunks, cvlans, use_priority_tags, bond, lacp, floodable, protected); } static void xlate_xbundle_remove(struct xlate_cfg *xcfg, struct xbundle *xbundle) { struct xport *xport; if (!xbundle) { return; } LIST_FOR_EACH_POP (xport, bundle_node, &xbundle->xports) { xport->xbundle = NULL; } hmap_remove(&xcfg->xbundles, &xbundle->hmap_node); ovs_list_remove(&xbundle->list_node); bond_unref(xbundle->bond); lacp_unref(xbundle->lacp); free(xbundle->name); free(xbundle); } void xlate_bundle_remove(struct ofbundle *ofbundle) { struct xbundle *xbundle; ovs_assert(new_xcfg); xbundle = xbundle_lookup(new_xcfg, ofbundle); xlate_xbundle_remove(new_xcfg, xbundle); } void xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle, struct ofport_dpif *ofport, ofp_port_t ofp_port, odp_port_t odp_port, const struct netdev *netdev, const struct cfm *cfm, const struct bfd *bfd, const struct lldp *lldp, struct ofport_dpif *peer, int stp_port_no, const struct rstp_port *rstp_port, const struct ofproto_port_queue *qdscp_list, size_t n_qdscp, enum ofputil_port_config config, enum ofputil_port_state state, bool is_tunnel, bool may_enable) { size_t i; struct xport *xport; ovs_assert(new_xcfg); xport = xport_lookup(new_xcfg, ofport); if (!xport) { xport = xzalloc(sizeof *xport); xport->ofport = ofport; xport->xbridge = xbridge_lookup(new_xcfg, ofproto); xport->ofp_port = ofp_port; xlate_xport_init(new_xcfg, xport); } ovs_assert(xport->ofp_port == ofp_port); xlate_xport_set(xport, odp_port, netdev, cfm, bfd, lldp, stp_port_no, rstp_port, config, state, is_tunnel, may_enable); if (xport->peer) { xport->peer->peer = NULL; } xport->peer = xport_lookup(new_xcfg, peer); if (xport->peer) { xport->peer->peer = xport; } if (xport->xbundle) { ovs_list_remove(&xport->bundle_node); } xport->xbundle = xbundle_lookup(new_xcfg, ofbundle); if (xport->xbundle) { ovs_list_insert(&xport->xbundle->xports, &xport->bundle_node); } clear_skb_priorities(xport); for (i = 0; i < n_qdscp; i++) { struct skb_priority_to_dscp *pdscp; uint32_t skb_priority; if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue, &skb_priority)) { continue; } pdscp = xmalloc(sizeof *pdscp); pdscp->skb_priority = skb_priority; pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK; hmap_insert(&xport->skb_priorities, &pdscp->hmap_node, hash_int(pdscp->skb_priority, 0)); } } static void xlate_xport_remove(struct xlate_cfg *xcfg, struct xport *xport) { if (!xport) { return; } if (xport->peer) { xport->peer->peer = NULL; xport->peer = NULL; } if (xport->xbundle) { ovs_list_remove(&xport->bundle_node); } clear_skb_priorities(xport); hmap_destroy(&xport->skb_priorities); hmap_remove(&xcfg->xports, &xport->hmap_node); hmap_remove(&xport->xbridge->xports, &xport->ofp_node); netdev_close(xport->netdev); rstp_port_unref(xport->rstp_port); cfm_unref(xport->cfm); bfd_unref(xport->bfd); lldp_unref(xport->lldp); free(xport); } void xlate_ofport_remove(struct ofport_dpif *ofport) { struct xport *xport; ovs_assert(new_xcfg); xport = xport_lookup(new_xcfg, ofport); xlate_xport_remove(new_xcfg, xport); } static struct ofproto_dpif * xlate_lookup_ofproto_(const struct dpif_backer *backer, const struct flow *flow, ofp_port_t *ofp_in_port, const struct xport **xportp) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); const struct xport *xport; xport = xport_lookup(xcfg, tnl_port_should_receive(flow) ? tnl_port_receive(flow) : odp_port_to_ofport(backer, flow->in_port.odp_port)); if (OVS_UNLIKELY(!xport)) { return NULL; } *xportp = xport; if (ofp_in_port) { *ofp_in_port = xport->ofp_port; } return xport->xbridge->ofproto; } /* Given a datapath and flow metadata ('backer', and 'flow' respectively) * returns the corresponding struct ofproto_dpif and OpenFlow port number. */ struct ofproto_dpif * xlate_lookup_ofproto(const struct dpif_backer *backer, const struct flow *flow, ofp_port_t *ofp_in_port) { const struct xport *xport; return xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport); } /* Given a datapath and flow metadata ('backer', and 'flow' respectively), * optionally populates 'ofproto' with the ofproto_dpif, 'ofp_in_port' with the * openflow in_port, and 'ipfix', 'sflow', and 'netflow' with the appropriate * handles for those protocols if they're enabled. Caller may use the returned * pointers until quiescing, for longer term use additional references must * be taken. * * Returns 0 if successful, ENODEV if the parsed flow has no associated ofproto. */ int xlate_lookup(const struct dpif_backer *backer, const struct flow *flow, struct ofproto_dpif **ofprotop, struct dpif_ipfix **ipfix, struct dpif_sflow **sflow, struct netflow **netflow, ofp_port_t *ofp_in_port) { struct ofproto_dpif *ofproto; const struct xport *xport; ofproto = xlate_lookup_ofproto_(backer, flow, ofp_in_port, &xport); if (!ofproto) { return ENODEV; } if (ofprotop) { *ofprotop = ofproto; } if (ipfix) { *ipfix = xport ? xport->xbridge->ipfix : NULL; } if (sflow) { *sflow = xport ? xport->xbridge->sflow : NULL; } if (netflow) { *netflow = xport ? xport->xbridge->netflow : NULL; } return 0; } static struct xbridge * xbridge_lookup(struct xlate_cfg *xcfg, const struct ofproto_dpif *ofproto) { struct hmap *xbridges; struct xbridge *xbridge; if (!ofproto || !xcfg) { return NULL; } xbridges = &xcfg->xbridges; HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0), xbridges) { if (xbridge->ofproto == ofproto) { return xbridge; } } return NULL; } static struct xbridge * xbridge_lookup_by_uuid(struct xlate_cfg *xcfg, const struct uuid *uuid) { struct xbridge *xbridge; HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) { if (uuid_equals(&xbridge->ofproto->uuid, uuid)) { return xbridge; } } return NULL; } static struct xbundle * xbundle_lookup(struct xlate_cfg *xcfg, const struct ofbundle *ofbundle) { struct hmap *xbundles; struct xbundle *xbundle; if (!ofbundle || !xcfg) { return NULL; } xbundles = &xcfg->xbundles; HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0), xbundles) { if (xbundle->ofbundle == ofbundle) { return xbundle; } } return NULL; } static struct xport * xport_lookup(struct xlate_cfg *xcfg, const struct ofport_dpif *ofport) { struct hmap *xports; struct xport *xport; if (!ofport || !xcfg) { return NULL; } xports = &xcfg->xports; HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0), xports) { if (xport->ofport == ofport) { return xport; } } return NULL; } static struct stp_port * xport_get_stp_port(const struct xport *xport) { return xport->xbridge->stp && xport->stp_port_no != -1 ? stp_get_port(xport->xbridge->stp, xport->stp_port_no) : NULL; } static bool xport_stp_learn_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return sp ? stp_learn_in_state(stp_port_get_state(sp)) : true; } static bool xport_stp_forward_state(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return sp ? stp_forward_in_state(stp_port_get_state(sp)) : true; } static bool xport_stp_should_forward_bpdu(const struct xport *xport) { struct stp_port *sp = xport_get_stp_port(xport); return stp_should_forward_bpdu(sp ? stp_port_get_state(sp) : STP_DISABLED); } /* Returns true if STP should process 'flow'. Sets fields in 'wc' that * were used to make the determination.*/ static bool stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc) { /* is_stp() also checks dl_type, but dl_type is always set in 'wc'. */ memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); return is_stp(flow); } static void stp_process_packet(const struct xport *xport, const struct dp_packet *packet) { struct stp_port *sp = xport_get_stp_port(xport); struct dp_packet payload = *packet; struct eth_header *eth = dp_packet_data(&payload); /* Sink packets on ports that have STP disabled when the bridge has * STP enabled. */ if (!sp || stp_port_get_state(sp) == STP_DISABLED) { return; } /* Trim off padding on payload. */ if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) { dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN); } if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { stp_received_bpdu(sp, dp_packet_data(&payload), dp_packet_size(&payload)); } } static enum rstp_state xport_get_rstp_port_state(const struct xport *xport) { return xport->rstp_port ? rstp_port_get_state(xport->rstp_port) : RSTP_DISABLED; } static bool xport_rstp_learn_state(const struct xport *xport) { return xport->xbridge->rstp && xport->rstp_port ? rstp_learn_in_state(xport_get_rstp_port_state(xport)) : true; } static bool xport_rstp_forward_state(const struct xport *xport) { return xport->xbridge->rstp && xport->rstp_port ? rstp_forward_in_state(xport_get_rstp_port_state(xport)) : true; } static bool xport_rstp_should_manage_bpdu(const struct xport *xport) { return rstp_should_manage_bpdu(xport_get_rstp_port_state(xport)); } static void rstp_process_packet(const struct xport *xport, const struct dp_packet *packet) { struct dp_packet payload = *packet; struct eth_header *eth = dp_packet_data(&payload); /* Sink packets on ports that have no RSTP. */ if (!xport->rstp_port) { return; } /* Trim off padding on payload. */ if (dp_packet_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) { dp_packet_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN); } if (dp_packet_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) { rstp_port_received_bpdu(xport->rstp_port, dp_packet_data(&payload), dp_packet_size(&payload)); } } static struct xport * get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port) { struct xport *xport; HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port), &xbridge->xports) { if (xport->ofp_port == ofp_port) { return xport; } } return NULL; } static odp_port_t ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port) { const struct xport *xport = get_ofp_port(xbridge, ofp_port); return xport ? xport->odp_port : ODPP_NONE; } static bool odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port) { struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port); return xport && xport->may_enable; } static struct ofputil_bucket * group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *, int depth); static bool group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth) { struct group_dpif *group; group = group_dpif_lookup(ctx->xbridge->ofproto, group_id, ctx->xin->tables_version, false); if (group) { return group_first_live_bucket(ctx, group, depth) != NULL; } return false; } #define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */ static bool bucket_is_alive(const struct xlate_ctx *ctx, struct ofputil_bucket *bucket, int depth) { if (depth >= MAX_LIVENESS_RECURSION) { xlate_report_error(ctx, "bucket chaining exceeded %d links", MAX_LIVENESS_RECURSION); return false; } return (!ofputil_bucket_has_liveness(bucket) || (bucket->watch_port != OFPP_ANY && odp_port_is_alive(ctx, bucket->watch_port)) || (bucket->watch_group != OFPG_ANY && group_is_alive(ctx, bucket->watch_group, depth + 1))); } static struct ofputil_bucket * group_first_live_bucket(const struct xlate_ctx *ctx, const struct group_dpif *group, int depth) { struct ofputil_bucket *bucket; LIST_FOR_EACH (bucket, list_node, &group->up.buckets) { if (bucket_is_alive(ctx, bucket, depth)) { return bucket; } } return NULL; } static struct ofputil_bucket * group_best_live_bucket(const struct xlate_ctx *ctx, const struct group_dpif *group, uint32_t basis) { struct ofputil_bucket *best_bucket = NULL; uint32_t best_score = 0; struct ofputil_bucket *bucket; LIST_FOR_EACH (bucket, list_node, &group->up.buckets) { if (bucket_is_alive(ctx, bucket, 0)) { uint32_t score = (hash_int(bucket->bucket_id, basis) & 0xffff) * bucket->weight; if (score >= best_score) { best_bucket = bucket; best_score = score; } } } return best_bucket; } static bool xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan) { return (bundle->vlan_mode != PORT_VLAN_ACCESS && (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan))); } static bool xbundle_allows_cvlan(const struct xbundle *bundle, uint16_t vlan) { return (!bundle->cvlans || bitmap_is_set(bundle->cvlans, vlan)); } static bool xbundle_includes_vlan(const struct xbundle *xbundle, const struct xvlan *xvlan) { switch (xbundle->vlan_mode) { case PORT_VLAN_ACCESS: return xvlan->v[0].vid == xbundle->vlan && xvlan->v[1].vid == 0; case PORT_VLAN_TRUNK: case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: return xbundle_trunks_vlan(xbundle, xvlan->v[0].vid); case PORT_VLAN_DOT1Q_TUNNEL: return xvlan->v[0].vid == xbundle->vlan && xbundle_allows_cvlan(xbundle, xvlan->v[1].vid); default: OVS_NOT_REACHED(); } } static mirror_mask_t xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle) : 0; } static mirror_mask_t xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle) : 0; } static mirror_mask_t xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle) { return xbundle != &ofpp_none_bundle ? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle) : 0; } static struct xbundle * lookup_input_bundle__(const struct xbridge *xbridge, ofp_port_t in_port, struct xport **in_xportp) { struct xport *xport; /* Find the port and bundle for the received packet. */ xport = get_ofp_port(xbridge, in_port); if (in_xportp) { *in_xportp = xport; } if (xport && xport->xbundle) { return xport->xbundle; } /* Special-case OFPP_NONE (OF1.0) and OFPP_CONTROLLER (OF1.1+), * which a controller may use as the ingress port for traffic that * it is sourcing. */ if (in_port == OFPP_CONTROLLER || in_port == OFPP_NONE) { return &ofpp_none_bundle; } return NULL; } static struct xbundle * lookup_input_bundle(const struct xlate_ctx *ctx, ofp_port_t in_port, struct xport **in_xportp) { struct xbundle *xbundle = lookup_input_bundle__(ctx->xbridge, in_port, in_xportp); if (!xbundle) { /* Odd. A few possible reasons here: * * - We deleted a port but there are still a few packets queued up * from it. * * - Someone externally added a port (e.g. "ovs-dpctl add-if") that * we don't know about. * * - The ofproto client didn't configure the port as part of a bundle. * This is particularly likely to happen if a packet was received on * the port after it was created, but before the client had a chance * to configure its bundle. */ xlate_report_error(ctx, "received packet on unknown port %"PRIu32, in_port); } return xbundle; } /* Mirrors the packet represented by 'ctx' to appropriate mirror destinations, * given the packet is ingressing or egressing on 'xbundle', which has ingress * or egress (as appropriate) mirrors 'mirrors'. */ static void mirror_packet(struct xlate_ctx *ctx, struct xbundle *xbundle, mirror_mask_t mirrors) { struct xvlan in_xvlan; struct xvlan xvlan; /* Figure out what VLAN the packet is in (because mirrors can select * packets on basis of VLAN). */ xvlan_extract(&ctx->xin->flow, &in_xvlan); if (!input_vid_is_valid(ctx, in_xvlan.v[0].vid, xbundle)) { return; } xvlan_input_translate(xbundle, &in_xvlan, &xvlan); const struct xbridge *xbridge = ctx->xbridge; /* Don't mirror to destinations that we've already mirrored to. */ mirrors &= ~ctx->mirrors; if (!mirrors) { return; } if (ctx->xin->resubmit_stats) { mirror_update_stats(xbridge->mbridge, mirrors, ctx->xin->resubmit_stats->n_packets, ctx->xin->resubmit_stats->n_bytes); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_MIRROR); entry->mirror.mbridge = mbridge_ref(xbridge->mbridge); entry->mirror.mirrors = mirrors; } /* 'mirrors' is a bit-mask of candidates for mirroring. Iterate as long as * some candidates remain. */ while (mirrors) { const unsigned long *vlans; mirror_mask_t dup_mirrors; struct ofbundle *out; int out_vlan; int snaplen; /* Get the details of the mirror represented by the rightmost 1-bit. */ bool has_mirror = mirror_get(xbridge->mbridge, raw_ctz(mirrors), &vlans, &dup_mirrors, &out, &snaplen, &out_vlan); ovs_assert(has_mirror); /* If this mirror selects on the basis of VLAN, and it does not select * 'vlan', then discard this mirror and go on to the next one. */ if (vlans) { ctx->wc->masks.vlans[0].tci |= htons(VLAN_CFI | VLAN_VID_MASK); } if (vlans && !bitmap_is_set(vlans, xvlan.v[0].vid)) { mirrors = zero_rightmost_1bit(mirrors); continue; } /* Record the mirror, and the mirrors that output to the same * destination, so that we don't mirror to them again. This must be * done now to ensure that output_normal(), below, doesn't recursively * output to the same mirrors. */ ctx->mirrors |= dup_mirrors; ctx->mirror_snaplen = snaplen; /* Send the packet to the mirror. */ if (out) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbundle *out_xbundle = xbundle_lookup(xcfg, out); if (out_xbundle) { output_normal(ctx, out_xbundle, &xvlan); } } else if (xvlan.v[0].vid != out_vlan && !eth_addr_is_reserved(ctx->xin->flow.dl_dst)) { struct xbundle *xbundle; uint16_t old_vid = xvlan.v[0].vid; xvlan.v[0].vid = out_vlan; LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) { if (xbundle_includes_vlan(xbundle, &xvlan) && !xbundle_mirror_out(xbridge, xbundle)) { output_normal(ctx, xbundle, &xvlan); } } xvlan.v[0].vid = old_vid; } /* output_normal() could have recursively output (to different * mirrors), so make sure that we don't send duplicates. */ mirrors &= ~ctx->mirrors; ctx->mirror_snaplen = 0; } } static void mirror_ingress_packet(struct xlate_ctx *ctx) { if (mbridge_has_mirrors(ctx->xbridge->mbridge)) { struct xbundle *xbundle = lookup_input_bundle( ctx, ctx->xin->flow.in_port.ofp_port, NULL); if (xbundle) { mirror_packet(ctx, xbundle, xbundle_mirror_src(ctx->xbridge, xbundle)); } } } /* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'. * If so, returns true. Otherwise, returns false. * * 'vid' should be the VID obtained from the 802.1Q header that was received as * part of a packet (specify 0 if there was no 802.1Q header), in the range * 0...4095. */ static bool input_vid_is_valid(const struct xlate_ctx *ctx, uint16_t vid, struct xbundle *in_xbundle) { /* Allow any VID on the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return true; } switch (in_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: if (vid) { xlate_report_error(ctx, "dropping VLAN %"PRIu16" tagged " "packet received on port %s configured as VLAN " "%d access port", vid, in_xbundle->name, in_xbundle->vlan); return false; } return true; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: if (!vid) { /* Port must always carry its native VLAN. */ return true; } /* Fall through. */ case PORT_VLAN_TRUNK: if (!xbundle_trunks_vlan(in_xbundle, vid)) { xlate_report_error(ctx, "dropping VLAN %"PRIu16" packet " "received on port %s not configured for " "trunking VLAN %"PRIu16, vid, in_xbundle->name, vid); return false; } return true; case PORT_VLAN_DOT1Q_TUNNEL: if (!xbundle_allows_cvlan(in_xbundle, vid)) { xlate_report_error(ctx, "dropping VLAN %"PRIu16" packet received " "on dot1q-tunnel port %s that excludes this " "VLAN", vid, in_xbundle->name); return false; } return true; default: OVS_NOT_REACHED(); } } static void xvlan_copy(struct xvlan *dst, const struct xvlan *src) { *dst = *src; } static void xvlan_pop(struct xvlan *src) { memmove(&src->v[0], &src->v[1], sizeof(src->v) - sizeof(src->v[0])); memset(&src->v[FLOW_MAX_VLAN_HEADERS - 1], 0, sizeof(src->v[FLOW_MAX_VLAN_HEADERS - 1])); } static void xvlan_push_uninit(struct xvlan *src) { memmove(&src->v[1], &src->v[0], sizeof(src->v) - sizeof(src->v[0])); memset(&src->v[0], 0, sizeof(src->v[0])); } /* Extract VLAN information (headers) from flow */ static void xvlan_extract(const struct flow *flow, struct xvlan *xvlan) { int i; memset(xvlan, 0, sizeof(*xvlan)); for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) { if (!eth_type_vlan(flow->vlans[i].tpid) || !