/* * Copyright (c) 2009-2016 Nicira, Inc. * Copyright (c) 2010 Jean Tourrilhes - HP-Labs. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "bitmap.h" #include "bundles.h" #include "byte-order.h" #include "classifier.h" #include "connectivity.h" #include "connmgr.h" #include "coverage.h" #include "dp-packet.h" #include "hash.h" #include "hmap.h" #include "netdev.h" #include "nx-match.h" #include "ofproto.h" #include "ofproto-provider.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "openvswitch/dynamic-string.h" #include "openvswitch/meta-flow.h" #include "openvswitch/ofp-actions.h" #include "openvswitch/ofp-errors.h" #include "openvswitch/ofp-msgs.h" #include "openvswitch/ofp-print.h" #include "openvswitch/ofp-util.h" #include "openvswitch/ofpbuf.h" #include "openvswitch/vlog.h" #include "ovs-rcu.h" #include "packets.h" #include "pinsched.h" #include "pktbuf.h" #include "poll-loop.h" #include "random.h" #include "seq.h" #include "shash.h" #include "simap.h" #include "smap.h" #include "sset.h" #include "timeval.h" #include "tun-metadata.h" #include "unaligned.h" #include "unixctl.h" VLOG_DEFINE_THIS_MODULE(ofproto); COVERAGE_DEFINE(ofproto_flush); COVERAGE_DEFINE(ofproto_packet_out); COVERAGE_DEFINE(ofproto_queue_req); COVERAGE_DEFINE(ofproto_recv_openflow); COVERAGE_DEFINE(ofproto_reinit_ports); COVERAGE_DEFINE(ofproto_update_port); /* Default fields to use for prefix tries in each flow table, unless something * else is configured. */ const enum mf_field_id default_prefix_fields[2] = { MFF_IPV4_DST, MFF_IPV4_SRC }; /* oftable. */ static void oftable_init(struct oftable *); static void oftable_destroy(struct oftable *); static void oftable_set_name(struct oftable *, const char *name); static enum ofperr evict_rules_from_table(struct oftable *) OVS_REQUIRES(ofproto_mutex); static void oftable_configure_eviction(struct oftable *, unsigned int eviction, const struct mf_subfield *fields, size_t n_fields) OVS_REQUIRES(ofproto_mutex); /* This is the only combination of OpenFlow eviction flags that OVS supports: a * combination of OF1.4+ importance, the remaining lifetime of the flow, and * fairness based on user-specified fields. */ #define OFPROTO_EVICTION_FLAGS \ (OFPTMPEF14_OTHER | OFPTMPEF14_IMPORTANCE | OFPTMPEF14_LIFETIME) /* A set of rules within a single OpenFlow table (oftable) that have the same * values for the oftable's eviction_fields. A rule to be evicted, when one is * needed, is taken from the eviction group that contains the greatest number * of rules. * * An oftable owns any number of eviction groups, each of which contains any * number of rules. * * Membership in an eviction group is imprecise, based on the hash of the * oftable's eviction_fields (in the eviction_group's id_node.hash member). * That is, if two rules have different eviction_fields, but those * eviction_fields hash to the same value, then they will belong to the same * eviction_group anyway. * * (When eviction is not enabled on an oftable, we don't track any eviction * groups, to save time and space.) */ struct eviction_group { struct hmap_node id_node; /* In oftable's "eviction_groups_by_id". */ struct heap_node size_node; /* In oftable's "eviction_groups_by_size". */ struct heap rules; /* Contains "struct rule"s. */ }; static bool choose_rule_to_evict(struct oftable *table, struct rule **rulep) OVS_REQUIRES(ofproto_mutex); static uint64_t rule_eviction_priority(struct ofproto *ofproto, struct rule *) OVS_REQUIRES(ofproto_mutex); static void eviction_group_add_rule(struct rule *) OVS_REQUIRES(ofproto_mutex); static void eviction_group_remove_rule(struct rule *) OVS_REQUIRES(ofproto_mutex); /* Criteria that flow_mod and other operations use for selecting rules on * which to operate. */ struct rule_criteria { /* An OpenFlow table or 255 for all tables. */ uint8_t table_id; /* OpenFlow matching criteria. Interpreted different in "loose" way by * collect_rules_loose() and "strict" way by collect_rules_strict(), as * defined in the OpenFlow spec. */ struct cls_rule cr; cls_version_t version; /* Matching criteria for the OpenFlow cookie. Consider a bit B in a rule's * cookie and the corresponding bits C in 'cookie' and M in 'cookie_mask'. * The rule will not be selected if M is 1 and B != C. */ ovs_be64 cookie; ovs_be64 cookie_mask; /* Selection based on actions within a rule: * * If out_port != OFPP_ANY, selects only rules that