(flow->vlans[i].tci & htons(VLAN_CFI))) { break; } xvlan->v[i].tpid = ntohs(flow->vlans[i].tpid); xvlan->v[i].vid = vlan_tci_to_vid(flow->vlans[i].tci); xvlan->v[i].pcp = ntohs(flow->vlans[i].tci) & VLAN_PCP_MASK; } } /* Put VLAN information (headers) to flow */ static void xvlan_put(struct flow *flow, const struct xvlan *xvlan) { ovs_be16 tci; int i; for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) { tci = htons(xvlan->v[i].vid | (xvlan->v[i].pcp & VLAN_PCP_MASK)); if (tci) { tci |= htons(VLAN_CFI); flow->vlans[i].tpid = xvlan->v[i].tpid ? htons(xvlan->v[i].tpid) : htons(ETH_TYPE_VLAN_8021Q); } flow->vlans[i].tci = tci; } } /* Given 'in_xvlan', extracted from the input 802.1Q headers received as part * of a packet, and 'in_xbundle', the bundle on which the packet was received, * returns the VLANs of the packet during bridge internal processing. */ static void xvlan_input_translate(const struct xbundle *in_xbundle, const struct xvlan *in_xvlan, struct xvlan *xvlan) { switch (in_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: memset(xvlan, 0, sizeof(*xvlan)); xvlan->v[0].tpid = in_xvlan->v[0].tpid ? in_xvlan->v[0].tpid : ETH_TYPE_VLAN_8021Q; xvlan->v[0].vid = in_xbundle->vlan; xvlan->v[0].pcp = in_xvlan->v[0].pcp; break; case PORT_VLAN_TRUNK: xvlan_copy(xvlan, in_xvlan); break; case PORT_VLAN_NATIVE_UNTAGGED: case PORT_VLAN_NATIVE_TAGGED: xvlan_copy(xvlan, in_xvlan); if (!in_xvlan->v[0].vid) { xvlan->v[0].tpid = in_xvlan->v[0].tpid ? in_xvlan->v[0].tpid : ETH_TYPE_VLAN_8021Q; xvlan->v[0].vid = in_xbundle->vlan; xvlan->v[0].pcp = in_xvlan->v[0].pcp; } break; case PORT_VLAN_DOT1Q_TUNNEL: xvlan_copy(xvlan, in_xvlan); xvlan_push_uninit(xvlan); xvlan->v[0].tpid = in_xbundle->qinq_ethtype; xvlan->v[0].vid = in_xbundle->vlan; xvlan->v[0].pcp = 0; break; default: OVS_NOT_REACHED(); } } /* Given 'xvlan', the VLANs of a packet during internal processing, and * 'out_xbundle', a bundle on which the packet is to be output, returns the * VLANs that should be included in output packet. */ static void xvlan_output_translate(const struct xbundle *out_xbundle, const struct xvlan *xvlan, struct xvlan *out_xvlan) { switch (out_xbundle->vlan_mode) { case PORT_VLAN_ACCESS: memset(out_xvlan, 0, sizeof(*out_xvlan)); break; case PORT_VLAN_TRUNK: case PORT_VLAN_NATIVE_TAGGED: xvlan_copy(out_xvlan, xvlan); break; case PORT_VLAN_NATIVE_UNTAGGED: xvlan_copy(out_xvlan, xvlan); if (xvlan->v[0].vid == out_xbundle->vlan) { xvlan_pop(out_xvlan); } break; case PORT_VLAN_DOT1Q_TUNNEL: xvlan_copy(out_xvlan, xvlan); xvlan_pop(out_xvlan); break; default: OVS_NOT_REACHED(); } } /* If output xbundle is dot1q-tunnel, set mask bits of cvlan */ static void check_and_set_cvlan_mask(struct flow_wildcards *wc, const struct xbundle *xbundle) { if (xbundle->vlan_mode == PORT_VLAN_DOT1Q_TUNNEL && xbundle->cvlans) { wc->masks.vlans[1].tci = htons(0xffff); } } static void output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle, const struct xvlan *xvlan) { uint16_t vid; union flow_vlan_hdr old_vlans[FLOW_MAX_VLAN_HEADERS]; struct xport *xport; struct xlate_bond_recirc xr; bool use_recirc = false; struct xvlan out_xvlan; check_and_set_cvlan_mask(ctx->wc, out_xbundle); xvlan_output_translate(out_xbundle, xvlan, &out_xvlan); if (out_xbundle->use_priority_tags) { out_xvlan.v[0].pcp = ntohs(ctx->xin->flow.vlans[0].tci) & VLAN_PCP_MASK; } vid = out_xvlan.v[0].vid; if (ovs_list_is_empty(&out_xbundle->xports)) { /* Partially configured bundle with no slaves. Drop the packet. */ return; } else if (!out_xbundle->bond) { xport = CONTAINER_OF(ovs_list_front(&out_xbundle->xports), struct xport, bundle_node); } else { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct flow_wildcards *wc = ctx->wc; struct ofport_dpif *ofport; if (ctx->xbridge->support.odp.recirc) { /* In case recirculation is not actually in use, 'xr.recirc_id' * will be set to '0', since a valid 'recirc_id' can * not be zero. */ bond_update_post_recirc_rules(out_xbundle->bond, &xr.recirc_id, &xr.hash_basis); if (xr.recirc_id) { /* Use recirculation instead of output. */ use_recirc = true; xr.hash_alg = OVS_HASH_ALG_L4; /* Recirculation does not require unmasking hash fields. */ wc = NULL; } } ofport = bond_choose_output_slave(out_xbundle->bond, &ctx->xin->flow, wc, vid); xport = xport_lookup(xcfg, ofport); if (!xport) { /* No slaves enabled, so drop packet. */ return; } /* If use_recirc is set, the main thread will handle stats * accounting for this bond. */ if (!use_recirc) { if (ctx->xin->resubmit_stats) { bond_account(out_xbundle->bond, &ctx->xin->flow, vid, ctx->xin->resubmit_stats->n_bytes); } if (ctx->xin->xcache) { struct xc_entry *entry; struct flow *flow; flow = &ctx->xin->flow; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_BOND); entry->bond.bond = bond_ref(out_xbundle->bond); entry->bond.flow = xmemdup(flow, sizeof *flow); entry->bond.vid = vid; } } } memcpy(&old_vlans, &ctx->xin->flow.vlans, sizeof(old_vlans)); xvlan_put(&ctx->xin->flow, &out_xvlan); compose_output_action(ctx, xport->ofp_port, use_recirc ? &xr : NULL); memcpy(&ctx->xin->flow.vlans, &old_vlans, sizeof(old_vlans)); } /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to * indicate this; newer upstream kernels use gratuitous ARP requests. */ static bool is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc) { if (flow->dl_type != htons(ETH_TYPE_ARP)) { return false; } memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); if (!eth_addr_is_broadcast(flow->dl_dst)) { return false; } memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); if (flow->nw_proto == ARP_OP_REPLY) { return true; } else if (flow->nw_proto == ARP_OP_REQUEST) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); return flow->nw_src == flow->nw_dst; } else { return false; } } /* Determines whether packets in 'flow' within 'xbridge' should be forwarded or * dropped. Returns true if they may be forwarded, false if they should be * dropped. * * 'in_port' must be the xport that corresponds to flow->in_port. * 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull). * * 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as * returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as * checked by input_vid_is_valid(). * * May also add tags to '*tags', although the current implementation only does * so in one special case. */ static bool is_admissible(struct xlate_ctx *ctx, struct xport *in_port, uint16_t vlan) { struct xbundle *in_xbundle = in_port->xbundle; const struct xbridge *xbridge = ctx->xbridge; struct flow *flow = &ctx->xin->flow; /* Drop frames for reserved multicast addresses * only if forward_bpdu option is absent. */ if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) { xlate_report(ctx, OFT_DETAIL, "packet has reserved destination MAC, dropping"); return false; } if (in_xbundle->bond) { struct mac_entry *mac; switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport, flow->dl_dst)) { case BV_ACCEPT: break; case BV_DROP: xlate_report(ctx, OFT_DETAIL, "bonding refused admissibility, dropping"); return false; case BV_DROP_IF_MOVED: ovs_rwlock_rdlock(&xbridge->ml->rwlock); mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan); if (mac && mac_entry_get_port(xbridge->ml, mac) != in_xbundle->ofbundle && (!is_gratuitous_arp(flow, ctx->wc) || mac_entry_is_grat_arp_locked(mac))) { ovs_rwlock_unlock(&xbridge->ml->rwlock); xlate_report(ctx, OFT_DETAIL, "SLB bond thinks this packet looped back, " "dropping"); return false; } ovs_rwlock_unlock(&xbridge->ml->rwlock); break; } } return true; } static bool update_learning_table__(const struct xbridge *xbridge, struct xbundle *in_xbundle, struct eth_addr dl_src, int vlan, bool is_grat_arp) { return (in_xbundle == &ofpp_none_bundle || !mac_learning_update(xbridge->ml, dl_src, vlan, is_grat_arp, in_xbundle->bond != NULL, in_xbundle->ofbundle)); } static void update_learning_table(const struct xlate_ctx *ctx, struct xbundle *in_xbundle, struct eth_addr dl_src, int vlan, bool is_grat_arp) { if (!update_learning_table__(ctx->xbridge, in_xbundle, dl_src, vlan, is_grat_arp)) { xlate_report_debug(ctx, OFT_DETAIL, "learned that "ETH_ADDR_FMT" is " "on port %s in VLAN %d", ETH_ADDR_ARGS(dl_src), in_xbundle->name, vlan); } } /* Updates multicast snooping table 'ms' given that a packet matching 'flow' * was received on 'in_xbundle' in 'vlan' and is either Report or Query. */ static void update_mcast_snooping_table4__(const struct xlate_ctx *ctx, const struct flow *flow, struct mcast_snooping *ms, int vlan, struct xbundle *in_xbundle, const struct dp_packet *packet) OVS_REQ_WRLOCK(ms->rwlock) { const struct igmp_header *igmp; int count; size_t offset; ovs_be32 ip4 = flow->igmp_group_ip4; offset = (char *) dp_packet_l4(packet) - (char *) dp_packet_data(packet); igmp = dp_packet_at(packet, offset, IGMP_HEADER_LEN); if (!igmp || csum(igmp, dp_packet_l4_size(packet)) != 0) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping received bad IGMP " "checksum on port %s in VLAN %d", in_xbundle->name, vlan); return; } switch (ntohs(flow->tp_src)) { case IGMP_HOST_MEMBERSHIP_REPORT: case IGMPV2_HOST_MEMBERSHIP_REPORT: if (mcast_snooping_add_group4(ms, ip4, vlan, in_xbundle->ofbundle)) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping learned that " IP_FMT" is on port %s in VLAN %d", IP_ARGS(ip4), in_xbundle->name, vlan); } break; case IGMP_HOST_LEAVE_MESSAGE: if (mcast_snooping_leave_group4(ms, ip4, vlan, in_xbundle->ofbundle)) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping leaving " IP_FMT" is on port %s in VLAN %d", IP_ARGS(ip4), in_xbundle->name, vlan); } break; case IGMP_HOST_MEMBERSHIP_QUERY: if (flow->nw_src && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping query " "from "IP_FMT" is on port %s in VLAN %d", IP_ARGS(flow->nw_src), in_xbundle->name, vlan); } break; case IGMPV3_HOST_MEMBERSHIP_REPORT: count = mcast_snooping_add_report(ms, packet, vlan, in_xbundle->ofbundle); if (count) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping processed " "%d addresses on port %s in VLAN %d", count, in_xbundle->name, vlan); } break; } } static void update_mcast_snooping_table6__(const struct xlate_ctx *ctx, const struct flow *flow, struct mcast_snooping *ms, int vlan, struct xbundle *in_xbundle, const struct dp_packet *packet) OVS_REQ_WRLOCK(ms->rwlock) { const struct mld_header *mld; int count; size_t offset; offset = (char *) dp_packet_l4(packet) - (char *) dp_packet_data(packet); mld = dp_packet_at(packet, offset, MLD_HEADER_LEN); if (!mld || packet_csum_upperlayer6(dp_packet_l3(packet), mld, IPPROTO_ICMPV6, dp_packet_l4_size(packet)) != 0) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping received " "bad MLD checksum on port %s in VLAN %d", in_xbundle->name, vlan); return; } switch (ntohs(flow->tp_src)) { case MLD_QUERY: if (!ipv6_addr_equals(&flow->ipv6_src, &in6addr_any) && mcast_snooping_add_mrouter(ms, vlan, in_xbundle->ofbundle)) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping query on " "port %s in VLAN %d", in_xbundle->name, vlan); } break; case MLD_REPORT: case MLD_DONE: case MLD2_REPORT: count = mcast_snooping_add_mld(ms, packet, vlan, in_xbundle->ofbundle); if (count) { xlate_report_debug(ctx, OFT_DETAIL, "multicast snooping processed " "%d addresses on port %s in VLAN %d", count, in_xbundle->name, vlan); } break; } } /* Updates multicast snooping table 'ms' given that a packet matching 'flow' * was received on 'in_xbundle' in 'vlan'. */ static void update_mcast_snooping_table(const struct xlate_ctx *ctx, const struct flow *flow, int vlan, struct xbundle *in_xbundle, const struct dp_packet *packet) { struct mcast_snooping *ms = ctx->xbridge->ms; struct xlate_cfg *xcfg; struct xbundle *mcast_xbundle; struct mcast_port_bundle *fport; /* Don't learn the OFPP_NONE port. */ if (in_xbundle == &ofpp_none_bundle) { return; } /* Don't learn from flood ports */ mcast_xbundle = NULL; ovs_rwlock_wrlock(&ms->rwlock); xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(fport, node, &ms->fport_list) { mcast_xbundle = xbundle_lookup(xcfg, fport->port); if (mcast_xbundle == in_xbundle) { break; } } if (!mcast_xbundle || mcast_xbundle != in_xbundle) { if (flow->dl_type == htons(ETH_TYPE_IP)) { update_mcast_snooping_table4__(ctx, flow, ms, vlan, in_xbundle, packet); } else { update_mcast_snooping_table6__(ctx, flow, ms, vlan, in_xbundle, packet); } } ovs_rwlock_unlock(&ms->rwlock); } /* send the packet to ports having the multicast group learned */ static void xlate_normal_mcast_send_group(struct xlate_ctx *ctx, struct mcast_snooping *ms OVS_UNUSED, struct mcast_group *grp, struct xbundle *in_xbundle, const struct xvlan *xvlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_group_bundle *b; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(b, bundle_node, &grp->bundle_lru) { mcast_xbundle = xbundle_lookup(xcfg, b->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, OFT_DETAIL, "forwarding to mcast group port"); output_normal(ctx, mcast_xbundle, xvlan); } else if (!mcast_xbundle) { xlate_report(ctx, OFT_WARN, "mcast group port is unknown, dropping"); } else { xlate_report(ctx, OFT_DETAIL, "mcast group port is input port, dropping"); } } } /* send the packet to ports connected to multicast routers */ static void xlate_normal_mcast_send_mrouters(struct xlate_ctx *ctx, struct mcast_snooping *ms, struct xbundle *in_xbundle, const struct xvlan *xvlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_mrouter_bundle *mrouter; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(mrouter, mrouter_node, &ms->mrouter_lru) { mcast_xbundle = xbundle_lookup(xcfg, mrouter->port); if (mcast_xbundle && mcast_xbundle != in_xbundle && mrouter->vlan == xvlan->v[0].vid) { xlate_report(ctx, OFT_DETAIL, "forwarding to mcast router port"); output_normal(ctx, mcast_xbundle, xvlan); } else if (!mcast_xbundle) { xlate_report(ctx, OFT_WARN, "mcast router port is unknown, dropping"); } else if (mrouter->vlan != xvlan->v[0].vid) { xlate_report(ctx, OFT_DETAIL, "mcast router is on another vlan, dropping"); } else { xlate_report(ctx, OFT_DETAIL, "mcast router port is input port, dropping"); } } } /* send the packet to ports flagged to be flooded */ static void xlate_normal_mcast_send_fports(struct xlate_ctx *ctx, struct mcast_snooping *ms, struct xbundle *in_xbundle, const struct xvlan *xvlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_port_bundle *fport; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(fport, node, &ms->fport_list) { mcast_xbundle = xbundle_lookup(xcfg, fport->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, OFT_DETAIL, "forwarding to mcast flood port"); output_normal(ctx, mcast_xbundle, xvlan); } else if (!mcast_xbundle) { xlate_report(ctx, OFT_WARN, "mcast flood port is unknown, dropping"); } else { xlate_report(ctx, OFT_DETAIL, "mcast flood port is input port, dropping"); } } } /* forward the Reports to configured ports */ static void xlate_normal_mcast_send_rports(struct xlate_ctx *ctx, struct mcast_snooping *ms, struct xbundle *in_xbundle, const struct xvlan *xvlan) OVS_REQ_RDLOCK(ms->rwlock) { struct xlate_cfg *xcfg; struct mcast_port_bundle *rport; struct xbundle *mcast_xbundle; xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); LIST_FOR_EACH(rport, node, &ms->rport_list) { mcast_xbundle = xbundle_lookup(xcfg, rport->port); if (mcast_xbundle && mcast_xbundle != in_xbundle) { xlate_report(ctx, OFT_DETAIL, "forwarding report to mcast flagged port"); output_normal(ctx, mcast_xbundle, xvlan); } else if (!mcast_xbundle) { xlate_report(ctx, OFT_WARN, "mcast port is unknown, dropping the report"); } else { xlate_report(ctx, OFT_DETAIL, "mcast port is input port, dropping the Report"); } } } static void xlate_normal_flood(struct xlate_ctx *ctx, struct xbundle *in_xbundle, struct xvlan *xvlan) { struct xbundle *xbundle; LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) { if (xbundle != in_xbundle && xbundle_includes_vlan(xbundle, xvlan) && xbundle->floodable && !xbundle_mirror_out(ctx->xbridge, xbundle)) { output_normal(ctx, xbundle, xvlan); } } ctx->nf_output_iface = NF_OUT_FLOOD; } static bool is_ip_local_multicast(const struct flow *flow, struct flow_wildcards *wc) { if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); return ip_is_local_multicast(flow->nw_dst); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); return ipv6_is_all_hosts(&flow->ipv6_dst); } else { return false; } } static void xlate_normal(struct xlate_ctx *ctx) { struct flow_wildcards *wc = ctx->wc; struct flow *flow = &ctx->xin->flow; struct xbundle *in_xbundle; struct xport *in_port; struct mac_entry *mac; void *mac_port; struct xvlan in_xvlan; struct xvlan xvlan; uint16_t vlan; memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src); memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst); wc->masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI); in_xbundle = lookup_input_bundle(ctx, flow->in_port.ofp_port, &in_port); if (!in_xbundle) { xlate_report(ctx, OFT_WARN, "no input bundle, dropping"); return; } /* Drop malformed frames. */ if (eth_type_vlan(flow->dl_type) && !(flow->vlans[0].tci & htons(VLAN_CFI))) { if (ctx->xin->packet != NULL) { xlate_report_error(ctx, "dropping packet with partial " "VLAN tag received on port %s", in_xbundle->name); } xlate_report(ctx, OFT_WARN, "partial VLAN tag, dropping"); return; } /* Drop frames on bundles reserved for mirroring. */ if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) { if (ctx->xin->packet != NULL) { xlate_report_error(ctx, "dropping packet received on port %s, " "which is reserved exclusively for mirroring", in_xbundle->name); } xlate_report(ctx, OFT_WARN, "input port is mirror output port, dropping"); return; } /* Check VLAN. */ xvlan_extract(flow, &in_xvlan); if (!input_vid_is_valid(ctx, in_xvlan.v[0].vid, in_xbundle)) { xlate_report(ctx, OFT_WARN, "disallowed VLAN VID for this input port, dropping"); return; } xvlan_input_translate(in_xbundle, &in_xvlan, &xvlan); vlan = xvlan.v[0].vid; /* Check other admissibility requirements. */ if (in_port && !is_admissible(ctx, in_port, vlan)) { return; } /* Learn source MAC. */ bool is_grat_arp = is_gratuitous_arp(flow, wc); if (ctx->xin->allow_side_effects && !in_port->is_layer3) { update_learning_table(ctx, in_xbundle, flow->dl_src, vlan, is_grat_arp); } if (ctx->xin->xcache && in_xbundle != &ofpp_none_bundle) { struct xc_entry *entry; /* Save just enough info to update mac learning table later. */ entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NORMAL); entry->normal.ofproto = ctx->xbridge->ofproto; entry->normal.in_port = flow->in_port.ofp_port; entry->normal.dl_src = flow->dl_src; entry->normal.vlan = vlan; entry->normal.is_gratuitous_arp = is_grat_arp; } /* Determine output bundle. */ if (mcast_snooping_enabled(ctx->xbridge->ms) && !eth_addr_is_broadcast(flow->dl_dst) && eth_addr_is_multicast(flow->dl_dst) && is_ip_any(flow)) { struct mcast_snooping *ms = ctx->xbridge->ms; struct mcast_group *grp = NULL; if (is_igmp(flow, wc)) { memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); if (mcast_snooping_is_membership(flow->tp_src) || mcast_snooping_is_query(flow->tp_src)) { if (ctx->xin->allow_side_effects && ctx->xin->packet) { update_mcast_snooping_table(ctx, flow, vlan, in_xbundle, ctx->xin->packet); } /* * IGMP packets need to take the slow path, in order to be * processed for mdb updates. That will prevent expires * firing off even after hosts have sent reports. */ ctx->xout->slow |= SLOW_ACTION; } if (mcast_snooping_is_membership(flow->tp_src)) { ovs_rwlock_rdlock(&ms->rwlock); xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan); /* RFC4541: section 2.1.1, item 1: A snooping switch should * forward IGMP Membership Reports only to those ports where * multicast routers are attached. Alternatively stated: a * snooping switch should not forward IGMP Membership Reports * to ports on which only hosts are attached. * An administrative control may be provided to override this * restriction, allowing the report messages to be flooded to * other ports. */ xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, &xvlan); ovs_rwlock_unlock(&ms->rwlock); } else { xlate_report(ctx, OFT_DETAIL, "multicast traffic, flooding"); xlate_normal_flood(ctx, in_xbundle, &xvlan); } return; } else if (is_mld(flow, wc)) { ctx->xout->slow |= SLOW_ACTION; if (ctx->xin->allow_side_effects && ctx->xin->packet) { update_mcast_snooping_table(ctx, flow, vlan, in_xbundle, ctx->xin->packet); } if (is_mld_report(flow, wc)) { ovs_rwlock_rdlock(&ms->rwlock); xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan); xlate_normal_mcast_send_rports(ctx, ms, in_xbundle, &xvlan); ovs_rwlock_unlock(&ms->rwlock); } else { xlate_report(ctx, OFT_DETAIL, "MLD query, flooding"); xlate_normal_flood(ctx, in_xbundle, &xvlan); } } else { if (is_ip_local_multicast(flow, wc)) { /* RFC4541: section 2.1.2, item 2: Packets with a dst IP * address in the 224.0.0.x range which are not IGMP must * be forwarded on all ports */ xlate_report(ctx, OFT_DETAIL, "RFC4541: section 2.1.2, item 2, flooding"); xlate_normal_flood(ctx, in_xbundle, &xvlan); return; } } /* forwarding to group base ports */ ovs_rwlock_rdlock(&ms->rwlock); if (flow->dl_type == htons(ETH_TYPE_IP)) { grp = mcast_snooping_lookup4(ms, flow->nw_dst, vlan); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { grp = mcast_snooping_lookup(ms, &flow->ipv6_dst, vlan); } if (grp) { xlate_normal_mcast_send_group(ctx, ms, grp, in_xbundle, &xvlan); xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, &xvlan); xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan); } else { if (mcast_snooping_flood_unreg(ms)) { xlate_report(ctx, OFT_DETAIL, "unregistered multicast, flooding"); xlate_normal_flood(ctx, in_xbundle, &xvlan); } else { xlate_normal_mcast_send_mrouters(ctx, ms, in_xbundle, &xvlan); xlate_normal_mcast_send_fports(ctx, ms, in_xbundle, &xvlan); } } ovs_rwlock_unlock(&ms->rwlock); } else { ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock); mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan); mac_port = mac ? mac_entry_get_port(ctx->xbridge->ml, mac) : NULL; ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock); if (mac_port) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbundle *mac_xbundle = xbundle_lookup(xcfg, mac_port); if (mac_xbundle && mac_xbundle != in_xbundle) { xlate_report(ctx, OFT_DETAIL, "forwarding to learned port"); output_normal(ctx, mac_xbundle, &xvlan); } else if (!mac_xbundle) { xlate_report(ctx, OFT_WARN, "learned port is unknown, dropping"); } else { xlate_report(ctx, OFT_DETAIL, "learned port is input port, dropping"); } } else { xlate_report(ctx, OFT_DETAIL, "no learned MAC for destination, flooding"); xlate_normal_flood(ctx, in_xbundle, &xvlan); } } } /* Appends a "sample" action for sFlow or IPFIX to 'ctx->odp_actions'. The * 'probability' is the number of packets out of UINT32_MAX to sample. The * 'cookie' (of length 'cookie_size' bytes) is passed back in the callback for * each sampled packet. 'tunnel_out_port', if not ODPP_NONE, is added as the * OVS_USERSPACE_ATTR_EGRESS_TUN_PORT attribute. If 'include_actions', an * OVS_USERSPACE_ATTR_ACTIONS attribute is added. If 'emit_set_tunnel', * sample(sampling_port=1) would translate into datapath sample action * set(tunnel(...)), sample(...) and it is used for sampling egress tunnel * information. */ static size_t compose_sample_action(struct xlate_ctx *ctx, const uint32_t probability, const union user_action_cookie *cookie, const size_t cookie_size, const odp_port_t tunnel_out_port, bool include_actions) { if (probability == 0) { /* No need to generate sampling or the inner action. */ return 0; } /* If the slow path meter is configured by the controller, * insert a meter action before the user space action. */ struct ofproto *ofproto = &ctx->xin->ofproto->up; uint32_t meter_id = ofproto->slowpath_meter_id; /* When meter action is not required, avoid generate sample action * for 100% sampling rate. */ bool is_sample = probability < UINT32_MAX || meter_id != UINT32_MAX; size_t sample_offset, actions_offset; if (is_sample) { sample_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE); nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability); actions_offset = nl_msg_start_nested(ctx->odp_actions, OVS_SAMPLE_ATTR_ACTIONS); } if (meter_id != UINT32_MAX) { nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER, meter_id); } odp_port_t odp_port = ofp_port_to_odp_port( ctx->xbridge, ctx->xin->flow.in_port.ofp_port); uint32_t pid = dpif_port_get_pid(ctx->xbridge->dpif, odp_port, flow_hash_5tuple(&ctx->xin->flow, 0)); int cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size, tunnel_out_port, include_actions, ctx->odp_actions); if (is_sample) { nl_msg_end_nested(ctx->odp_actions, actions_offset); nl_msg_end_nested(ctx->odp_actions, sample_offset); } return cookie_offset; } /* If sFLow is not enabled, returns 0 without doing anything. * * If sFlow is enabled, appends a template "sample" action to the ODP actions * in 'ctx'. This action is a template because some of the information needed * to fill it out is not available until flow translation is complete. In this * case, this functions returns an offset, which is always nonzero, to pass * later to fix_sflow_action() to fill in the rest of the template. */ static size_t compose_sflow_action(struct xlate_ctx *ctx) { struct dpif_sflow *sflow = ctx->xbridge->sflow; if (!sflow || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) { return 0; } union user_action_cookie cookie = { .type = USER_ACTION_COOKIE_SFLOW }; return compose_sample_action(ctx, dpif_sflow_get_probability(sflow), &cookie, sizeof cookie.sflow, ODPP_NONE, true); } /* If flow IPFIX is enabled, make sure IPFIX flow sample action * at egress point of tunnel port is just in front of corresponding * output action. If bridge IPFIX is enabled, this appends an IPFIX * sample action to 'ctx->odp_actions'. */ static void compose_ipfix_action(struct xlate_ctx *ctx, odp_port_t output_odp_port) { struct dpif_ipfix *ipfix = ctx->xbridge->ipfix; odp_port_t tunnel_out_port = ODPP_NONE; if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) { return; } /* For input case, output_odp_port is ODPP_NONE, which is an invalid port * number. */ if (output_odp_port == ODPP_NONE && !dpif_ipfix_get_bridge_exporter_input_sampling(ipfix)) { return; } /* For output case, output_odp_port is valid. */ if (output_odp_port != ODPP_NONE) { if (!dpif_ipfix_get_bridge_exporter_output_sampling(ipfix)) { return; } /* If tunnel sampling is enabled, put an additional option attribute: * OVS_USERSPACE_ATTR_TUNNEL_OUT_PORT */ if (dpif_ipfix_get_bridge_exporter_tunnel_sampling(ipfix) && dpif_ipfix_get_tunnel_port(ipfix, output_odp_port) ) { tunnel_out_port = output_odp_port; } } union user_action_cookie cookie = { .ipfix = { .type = USER_ACTION_COOKIE_IPFIX, .output_odp_port = output_odp_port, } }; compose_sample_action(ctx, dpif_ipfix_get_bridge_exporter_probability(ipfix), &cookie, sizeof cookie.ipfix, tunnel_out_port, false); } /* Fix "sample" action according to data collected while composing ODP actions, * as described in compose_sflow_action(). * * 'user_cookie_offset' must be the offset returned by add_sflow_action(). */ static void fix_sflow_action(struct xlate_ctx *ctx, unsigned int user_cookie_offset) { const struct flow *base = &ctx->base_flow; union user_action_cookie *cookie; cookie = ofpbuf_at(ctx->odp_actions, user_cookie_offset, sizeof cookie->sflow); ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW); cookie->type = USER_ACTION_COOKIE_SFLOW; cookie->sflow.vlan_tci = base->vlans[0].tci; /* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output * port information") for the interpretation of cookie->output. */ switch (ctx->sflow_n_outputs) { case 0: /* 0x40000000 | 256 means "packet dropped for unknown reason". */ cookie->sflow.output = 0x40000000 | 256; break; case 1: cookie->sflow.output = dpif_sflow_odp_port_to_ifindex( ctx->xbridge->sflow, ctx->sflow_odp_port); if (cookie->sflow.output) { break; } /* Fall through. */ default: /* 0x80000000 means "multiple output ports. */ cookie->sflow.output = 0x80000000 | ctx->sflow_n_outputs; break; } } static bool process_special(struct xlate_ctx *ctx, const struct xport *xport) { const struct flow *flow = &ctx->xin->flow; struct flow_wildcards *wc = ctx->wc; const struct xbridge *xbridge = ctx->xbridge; const struct dp_packet *packet = ctx->xin->packet; enum slow_path_reason slow; if (!xport) { slow = 0; } else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) { if (packet) { cfm_process_heartbeat(xport->cfm, packet); } slow = SLOW_CFM; } else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) { if (packet) { bfd_process_packet(xport->bfd, flow, packet); /* If POLL received, immediately sends FINAL back. */ if (bfd_should_send_packet(xport->bfd)) { ofproto_dpif_monitor_port_send_soon(xport->ofport); } } slow = SLOW_BFD; } else if (xport->xbundle && xport->xbundle->lacp && flow->dl_type == htons(ETH_TYPE_LACP)) { if (packet) { lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet); } slow = SLOW_LACP; } else if ((xbridge->stp || xbridge->rstp) && stp_should_process_flow(flow, wc)) { if (packet) { xbridge->stp ? stp_process_packet(xport, packet) : rstp_process_packet(xport, packet); } slow = SLOW_STP; } else if (xport->lldp && lldp_should_process_flow(xport->lldp, flow)) { if (packet) { lldp_process_packet(xport->lldp, packet); } slow = SLOW_LLDP; } else { slow = 0; } if (slow) { ctx->xout->slow |= slow; return true; } else { return false; } } static int tnl_route_lookup_flow(const struct flow *oflow, struct in6_addr *ip, struct in6_addr *src, struct xport **out_port) { char out_dev[IFNAMSIZ]; struct xbridge *xbridge; struct xlate_cfg *xcfg; struct in6_addr gw; struct in6_addr dst; dst = flow_tnl_dst(&oflow->tunnel); if (!ovs_router_lookup(oflow->pkt_mark, &dst, out_dev, src, &gw)) { return -ENOENT; } if (ipv6_addr_is_set(&gw) && (!IN6_IS_ADDR_V4MAPPED(&gw) || in6_addr_get_mapped_ipv4(&gw))) { *ip = gw; } else { *ip = dst; } xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); ovs_assert(xcfg); HMAP_FOR_EACH (xbridge, hmap_node, &xcfg->xbridges) { if (!strncmp(xbridge->name, out_dev, IFNAMSIZ)) { struct xport *port; HMAP_FOR_EACH (port, ofp_node, &xbridge->xports) { if (!strncmp(netdev_get_name(port->netdev), out_dev, IFNAMSIZ)) { *out_port = port; return 0; } } } } return -ENOENT; } static int compose_table_xlate(struct xlate_ctx *ctx, const struct xport *out_dev, struct dp_packet *packet) { struct xbridge *xbridge = out_dev->xbridge; struct ofpact_output output; struct flow flow; ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output); flow_extract(packet, &flow); flow.in_port.ofp_port = out_dev->ofp_port; output.port = OFPP_TABLE; output.max_len = 0; return ofproto_dpif_execute_actions__(xbridge->ofproto, ctx->xin->tables_version, &flow, NULL, &output.ofpact, sizeof output, ctx->depth, ctx->resubmits, packet); } static void tnl_send_nd_request(struct xlate_ctx *ctx, const struct xport *out_dev, const struct eth_addr eth_src, struct in6_addr * ipv6_src, struct in6_addr * ipv6_dst) { struct dp_packet packet; dp_packet_init(&packet, 0); compose_nd_ns(&packet, eth_src, ipv6_src, ipv6_dst); compose_table_xlate(ctx, out_dev, &packet); dp_packet_uninit(&packet); } static void tnl_send_arp_request(struct xlate_ctx *ctx, const struct xport *out_dev, const struct eth_addr eth_src, ovs_be32 ip_src, ovs_be32 ip_dst) { struct dp_packet packet; dp_packet_init(&packet, 0); compose_arp(&packet, ARP_OP_REQUEST, eth_src, eth_addr_zero, true, ip_src, ip_dst); compose_table_xlate(ctx, out_dev, &packet); dp_packet_uninit(&packet); } static int build_tunnel_send(struct xlate_ctx *ctx, const struct xport *xport, const struct flow *flow, odp_port_t tunnel_odp_port) { struct netdev_tnl_build_header_params tnl_params; struct ovs_action_push_tnl tnl_push_data; struct xport *out_dev = NULL; ovs_be32 s_ip = 0, d_ip = 0; struct in6_addr s_ip6 = in6addr_any; struct in6_addr d_ip6 = in6addr_any; struct eth_addr smac; struct eth_addr dmac; int err; char buf_sip6[INET6_ADDRSTRLEN]; char buf_dip6[INET6_ADDRSTRLEN]; err = tnl_route_lookup_flow(flow, &d_ip6, &s_ip6, &out_dev); if (err) { xlate_report(ctx, OFT_WARN, "native tunnel routing failed"); return err; } xlate_report(ctx, OFT_DETAIL, "tunneling to %s via %s", ipv6_string_mapped(buf_dip6, &d_ip6), netdev_get_name(out_dev->netdev)); /* Use mac addr of bridge port of the peer. */ err = netdev_get_etheraddr(out_dev->netdev, &smac); if (err) { xlate_report(ctx, OFT_WARN, "tunnel output device lacks Ethernet address"); return err; } d_ip = in6_addr_get_mapped_ipv4(&d_ip6); if (d_ip) { s_ip = in6_addr_get_mapped_ipv4(&s_ip6); } err = tnl_neigh_lookup(out_dev->xbridge->name, &d_ip6, &dmac); if (err) { xlate_report(ctx, OFT_DETAIL, "neighbor cache miss for %s on bridge %s, " "sending %s request", buf_dip6, out_dev->xbridge->name, d_ip ? "ARP" : "ND"); if (d_ip) { tnl_send_arp_request(ctx, out_dev, smac, s_ip, d_ip); } else { tnl_send_nd_request(ctx, out_dev, smac, &s_ip6, &d_ip6); } return err; } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_TNL_NEIGH); ovs_strlcpy(entry->tnl_neigh_cache.br_name, out_dev->xbridge->name, sizeof entry->tnl_neigh_cache.br_name); entry->tnl_neigh_cache.d_ipv6 = d_ip6; } xlate_report(ctx, OFT_DETAIL, "tunneling from "ETH_ADDR_FMT" %s" " to "ETH_ADDR_FMT" %s", ETH_ADDR_ARGS(smac), ipv6_string_mapped(buf_sip6, &s_ip6), ETH_ADDR_ARGS(dmac), buf_dip6); netdev_init_tnl_build_header_params(&tnl_params, flow, &s_ip6, dmac, smac); err = tnl_port_build_header(xport->ofport, &tnl_push_data, &tnl_params); if (err) { return err; } tnl_push_data.tnl_port = odp_to_u32(tunnel_odp_port); tnl_push_data.out_port = odp_to_u32(out_dev->odp_port); /* After tunnel header has been added, packet_type of flow and base_flow * need to be set to PT_ETH. */ ctx->xin->flow.packet_type = htonl(PT_ETH); ctx->base_flow.packet_type = htonl(PT_ETH); odp_put_tnl_push_action(ctx->odp_actions, &tnl_push_data); return 0; } static void xlate_commit_actions(struct xlate_ctx *ctx) { bool use_masked = ctx->xbridge->support.masked_set_action; ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow, ctx->odp_actions, ctx->wc, use_masked); } static void clear_conntrack(struct xlate_ctx *ctx) { ctx->conntracked = false; flow_clear_conntrack(&ctx->xin->flow); } static bool xlate_flow_is_protected(const struct xlate_ctx *ctx, const struct flow *flow, const struct xport *xport_out) { const struct xport *xport_in; if (!xport_out) { return false; } xport_in = get_ofp_port(ctx->xbridge, flow->in_port.ofp_port); return (xport_in && xport_in->xbundle && xport_out->xbundle && xport_in->xbundle->protected && xport_out->xbundle->protected); } static bool check_output_prerequisites(struct xlate_ctx *ctx, const struct xport *xport, struct flow *flow, bool check_stp) { struct flow_wildcards *wc = ctx->wc; if (!xport) { xlate_report(ctx, OFT_WARN, "Nonexistent output port"); return false; } else if (xport->config & OFPUTIL_PC_NO_FWD) { xlate_report(ctx, OFT_DETAIL, "OFPPC_NO_FWD set, skipping output"); return false; } else if (ctx->mirror_snaplen != 0 && xport->odp_port == ODPP_NONE) { xlate_report(ctx, OFT_WARN, "Mirror truncate to ODPP_NONE, skipping output"); return false; } else if (xlate_flow_is_protected(ctx, flow, xport)) { xlate_report(ctx, OFT_WARN, "Flow is between protected ports, skipping output."); return false; } else if (check_stp) { if (is_stp(&ctx->base_flow)) { if (!xport_stp_should_forward_bpdu(xport) && !xport_rstp_should_manage_bpdu(xport)) { if (ctx->xbridge->stp != NULL) { xlate_report(ctx, OFT_WARN, "STP not in listening state, " "skipping bpdu output"); } else if (ctx->xbridge->rstp != NULL) { xlate_report(ctx, OFT_WARN, "RSTP not managing BPDU in this state, " "skipping bpdu output"); } return false; } } else if ((xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) || (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc))) { /* Pass; STP should not block link health detection. */ } else if (!xport_stp_forward_state(xport) || !xport_rstp_forward_state(xport)) { if (ctx->xbridge->stp != NULL) { xlate_report(ctx, OFT_WARN, "STP not in forwarding state, skipping output"); } else if (ctx->xbridge->rstp != NULL) { xlate_report(ctx, OFT_WARN, "RSTP not in forwarding state, skipping output"); } return false; } } return true; } static bool terminate_native_tunnel(struct xlate_ctx *ctx, ofp_port_t ofp_port, struct flow *flow, struct flow_wildcards *wc, odp_port_t *tnl_port) { *tnl_port = ODPP_NONE; /* XXX: Write better Filter for tunnel port. We can use in_port * in tunnel-port flow to avoid these checks completely. */ if (ofp_port == OFPP_LOCAL && ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { *tnl_port = tnl_port_map_lookup(flow, wc); } return *tnl_port != ODPP_NONE; } static void compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port, const struct xlate_bond_recirc *xr, bool check_stp) { const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port); struct flow_wildcards *wc = ctx->wc; struct flow *flow = &ctx->xin->flow; struct flow_tnl flow_tnl; union flow_vlan_hdr flow_vlans[FLOW_MAX_VLAN_HEADERS]; uint8_t flow_nw_tos; odp_port_t out_port, odp_port, odp_tnl_port; bool is_native_tunnel = false; uint8_t dscp; /* If 'struct flow' gets additional metadata, we'll need to zero it out * before traversing a patch port. */ BUILD_ASSERT_DECL(FLOW_WC_SEQ == 39); memset(&flow_tnl, 0, sizeof flow_tnl); if (!check_output_prerequisites(ctx, xport, flow, check_stp)) { return; } if (flow->packet_type == htonl(PT_ETH) && xport->is_layer3) { /* Ethernet packet to L3 outport -> pop ethernet header. */ flow->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(flow->dl_type)); } else if (flow->packet_type != htonl(PT_ETH) && !xport->is_layer3) { /* L2 outport and non-ethernet packet_type -> add dummy eth header. */ flow->packet_type = htonl(PT_ETH); flow->dl_dst = eth_addr_zero; flow->dl_src = eth_addr_zero; } if (xport->peer) { const struct xport *peer = xport->peer; struct flow old_flow = ctx->xin->flow; struct flow_tnl old_flow_tnl_wc = ctx->wc->masks.tunnel; bool old_conntrack = ctx->conntracked; bool old_was_mpls = ctx->was_mpls; ovs_version_t old_version = ctx->xin->tables_version; struct ofpbuf old_stack = ctx->stack; uint8_t new_stack[1024]; struct ofpbuf old_action_set = ctx->action_set; struct ovs_list *old_trace = ctx->xin->trace; uint64_t actset_stub[1024 / 8]; ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack); ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub); flow->in_port.ofp_port = peer->ofp_port; flow->metadata = htonll(0); memset(&flow->tunnel, 0, sizeof flow->tunnel); flow->tunnel.metadata.tab = ofproto_get_tun_tab( &peer->xbridge->ofproto->up); ctx->wc->masks.tunnel.metadata.tab = flow->tunnel.metadata.tab; memset(flow->regs, 0, sizeof flow->regs); flow->actset_output = OFPP_UNSET; clear_conntrack(ctx); ctx->xin->trace = xlate_report(ctx, OFT_BRIDGE, "bridge(\"%s\")", peer->xbridge->name); /* When the patch port points to a different bridge, then the mirrors * for that bridge clearly apply independently to the packet, so we * reset the mirror bitmap to zero and then restore it after the packet * returns. * * When the patch port points to the same bridge, this is more of a * design decision: can mirrors be re-applied to the packet after it * re-enters the bridge, or should we treat that as doubly mirroring a * single packet? The former may be cleaner, since it respects the * model in which a patch port is like a physical cable plugged from * one switch port to another, but the latter may be less surprising to * users. We take the latter choice, for now at least. (To use the * former choice, hard-code 'independent_mirrors' to "true".) */ mirror_mask_t old_mirrors = ctx->mirrors; bool independent_mirrors = peer->xbridge != ctx->xbridge; if (independent_mirrors) { ctx->mirrors = 0; } ctx->xbridge = peer->xbridge; /* The bridge is now known so obtain its table version. */ ctx->xin->tables_version = ofproto_dpif_get_tables_version(ctx->xbridge->ofproto); if (!process_special(ctx, peer) && may_receive(peer, ctx)) { if (xport_stp_forward_state(peer) && xport_rstp_forward_state(peer)) { xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true, false); if (!ctx->freezing) { xlate_action_set(ctx); } if (ctx->freezing) { finish_freezing(ctx); } } else { /* Forwarding is disabled by STP and RSTP. Let OFPP_NORMAL and * the learning action look at the packet, then drop it. */ struct flow old_base_flow = ctx->base_flow; size_t old_size = ctx->odp_actions->size; mirror_mask_t old_mirrors2 = ctx->mirrors; xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true, false); ctx->mirrors = old_mirrors2; ctx->base_flow = old_base_flow; ctx->odp_actions->size = old_size; /* Undo changes that may have been done for freezing. */ ctx_cancel_freeze(ctx); } } ctx->xin->trace = old_trace; if (independent_mirrors) { ctx->mirrors = old_mirrors; } ctx->xin->flow = old_flow; ctx->xbridge = xport->xbridge; ofpbuf_uninit(&ctx->action_set); ctx->action_set = old_action_set; ofpbuf_uninit(&ctx->stack); ctx->stack = old_stack; /* Restore calling bridge's lookup version. */ ctx->xin->tables_version = old_version; /* Since this packet came in on a patch port (from the perspective of * the peer bridge), it cannot have useful tunnel information. As a * result, any wildcards generated on that tunnel also cannot be valid. * The tunnel wildcards must be restored to their original version since * the peer bridge uses a separate tunnel metadata table and therefore * any generated wildcards will be garbage in the context of our * metadata table. */ ctx->wc->masks.tunnel = old_flow_tnl_wc; /* The peer bridge popping MPLS should have no effect on the original * bridge. */ ctx->was_mpls = old_was_mpls; /* The peer bridge's conntrack execution should have no effect on the * original bridge. */ ctx->conntracked = old_conntrack; /* The fact that the peer bridge exits (for any reason) does not mean * that the original bridge should exit. Specifically, if the peer * bridge freezes translation, the original bridge must continue * processing with the original, not the frozen packet! */ ctx->exit = false; /* Peer bridge errors do not propagate back. */ ctx->error = XLATE_OK; if (ctx->xin->resubmit_stats) { netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats); netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats); if (peer->bfd) { bfd_account_rx(peer->bfd, ctx->xin->resubmit_stats); } } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV); entry->dev.tx = netdev_ref(xport->netdev); entry->dev.rx = netdev_ref(peer->netdev); entry->dev.bfd = bfd_ref(peer->bfd); } return; } memcpy(flow_vlans, flow->vlans, sizeof flow_vlans); flow_nw_tos = flow->nw_tos; if (count_skb_priorities(xport)) { memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) { wc->masks.nw_tos |= IP_DSCP_MASK; flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= dscp; } } if (xport->is_tunnel) { struct in6_addr dst; /* Save tunnel metadata so that changes made due to * the Logical (tunnel) Port are not visible for any further * matches, while explicit set actions on tunnel metadata are. */ flow_tnl = flow->tunnel; odp_port = tnl_port_send(xport->ofport, flow, ctx->wc); if (odp_port == ODPP_NONE) { xlate_report(ctx, OFT_WARN, "Tunneling decided against output"); goto out; /* restore flow_nw_tos */ } dst = flow_tnl_dst(&flow->tunnel); if (ipv6_addr_equals(&dst, &ctx->orig_tunnel_ipv6_dst)) { xlate_report(ctx, OFT_WARN, "Not tunneling to our own address"); goto out; /* restore flow_nw_tos */ } if (ctx->xin->resubmit_stats) { netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_NETDEV); entry->dev.tx = netdev_ref(xport->netdev); } out_port = odp_port; if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { xlate_report(ctx, OFT_DETAIL, "output to native tunnel"); is_native_tunnel = true; } else { xlate_report(ctx, OFT_DETAIL, "output to kernel tunnel"); commit_odp_tunnel_action(flow, &ctx->base_flow, ctx->odp_actions); flow->tunnel = flow_tnl; /* Restore tunnel metadata */ } } else { odp_port = xport->odp_port; out_port = odp_port; } if (out_port != ODPP_NONE) { /* Commit accumulated flow updates before output. */ xlate_commit_actions(ctx); if (xr) { /* Recirculate the packet. */ struct ovs_action_hash *act_hash; /* Hash action. */ act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions, OVS_ACTION_ATTR_HASH, sizeof *act_hash); act_hash->hash_alg = xr->hash_alg; act_hash->hash_basis = xr->hash_basis; /* Recirc action. */ nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, xr->recirc_id); } else if (is_native_tunnel) { /* Output to native tunnel port. */ build_tunnel_send(ctx, xport, flow, odp_port); flow->tunnel = flow_tnl; /* Restore tunnel metadata */ } else if (terminate_native_tunnel(ctx, ofp_port, flow, wc, &odp_tnl_port)) { /* Intercept packet to be received on native tunnel port. */ nl_msg_put_odp_port(ctx->odp_actions, OVS_ACTION_ATTR_TUNNEL_POP, odp_tnl_port); } else { /* Tunnel push-pop action is not compatible with * IPFIX action. */ compose_ipfix_action(ctx, out_port); /* Handle truncation of the mirrored packet. */ if (ctx->mirror_snaplen > 0 && ctx->mirror_snaplen < UINT16_MAX) { struct ovs_action_trunc *trunc; trunc = nl_msg_put_unspec_uninit(ctx->odp_actions, OVS_ACTION_ATTR_TRUNC, sizeof *trunc); trunc->max_len = ctx->mirror_snaplen; if (!ctx->xbridge->support.trunc) { ctx->xout->slow |= SLOW_ACTION; } } nl_msg_put_odp_port(ctx->odp_actions, OVS_ACTION_ATTR_OUTPUT, out_port); } ctx->sflow_odp_port = odp_port; ctx->sflow_n_outputs++; ctx->nf_output_iface = ofp_port; } if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) { mirror_packet(ctx, xport->xbundle, xbundle_mirror_dst(xport->xbundle->xbridge, xport->xbundle)); } out: /* Restore flow */ memcpy(flow->vlans, flow_vlans, sizeof flow->vlans); flow->nw_tos = flow_nw_tos; } static void compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port, const struct xlate_bond_recirc *xr) { compose_output_action__(ctx, ofp_port, xr, true); } static void xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule, bool deepens) { struct rule_dpif *old_rule = ctx->rule; ovs_be64 old_cookie = ctx->rule_cookie; const struct rule_actions *actions; if (ctx->xin->resubmit_stats) { rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats); } ctx->resubmits++; ctx->depth += deepens; ctx->rule = rule; ctx->rule_cookie = rule->up.flow_cookie; actions = rule_get_actions(&rule->up); do_xlate_actions(actions->ofpacts, actions->ofpacts_len, ctx); ctx->rule_cookie = old_cookie; ctx->rule = old_rule; ctx->depth -= deepens; } static bool xlate_resubmit_resource_check(struct xlate_ctx *ctx) { if (ctx->depth >= MAX_DEPTH) { xlate_report_error(ctx, "over max translation depth %d", MAX_DEPTH); ctx->error = XLATE_RECURSION_TOO_DEEP; } else if (ctx->resubmits >= MAX_RESUBMITS) { xlate_report_error(ctx, "over %d resubmit actions", MAX_RESUBMITS); ctx->error = XLATE_TOO_MANY_RESUBMITS; } else if (ctx->odp_actions->size > UINT16_MAX) { xlate_report_error(ctx, "resubmits yielded over 64 kB of actions"); /* NOT an error, as we'll be slow-pathing the flow in this case? */ ctx->exit = true; /* XXX: translation still terminated! */ } else if (ctx->stack.size >= 65536) { xlate_report_error(ctx, "resubmits yielded over 64 kB of stack"); ctx->error = XLATE_STACK_TOO_DEEP; } else { return true; } return false; } static void tuple_swap_flow(struct flow *flow, bool ipv4) { uint8_t nw_proto = flow->nw_proto; flow->nw_proto = flow->ct_nw_proto; flow->ct_nw_proto = nw_proto; if (ipv4) { ovs_be32 nw_src = flow->nw_src; flow->nw_src = flow->ct_nw_src; flow->ct_nw_src = nw_src; ovs_be32 nw_dst = flow->nw_dst; flow->nw_dst = flow->ct_nw_dst; flow->ct_nw_dst = nw_dst; } else { struct in6_addr ipv6_src = flow->ipv6_src; flow->ipv6_src = flow->ct_ipv6_src; flow->ct_ipv6_src = ipv6_src; struct in6_addr ipv6_dst = flow->ipv6_dst; flow->ipv6_dst = flow->ct_ipv6_dst; flow->ct_ipv6_dst = ipv6_dst; } ovs_be16 tp_src = flow->tp_src; flow->tp_src = flow->ct_tp_src; flow->ct_tp_src = tp_src; ovs_be16 tp_dst = flow->tp_dst; flow->tp_dst = flow->ct_tp_dst; flow->ct_tp_dst = tp_dst; } static void tuple_swap(struct flow *flow, struct flow_wildcards *wc) { bool ipv4 = (flow->dl_type == htons(ETH_TYPE_IP)); tuple_swap_flow(flow, ipv4); tuple_swap_flow(&wc->masks, ipv4); } static void xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id, bool may_packet_in, bool honor_table_miss, bool with_ct_orig) { /* Check if we need to recirculate before matching in a table. */ if (ctx->was_mpls) { ctx_trigger_freeze(ctx); return; } if (xlate_resubmit_resource_check(ctx)) { uint8_t old_table_id = ctx->table_id; struct rule_dpif *rule; ctx->table_id = table_id; /* Swap packet fields with CT 5-tuple if requested. */ if (with_ct_orig) { /* Do not swap if there is no CT tuple, or if key is not IP. */ if (ctx->xin->flow.ct_nw_proto == 0 || !is_ip_any(&ctx->xin->flow)) { xlate_report_error(ctx, "resubmit(ct) with non-tracked or non-IP packet!"); return; } tuple_swap(&ctx->xin->flow, ctx->wc); } rule = rule_dpif_lookup_from_table(ctx->xbridge->ofproto, ctx->xin->tables_version, &ctx->xin->flow, ctx->wc, ctx->xin->resubmit_stats, &ctx->table_id, in_port, may_packet_in, honor_table_miss, ctx->xin->xcache); /* Swap back. */ if (with_ct_orig) { tuple_swap(&ctx->xin->flow, ctx->wc); } if (rule) { /* Fill in the cache entry here instead of xlate_recursively * to make the reference counting more explicit. We take a * reference in the lookups above if we are going to cache the * rule. */ if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_RULE); entry->rule = rule; ofproto_rule_ref(&rule->up); } struct ovs_list *old_trace = ctx->xin->trace; xlate_report_table(ctx, rule, table_id); xlate_recursively(ctx, rule, table_id <= old_table_id); ctx->xin->trace = old_trace; } ctx->table_id = old_table_id; return; } } /* Consumes the group reference, which is only taken if xcache exists. */ static void xlate_group_stats(struct xlate_ctx *ctx, struct group_dpif *group, struct ofputil_bucket *bucket) { if (ctx->xin->resubmit_stats) { group_dpif_credit_stats(group, bucket, ctx->xin->resubmit_stats); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_GROUP); entry->group.group = group; entry->group.bucket = bucket; } } static void xlate_group_bucket(struct xlate_ctx *ctx, struct ofputil_bucket *bucket) { uint64_t action_list_stub[1024 / 8]; struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub); struct ofpbuf action_set = ofpbuf_const_initializer(bucket->ofpacts, bucket->ofpacts_len); struct flow old_flow = ctx->xin->flow; bool old_was_mpls = ctx->was_mpls; ofpacts_execute_action_set(&action_list, &action_set); ctx->depth++; do_xlate_actions(action_list.data, action_list.size, ctx); ctx->depth--; ofpbuf_uninit(&action_list); /* Check if need to freeze. */ if (ctx->freezing) { finish_freezing(ctx); } /* Roll back flow to previous state. * This is equivalent to cloning the packet for each bucket. * * As a side effect any subsequently applied actions will * also effectively be applied to a clone of the packet taken * just before applying the all or indirect group. * * Note that group buckets are action sets, hence they cannot modify the * main action set. Also any stack actions are ignored when executing an * action set, so group buckets cannot change the stack either. * However, we do allow resubmit actions in group buckets, which could * break the above assumptions. It is up to the controller to not mess up * with the action_set and stack in the tables resubmitted to from * group buckets. */ ctx->xin->flow = old_flow; /* The group bucket popping MPLS should have no effect after bucket * execution. */ ctx->was_mpls = old_was_mpls; /* The fact that the group bucket exits (for any reason) does not mean that * the translation after the group action should exit. Specifically, if * the group bucket freezes translation, the actions after the group action * must continue processing with the original, not the frozen packet! */ ctx->exit = false; } static void xlate_all_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct ofputil_bucket *bucket; LIST_FOR_EACH (bucket, list_node, &group->up.buckets) { xlate_group_bucket(ctx, bucket); } xlate_group_stats(ctx, group, NULL); } static void xlate_ff_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct ofputil_bucket *bucket; bucket = group_first_live_bucket(ctx, group, 0); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } else if (ctx->xin->xcache) { ofproto_group_unref(&group->up); } } static void xlate_default_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct flow_wildcards *wc = ctx->wc; struct ofputil_bucket *bucket; uint32_t basis; basis = flow_hash_symmetric_l4(&ctx->xin->flow, 0); flow_mask_hash_fields(&ctx->xin->flow, wc, NX_HASH_FIELDS_SYMMETRIC_L4); bucket = group_best_live_bucket(ctx, group, basis); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } else if (ctx->xin->xcache) { ofproto_group_unref(&group->up); } } static void xlate_hash_fields_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { const struct field_array *fields = &group->up.props.fields; const uint8_t *mask_values = fields->values; uint32_t basis = hash_uint64(group->up.props.selection_method_param); size_t i; BITMAP_FOR_EACH_1 (i, MFF_N_IDS, fields->used.bm) { const struct mf_field *mf = mf_from_id(i); /* Skip fields for which prerequisites are not met. */ if (!mf_are_prereqs_ok(mf, &ctx->xin->flow, ctx->wc)) { /* Skip the mask bytes for this field. */ mask_values += mf->n_bytes; continue; } union mf_value value; union mf_value mask; mf_get_value(mf, &ctx->xin->flow, &value); /* Mask the value. */ for (int j = 0; j < mf->n_bytes; j++) { mask.b[j] = *mask_values++; value.b[j] &= mask.b[j]; } basis = hash_bytes(&value, mf->n_bytes, basis); /* For tunnels, hash in whether the field is present. */ if (mf_is_tun_metadata(mf)) { basis = hash_boolean(mf_is_set(mf, &ctx->xin->flow), basis); } mf_mask_field_masked(mf, &mask, ctx->wc); } struct ofputil_bucket *bucket = group_best_live_bucket(ctx, group, basis); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } else if (ctx->xin->xcache) { ofproto_group_unref(&group->up); } } static void xlate_dp_hash_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { struct ofputil_bucket *bucket; /* dp_hash value 0 is special since it means that the dp_hash has not been * computed, as all computed dp_hash values are non-zero. Therefore * compare to zero can be used to decide if the dp_hash value is valid * without masking the dp_hash field. */ if (!ctx->xin->flow.dp_hash) { uint64_t param = group->up.props.selection_method_param; ctx_trigger_recirculate_with_hash(ctx, param >> 32, (uint32_t)param); } else { uint32_t n_buckets = group->up.n_buckets; if (n_buckets) { /* Minimal mask to cover the number of buckets. */ uint32_t mask = (1 << log_2_ceil(n_buckets)) - 1; /* Multiplier chosen to make the trivial 1 bit case to * actually distribute amongst two equal weight buckets. */ uint32_t basis = 0xc2b73583 * (ctx->xin->flow.dp_hash & mask); ctx->wc->masks.dp_hash |= mask; bucket = group_best_live_bucket(ctx, group, basis); if (bucket) { xlate_group_bucket(ctx, bucket); xlate_group_stats(ctx, group, bucket); } } } } static void xlate_select_group(struct xlate_ctx *ctx, struct group_dpif *group) { const char *selection_method = group->up.props.selection_method; /* Select groups may access flow keys beyond L2 in order to * select a bucket. Recirculate as appropriate to make this possible. */ if (ctx->was_mpls) { ctx_trigger_freeze(ctx); } if (selection_method[0] == '\0') { xlate_default_select_group(ctx, group); } else if (!strcasecmp("hash", selection_method)) { xlate_hash_fields_select_group(ctx, group); } else if (!strcasecmp("dp_hash", selection_method)) { xlate_dp_hash_select_group(ctx, group); } else { /* Parsing of groups should ensure this never happens */ OVS_NOT_REACHED(); } } static void xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group) { bool was_in_group = ctx->in_group; ctx->in_group = true; switch (group->up.type) { case OFPGT11_ALL: case OFPGT11_INDIRECT: xlate_all_group(ctx, group); break; case OFPGT11_SELECT: xlate_select_group(ctx, group); break; case OFPGT11_FF: xlate_ff_group(ctx, group); break; default: OVS_NOT_REACHED(); } ctx->in_group = was_in_group; } static bool xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id) { if (xlate_resubmit_resource_check(ctx)) { struct group_dpif *group; /* Take ref only if xcache exists. */ group = group_dpif_lookup(ctx->xbridge->ofproto, group_id, ctx->xin->tables_version, ctx->xin->xcache); if (!group) { /* XXX: Should set ctx->error ? */ xlate_report(ctx, OFT_WARN, "output to nonexistent group %"PRIu32, group_id); return true; } xlate_group_action__(ctx, group); } return false; } static void xlate_ofpact_resubmit(struct xlate_ctx *ctx, const struct ofpact_resubmit *resubmit) { ofp_port_t in_port; uint8_t table_id; bool may_packet_in = false; bool honor_table_miss = false; if (ctx->rule && rule_dpif_is_internal(ctx->rule)) { /* Still allow missed packets to be sent to the controller * if resubmitting from an internal table. */ may_packet_in = true; honor_table_miss = true; } in_port = resubmit->in_port; if (in_port == OFPP_IN_PORT) { in_port = ctx->xin->flow.in_port.ofp_port; } table_id = resubmit->table_id; if (table_id == 255) { table_id = ctx->table_id; } xlate_table_action(ctx, in_port, table_id, may_packet_in, honor_table_miss, resubmit->with_ct_orig); } static void flood_packets(struct xlate_ctx *ctx, bool all) { const struct xport *xport; HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) { if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) { continue; } if (all) { compose_output_action__(ctx, xport->ofp_port, NULL, false); } else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) { compose_output_action(ctx, xport->ofp_port, NULL); } } ctx->nf_output_iface = NF_OUT_FLOOD; } /* Copy and reformat a partially xlated odp actions to a new * odp actions list in 'b', so that the new actions list * can be executed by odp_execute_actions. * * When xlate using nested odp actions, such as sample and clone, * the nested action created by nl_msg_start_nested() may not * have been properly closed yet, thus can not be executed * directly. * * Since unclosed nested action has to be last action, it can be * fixed by skipping the outer header, and treating the actions within * as if they are outside the nested attribute since the effect * of executing them on packet is the same. * * As an optimization, a fully closed 'sample' or 'clone' action * is skipped since their execution has no effect to the packet. * * Returns true if success. 'b' contains the new actions list. * The caller is responsible for disposing 'b'. * * Returns false if error, 'b' has been freed already. */ static bool xlate_fixup_actions(struct ofpbuf *b, const struct nlattr *actions, size_t actions_len) { const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) { int type = nl_attr_type(a); switch ((enum ovs_action_attr) type) { case OVS_ACTION_ATTR_HASH: case OVS_ACTION_ATTR_PUSH_VLAN: case OVS_ACTION_ATTR_POP_VLAN: case OVS_ACTION_ATTR_PUSH_MPLS: case OVS_ACTION_ATTR_POP_MPLS: case OVS_ACTION_ATTR_SET: case OVS_ACTION_ATTR_SET_MASKED: case OVS_ACTION_ATTR_TRUNC: case OVS_ACTION_ATTR_OUTPUT: case OVS_ACTION_ATTR_TUNNEL_PUSH: case OVS_ACTION_ATTR_TUNNEL_POP: case OVS_ACTION_ATTR_USERSPACE: case OVS_ACTION_ATTR_RECIRC: case OVS_ACTION_ATTR_CT: case OVS_ACTION_ATTR_PUSH_ETH: case OVS_ACTION_ATTR_POP_ETH: case OVS_ACTION_ATTR_METER: ofpbuf_put(b, a, nl_attr_len_pad(a, left)); break; case OVS_ACTION_ATTR_CLONE: /* If the clone action has been fully xlated, it can * be skipped, since any actions executed within clone * do not affect the current packet. * * When xlating actions within clone, the clone action, * because it is an nested netlink attribute, do not have * a valid 'nla_len'; it will be zero instead. Skip * the clone header to find the start of the actions * enclosed. Treat those actions as if they are written * outside of clone. */ if (!a->nla_len) { bool ok; if (left < NLA_HDRLEN) { goto error; } ok = xlate_fixup_actions(b, nl_attr_get_unspec(a, 0), left - NLA_HDRLEN); if (!ok) { goto error; } } break; case OVS_ACTION_ATTR_SAMPLE: if (!a->nla_len) { bool ok; if (left < NLA_HDRLEN) { goto error; } const struct nlattr *attr = nl_attr_get_unspec(a, 0); left -= NLA_HDRLEN; while (left > 0 && nl_attr_type(attr) != OVS_SAMPLE_ATTR_ACTIONS) { /* Only OVS_SAMPLE_ATTR_ACTIONS can have unclosed * nested netlink attribute. */ if (!attr->nla_len) { goto error; } left -= NLA_ALIGN(attr->nla_len); attr = nl_attr_next(attr); } if (left < NLA_HDRLEN) { goto error; } ok = xlate_fixup_actions(b, nl_attr_get_unspec(attr, 0), left - NLA_HDRLEN); if (!ok) { goto error; } } break; case OVS_ACTION_ATTR_UNSPEC: case __OVS_ACTION_ATTR_MAX: OVS_NOT_REACHED(); } } return true; error: ofpbuf_delete(b); return false; } static bool xlate_execute_odp_actions(struct dp_packet *packet, const struct nlattr *actions, int actions_len) { struct dp_packet_batch batch; struct ofpbuf *b = ofpbuf_new(actions_len); if (!xlate_fixup_actions(b, actions, actions_len)) { return false; } dp_packet_batch_init_packet(&batch, packet); odp_execute_actions(NULL, &batch, false, b->data, b->size, NULL); ofpbuf_delete(b); return true; } static void execute_controller_action(struct xlate_ctx *ctx, int len, enum ofp_packet_in_reason reason, uint16_t controller_id, const uint8_t *userdata, size_t userdata_len) { struct dp_packet *packet; ctx->xout->slow |= SLOW_CONTROLLER; xlate_commit_actions(ctx); if (!ctx->xin->packet) { return; } if (!ctx->xin->allow_side_effects && !ctx->xin->xcache) { return; } packet = dp_packet_clone(ctx->xin->packet); if (!xlate_execute_odp_actions(packet, ctx->odp_actions->data, ctx->odp_actions->size)) { xlate_report_error(ctx, "Failed to execute controller action"); dp_packet_delete(packet); return; } if (packet->packet_type != htonl(PT_ETH)) { dp_packet_delete(packet); return; } /* A packet sent by an action in a table-miss rule is considered an * explicit table miss. OpenFlow before 1.3 doesn't have that concept so * it will get translated back to OFPR_ACTION for those versions. */ if (reason == OFPR_ACTION && ctx->rule && rule_is_table_miss(&ctx->rule->up)) { reason = OFPR_EXPLICIT_MISS; } size_t packet_len = dp_packet_size(packet); struct ofproto_async_msg *am = xmalloc(sizeof *am); *am = (struct ofproto_async_msg) { .controller_id = controller_id, .oam = OAM_PACKET_IN, .pin = { .up = { .public = { .packet = dp_packet_steal_data(packet), .packet_len = packet_len, .reason = reason, .table_id = ctx->table_id, .cookie = ctx->rule_cookie, .userdata = (userdata_len ? xmemdup(userdata, userdata_len) : NULL), .userdata_len = userdata_len, } }, .max_len = len, }, }; flow_get_metadata(&ctx->xin->flow, &am->pin.up.public.flow_metadata); /* Async messages are only sent once, so if we send one now, no * xlate cache entry is created. */ if (ctx->xin->allow_side_effects) { ofproto_dpif_send_async_msg(ctx->xbridge->ofproto, am); } else /* xcache */ { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_CONTROLLER); entry->controller.ofproto = ctx->xbridge->ofproto; entry->controller.am = am; } dp_packet_delete(packet); } static void emit_continuation(struct xlate_ctx *ctx, const struct frozen_state *state) { if (!ctx->xin->allow_side_effects && !ctx->xin->xcache) { return; } struct ofproto_async_msg *am = xmalloc(sizeof *am); *am = (struct ofproto_async_msg) { .controller_id = ctx->pause->controller_id, .oam = OAM_PACKET_IN, .pin = { .up = { .public = { .userdata = xmemdup(ctx->pause->userdata, ctx->pause->userdata_len), .userdata_len = ctx->pause->userdata_len, .packet = xmemdup(dp_packet_data(ctx->xin->packet), dp_packet_size(ctx->xin->packet)), .packet_len = dp_packet_size(ctx->xin->packet), .reason = ctx->pause->reason, }, .bridge = ctx->xbridge->ofproto->uuid, .stack = xmemdup(state->stack, state->stack_size), .stack_size = state->stack_size, .mirrors = state->mirrors, .conntracked = state->conntracked, .actions = xmemdup(state->ofpacts, state->ofpacts_len), .actions_len = state->ofpacts_len, .action_set = xmemdup(state->action_set, state->action_set_len), .action_set_len = state->action_set_len, }, .max_len = UINT16_MAX, }, }; flow_get_metadata(&ctx->xin->flow, &am->pin.up.public.flow_metadata); /* Async messages are only sent once, so if we send one now, no * xlate cache entry is created. */ if (ctx->xin->allow_side_effects) { ofproto_dpif_send_async_msg(ctx->xbridge->ofproto, am); } else /* xcache */ { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_CONTROLLER); entry->controller.ofproto = ctx->xbridge->ofproto; entry->controller.am = am; } } static void finish_freezing__(struct xlate_ctx *ctx, uint8_t table) { ovs_assert(ctx->freezing); struct frozen_state state = { .table_id = table, .ofproto_uuid = ctx->xbridge->ofproto->uuid, .stack = ctx->stack.data, .stack_size = ctx->stack.size, .mirrors = ctx->mirrors, .conntracked = ctx->conntracked, .ofpacts = ctx->frozen_actions.data, .ofpacts_len = ctx->frozen_actions.size, .action_set = ctx->action_set.data, .action_set_len = ctx->action_set.size, }; frozen_metadata_from_flow(&state.metadata, &ctx->xin->flow); if (ctx->pause) { if (ctx->xin->packet) { emit_continuation(ctx, &state); } } else { /* Allocate a unique recirc id for the given metadata state in the * flow. An existing id, with a new reference to the corresponding * recirculation context, will be returned if possible. * The life-cycle of this recirc id is managed by associating it * with the udpif key ('ukey') created for each new datapath flow. */ uint32_t id = recirc_alloc_id_ctx(&state); if (!id) { xlate_report_error(ctx, "Failed to allocate recirculation id"); ctx->error = XLATE_NO_RECIRCULATION_CONTEXT; return; } recirc_refs_add(&ctx->xout->recircs, id); if (ctx->recirc_update_dp_hash) { struct ovs_action_hash *act_hash; /* Hash action. */ act_hash = nl_msg_put_unspec_uninit(ctx->odp_actions, OVS_ACTION_ATTR_HASH, sizeof *act_hash); act_hash->hash_alg = OVS_HASH_ALG_L4; /* Make configurable. */ act_hash->hash_basis = 0; /* Make configurable. */ } nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_RECIRC, id); } /* Undo changes done by freezing. */ ctx_cancel_freeze(ctx); } /* Called only when we're freezing. */ static void finish_freezing(struct xlate_ctx *ctx) { xlate_commit_actions(ctx); finish_freezing__(ctx, 0); } /* Fork the pipeline here. The current packet will continue processing the * current action list. A clone of the current packet will recirculate, skip * the remainder of the current action list and asynchronously resume pipeline * processing in 'table' with the current metadata and action set. */ static void compose_recirculate_and_fork(struct xlate_ctx *ctx, uint8_t table) { ctx->freezing = true; finish_freezing__(ctx, table); } static void compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls) { struct flow *flow = &ctx->xin->flow; int n; ovs_assert(eth_type_mpls(mpls->ethertype)); n = flow_count_mpls_labels(flow, ctx->wc); if (!n) { xlate_commit_actions(ctx); } else if (n >= FLOW_MAX_MPLS_LABELS) { if (ctx->xin->packet != NULL) { xlate_report_error(ctx, "dropping packet on which an MPLS push " "action can't be performed as it would have " "more MPLS LSEs than the %d supported.", FLOW_MAX_MPLS_LABELS); } ctx->error = XLATE_TOO_MANY_MPLS_LABELS; return; } /* Update flow's MPLS stack, and clear L3/4 fields to mark them invalid. */ flow_push_mpls(flow, n, mpls->ethertype, ctx->wc, true); } static void compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type) { struct flow *flow = &ctx->xin->flow; int n = flow_count_mpls_labels(flow, ctx->wc); if (flow_pop_mpls(flow, n, eth_type, ctx->wc)) { if (!eth_type_mpls(eth_type) && ctx->xbridge->support.odp.recirc) { ctx->was_mpls = true; } } else if (n >= FLOW_MAX_MPLS_LABELS) { if (ctx->xin->packet != NULL) { xlate_report_error(ctx, "dropping packet on which an " "MPLS pop action can't be performed as it has " "more MPLS LSEs than the %d supported.", FLOW_MAX_MPLS_LABELS); } ctx->error = XLATE_TOO_MANY_MPLS_LABELS; ofpbuf_clear(ctx->odp_actions); } } static bool compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids) { struct flow *flow = &ctx->xin->flow; if (!is_ip_any(flow)) { return false; } ctx->wc->masks.nw_ttl = 0xff; if (flow->nw_ttl > 1) { flow->nw_ttl--; return false; } else { size_t i; for (i = 0; i < ids->n_controllers; i++) { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, ids->cnt_ids[i], NULL, 0); } /* Stop processing for current table. */ xlate_report(ctx, OFT_WARN, "IPv%d decrement TTL exception", flow->dl_type == htons(ETH_TYPE_IP) ? 4 : 6); return true; } } static void compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK); set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label); } } static void compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TC_MASK); set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc); } } static void compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl) { if (eth_type_mpls(ctx->xin->flow.dl_type)) { ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK); set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl); } } static bool compose_dec_mpls_ttl_action(struct xlate_ctx *ctx) { struct flow *flow = &ctx->xin->flow; if (eth_type_mpls(flow->dl_type)) { uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]); ctx->wc->masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK); if (ttl > 1) { ttl--; set_mpls_lse_ttl(&flow->mpls_lse[0], ttl); return false; } else { execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0, NULL, 0); } } /* Stop processing for current table. */ xlate_report(ctx, OFT_WARN, "MPLS decrement TTL exception"); return true; } static void xlate_output_action(struct xlate_ctx *ctx, ofp_port_t port, uint16_t max_len, bool may_packet_in) { ofp_port_t prev_nf_output_iface = ctx->nf_output_iface; ctx->nf_output_iface = NF_OUT_DROP; switch (port) { case OFPP_IN_PORT: compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port, NULL); break; case OFPP_TABLE: xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port, 0, may_packet_in, true, false); break; case OFPP_NORMAL: xlate_normal(ctx); break; case OFPP_FLOOD: flood_packets(ctx, false); break; case OFPP_ALL: flood_packets(ctx, true); break; case OFPP_CONTROLLER: execute_controller_action(ctx, max_len, (ctx->in_packet_out ? OFPR_PACKET_OUT : ctx->in_group ? OFPR_GROUP : ctx->in_action_set ? OFPR_ACTION_SET : OFPR_ACTION), 0, NULL, 0); break; case OFPP_NONE: break; case OFPP_LOCAL: default: if (port != ctx->xin->flow.in_port.ofp_port) { compose_output_action(ctx, port, NULL); } else { xlate_report(ctx, OFT_WARN, "skipping output to input port"); } break; } if (prev_nf_output_iface == NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_FLOOD; } else if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = prev_nf_output_iface; } else if (prev_nf_output_iface != NF_OUT_DROP && ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_output_reg_action(struct xlate_ctx *ctx, const struct ofpact_output_reg *or) { uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow); if (port <= UINT16_MAX) { xlate_report(ctx, OFT_DETAIL, "output port is %"PRIu64, port); union mf_subvalue value; memset(&value, 0xff, sizeof value); mf_write_subfield_flow(&or->src, &value, &ctx->wc->masks); xlate_output_action(ctx, u16_to_ofp(port), or->max_len, false); } else { xlate_report(ctx, OFT_WARN, "output port %"PRIu64" is out of range", port); } } static void xlate_output_trunc_action(struct xlate_ctx *ctx, ofp_port_t port, uint32_t max_len) { bool support_trunc = ctx->xbridge->support.trunc; struct ovs_action_trunc *trunc; char name[OFP10_MAX_PORT_NAME_LEN]; switch (port) { case OFPP_TABLE: case OFPP_NORMAL: case OFPP_FLOOD: case OFPP_ALL: case OFPP_CONTROLLER: case OFPP_NONE: ofputil_port_to_string(port, NULL, name, sizeof name); xlate_report(ctx, OFT_WARN, "output_trunc does not support port: %s", name); break; case OFPP_LOCAL: case OFPP_IN_PORT: default: if (port != ctx->xin->flow.in_port.ofp_port) { const struct xport *xport = get_ofp_port(ctx->xbridge, port); if (xport == NULL || xport->odp_port == ODPP_NONE) { /* Since truncate happens at its following output action, if * the output port is a patch port, the behavior is somehow * unpredictable. For simplicity, disallow this case. */ ofputil_port_to_string(port, NULL, name, sizeof name); xlate_report_error(ctx, "output_trunc does not support " "patch port %s", name); break; } trunc = nl_msg_put_unspec_uninit(ctx->odp_actions, OVS_ACTION_ATTR_TRUNC, sizeof *trunc); trunc->max_len = max_len; xlate_output_action(ctx, port, max_len, false); if (!support_trunc) { ctx->xout->slow |= SLOW_ACTION; } } else { xlate_report(ctx, OFT_WARN, "skipping output to input port"); } break; } } static void xlate_enqueue_action(struct xlate_ctx *ctx, const struct ofpact_enqueue *enqueue) { ofp_port_t ofp_port = enqueue->port; uint32_t queue_id = enqueue->queue; uint32_t flow_priority, priority; int error; /* Translate queue to priority. */ error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority); if (error) { /* Fall back to ordinary output action. */ xlate_output_action(ctx, enqueue->port, 0, false); return; } /* Check output port. */ if (ofp_port == OFPP_IN_PORT) { ofp_port = ctx->xin->flow.in_port.ofp_port; } else if (ofp_port == ctx->xin->flow.in_port.ofp_port) { return; } /* Add datapath actions. */ flow_priority = ctx->xin->flow.skb_priority; ctx->xin->flow.skb_priority = priority; compose_output_action(ctx, ofp_port, NULL); ctx->xin->flow.skb_priority = flow_priority; /* Update NetFlow output port. */ if (ctx->nf_output_iface == NF_OUT_DROP) { ctx->nf_output_iface = ofp_port; } else if (ctx->nf_output_iface != NF_OUT_FLOOD) { ctx->nf_output_iface = NF_OUT_MULTI; } } static void xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id) { uint32_t skb_priority; if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) { ctx->xin->flow.skb_priority = skb_priority; } else { /* Couldn't translate queue to a priority. Nothing to do. A warning * has already been logged. */ } } static bool slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_) { const struct xbridge *xbridge = xbridge_; struct xport *port; switch (ofp_port) { case OFPP_IN_PORT: case OFPP_TABLE: case OFPP_NORMAL: case OFPP_FLOOD: case OFPP_ALL: case OFPP_NONE: return true; case OFPP_CONTROLLER: /* Not supported by the bundle action. */ return false; default: port = get_ofp_port(xbridge, ofp_port); return port ? port->may_enable : false; } } static void xlate_bundle_action(struct xlate_ctx *ctx, const struct ofpact_bundle *bundle) { ofp_port_t port; port = bundle_execute(bundle, &ctx->xin->flow, ctx->wc, slave_enabled_cb, CONST_CAST(struct xbridge *, ctx->xbridge)); if (bundle->dst.field) { nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow, ctx->wc); xlate_report_subfield(ctx, &bundle->dst); } else { xlate_output_action(ctx, port, 0, false); } } static void xlate_learn_action(struct xlate_ctx *ctx, const struct ofpact_learn *learn) { learn_mask(learn, ctx->wc); if (ctx->xin->xcache || ctx->xin->allow_side_effects) { uint64_t ofpacts_stub[1024 / 8]; struct ofputil_flow_mod fm; struct ofproto_flow_mod ofm__, *ofm; struct ofpbuf ofpacts; enum ofperr error; if (ctx->xin->xcache) { ofm = xmalloc(sizeof *ofm); } else { ofm = &ofm__; } ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts); if (OVS_UNLIKELY(ctx->xin->trace)) { struct ds s = DS_EMPTY_INITIALIZER; ds_put_format(&s, "table=%"PRIu8" ", fm.table_id); match_format(&fm.match, NULL, &s, OFP_DEFAULT_PRIORITY); ds_chomp(&s, ' '); ds_put_format(&s, " priority=%d", fm.priority); if (fm.new_cookie) { ds_put_format(&s, " cookie=%#"PRIx64, ntohll(fm.new_cookie)); } if (fm.idle_timeout != OFP_FLOW_PERMANENT) { ds_put_format(&s, " idle=%"PRIu16, fm.idle_timeout); } if (fm.hard_timeout != OFP_FLOW_PERMANENT) { ds_put_format(&s, " hard=%"PRIu16, fm.hard_timeout); } if (fm.flags & NX_LEARN_F_SEND_FLOW_REM) { ds_put_cstr(&s, " send_flow_rem"); } ds_put_cstr(&s, " actions="); ofpacts_format(fm.ofpacts, fm.ofpacts_len, NULL, &s); xlate_report(ctx, OFT_DETAIL, "%s", ds_cstr(&s)); ds_destroy(&s); } error = ofproto_dpif_flow_mod_init_for_learn(ctx->xbridge->ofproto, &fm, ofm); ofpbuf_uninit(&ofpacts); if (!error) { bool success = true; if (ctx->xin->allow_side_effects) { error = ofproto_flow_mod_learn(ofm, ctx->xin->xcache != NULL, learn->limit, &success); } else if (learn->limit) { if (!ofm->temp_rule || ofm->temp_rule->state != RULE_INSERTED) { /* The learned rule expired and there are no packets, so * we cannot learn again. Since the translated actions * depend on the result of learning, we tell the caller * that there's no point in caching this result. */ ctx->xout->avoid_caching = true; } } if (learn->flags & NX_LEARN_F_WRITE_RESULT) { nxm_reg_load(&learn->result_dst, success ? 1 : 0, &ctx->xin->flow, ctx->wc); xlate_report_subfield(ctx, &learn->result_dst); } if (success && ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_LEARN); entry->learn.ofm = ofm; entry->learn.limit = learn->limit; ofm = NULL; } if (OVS_UNLIKELY(ctx->xin->trace && !success)) { xlate_report(ctx, OFT_DETAIL, "Limit exceeded, learn failed"); } } if (ctx->xin->xcache) { free(ofm); } if (error) { xlate_report_error(ctx, "LEARN action execution failed (%s).", ofperr_to_string(error)); } } else { xlate_report(ctx, OFT_WARN, "suppressing side effects, so learn action ignored"); } } static void xlate_fin_timeout__(struct rule_dpif *rule, uint16_t tcp_flags, uint16_t idle_timeout, uint16_t hard_timeout) { if (tcp_flags & (TCP_FIN | TCP_RST)) { ofproto_rule_reduce_timeouts(&rule->up, idle_timeout, hard_timeout); } } static void xlate_fin_timeout(struct xlate_ctx *ctx, const struct ofpact_fin_timeout *oft) { if (ctx->rule) { if (ctx->xin->allow_side_effects) { xlate_fin_timeout__(ctx->rule, ctx->xin->tcp_flags, oft->fin_idle_timeout, oft->fin_hard_timeout); } if (ctx->xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx->xin->xcache, XC_FIN_TIMEOUT); /* XC_RULE already holds a reference on the rule, none is taken * here. */ entry->fin.rule = ctx->rule; entry->fin.idle = oft->fin_idle_timeout; entry->fin.hard = oft->fin_hard_timeout; } } } static void xlate_sample_action(struct xlate_ctx *ctx, const struct ofpact_sample *os) { odp_port_t output_odp_port = ODPP_NONE; odp_port_t tunnel_out_port = ODPP_NONE; struct dpif_ipfix *ipfix = ctx->xbridge->ipfix; bool emit_set_tunnel = false; if (!ipfix || ctx->xin->flow.in_port.ofp_port == OFPP_NONE) { return; } /* Scale the probability from 16-bit to 32-bit while representing * the same percentage. */ uint32_t probability = (os->probability << 16) | os->probability; if (!ctx->xbridge->support.variable_length_userdata) { xlate_report_error(ctx, "ignoring NXAST_SAMPLE action because " "datapath lacks support (needs Linux 3.10+ or " "kernel module from OVS 1.11+)"); return; } /* If ofp_port in flow sample action is equel to ofp_port, * this sample action is a input port action. */ if (os->sampling_port != OFPP_NONE && os->sampling_port != ctx->xin->flow.in_port.ofp_port) { output_odp_port = ofp_port_to_odp_port(ctx->xbridge, os->sampling_port); if (output_odp_port == ODPP_NONE) { xlate_report_error(ctx, "can't use unknown port %d in flow sample " "action", os->sampling_port); return; } if (dpif_ipfix_get_flow_exporter_tunnel_sampling(ipfix, os->collector_set_id) && dpif_ipfix_get_tunnel_port(ipfix, output_odp_port)) { tunnel_out_port = output_odp_port; emit_set_tunnel = true; } } xlate_commit_actions(ctx); /* If 'emit_set_tunnel', sample(sampling_port=1) would translate * into datapath sample action set(tunnel(...)), sample(...) and * it is used for sampling egress tunnel information. */ if (emit_set_tunnel) { const struct xport *xport = get_ofp_port(ctx->xbridge, os->sampling_port); if (xport && xport->is_tunnel) { struct flow *flow = &ctx->xin->flow; tnl_port_send(xport->ofport, flow, ctx->wc); if (!ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { struct flow_tnl flow_tnl = flow->tunnel; commit_odp_tunnel_action(flow, &ctx->base_flow, ctx->odp_actions); flow->tunnel = flow_tnl; } } else { xlate_report_error(ctx, "sampling_port:%d should be a tunnel port.", os->sampling_port); } } union user_action_cookie cookie = { .flow_sample = { .type = USER_ACTION_COOKIE_FLOW_SAMPLE, .probability = os->probability, .collector_set_id = os->collector_set_id, .obs_domain_id = os->obs_domain_id, .obs_point_id = os->obs_point_id, .output_odp_port = output_odp_port, .direction = os->direction, } }; compose_sample_action(ctx, probability, &cookie, sizeof cookie.flow_sample, tunnel_out_port, false); } /* Use datapath 'clone' or sample to enclose the translation of 'oc'. */ static void compose_clone_action(struct xlate_ctx *ctx, const struct ofpact_nest *oc) { size_t clone_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CLONE); do_xlate_actions(oc->actions, ofpact_nest_get_action_len(oc), ctx); nl_msg_end_non_empty_nested(ctx->odp_actions, clone_offset); } /* Use datapath 'sample' action to translate clone. */ static void compose_clone_action_using_sample(struct xlate_ctx *ctx, const struct ofpact_nest *oc) { size_t offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_SAMPLE); size_t ac_offset = nl_msg_start_nested(ctx->odp_actions, OVS_SAMPLE_ATTR_ACTIONS); do_xlate_actions(oc->actions, ofpact_nest_get_action_len(oc), ctx); if (nl_msg_end_non_empty_nested(ctx->odp_actions, ac_offset)) { nl_msg_cancel_nested(ctx->odp_actions, offset); } else { nl_msg_put_u32(ctx->odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX); /* 100% probability. */ nl_msg_end_nested(ctx->odp_actions, offset); } } static void xlate_clone(struct xlate_ctx *ctx, const struct ofpact_nest *oc) { bool old_was_mpls = ctx->was_mpls; bool old_conntracked = ctx->conntracked; struct flow old_flow = ctx->xin->flow; struct ofpbuf old_stack = ctx->stack; union mf_subvalue new_stack[1024 / sizeof(union mf_subvalue)]; ofpbuf_use_stub(&ctx->stack, new_stack, sizeof new_stack); ofpbuf_put(&ctx->stack, old_stack.data, old_stack.size); struct ofpbuf old_action_set = ctx->action_set; uint64_t actset_stub[1024 / 8]; ofpbuf_use_stub(&ctx->action_set, actset_stub, sizeof actset_stub); ofpbuf_put(&ctx->action_set, old_action_set.data, old_action_set.size); /* Datapath clone action will make sure the pre clone packets * are used for actions after clone. Save and restore * ctx->base_flow to reflect this for the openflow pipeline. */ if (ctx->xbridge->support.clone) { struct flow old_base_flow = ctx->base_flow; compose_clone_action(ctx, oc); ctx->base_flow = old_base_flow; } else if (ctx->xbridge->support.sample_nesting > 3) { /* Avoid generate sample action if datapath * only allow small number of nesting. Deeper nesting * can cause the datapath to reject the generated flow. */ struct flow old_base_flow = ctx->base_flow; compose_clone_action_using_sample(ctx, oc); ctx->base_flow = old_base_flow; } else { do_xlate_actions(oc->actions, ofpact_nest_get_action_len(oc), ctx); } ofpbuf_uninit(&ctx->action_set); ctx->action_set = old_action_set; ofpbuf_uninit(&ctx->stack); ctx->stack = old_stack; ctx->xin->flow = old_flow; /* The clone's conntrack execution should have no effect on the original * packet. */ ctx->conntracked = old_conntracked; /* Popping MPLS from the clone should have no effect on the original * packet. */ ctx->was_mpls = old_was_mpls; } static void xlate_meter_action(struct xlate_ctx *ctx, const struct ofpact_meter *meter) { if (meter->provider_meter_id != UINT32_MAX) { nl_msg_put_u32(ctx->odp_actions, OVS_ACTION_ATTR_METER, meter->provider_meter_id); } } static bool may_receive(const struct xport *xport, struct xlate_ctx *ctx) { if (xport->config & (is_stp(&ctx->xin->flow) ? OFPUTIL_PC_NO_RECV_STP : OFPUTIL_PC_NO_RECV)) { return false; } /* Only drop packets here if both forwarding and learning are * disabled. If just learning is enabled, we need to have * OFPP_NORMAL and the learning action have a look at the packet * before we can drop it. */ if ((!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) || (!xport_rstp_forward_state(xport) && !xport_rstp_learn_state(xport))) { return false; } return true; } static void xlate_write_actions__(struct xlate_ctx *ctx, const struct ofpact *ofpacts, size_t ofpacts_len) { /* Maintain actset_output depending on the contents of the action set: * * - OFPP_UNSET, if there is no "output" action. * * - The output port, if there is an "output" action and no "group" * action. * * - OFPP_UNSET, if there is a "group" action. */ if (!ctx->action_set_has_group) { const struct ofpact *a; OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) { if (a->type == OFPACT_OUTPUT) { ctx->xin->flow.actset_output = ofpact_get_OUTPUT(a)->port; } else if (a->type == OFPACT_GROUP) { ctx->xin->flow.actset_output = OFPP_UNSET; ctx->action_set_has_group = true; break; } } } ofpbuf_put(&ctx->action_set, ofpacts, ofpacts_len); } static void xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact_nest *a) { xlate_write_actions__(ctx, a->actions, ofpact_nest_get_action_len(a)); } static void xlate_action_set(struct xlate_ctx *ctx) { uint64_t action_list_stub[1024 / 8]; struct ofpbuf action_list = OFPBUF_STUB_INITIALIZER(action_list_stub); ofpacts_execute_action_set(&action_list, &ctx->action_set); /* Clear the action set, as it is not needed any more. */ ofpbuf_clear(&ctx->action_set); if (action_list.size) { ctx->in_action_set = true; struct ovs_list *old_trace = ctx->xin->trace; ctx->xin->trace = xlate_report(ctx, OFT_TABLE, "--. Executing action set:"); do_xlate_actions(action_list.data, action_list.size, ctx); ctx->xin->trace = old_trace; ctx->in_action_set = false; } ofpbuf_uninit(&action_list); } static void freeze_put_unroll_xlate(struct xlate_ctx *ctx) { struct ofpact_unroll_xlate *unroll = ctx->frozen_actions.header; /* Restore the table_id and rule cookie for a potential PACKET * IN if needed. */ if (!unroll || (ctx->table_id != unroll->rule_table_id || ctx->rule_cookie != unroll->rule_cookie)) { unroll = ofpact_put_UNROLL_XLATE(&ctx->frozen_actions); unroll->rule_table_id = ctx->table_id; unroll->rule_cookie = ctx->rule_cookie; ctx->frozen_actions.header = unroll; } } /* Copy actions 'a' through 'end' to ctx->frozen_actions, which will be * executed after thawing. Inserts an UNROLL_XLATE action, if none is already * present, before any action that may depend on the current table ID or flow * cookie. */ static void freeze_unroll_actions(const struct ofpact *a, const struct ofpact *end, struct xlate_ctx *ctx) { for (; a < end; a = ofpact_next(a)) { switch (a->type) { case OFPACT_OUTPUT_REG: case OFPACT_OUTPUT_TRUNC: case OFPACT_GROUP: case OFPACT_OUTPUT: case OFPACT_CONTROLLER: case OFPACT_DEC_MPLS_TTL: case OFPACT_DEC_TTL: /* These actions may generate asynchronous messages, which include * table ID and flow cookie information. */ freeze_put_unroll_xlate(ctx); break; case OFPACT_RESUBMIT: if (ofpact_get_RESUBMIT(a)->table_id == 0xff) { /* This resubmit action is relative to the current table, so we * need to track what table that is.*/ freeze_put_unroll_xlate(ctx); } break; case OFPACT_SET_TUNNEL: case OFPACT_REG_MOVE: case OFPACT_SET_FIELD: case OFPACT_STACK_PUSH: case OFPACT_STACK_POP: case OFPACT_LEARN: case OFPACT_WRITE_METADATA: case OFPACT_GOTO_TABLE: case OFPACT_ENQUEUE: case OFPACT_SET_VLAN_VID: case OFPACT_SET_VLAN_PCP: case OFPACT_STRIP_VLAN: case OFPACT_PUSH_VLAN: case OFPACT_SET_ETH_SRC: case OFPACT_SET_ETH_DST: case OFPACT_SET_IPV4_SRC: case OFPACT_SET_IPV4_DST: case OFPACT_SET_IP_DSCP: case OFPACT_SET_IP_ECN: case OFPACT_SET_IP_TTL: case OFPACT_SET_L4_SRC_PORT: case OFPACT_SET_L4_DST_PORT: case OFPACT_SET_QUEUE: case OFPACT_POP_QUEUE: case OFPACT_PUSH_MPLS: case OFPACT_POP_MPLS: case OFPACT_SET_MPLS_LABEL: case OFPACT_SET_MPLS_TC: case OFPACT_SET_MPLS_TTL: case OFPACT_MULTIPATH: case OFPACT_BUNDLE: case OFPACT_EXIT: case OFPACT_UNROLL_XLATE: case OFPACT_FIN_TIMEOUT: case OFPACT_CLEAR_ACTIONS: case OFPACT_WRITE_ACTIONS: case OFPACT_METER: case OFPACT_SAMPLE: case OFPACT_CLONE: case OFPACT_DEBUG_RECIRC: case OFPACT_CT: case OFPACT_CT_CLEAR: case OFPACT_NAT: /* These may not generate PACKET INs. */ break; case OFPACT_NOTE: case OFPACT_CONJUNCTION: /* These need not be copied for restoration. */ continue; } /* Copy the action over. */ ofpbuf_put(&ctx->frozen_actions, a, OFPACT_ALIGN(a->len)); } } static void put_ct_mark(const struct flow *flow, struct ofpbuf *odp_actions, struct flow_wildcards *wc) { if (wc->masks.ct_mark) { struct { uint32_t key; uint32_t mask; } *odp_ct_mark; odp_ct_mark = nl_msg_put_unspec_uninit(odp_actions, OVS_CT_ATTR_MARK, sizeof(*odp_ct_mark)); odp_ct_mark->key = flow->ct_mark & wc->masks.ct_mark; odp_ct_mark->mask = wc->masks.ct_mark; } } static void put_ct_label(const struct flow *flow, struct ofpbuf *odp_actions, struct flow_wildcards *wc) { if (!ovs_u128_is_zero(wc->masks.ct_label)) { struct { ovs_u128 key; ovs_u128 mask; } *odp_ct_label; odp_ct_label = nl_msg_put_unspec_uninit(odp_actions, OVS_CT_ATTR_LABELS, sizeof(*odp_ct_label)); odp_ct_label->key = ovs_u128_and(flow->ct_label, wc->masks.ct_label); odp_ct_label->mask = wc->masks.ct_label; } } static void put_ct_helper(struct xlate_ctx *ctx, struct ofpbuf *odp_actions, struct ofpact_conntrack *ofc) { if (ofc->alg) { switch(ofc->alg) { case IPPORT_FTP: nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "ftp"); break; case IPPORT_TFTP: nl_msg_put_string(odp_actions, OVS_CT_ATTR_HELPER, "tftp"); break; default: xlate_report_error(ctx, "cannot serialize ct_helper %d", ofc->alg); break; } } } static void put_ct_nat(struct xlate_ctx *ctx) { struct ofpact_nat *ofn = ctx->ct_nat_action; size_t nat_offset; if (!ofn) { return; } nat_offset = nl_msg_start_nested(ctx->odp_actions, OVS_CT_ATTR_NAT); if (ofn->flags & NX_NAT_F_SRC || ofn->flags & NX_NAT_F_DST) { nl_msg_put_flag(ctx->odp_actions, ofn->flags & NX_NAT_F_SRC ? OVS_NAT_ATTR_SRC : OVS_NAT_ATTR_DST); if (ofn->flags & NX_NAT_F_PERSISTENT) { nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PERSISTENT); } if (ofn->flags & NX_NAT_F_PROTO_HASH) { nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_HASH); } else if (ofn->flags & NX_NAT_F_PROTO_RANDOM) { nl_msg_put_flag(ctx->odp_actions, OVS_NAT_ATTR_PROTO_RANDOM); } if (ofn->range_af == AF_INET) { nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN, ofn->range.addr.ipv4.min); if (ofn->range.addr.ipv4.max && (ntohl(ofn->range.addr.ipv4.max) > ntohl(ofn->range.addr.ipv4.min))) { nl_msg_put_be32(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX, ofn->range.addr.ipv4.max); } } else if (ofn->range_af == AF_INET6) { nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MIN, &ofn->range.addr.ipv6.min, sizeof ofn->range.addr.ipv6.min); if (!ipv6_mask_is_any(&ofn->range.addr.ipv6.max) && memcmp(&ofn->range.addr.ipv6.max, &ofn->range.addr.ipv6.min, sizeof ofn->range.addr.ipv6.max) > 0) { nl_msg_put_unspec(ctx->odp_actions, OVS_NAT_ATTR_IP_MAX, &ofn->range.addr.ipv6.max, sizeof ofn->range.addr.ipv6.max); } } if (ofn->range_af != AF_UNSPEC && ofn->range.proto.min) { nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MIN, ofn->range.proto.min); if (ofn->range.proto.max && ofn->range.proto.max > ofn->range.proto.min) { nl_msg_put_u16(ctx->odp_actions, OVS_NAT_ATTR_PROTO_MAX, ofn->range.proto.max); } } } nl_msg_end_nested(ctx->odp_actions, nat_offset); } static void compose_conntrack_action(struct xlate_ctx *ctx, struct ofpact_conntrack *ofc) { ovs_u128 old_ct_label = ctx->base_flow.ct_label; ovs_u128 old_ct_label_mask = ctx->wc->masks.ct_label; uint32_t old_ct_mark = ctx->base_flow.ct_mark; uint32_t old_ct_mark_mask = ctx->wc->masks.ct_mark; size_t ct_offset; uint16_t zone; /* Ensure that any prior actions are applied before composing the new * conntrack action. */ xlate_commit_actions(ctx); /* Process nested actions first, to populate the key. */ ctx->ct_nat_action = NULL; ctx->wc->masks.ct_mark = 0; ctx->wc->masks.ct_label.u64.hi = ctx->wc->masks.ct_label.u64.lo = 0; do_xlate_actions(ofc->actions, ofpact_ct_get_action_len(ofc), ctx); if (ofc->zone_src.field) { zone = mf_get_subfield(&ofc->zone_src, &ctx->xin->flow); } else { zone = ofc->zone_imm; } ct_offset = nl_msg_start_nested(ctx->odp_actions, OVS_ACTION_ATTR_CT); if (ofc->flags & NX_CT_F_COMMIT) { nl_msg_put_flag(ctx->odp_actions, ofc->flags & NX_CT_F_FORCE ? OVS_CT_ATTR_FORCE_COMMIT : OVS_CT_ATTR_COMMIT); if (ctx->xbridge->support.ct_eventmask) { nl_msg_put_u32(ctx->odp_actions, OVS_CT_ATTR_EVENTMASK, OVS_CT_EVENTMASK_DEFAULT); } } nl_msg_put_u16(ctx->odp_actions, OVS_CT_ATTR_ZONE, zone); put_ct_mark(&ctx->xin->flow, ctx->odp_actions, ctx->wc); put_ct_label(&ctx->xin->flow, ctx->odp_actions, ctx->wc); put_ct_helper(ctx, ctx->odp_actions, ofc); put_ct_nat(ctx); ctx->ct_nat_action = NULL; nl_msg_end_nested(ctx->odp_actions, ct_offset); /* Restore the original ct fields in the key. These should only be exposed * after recirculation to another table. */ ctx->base_flow.ct_mark = old_ct_mark; ctx->wc->masks.ct_mark = old_ct_mark_mask; ctx->base_flow.ct_label = old_ct_label; ctx->wc->masks.ct_label = old_ct_label_mask; if (ofc->recirc_table == NX_CT_RECIRC_NONE) { /* If we do not recirculate as part of this action, hide the results of * connection tracking from subsequent recirculations. */ ctx->conntracked = false; } else { /* Use ct_* fields from datapath during recirculation upcall. */ ctx->conntracked = true; compose_recirculate_and_fork(ctx, ofc->recirc_table); } } static void recirc_for_mpls(const struct ofpact *a, struct xlate_ctx *ctx) { /* No need to recirculate if already exiting. */ if (ctx->exit) { return; } /* Do not consider recirculating unless the packet was previously MPLS. */ if (!ctx->was_mpls) { return; } /* Special case these actions, only recirculating if necessary. * This avoids the overhead of recirculation in common use-cases. */ switch (a->type) { /* Output actions do not require recirculation. */ case OFPACT_OUTPUT: case OFPACT_OUTPUT_TRUNC: case OFPACT_ENQUEUE: case OFPACT_OUTPUT_REG: /* Set actions that don't touch L3+ fields do not require recirculation. */ case OFPACT_SET_VLAN_VID: case OFPACT_SET_VLAN_PCP: case OFPACT_SET_ETH_SRC: case OFPACT_SET_ETH_DST: case OFPACT_SET_TUNNEL: case OFPACT_SET_QUEUE: /* If actions of a group require recirculation that can be detected * when translating them. */ case OFPACT_GROUP: return; /* Set field that don't touch L3+ fields don't require recirculation. */ case OFPACT_SET_FIELD: if (mf_is_l3_or_higher(ofpact_get_SET_FIELD(a)->field)) { break; } return; /* For simplicity, recirculate in all other cases. */ case OFPACT_CONTROLLER: case OFPACT_BUNDLE: case OFPACT_STRIP_VLAN: case OFPACT_PUSH_VLAN: case OFPACT_SET_IPV4_SRC: case OFPACT_SET_IPV4_DST: case OFPACT_SET_IP_DSCP: case OFPACT_SET_IP_ECN: case OFPACT_SET_IP_TTL: case OFPACT_SET_L4_SRC_PORT: case OFPACT_SET_L4_DST_PORT: case OFPACT_REG_MOVE: case OFPACT_STACK_PUSH: case OFPACT_STACK_POP: case OFPACT_DEC_TTL: case OFPACT_SET_MPLS_LABEL: case OFPACT_SET_MPLS_TC: case OFPACT_SET_MPLS_TTL: case OFPACT_DEC_MPLS_TTL: case OFPACT_PUSH_MPLS: case OFPACT_POP_MPLS: case OFPACT_POP_QUEUE: case OFPACT_FIN_TIMEOUT: case OFPACT_RESUBMIT: case OFPACT_LEARN: case OFPACT_CONJUNCTION: case OFPACT_MULTIPATH: case OFPACT_NOTE: case OFPACT_EXIT: case OFPACT_SAMPLE: case OFPACT_CLONE: case OFPACT_UNROLL_XLATE: case OFPACT_CT: case OFPACT_CT_CLEAR: case OFPACT_NAT: case OFPACT_DEBUG_RECIRC: case OFPACT_METER: case OFPACT_CLEAR_ACTIONS: case OFPACT_WRITE_ACTIONS: case OFPACT_WRITE_METADATA: case OFPACT_GOTO_TABLE: default: break; } /* Recirculate */ ctx_trigger_freeze(ctx); } static void xlate_ofpact_reg_move(struct xlate_ctx *ctx, const struct ofpact_reg_move *a) { mf_subfield_copy(&a->src, &a->dst, &ctx->xin->flow, ctx->wc); xlate_report_subfield(ctx, &a->dst); } static void xlate_ofpact_stack_pop(struct xlate_ctx *ctx, const struct ofpact_stack *a) { if (nxm_execute_stack_pop(a, &ctx->xin->flow, ctx->wc, &ctx->stack)) { xlate_report_subfield(ctx, &a->subfield); } else { xlate_report_error(ctx, "stack underflow"); } } /* Restore translation context data that was stored earlier. */ static void xlate_ofpact_unroll_xlate(struct xlate_ctx *ctx, const struct ofpact_unroll_xlate *a) { ctx->table_id = a->rule_table_id; ctx->rule_cookie = a->rule_cookie; xlate_report(ctx, OFT_THAW, "restored state: table=%"PRIu8", " "cookie=%#"PRIx64, a->rule_table_id, a->rule_cookie); } static void do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len, struct xlate_ctx *ctx) { struct flow_wildcards *wc = ctx->wc; struct flow *flow = &ctx->xin->flow; const struct ofpact *a; if (ovs_native_tunneling_is_on(ctx->xbridge->ofproto)) { tnl_neigh_snoop(flow, wc, ctx->xbridge->name); } /* dl_type already in the mask, not set below. */ if (!ofpacts_len) { xlate_report(ctx, OFT_ACTION, "drop"); return; } OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) { struct ofpact_controller *controller; const struct ofpact_metadata *metadata; const struct ofpact_set_field *set_field; const struct mf_field *mf; if (ctx->error) { break; } recirc_for_mpls(a, ctx); if (ctx->exit) { /* Check if need to store the remaining actions for later * execution. */ if (ctx->freezing) { freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len), ctx); } break; } if (OVS_UNLIKELY(ctx->xin->trace)) { struct ds s = DS_EMPTY_INITIALIZER; ofpacts_format(a, OFPACT_ALIGN(a->len), NULL, &s); xlate_report(ctx, OFT_ACTION, "%s", ds_cstr(&s)); ds_destroy(&s); } switch (a->type) { case OFPACT_OUTPUT: xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port, ofpact_get_OUTPUT(a)->max_len, true); break; case OFPACT_GROUP: if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id)) { /* Group could not be found. */ /* XXX: Terminates action list translation, but does not * terminate the pipeline. */ return; } break; case OFPACT_CONTROLLER: controller = ofpact_get_CONTROLLER(a); if (controller->pause) { ctx->pause = controller; ctx->xout->slow |= SLOW_CONTROLLER; ctx_trigger_freeze(ctx); a = ofpact_next(a); } else { execute_controller_action(ctx, controller->max_len, controller->reason, controller->controller_id, controller->userdata, controller->userdata_len); } break; case OFPACT_ENQUEUE: memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a)); break; case OFPACT_SET_VLAN_VID: wc->masks.vlans[0].tci |= htons(VLAN_VID_MASK | VLAN_CFI); if (flow->vlans[0].tci & htons(VLAN_CFI) || ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) { if (!flow->vlans[0].tpid) { flow->vlans[0].tpid = htons(ETH_TYPE_VLAN); } flow->vlans[0].tci &= ~htons(VLAN_VID_MASK); flow->vlans[0].tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid) | htons(VLAN_CFI)); } break; case OFPACT_SET_VLAN_PCP: wc->masks.vlans[0].tci |= htons(VLAN_PCP_MASK | VLAN_CFI); if (flow->vlans[0].tci & htons(VLAN_CFI) || ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) { if (!flow->vlans[0].tpid) { flow->vlans[0].tpid = htons(ETH_TYPE_VLAN); } flow->vlans[0].tci &= ~htons(VLAN_PCP_MASK); flow->vlans[0].tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } break; case OFPACT_STRIP_VLAN: flow_pop_vlan(flow, wc); break; case OFPACT_PUSH_VLAN: flow_push_vlan_uninit(flow, wc); flow->vlans[0].tpid = ofpact_get_PUSH_VLAN(a)->ethertype; flow->vlans[0].tci = htons(VLAN_CFI); break; case OFPACT_SET_ETH_SRC: WC_MASK_FIELD(wc, dl_src); flow->dl_src = ofpact_get_SET_ETH_SRC(a)->mac; break; case OFPACT_SET_ETH_DST: WC_MASK_FIELD(wc, dl_dst); flow->dl_dst = ofpact_get_SET_ETH_DST(a)->mac; break; case OFPACT_SET_IPV4_SRC: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4; } break; case OFPACT_SET_IPV4_DST: if (flow->dl_type == htons(ETH_TYPE_IP)) { memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4; } break; case OFPACT_SET_IP_DSCP: if (is_ip_any(flow)) { wc->masks.nw_tos |= IP_DSCP_MASK; flow->nw_tos &= ~IP_DSCP_MASK; flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp; } break; case OFPACT_SET_IP_ECN: if (is_ip_any(flow)) { wc->masks.nw_tos |= IP_ECN_MASK; flow->nw_tos &= ~IP_ECN_MASK; flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn; } break; case OFPACT_SET_IP_TTL: if (is_ip_any(flow)) { wc->masks.nw_ttl = 0xff; flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl; } break; case OFPACT_SET_L4_SRC_PORT: if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port); } break; case OFPACT_SET_L4_DST_PORT: if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port); } break; case OFPACT_RESUBMIT: /* Freezing complicates resubmit. Some action in the flow * entry found by resubmit might trigger freezing. If that * happens, then we do not want to execute the resubmit again after * during thawing, so we want to skip back to the head of the loop * to avoid that, only adding any actions that follow the resubmit * to the frozen actions. */ xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a)); continue; case OFPACT_SET_TUNNEL: flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id); break; case OFPACT_SET_QUEUE: memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id); break; case OFPACT_POP_QUEUE: memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority); if (flow->skb_priority != ctx->orig_skb_priority) { flow->skb_priority = ctx->orig_skb_priority; xlate_report(ctx, OFT_DETAIL, "queue = %#"PRIx32, flow->skb_priority); } break; case OFPACT_REG_MOVE: xlate_ofpact_reg_move(ctx, ofpact_get_REG_MOVE(a)); break; case OFPACT_SET_FIELD: set_field = ofpact_get_SET_FIELD(a); mf = set_field->field; /* Set the field only if the packet actually has it. */ if (mf_are_prereqs_ok(mf, flow, wc)) { mf_mask_field_masked(mf, ofpact_set_field_mask(set_field), wc); mf_set_flow_value_masked(mf, set_field->value, ofpact_set_field_mask(set_field), flow); } else { xlate_report(ctx, OFT_WARN, "unmet prerequisites for %s, set_field ignored", mf->name); } break; case OFPACT_STACK_PUSH: nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc, &ctx->stack); break; case OFPACT_STACK_POP: xlate_ofpact_stack_pop(ctx, ofpact_get_STACK_POP(a)); break; case OFPACT_PUSH_MPLS: compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a)); break; case OFPACT_POP_MPLS: compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype); break; case OFPACT_SET_MPLS_LABEL: compose_set_mpls_label_action( ctx, ofpact_get_SET_MPLS_LABEL(a)->label); break; case OFPACT_SET_MPLS_TC: compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc); break; case OFPACT_SET_MPLS_TTL: compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl); break; case OFPACT_DEC_MPLS_TTL: if (compose_dec_mpls_ttl_action(ctx)) { return; } break; case OFPACT_DEC_TTL: wc->masks.nw_ttl = 0xff; if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) { return; } break; case OFPACT_NOTE: /* Nothing to do. */ break; case OFPACT_MULTIPATH: multipath_execute(ofpact_get_MULTIPATH(a), flow, wc); xlate_report_subfield(ctx, &ofpact_get_MULTIPATH(a)->dst); break; case OFPACT_BUNDLE: xlate_bundle_action(ctx, ofpact_get_BUNDLE(a)); break; case OFPACT_OUTPUT_REG: xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a)); break; case OFPACT_OUTPUT_TRUNC: xlate_output_trunc_action(ctx, ofpact_get_OUTPUT_TRUNC(a)->port, ofpact_get_OUTPUT_TRUNC(a)->max_len); break; case OFPACT_LEARN: xlate_learn_action(ctx, ofpact_get_LEARN(a)); break; case OFPACT_CONJUNCTION: /* A flow with a "conjunction" action represents part of a special * kind of "set membership match". Such a flow should not actually * get executed, but it could via, say, a "packet-out", even though * that wouldn't be useful. Log it to help debugging. */ xlate_report_error(ctx, "executing no-op conjunction action"); break; case OFPACT_EXIT: ctx->exit = true; break; case OFPACT_UNROLL_XLATE: xlate_ofpact_unroll_xlate(ctx, ofpact_get_UNROLL_XLATE(a)); break; case OFPACT_FIN_TIMEOUT: memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a)); break; case OFPACT_CLEAR_ACTIONS: xlate_report_action_set(ctx, "was"); ofpbuf_clear(&ctx->action_set); ctx->xin->flow.actset_output = OFPP_UNSET; ctx->action_set_has_group = false; break; case OFPACT_WRITE_ACTIONS: xlate_write_actions(ctx, ofpact_get_WRITE_ACTIONS(a)); xlate_report_action_set(ctx, "is"); break; case OFPACT_WRITE_METADATA: metadata = ofpact_get_WRITE_METADATA(a); flow->metadata &= ~metadata->mask; flow->metadata |= metadata->metadata & metadata->mask; break; case OFPACT_METER: xlate_meter_action(ctx, ofpact_get_METER(a)); break; case OFPACT_GOTO_TABLE: { struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a); ovs_assert(ctx->table_id < ogt->table_id); xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port, ogt->table_id, true, true, false); break; } case OFPACT_SAMPLE: xlate_sample_action(ctx, ofpact_get_SAMPLE(a)); break; case OFPACT_CLONE: xlate_clone(ctx, ofpact_get_CLONE(a)); break; case OFPACT_CT: compose_conntrack_action(ctx, ofpact_get_CT(a)); break; case OFPACT_CT_CLEAR: clear_conntrack(ctx); break; case OFPACT_NAT: /* This will be processed by compose_conntrack_action(). */ ctx->ct_nat_action = ofpact_get_NAT(a); break; case OFPACT_DEBUG_RECIRC: ctx_trigger_freeze(ctx); a = ofpact_next(a); break; } /* Check if need to store this and the remaining actions for later * execution. */ if (!ctx->error && ctx->exit && ctx_first_frozen_action(ctx)) { freeze_unroll_actions(a, ofpact_end(ofpacts, ofpacts_len), ctx); break; } } } void xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto, ovs_version_t version, const struct flow *flow, ofp_port_t in_port, struct rule_dpif *rule, uint16_t tcp_flags, const struct dp_packet *packet, struct flow_wildcards *wc, struct ofpbuf *odp_actions) { xin->ofproto = ofproto; xin->tables_version = version; xin->flow = *flow; xin->upcall_flow = flow; xin->flow.in_port.ofp_port = in_port; xin->flow.actset_output = OFPP_UNSET; xin->packet = packet; xin->allow_side_effects = packet != NULL; xin->rule = rule; xin->xcache = NULL; xin->ofpacts = NULL; xin->ofpacts_len = 0; xin->tcp_flags = tcp_flags; xin->trace = NULL; xin->resubmit_stats = NULL; xin->depth = 0; xin->resubmits = 0; xin->wc = wc; xin->odp_actions = odp_actions; xin->in_packet_out = false; /* Do recirc lookup. */ xin->frozen_state = NULL; if (flow->recirc_id) { const struct recirc_id_node *node = recirc_id_node_find(flow->recirc_id); if (node) { xin->frozen_state = &node->state; } } } void xlate_out_uninit(struct xlate_out *xout) { if (xout) { recirc_refs_unref(&xout->recircs); } } static struct skb_priority_to_dscp * get_skb_priority(const struct xport *xport, uint32_t skb_priority) { struct skb_priority_to_dscp *pdscp; uint32_t hash; hash = hash_int(skb_priority, 0); HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) { if (pdscp->skb_priority == skb_priority) { return pdscp; } } return NULL; } static bool dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority, uint8_t *dscp) { struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority); *dscp = pdscp ? pdscp->dscp : 0; return pdscp != NULL; } static size_t count_skb_priorities(const struct xport *xport) { return hmap_count(&xport->skb_priorities); } static void clear_skb_priorities(struct xport *xport) { struct skb_priority_to_dscp *pdscp; HMAP_FOR_EACH_POP (pdscp, hmap_node, &xport->skb_priorities) { free(pdscp); } } static bool actions_output_to_local_port(const struct xlate_ctx *ctx) { odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL); const struct nlattr *a; unsigned int left; NL_ATTR_FOR_EACH_UNSAFE (a, left, ctx->odp_actions->data, ctx->odp_actions->size) { if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT && nl_attr_get_odp_port(a) == local_odp_port) { return true; } } return false; } #if defined(__linux__) /* Returns the maximum number of packets that the Linux kernel is willing to * queue up internally to certain kinds of software-implemented ports, or the * default (and rarely modified) value if it cannot be determined. */ static int netdev_max_backlog(void) { static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER; static int max_backlog = 1000; /* The normal default value. */ if (ovsthread_once_start(&once)) { static const char filename[] = "/proc/sys/net/core/netdev_max_backlog"; FILE *stream; int n; stream = fopen(filename, "r"); if (!stream) { VLOG_INFO("%s: open failed (%s)", filename, ovs_strerror(errno)); } else { if (fscanf(stream, "%d", &n) != 1) { VLOG_WARN("%s: read error", filename); } else if (n <= 100) { VLOG_WARN("%s: unexpectedly small value %d", filename, n); } else { max_backlog = n; } fclose(stream); } ovsthread_once_done(&once); VLOG_DBG("%s: using %d max_backlog", filename, max_backlog); } return max_backlog; } /* Counts and returns the number of OVS_ACTION_ATTR_OUTPUT actions in * 'odp_actions'. */ static int count_output_actions(const struct ofpbuf *odp_actions) { const struct nlattr *a; size_t left; int n = 0; NL_ATTR_FOR_EACH_UNSAFE (a, left, odp_actions->data, odp_actions->size) { if (a->nla_type == OVS_ACTION_ATTR_OUTPUT) { n++; } } return n; } #endif /* defined(__linux__) */ /* Returns true if 'odp_actions' contains more output actions than the datapath * can reliably handle in one go. On Linux, this is the value of the * net.core.netdev_max_backlog sysctl, which limits the maximum number of * packets that the kernel is willing to queue up for processing while the * datapath is processing a set of actions. */ static bool too_many_output_actions(const struct ofpbuf *odp_actions OVS_UNUSED) { #ifdef __linux__ return (odp_actions->size / NL_A_U32_SIZE > netdev_max_backlog() && count_output_actions(odp_actions) > netdev_max_backlog()); #else /* OSes other than Linux might have similar limits, but we don't know how * to determine them.