output to out_port. * If out_group != OFPG_ALL, select only rules that output to out_group. */ ofp_port_t out_port; uint32_t out_group; /* If true, collects only rules that are modifiable. */ bool include_hidden; bool include_readonly; }; static void rule_criteria_init(struct rule_criteria *, uint8_t table_id, const struct match *match, int priority, cls_version_t version, ovs_be64 cookie, ovs_be64 cookie_mask, ofp_port_t out_port, uint32_t out_group); static void rule_criteria_require_rw(struct rule_criteria *, bool can_write_readonly); static void rule_criteria_destroy(struct rule_criteria *); static enum ofperr collect_rules_loose(struct ofproto *, const struct rule_criteria *, struct rule_collection *); /* A packet that needs to be passed to rule_execute(). * * (We can't do this immediately from ofopgroup_complete() because that holds * ofproto_mutex, which rule_execute() needs released.) */ struct rule_execute { struct ovs_list list_node; /* In struct ofproto's "rule_executes" list. */ struct rule *rule; /* Owns a reference to the rule. */ ofp_port_t in_port; struct dp_packet *packet; /* Owns the packet. */ }; static void run_rule_executes(struct ofproto *) OVS_EXCLUDED(ofproto_mutex); static void destroy_rule_executes(struct ofproto *); struct learned_cookie { union { /* In struct ofproto's 'learned_cookies' hmap. */ struct hmap_node hmap_node OVS_GUARDED_BY(ofproto_mutex); /* In 'dead_cookies' list when removed from hmap. */ struct ovs_list list_node; } u; /* Key. */ ovs_be64 cookie OVS_GUARDED_BY(ofproto_mutex); uint8_t table_id OVS_GUARDED_BY(ofproto_mutex); /* Number of references from "learn" actions. * * When this drops to 0, all of the flows in 'table_id' with the specified * 'cookie' are deleted. */ int n OVS_GUARDED_BY(ofproto_mutex); }; static const struct ofpact_learn *next_learn_with_delete( const struct rule_actions *, const struct ofpact_learn *start); static void learned_cookies_inc(struct ofproto *, const struct rule_actions *) OVS_REQUIRES(ofproto_mutex); static void learned_cookies_dec(struct ofproto *, const struct rule_actions *, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex); static void learned_cookies_flush(struct ofproto *, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex); /* ofport. */ static void ofport_destroy__(struct ofport *) OVS_EXCLUDED(ofproto_mutex); static void ofport_destroy(struct ofport *, bool del); static inline bool ofport_is_internal(const struct ofport *); static int update_port(struct ofproto *, const char *devname); static int init_ports(struct ofproto *); static void reinit_ports(struct ofproto *); static long long int ofport_get_usage(const struct ofproto *, ofp_port_t ofp_port); static void ofport_set_usage(struct ofproto *, ofp_port_t ofp_port, long long int last_used); static void ofport_remove_usage(struct ofproto *, ofp_port_t ofp_port); /* Ofport usage. * * Keeps track of the currently used and recently used ofport values and is * used to prevent immediate recycling of ofport values. */ struct ofport_usage { struct hmap_node hmap_node; /* In struct ofproto's "ofport_usage" hmap. */ ofp_port_t ofp_port; /* OpenFlow port number. */ long long int last_used; /* Last time the 'ofp_port' was used. LLONG_MAX represents in-use ofports. */ }; /* rule. */ static void ofproto_rule_send_removed(struct rule *) OVS_EXCLUDED(ofproto_mutex); static bool rule_is_readonly(const struct rule *); static void ofproto_rule_insert__(struct ofproto *, struct rule *) OVS_REQUIRES(ofproto_mutex); static void ofproto_rule_remove__(struct ofproto *, struct rule *) OVS_REQUIRES(ofproto_mutex); /* The source of a flow_mod request, in the code that processes flow_mods. * * A flow table modification request can be generated externally, via OpenFlow, * or internally through a function call. This structure indicates the source * of an OpenFlow-generated flow_mod. For an internal flow_mod, it isn't * meaningful and thus supplied as NULL. */ struct flow_mod_requester { struct ofconn *ofconn; /* Connection on which flow_mod arrived. */ const struct ofp_header *request; }; /* OpenFlow. */ static enum ofperr replace_rule_create(struct ofproto *, struct ofputil_flow_mod *, struct cls_rule *cr, uint8_t table_id, struct rule *old_rule, struct rule **new_rule) OVS_REQUIRES(ofproto_mutex); static void replace_rule_start(struct ofproto *, cls_version_t version, struct rule *old_rule, struct rule *new_rule, struct cls_conjunction *, size_t n_conjs) OVS_REQUIRES(ofproto_mutex); static void replace_rule_revert(struct ofproto *, struct rule *old_rule, struct rule *new_rule) OVS_REQUIRES(ofproto_mutex); static void replace_rule_finish(struct ofproto *, struct ofputil_flow_mod *, const struct flow_mod_requester *, struct rule *old_rule, struct rule *new_rule, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex); static void delete_flows__(struct rule_collection *, enum ofp_flow_removed_reason, const struct flow_mod_requester *) OVS_REQUIRES(ofproto_mutex); static void send_buffered_packet(const struct flow_mod_requester *, uint32_t buffer_id, struct rule *) OVS_REQUIRES(ofproto_mutex); static bool ofproto_group_exists__(const struct ofproto *ofproto, uint32_t group_id) OVS_REQ_RDLOCK(ofproto->groups_rwlock); static bool ofproto_group_exists(const struct ofproto *ofproto, uint32_t group_id) OVS_EXCLUDED(ofproto->groups_rwlock); static enum ofperr add_group(struct ofproto *, const struct ofputil_group_mod *); static void handle_openflow(struct ofconn *, const struct ofpbuf *); static enum ofperr ofproto_flow_mod_start(struct ofproto *, struct ofproto_flow_mod *) OVS_REQUIRES(ofproto_mutex); static void ofproto_flow_mod_finish(struct ofproto *, struct ofproto_flow_mod *, const struct flow_mod_requester *) OVS_REQUIRES(ofproto_mutex); static enum ofperr handle_flow_mod__(struct ofproto *, struct ofproto_flow_mod *, const struct flow_mod_requester *) OVS_EXCLUDED(ofproto_mutex); static void calc_duration(long long int start, long long int now, uint32_t *sec, uint32_t *nsec); /* ofproto. */ static uint64_t pick_datapath_id(const struct ofproto *); static uint64_t pick_fallback_dpid(void); static void ofproto_destroy__(struct ofproto *); static void update_mtu(struct ofproto *, struct ofport *); static void update_mtu_ofproto(struct ofproto *); static void meter_delete(struct ofproto *, uint32_t first, uint32_t last); static void meter_insert_rule(struct rule *); /* unixctl. */ static void ofproto_unixctl_init(void); /* All registered ofproto classes, in probe order. */ static const struct ofproto_class **ofproto_classes; static size_t n_ofproto_classes; static size_t allocated_ofproto_classes; /* Global lock that protects all flow table operations. */ struct ovs_mutex ofproto_mutex = OVS_MUTEX_INITIALIZER; unsigned ofproto_flow_limit = OFPROTO_FLOW_LIMIT_DEFAULT; unsigned ofproto_max_idle = OFPROTO_MAX_IDLE_DEFAULT; size_t n_handlers, n_revalidators; char *pmd_cpu_mask; /* Map from datapath name to struct ofproto, for use by unixctl commands. */ static struct hmap all_ofprotos = HMAP_INITIALIZER(&all_ofprotos); /* Initial mappings of port to OpenFlow number mappings. */ static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports); static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); /* The default value of true waits for flow restore. */ static bool flow_restore_wait = true; /* Must be called to initialize the ofproto library. * * The caller may pass in 'iface_hints', which contains an shash of * "iface_hint" elements indexed by the interface's name. The provider * may use these hints to describe the startup configuration in order to * reinitialize its state. The caller owns the provided data, so a * provider will make copies of anything required. An ofproto provider * will remove any existing state that is not described by the hint, and * may choose to remove it all. */ void ofproto_init(const struct shash *iface_hints) { struct shash_node *node; size_t i; ofproto_class_register(&ofproto_dpif_class); /* Make a local copy, since we don't own 'iface_hints' elements. */ SHASH_FOR_EACH(node, iface_hints) { const struct iface_hint *orig_hint = node->data; struct iface_hint *new_hint = xmalloc(sizeof *new_hint); const char *br_type = ofproto_normalize_type(orig_hint->br_type); new_hint->br_name = xstrdup(orig_hint->br_name); new_hint->br_type = xstrdup(br_type); new_hint->ofp_port = orig_hint->ofp_port; shash_add(&init_ofp_ports, node->name, new_hint); } for (i = 0; i < n_ofproto_classes; i++) { ofproto_classes[i]->init(&init_ofp_ports); } ofproto_unixctl_init(); } /* 'type' should be a normalized datapath type, as returned by * ofproto_normalize_type(). Returns the corresponding ofproto_class * structure, or a null pointer if there is none registered for 'type'. */ static const struct ofproto_class * ofproto_class_find__(const char *type) { size_t i; for (i = 0; i < n_ofproto_classes; i++) { const struct ofproto_class *class = ofproto_classes[i]; struct sset types; bool found; sset_init(&types); class->enumerate_types(&types); found = sset_contains(&types, type); sset_destroy(&types); if (found) { return class; } } VLOG_WARN("unknown datapath type %s", type); return NULL; } /* Registers a new ofproto class. After successful registration, new ofprotos * of that type can be created using ofproto_create(). */ int ofproto_class_register(const struct ofproto_class *new_class) { size_t i; for (i = 0; i < n_ofproto_classes; i++) { if (ofproto_classes[i] == new_class) { return EEXIST; } } if (n_ofproto_classes >= allocated_ofproto_classes) { ofproto_classes = x2nrealloc(ofproto_classes, &allocated_ofproto_classes, sizeof *ofproto_classes); } ofproto_classes[n_ofproto_classes++] = new_class; return 0; } /* Unregisters a datapath provider. 'type' must have been previously * registered and not currently be in use by any ofprotos. After * unregistration new datapaths of that type cannot be opened using * ofproto_create(). */ int ofproto_class_unregister(const struct ofproto_class *class) { size_t i; for (i = 0; i < n_ofproto_classes; i++) { if (ofproto_classes[i] == class) { for (i++; i < n_ofproto_classes; i++) { ofproto_classes[i - 1] = ofproto_classes[i]; } n_ofproto_classes--; return 0; } } VLOG_WARN("attempted to unregister an ofproto class that is not " "registered"); return EAFNOSUPPORT; } /* Clears 'types' and enumerates all registered ofproto types into it. The * caller must first initialize the sset. */ void ofproto_enumerate_types(struct sset *types) { size_t i; sset_clear(types); for (i = 0; i < n_ofproto_classes; i++) { ofproto_classes[i]->enumerate_types(types); } } /* Returns the fully spelled out name for the given ofproto 'type'. * * Normalized type string can be compared with strcmp(). Unnormalized type * string might be the same even if they have different spellings. */ const char * ofproto_normalize_type(const char *type) { return type && type[0] ? type : "system"; } /* Clears 'names' and enumerates the names of all known created ofprotos with * the given 'type'. The caller must first initialize the sset. Returns 0 if * successful, otherwise a positive errno value. * * Some kinds of datapaths might not be practically enumerable. This is not * considered an error. */ int ofproto_enumerate_names(const char *type, struct sset *names) { const struct ofproto_class *class = ofproto_class_find__(type); return class ? class->enumerate_names(type, names) : EAFNOSUPPORT; } static void ofproto_bump_tables_version(struct ofproto *ofproto) { ++ofproto->tables_version; ofproto->ofproto_class->set_tables_version(ofproto, ofproto->tables_version); } int ofproto_create(const char *datapath_name, const char *datapath_type, struct ofproto **ofprotop) { const struct ofproto_class *class; struct ofproto *ofproto; int error; int i; *ofprotop = NULL; datapath_type = ofproto_normalize_type(datapath_type); class = ofproto_class_find__(datapath_type); if (!class) { VLOG_WARN("could not create datapath %s of unknown type %s", datapath_name, datapath_type); return EAFNOSUPPORT; } ofproto = class->alloc(); if (!ofproto) { VLOG_ERR("failed to allocate datapath %s of type %s", datapath_name, datapath_type); return ENOMEM; } /* Initialize. */ ovs_mutex_lock(&ofproto_mutex); memset(ofproto, 0, sizeof *ofproto); ofproto->ofproto_class = class; ofproto->name = xstrdup(datapath_name); ofproto->type = xstrdup(datapath_type); hmap_insert(&all_ofprotos, &ofproto->hmap_node, hash_string(ofproto->name, 0)); ofproto->datapath_id = 0; ofproto->forward_bpdu = false; ofproto->fallback_dpid = pick_fallback_dpid(); ofproto->mfr_desc = NULL; ofproto->hw_desc = NULL; ofproto->sw_desc = NULL; ofproto->serial_desc = NULL; ofproto->dp_desc = NULL; ofproto->frag_handling = OFPUTIL_FRAG_NORMAL; hmap_init(&ofproto->ports); hmap_init(&ofproto->ofport_usage); shash_init(&ofproto->port_by_name); simap_init(&ofproto->ofp_requests); ofproto->max_ports = ofp_to_u16(OFPP_MAX); ofproto->eviction_group_timer = LLONG_MIN; ofproto->tables = NULL; ofproto->n_tables = 0; ofproto->tables_version = CLS_MIN_VERSION; hindex_init(&ofproto->cookies); hmap_init(&ofproto->learned_cookies); ovs_list_init(&ofproto->expirable); ofproto->connmgr = connmgr_create(ofproto, datapath_name, datapath_name); guarded_list_init(&ofproto->rule_executes); ofproto->min_mtu = INT_MAX; ovs_rwlock_init(&ofproto->groups_rwlock); hmap_init(&ofproto->groups); ovs_mutex_unlock(&ofproto_mutex); ofproto->ogf.types = 0xf; ofproto->ogf.capabilities = OFPGFC_CHAINING | OFPGFC_SELECT_LIVENESS | OFPGFC_SELECT_WEIGHT; for (i = 0; i < 4; i++) { ofproto->ogf.max_groups[i] = OFPG_MAX; ofproto->ogf.ofpacts[i] = (UINT64_C(1) << N_OFPACTS) - 1; } tun_metadata_init(); error = ofproto->ofproto_class->construct(ofproto); if (error) { VLOG_ERR("failed to open datapath %s: %s", datapath_name, ovs_strerror(error)); connmgr_destroy(ofproto->connmgr); ofproto_destroy__(ofproto); return error; } /* Check that hidden tables, if any, are at the end. */ ovs_assert(ofproto->n_tables); for (i = 0; i + 1 < ofproto->n_tables; i++) { enum oftable_flags flags = ofproto->tables[i].flags; enum oftable_flags next_flags = ofproto->tables[i + 1].flags; ovs_assert(!(flags & OFTABLE_HIDDEN) || next_flags & OFTABLE_HIDDEN); } ofproto->datapath_id = pick_datapath_id(ofproto); init_ports(ofproto); /* Initialize meters table. */ if (ofproto->ofproto_class->meter_get_features) { ofproto->ofproto_class->meter_get_features(ofproto, &ofproto->meter_features); } else { memset(&ofproto->meter_features, 0, sizeof ofproto->meter_features); } ofproto->meters = xzalloc((ofproto->meter_features.max_meters + 1) * sizeof(struct meter *)); /* Set the initial tables version. */ ofproto_bump_tables_version(ofproto); *ofprotop = ofproto; return 0; } /* Must be called (only) by an ofproto implementation in its constructor * function. See the large comment on 'construct' in struct ofproto_class for * details. */ void ofproto_init_tables(struct ofproto *ofproto, int n_tables) { struct oftable *table; ovs_assert(!ofproto->n_tables); ovs_assert(n_tables >= 1 && n_tables <= 255); ofproto->n_tables = n_tables; ofproto->tables = xmalloc(n_tables * sizeof *ofproto->tables); OFPROTO_FOR_EACH_TABLE (table, ofproto) { oftable_init(table); } } /* To be optionally called (only) by an ofproto implementation in its * constructor function. See the large comment on 'construct' in struct * ofproto_class for details. * * Sets the maximum number of ports to 'max_ports'. The ofproto generic layer * will then ensure that actions passed into the ofproto implementation will * not refer to OpenFlow ports numbered 'max_ports' or higher. If this * function is not called, there will be no such restriction. * * Reserved ports numbered OFPP_MAX and higher are special and not subject to * the 'max_ports' restriction. */ void ofproto_init_max_ports(struct ofproto *ofproto, uint16_t max_ports) { ovs_assert(max_ports <= ofp_to_u16(OFPP_MAX)); ofproto->max_ports = max_ports; } uint64_t ofproto_get_datapath_id(const struct ofproto *ofproto) { return ofproto->datapath_id; } void ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id) { uint64_t old_dpid = p->datapath_id; p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p); if (p->datapath_id != old_dpid) { /* Force all active connections to reconnect, since there is no way to * notify a controller that the datapath ID has changed. */ ofproto_reconnect_controllers(p); } } void ofproto_set_controllers(struct ofproto *p, const struct ofproto_controller *controllers, size_t n_controllers, uint32_t allowed_versions) { connmgr_set_controllers(p->connmgr, controllers, n_controllers, allowed_versions); } void ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode) { connmgr_set_fail_mode(p->connmgr, fail_mode); } /* Drops the connections between 'ofproto' and all of its controllers, forcing * them to reconnect. */ void ofproto_reconnect_controllers(struct ofproto *ofproto) { connmgr_reconnect(ofproto->connmgr); } /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s * in-band control should guarantee access, in the same way that in-band * control guarantees access to OpenFlow controllers. */ void ofproto_set_extra_in_band_remotes(struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { connmgr_set_extra_in_band_remotes(ofproto->connmgr, extras, n); } /* Sets the OpenFlow queue used by flows set up by in-band control on * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control * flows will use the default queue. */ void ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id) { connmgr_set_in_band_queue(ofproto->connmgr, queue_id); } /* Sets