*/ return false; #endif } static void xlate_wc_init(struct xlate_ctx *ctx) { flow_wildcards_init_catchall(ctx->wc); /* Some fields we consider to always be examined. */ WC_MASK_FIELD(ctx->wc, in_port); WC_MASK_FIELD(ctx->wc, dl_type); if (is_ip_any(&ctx->xin->flow)) { WC_MASK_FIELD_MASK(ctx->wc, nw_frag, FLOW_NW_FRAG_MASK); } if (ctx->xbridge->support.odp.recirc) { /* Always exactly match recirc_id when datapath supports * recirculation. */ WC_MASK_FIELD(ctx->wc, recirc_id); } if (ctx->xbridge->netflow) { netflow_mask_wc(&ctx->xin->flow, ctx->wc); } tnl_wc_init(&ctx->xin->flow, ctx->wc); } static void xlate_wc_finish(struct xlate_ctx *ctx) { int i; /* Clear the metadata and register wildcard masks, because we won't * use non-header fields as part of the cache. */ flow_wildcards_clear_non_packet_fields(ctx->wc); /* Wildcard ethernet addresses if the original packet type was not * Ethernet. */ if (ctx->xin->upcall_flow->packet_type != htonl(PT_ETH)) { ctx->wc->masks.dl_dst = eth_addr_zero; ctx->wc->masks.dl_src = eth_addr_zero; } /* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow * uses the low 8 bits of the 16-bit tp_src and tp_dst members to * represent these fields. The datapath interface, on the other hand, * represents them with just 8 bits each. This means that if the high * 8 bits of the masks for these fields somehow become set, then they * will get chopped off by a round trip through the datapath, and * revalidation will spot that as an inconsistency and delete the flow. * Avoid the problem here by making sure that only the low 8 bits of * either field can be unwildcarded for ICMP. */ if (is_icmpv4(&ctx->xin->flow, NULL) || is_icmpv6(&ctx->xin->flow, NULL)) { ctx->wc->masks.tp_src &= htons(UINT8_MAX); ctx->wc->masks.tp_dst &= htons(UINT8_MAX); } /* VLAN_TCI CFI bit must be matched if any of the TCI is matched. */ for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) { if (ctx->wc->masks.vlans[i].tci) { ctx->wc->masks.vlans[i].tci |= htons(VLAN_CFI); } } /* The classifier might return masks that match on tp_src and tp_dst even * for later fragments. This happens because there might be flows that * match on tp_src or tp_dst without matching on the frag bits, because * it is not a prerequisite for OpenFlow. Since it is a prerequisite for * datapath flows and since tp_src and tp_dst are always going to be 0, * wildcard the fields here. */ if (ctx->xin->flow.nw_frag & FLOW_NW_FRAG_LATER) { ctx->wc->masks.tp_src = 0; ctx->wc->masks.tp_dst = 0; } } /* Translates the flow, actions, or rule in 'xin' into datapath actions in * 'xout'. * The caller must take responsibility for eventually freeing 'xout', with * xlate_out_uninit(). * Returns 'XLATE_OK' if translation was successful. In case of an error an * empty set of actions will be returned in 'xin->odp_actions' (if non-NULL), * so that most callers may ignore the return value and transparently install a * drop flow when the translation fails. */ enum xlate_error xlate_actions(struct xlate_in *xin, struct xlate_out *xout) { *xout = (struct xlate_out) { .slow = 0, .recircs = RECIRC_REFS_EMPTY_INITIALIZER, }; struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbridge *xbridge = xbridge_lookup(xcfg, xin->ofproto); if (!xbridge) { return XLATE_BRIDGE_NOT_FOUND; } struct flow *flow = &xin->flow; uint8_t stack_stub[1024]; uint64_t action_set_stub[1024 / 8]; uint64_t frozen_actions_stub[1024 / 8]; uint64_t actions_stub[256 / 8]; struct ofpbuf scratch_actions = OFPBUF_STUB_INITIALIZER(actions_stub); struct xlate_ctx ctx = { .xin = xin, .xout = xout, .base_flow = *flow, .orig_tunnel_ipv6_dst = flow_tnl_dst(&flow->tunnel), .xbridge = xbridge, .stack = OFPBUF_STUB_INITIALIZER(stack_stub), .rule = xin->rule, .wc = (xin->wc ? xin->wc : &(struct flow_wildcards) { .masks = { .dl_type = 0 } }), .odp_actions = xin->odp_actions ? xin->odp_actions : &scratch_actions, .depth = xin->depth, .resubmits = xin->resubmits, .in_group = false, .in_action_set = false, .in_packet_out = xin->in_packet_out, .table_id = 0, .rule_cookie = OVS_BE64_MAX, .orig_skb_priority = flow->skb_priority, .sflow_n_outputs = 0, .sflow_odp_port = 0, .nf_output_iface = NF_OUT_DROP, .exit = false, .error = XLATE_OK, .mirrors = 0, .freezing = false, .recirc_update_dp_hash = false, .frozen_actions = OFPBUF_STUB_INITIALIZER(frozen_actions_stub), .pause = NULL, .was_mpls = false, .conntracked = false, .ct_nat_action = NULL, .action_set_has_group = false, .action_set = OFPBUF_STUB_INITIALIZER(action_set_stub), }; /* 'base_flow' reflects the packet as it came in, but we need it to reflect * the packet as the datapath will treat it for output actions. Our * datapath doesn't retain tunneling information without us re-setting * it, so clear the tunnel data. */ memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel); ofpbuf_reserve(ctx.odp_actions, NL_A_U32_SIZE); xlate_wc_init(&ctx); COVERAGE_INC(xlate_actions); xin->trace = xlate_report(&ctx, OFT_BRIDGE, "bridge(\"%s\")", xbridge->name); if (xin->frozen_state) { const struct frozen_state *state = xin->frozen_state; struct ovs_list *old_trace = xin->trace; xin->trace = xlate_report(&ctx, OFT_THAW, "thaw"); if (xin->ofpacts_len > 0 || ctx.rule) { xlate_report_error(&ctx, "Recirculation conflict (%s)!", xin->ofpacts_len ? "actions" : "rule"); ctx.error = XLATE_RECIRCULATION_CONFLICT; goto exit; } /* Set the bridge for post-recirculation processing if needed. */ if (!uuid_equals(&ctx.xbridge->ofproto->uuid, &state->ofproto_uuid)) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); const struct xbridge *new_bridge = xbridge_lookup_by_uuid(xcfg, &state->ofproto_uuid); if (OVS_UNLIKELY(!new_bridge)) { /* Drop the packet if the bridge cannot be found. */ xlate_report_error(&ctx, "Frozen bridge no longer exists."); ctx.error = XLATE_BRIDGE_NOT_FOUND; xin->trace = old_trace; goto exit; } ctx.xbridge = new_bridge; /* The bridge is now known so obtain its table version. */ ctx.xin->tables_version = ofproto_dpif_get_tables_version(ctx.xbridge->ofproto); } /* Set the thawed table id. Note: A table lookup is done only if there * are no frozen actions. */ ctx.table_id = state->table_id; xlate_report(&ctx, OFT_THAW, "Resuming from table %"PRIu8, ctx.table_id); if (!state->conntracked) { clear_conntrack(&ctx); } /* Restore pipeline metadata. May change flow's in_port and other * metadata to the values that existed when freezing was triggered. */ frozen_metadata_to_flow(&state->metadata, flow); /* Restore stack, if any. */ if (state->stack) { ofpbuf_put(&ctx.stack, state->stack, state->stack_size); } /* Restore mirror state. */ ctx.mirrors = state->mirrors; /* Restore action set, if any. */ if (state->action_set_len) { xlate_report_actions(&ctx, OFT_THAW, "Restoring action set", state->action_set, state->action_set_len); flow->actset_output = OFPP_UNSET; xlate_write_actions__(&ctx, state->action_set, state->action_set_len); } /* Restore frozen actions. If there are no actions, processing will * start with a lookup in the table set above. */ xin->ofpacts = state->ofpacts; xin->ofpacts_len = state->ofpacts_len; if (state->ofpacts_len) { xlate_report_actions(&ctx, OFT_THAW, "Restoring actions", xin->ofpacts, xin->ofpacts_len); } xin->trace = old_trace; } else if (OVS_UNLIKELY(flow->recirc_id)) { xlate_report_error(&ctx, "Recirculation context not found for ID %"PRIx32, flow->recirc_id); ctx.error = XLATE_NO_RECIRCULATION_CONTEXT; goto exit; } /* Tunnel metadata in udpif format must be normalized before translation. */ if (flow->tunnel.flags & FLOW_TNL_F_UDPIF) { const struct tun_table *tun_tab = ofproto_get_tun_tab( &ctx.xbridge->ofproto->up); int err; err = tun_metadata_from_geneve_udpif(tun_tab, &xin->upcall_flow->tunnel, &xin->upcall_flow->tunnel, &flow->tunnel); if (err) { xlate_report_error(&ctx, "Invalid Geneve tunnel metadata"); ctx.error = XLATE_INVALID_TUNNEL_METADATA; goto exit; } } else if (!flow->tunnel.metadata.tab) { /* If the original flow did not come in on a tunnel, then it won't have * FLOW_TNL_F_UDPIF set. However, we still need to have a metadata * table in case we generate tunnel actions. */ flow->tunnel.metadata.tab = ofproto_get_tun_tab( &ctx.xbridge->ofproto->up); } ctx.wc->masks.tunnel.metadata.tab = flow->tunnel.metadata.tab; /* Get the proximate input port of the packet. (If xin->frozen_state, * flow->in_port is the ultimate input port of the packet.) */ struct xport *in_port = get_ofp_port(xbridge, ctx.base_flow.in_port.ofp_port); if (flow->packet_type != htonl(PT_ETH) && in_port && in_port->is_layer3 && ctx.table_id == 0) { /* Add dummy Ethernet header to non-L2 packet if it's coming from a * L3 port. So all packets will be L2 packets for lookup. * The dl_type has already been set from the packet_type. */ flow->packet_type = htonl(PT_ETH); flow->dl_src = eth_addr_zero; flow->dl_dst = eth_addr_zero; } if (!xin->ofpacts && !ctx.rule) { ctx.rule = rule_dpif_lookup_from_table( ctx.xbridge->ofproto, ctx.xin->tables_version, flow, ctx.wc, ctx.xin->resubmit_stats, &ctx.table_id, flow->in_port.ofp_port, true, true, ctx.xin->xcache); if (ctx.xin->resubmit_stats) { rule_dpif_credit_stats(ctx.rule, ctx.xin->resubmit_stats); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_RULE); entry->rule = ctx.rule; ofproto_rule_ref(&ctx.rule->up); } xlate_report_table(&ctx, ctx.rule, ctx.table_id); } /* Tunnel stats only for not-thawed packets. */ if (!xin->frozen_state && in_port && in_port->is_tunnel) { if (ctx.xin->resubmit_stats) { netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats); if (in_port->bfd) { bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats); } } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETDEV); entry->dev.rx = netdev_ref(in_port->netdev); entry->dev.bfd = bfd_ref(in_port->bfd); } } if (!xin->frozen_state && process_special(&ctx, in_port)) { /* process_special() did all the processing for this packet. * * We do not perform special processing on thawed packets, since that * was done before they were frozen and should not be redone. */ } else if (in_port && in_port->xbundle && xbundle_mirror_out(xbridge, in_port->xbundle)) { xlate_report_error(&ctx, "dropping packet received on port " "%s, which is reserved exclusively for mirroring", in_port->xbundle->name); } else { /* Sampling is done on initial reception; don't redo after thawing. */ unsigned int user_cookie_offset = 0; if (!xin->frozen_state) { user_cookie_offset = compose_sflow_action(&ctx); compose_ipfix_action(&ctx, ODPP_NONE); } size_t sample_actions_len = ctx.odp_actions->size; if (tnl_process_ecn(flow) && (!in_port || may_receive(in_port, &ctx))) { const struct ofpact *ofpacts; size_t ofpacts_len; if (xin->ofpacts) { ofpacts = xin->ofpacts; ofpacts_len = xin->ofpacts_len; } else if (ctx.rule) { const struct rule_actions *actions = rule_get_actions(&ctx.rule->up); ofpacts = actions->ofpacts; ofpacts_len = actions->ofpacts_len; ctx.rule_cookie = ctx.rule->up.flow_cookie; } else { OVS_NOT_REACHED(); } mirror_ingress_packet(&ctx); do_xlate_actions(ofpacts, ofpacts_len, &ctx); if (ctx.error) { goto exit; } /* We've let OFPP_NORMAL and the learning action look at the * packet, so cancel all actions and freezing if forwarding is * disabled. */ if (in_port && (!xport_stp_forward_state(in_port) || !xport_rstp_forward_state(in_port))) { ctx.odp_actions->size = sample_actions_len; ctx_cancel_freeze(&ctx); ofpbuf_clear(&ctx.action_set); } if (!ctx.freezing) { xlate_action_set(&ctx); } if (ctx.freezing) { finish_freezing(&ctx); } } /* Output only fully processed packets. */ if (!ctx.freezing && xbridge->has_in_band && in_band_must_output_to_local_port(flow) && !actions_output_to_local_port(&ctx)) { compose_output_action(&ctx, OFPP_LOCAL, NULL); } if (user_cookie_offset) { fix_sflow_action(&ctx, user_cookie_offset); } } if (nl_attr_oversized(ctx.odp_actions->size)) { /* These datapath actions are too big for a Netlink attribute, so we * can't hand them to the kernel directly. dpif_execute() can execute * them one by one with help, so just mark the result as SLOW_ACTION to * prevent the flow from being installed. */ COVERAGE_INC(xlate_actions_oversize); ctx.xout->slow |= SLOW_ACTION; } else if (too_many_output_actions(ctx.odp_actions)) { COVERAGE_INC(xlate_actions_too_many_output); ctx.xout->slow |= SLOW_ACTION; } /* Update NetFlow for non-frozen traffic. */ if (xbridge->netflow && !xin->frozen_state) { if (ctx.xin->resubmit_stats) { netflow_flow_update(xbridge->netflow, flow, ctx.nf_output_iface, ctx.xin->resubmit_stats); } if (ctx.xin->xcache) { struct xc_entry *entry; entry = xlate_cache_add_entry(ctx.xin->xcache, XC_NETFLOW); entry->nf.netflow = netflow_ref(xbridge->netflow); entry->nf.flow = xmemdup(flow, sizeof *flow); entry->nf.iface = ctx.nf_output_iface; } } /* Translate tunnel metadata masks to udpif format if necessary. */ if (xin->upcall_flow->tunnel.flags & FLOW_TNL_F_UDPIF) { if (ctx.wc->masks.tunnel.metadata.present.map) { const struct flow_tnl *upcall_tnl = &xin->upcall_flow->tunnel; struct geneve_opt opts[TLV_TOT_OPT_SIZE / sizeof(struct geneve_opt)]; tun_metadata_to_geneve_udpif_mask(&flow->tunnel, &ctx.wc->masks.tunnel, upcall_tnl->metadata.opts.gnv, upcall_tnl->metadata.present.len, opts); memset(&ctx.wc->masks.tunnel.metadata, 0, sizeof ctx.wc->masks.tunnel.metadata); memcpy(&ctx.wc->masks.tunnel.metadata.opts.gnv, opts, upcall_tnl->metadata.present.len); } ctx.wc->masks.tunnel.metadata.present.len = 0xff; ctx.wc->masks.tunnel.metadata.tab = NULL; ctx.wc->masks.tunnel.flags |= FLOW_TNL_F_UDPIF; } else if (!xin->upcall_flow->tunnel.metadata.tab) { /* If we didn't have options in UDPIF format and didn't have an existing * metadata table, then it means that there were no options at all when * we started processing and any wildcards we picked up were from * action generation. Without options on the incoming packet, wildcards * aren't meaningful. To avoid them possibly getting misinterpreted, * just clear everything. */ if (ctx.wc->masks.tunnel.metadata.present.map) { memset(&ctx.wc->masks.tunnel.metadata, 0, sizeof ctx.wc->masks.tunnel.metadata); } else { ctx.wc->masks.tunnel.metadata.tab = NULL; } } xlate_wc_finish(&ctx); exit: /* Reset the table to what it was when we came in. If we only fetched * it locally, then it has no meaning outside of flow translation. */ flow->tunnel.metadata.tab = xin->upcall_flow->tunnel.metadata.tab; ofpbuf_uninit(&ctx.stack); ofpbuf_uninit(&ctx.action_set); ofpbuf_uninit(&ctx.frozen_actions); ofpbuf_uninit(&scratch_actions); /* Make sure we return a "drop flow" in case of an error. */ if (ctx.error) { xout->slow = 0; if (xin->odp_actions) { ofpbuf_clear(xin->odp_actions); } } return ctx.error; } enum ofperr xlate_resume(struct ofproto_dpif *ofproto, const struct ofputil_packet_in_private *pin, struct ofpbuf *odp_actions, enum slow_path_reason *slow) { struct dp_packet packet; dp_packet_use_const(&packet, pin->public.packet, pin->public.packet_len); struct flow flow; flow_extract(&packet, &flow); struct xlate_in xin; xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto), &flow, 0, NULL, ntohs(flow.tcp_flags), &packet, NULL, odp_actions); struct ofpact_note noop; ofpact_init_NOTE(&noop); noop.length = 0; bool any_actions = pin->actions_len > 0; struct frozen_state state = { .table_id = 0, /* Not the table where NXAST_PAUSE was executed. */ .ofproto_uuid = pin->bridge, .stack = pin->stack, .stack_size = pin->stack_size, .mirrors = pin->mirrors, .conntracked = pin->conntracked, /* When there are no actions, xlate_actions() will search the flow * table. We don't want it to do that (we want it to resume), so * supply a no-op action if there aren't any. * * (We can't necessarily avoid translating actions entirely if there * aren't any actions, because there might be some finishing-up to do * at the end of the pipeline, and we don't check for those * conditions.) */ .ofpacts = any_actions ? pin->actions : &noop.ofpact, .ofpacts_len = any_actions ? pin->actions_len : sizeof noop, .action_set = pin->action_set, .action_set_len = pin->action_set_len, }; frozen_metadata_from_flow(&state.metadata, &pin->public.flow_metadata.flow); xin.frozen_state = &state; struct xlate_out xout; enum xlate_error error = xlate_actions(&xin, &xout); *slow = xout.slow; xlate_out_uninit(&xout); /* xlate_actions() can generate a number of errors, but only * XLATE_BRIDGE_NOT_FOUND really stands out to me as one that we should be * sure to report over OpenFlow. The others could come up in packet-outs * or regular flow translation and I don't think that it's going to be too * useful to report them to the controller. */ return error == XLATE_BRIDGE_NOT_FOUND ? OFPERR_NXR_STALE : 0; } /* Sends 'packet' out 'ofport'. If 'port' is a tunnel and that tunnel type * supports a notion of an OAM flag, sets it if 'oam' is true. * May modify 'packet'. * Returns 0 if successful, otherwise a positive errno value. */ int xlate_send_packet(const struct ofport_dpif *ofport, bool oam, struct dp_packet *packet) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xport *xport; uint64_t ofpacts_stub[1024 / 8]; struct ofpbuf ofpacts; struct flow flow; ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); /* Use OFPP_NONE as the in_port to avoid special packet processing. */ flow_extract(packet, &flow); flow.in_port.ofp_port = OFPP_NONE; xport = xport_lookup(xcfg, ofport); if (!xport) { return EINVAL; } if (oam) { const ovs_be16 oam = htons(NX_TUN_FLAG_OAM); ofpact_put_set_field(&ofpacts, mf_from_id(MFF_TUN_FLAGS), &oam, &oam); } ofpact_put_OUTPUT(&ofpacts)->port = xport->ofp_port; /* Actions here are not referring to anything versionable (flow tables or * groups) so we don't need to worry about the version here. */ return ofproto_dpif_execute_actions(xport->xbridge->ofproto, OVS_VERSION_MAX, &flow, NULL, ofpacts.data, ofpacts.size, packet); } void xlate_mac_learning_update(const struct ofproto_dpif *ofproto, ofp_port_t in_port, struct eth_addr dl_src, int vlan, bool is_grat_arp) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbridge *xbridge; struct xbundle *xbundle; xbridge = xbridge_lookup(xcfg, ofproto); if (!xbridge) { return; } xbundle = lookup_input_bundle__(xbridge, in_port, NULL); if (!xbundle) { return; } update_learning_table__(xbridge, xbundle, dl_src, vlan, is_grat_arp); } void xlate_disable_dp_clone(const struct ofproto_dpif *ofproto) { struct xlate_cfg *xcfg = ovsrcu_get(struct xlate_cfg *, &xcfgp); struct xbridge *xbridge = xbridge_lookup(xcfg, ofproto); if (xbridge) { xbridge->support.clone = false; } }