the number of flows at which eviction from the kernel flow table * will occur. */ void ofproto_set_flow_limit(unsigned limit) { ofproto_flow_limit = limit; } /* Sets the maximum idle time for flows in the datapath before they are * expired. */ void ofproto_set_max_idle(unsigned max_idle) { ofproto_max_idle = max_idle; } /* If forward_bpdu is true, the NORMAL action will forward frames with * reserved (e.g. STP) destination Ethernet addresses. if forward_bpdu is false, * the NORMAL action will drop these frames. */ void ofproto_set_forward_bpdu(struct ofproto *ofproto, bool forward_bpdu) { bool old_val = ofproto->forward_bpdu; ofproto->forward_bpdu = forward_bpdu; if (old_val != ofproto->forward_bpdu) { if (ofproto->ofproto_class->forward_bpdu_changed) { ofproto->ofproto_class->forward_bpdu_changed(ofproto); } } } /* Sets the MAC aging timeout for the OFPP_NORMAL action on 'ofproto' to * 'idle_time', in seconds, and the maximum number of MAC table entries to * 'max_entries'. */ void ofproto_set_mac_table_config(struct ofproto *ofproto, unsigned idle_time, size_t max_entries) { if (ofproto->ofproto_class->set_mac_table_config) { ofproto->ofproto_class->set_mac_table_config(ofproto, idle_time, max_entries); } } /* Multicast snooping configuration. */ /* Configures multicast snooping on 'ofproto' using the settings * defined in 's'. If 's' is NULL, disables multicast snooping. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_set_mcast_snooping(struct ofproto *ofproto, const struct ofproto_mcast_snooping_settings *s) { return (ofproto->ofproto_class->set_mcast_snooping ? ofproto->ofproto_class->set_mcast_snooping(ofproto, s) : EOPNOTSUPP); } /* Configures multicast snooping flood settings on 'ofp_port' of 'ofproto'. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_set_mcast_snooping(struct ofproto *ofproto, void *aux, const struct ofproto_mcast_snooping_port_settings *s) { return (ofproto->ofproto_class->set_mcast_snooping_port ? ofproto->ofproto_class->set_mcast_snooping_port(ofproto, aux, s) : EOPNOTSUPP); } void ofproto_set_cpu_mask(const char *cmask) { free(pmd_cpu_mask); pmd_cpu_mask = nullable_xstrdup(cmask); } void ofproto_set_threads(int n_handlers_, int n_revalidators_) { int threads = MAX(count_cpu_cores(), 2); n_revalidators = MAX(n_revalidators_, 0); n_handlers = MAX(n_handlers_, 0); if (!n_revalidators) { n_revalidators = n_handlers ? MAX(threads - (int) n_handlers, 1) : threads / 4 + 1; } if (!n_handlers) { n_handlers = MAX(threads - (int) n_revalidators, 1); } } void ofproto_set_dp_desc(struct ofproto *p, const char *dp_desc) { free(p->dp_desc); p->dp_desc = nullable_xstrdup(dp_desc); } int ofproto_set_snoops(struct ofproto *ofproto, const struct sset *snoops) { return connmgr_set_snoops(ofproto->connmgr, snoops); } int ofproto_set_netflow(struct ofproto *ofproto, const struct netflow_options *nf_options) { if (nf_options && sset_is_empty(&nf_options->collectors)) { nf_options = NULL; } if (ofproto->ofproto_class->set_netflow) { return ofproto->ofproto_class->set_netflow(ofproto, nf_options); } else { return nf_options ? EOPNOTSUPP : 0; } } int ofproto_set_sflow(struct ofproto *ofproto, const struct ofproto_sflow_options *oso) { if (oso && sset_is_empty(&oso->targets)) { oso = NULL; } if (ofproto->ofproto_class->set_sflow) { return ofproto->ofproto_class->set_sflow(ofproto, oso); } else { return oso ? EOPNOTSUPP : 0; } } int ofproto_set_ipfix(struct ofproto *ofproto, const struct ofproto_ipfix_bridge_exporter_options *bo, const struct ofproto_ipfix_flow_exporter_options *fo, size_t n_fo) { if (ofproto->ofproto_class->set_ipfix) { return ofproto->ofproto_class->set_ipfix(ofproto, bo, fo, n_fo); } else { return (bo || fo) ? EOPNOTSUPP : 0; } } static int ofproto_get_ipfix_stats(struct ofproto *ofproto, bool bridge_ipfix, struct ovs_list *replies) { int error; if (ofproto->ofproto_class->get_ipfix_stats) { error = ofproto->ofproto_class->get_ipfix_stats(ofproto, bridge_ipfix, replies); } else { error = EOPNOTSUPP; } return error; } static enum ofperr handle_ipfix_bridge_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ovs_list replies; enum ofperr error; ofpmp_init(&replies, request); error = ofproto_get_ipfix_stats(ofproto, true, &replies); if (!error) { ofconn_send_replies(ofconn, &replies); } else { ofpbuf_list_delete(&replies); } return error; } static enum ofperr handle_ipfix_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ovs_list replies; enum ofperr error; ofpmp_init(&replies, request); error = ofproto_get_ipfix_stats(ofproto, false, &replies); if (!error) { ofconn_send_replies(ofconn, &replies); } else { ofpbuf_list_delete(&replies); } return error; } void ofproto_set_flow_restore_wait(bool flow_restore_wait_db) { flow_restore_wait = flow_restore_wait_db; } bool ofproto_get_flow_restore_wait(void) { return flow_restore_wait; } /* Spanning Tree Protocol (STP) configuration. */ /* Configures STP on 'ofproto' using the settings defined in 's'. If * 's' is NULL, disables STP. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_set_stp(struct ofproto *ofproto, const struct ofproto_stp_settings *s) { return (ofproto->ofproto_class->set_stp ? ofproto->ofproto_class->set_stp(ofproto, s) : EOPNOTSUPP); } /* Retrieves STP status of 'ofproto' and stores it in 's'. If the * 'enabled' member of 's' is false, then the other members are not * meaningful. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_get_stp_status(struct ofproto *ofproto, struct ofproto_stp_status *s) { return (ofproto->ofproto_class->get_stp_status ? ofproto->ofproto_class->get_stp_status(ofproto, s) : EOPNOTSUPP); } /* Configures STP on 'ofp_port' of 'ofproto' using the settings defined * in 's'. The caller is responsible for assigning STP port numbers * (using the 'port_num' member in the range of 1 through 255, inclusive) * and ensuring there are no duplicates. If the 's' is NULL, then STP * is disabled on the port. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_set_stp(struct ofproto *ofproto, ofp_port_t ofp_port, const struct ofproto_port_stp_settings *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure STP on nonexistent port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->set_stp_port ? ofproto->ofproto_class->set_stp_port(ofport, s) : EOPNOTSUPP); } /* Retrieves STP port status of 'ofp_port' on 'ofproto' and stores it in * 's'. If the 'enabled' member in 's' is false, then the other members * are not meaningful. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_get_stp_status(struct ofproto *ofproto, ofp_port_t ofp_port, struct ofproto_port_stp_status *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot get STP status on nonexistent " "port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->get_stp_port_status ? ofproto->ofproto_class->get_stp_port_status(ofport, s) : EOPNOTSUPP); } /* Retrieves STP port statistics of 'ofp_port' on 'ofproto' and stores it in * 's'. If the 'enabled' member in 's' is false, then the other members * are not meaningful. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_get_stp_stats(struct ofproto *ofproto, ofp_port_t ofp_port, struct ofproto_port_stp_stats *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot get STP stats on nonexistent " "port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->get_stp_port_stats ? ofproto->ofproto_class->get_stp_port_stats(ofport, s) : EOPNOTSUPP); } /* Rapid Spanning Tree Protocol (RSTP) configuration. */ /* Configures RSTP on 'ofproto' using the settings defined in 's'. If * 's' is NULL, disables RSTP. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_set_rstp(struct ofproto *ofproto, const struct ofproto_rstp_settings *s) { if (!ofproto->ofproto_class->set_rstp) { return EOPNOTSUPP; } ofproto->ofproto_class->set_rstp(ofproto, s); return 0; } /* Retrieves RSTP status of 'ofproto' and stores it in 's'. If the * 'enabled' member of 's' is false, then the other members are not * meaningful. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_get_rstp_status(struct ofproto *ofproto, struct ofproto_rstp_status *s) { if (!ofproto->ofproto_class->get_rstp_status) { return EOPNOTSUPP; } ofproto->ofproto_class->get_rstp_status(ofproto, s); return 0; } /* Configures RSTP on 'ofp_port' of 'ofproto' using the settings defined * in 's'. The caller is responsible for assigning RSTP port numbers * (using the 'port_num' member in the range of 1 through 255, inclusive) * and ensuring there are no duplicates. If the 's' is NULL, then RSTP * is disabled on the port. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_set_rstp(struct ofproto *ofproto, ofp_port_t ofp_port, const struct ofproto_port_rstp_settings *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure RSTP on nonexistent port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } if (!ofproto->ofproto_class->set_rstp_port) { return EOPNOTSUPP; } ofproto->ofproto_class->set_rstp_port(ofport, s); return 0; } /* Retrieves RSTP port status of 'ofp_port' on 'ofproto' and stores it in * 's'. If the 'enabled' member in 's' is false, then the other members * are not meaningful. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_get_rstp_status(struct ofproto *ofproto, ofp_port_t ofp_port, struct ofproto_port_rstp_status *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot get RSTP status on nonexistent " "port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } if (!ofproto->ofproto_class->get_rstp_port_status) { return EOPNOTSUPP; } ofproto->ofproto_class->get_rstp_port_status(ofport, s); return 0; } /* Queue DSCP configuration. */ /* Registers meta-data associated with the 'n_qdscp' Qualities of Service * 'queues' attached to 'ofport'. This data is not intended to be sufficient * to implement QoS. Instead, it is used to implement features which require * knowledge of what queues exist on a port, and some basic information about * them. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_port_set_queues(struct ofproto *ofproto, ofp_port_t ofp_port, const struct ofproto_port_queue *queues, size_t n_queues) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot set queues on nonexistent port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->set_queues ? ofproto->ofproto_class->set_queues(ofport, queues, n_queues) : EOPNOTSUPP); } /* LLDP configuration. */ void ofproto_port_set_lldp(struct ofproto *ofproto, ofp_port_t ofp_port, const struct smap *cfg) { struct ofport *ofport; int error; ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure LLDP on nonexistent port %"PRIu16, ofproto->name, ofp_port); return; } error = (ofproto->ofproto_class->set_lldp ? ofproto->ofproto_class->set_lldp(ofport, cfg) : EOPNOTSUPP); if (error) { VLOG_WARN("%s: lldp configuration on port %"PRIu16" (%s) failed (%s)", ofproto->name, ofp_port, netdev_get_name(ofport->netdev), ovs_strerror(error)); } } int ofproto_set_aa(struct ofproto *ofproto, void *aux OVS_UNUSED, const struct aa_settings *s) { if (!ofproto->ofproto_class->set_aa) { return EOPNOTSUPP; } ofproto->ofproto_class->set_aa(ofproto, s); return 0; } int ofproto_aa_mapping_register(struct ofproto *ofproto, void *aux, const struct aa_mapping_settings *s) { if (!ofproto->ofproto_class->aa_mapping_set) { return EOPNOTSUPP; } ofproto->ofproto_class->aa_mapping_set(ofproto, aux, s); return 0; } int ofproto_aa_mapping_unregister(struct ofproto *ofproto, void *aux) { if (!ofproto->ofproto_class->aa_mapping_unset) { return EOPNOTSUPP; } ofproto->ofproto_class->aa_mapping_unset(ofproto, aux); return 0; } int ofproto_aa_vlan_get_queued(struct ofproto *ofproto, struct ovs_list *list) { if (!ofproto->ofproto_class->aa_vlan_get_queued) { return EOPNOTSUPP; } ofproto->ofproto_class->aa_vlan_get_queued(ofproto, list); return 0; } unsigned int ofproto_aa_vlan_get_queue_size(struct ofproto *ofproto) { if (!ofproto->ofproto_class->aa_vlan_get_queue_size) { return EOPNOTSUPP; } return ofproto->ofproto_class->aa_vlan_get_queue_size(ofproto); } /* Connectivity Fault Management configuration. */ /* Clears the CFM configuration from 'ofp_port' on 'ofproto'. */ void ofproto_port_clear_cfm(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (ofport && ofproto->ofproto_class->set_cfm) { ofproto->ofproto_class->set_cfm(ofport, NULL); } } /* Configures connectivity fault management on 'ofp_port' in 'ofproto'. Takes * basic configuration from the configuration members in 'cfm', and the remote * maintenance point ID from remote_mpid. Ignores the statistics members of * 'cfm'. * * This function has no effect if 'ofproto' does not have a port 'ofp_port'. */ void ofproto_port_set_cfm(struct ofproto *ofproto, ofp_port_t ofp_port, const struct cfm_settings *s) { struct ofport *ofport; int error; ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure CFM on nonexistent port %"PRIu16, ofproto->name, ofp_port); return; } /* XXX: For configuration simplicity, we only support one remote_mpid * outside of the CFM module. It's not clear if this is the correct long * term solution or not. */ error = (ofproto->ofproto_class->set_cfm ? ofproto->ofproto_class->set_cfm(ofport, s) : EOPNOTSUPP); if (error) { VLOG_WARN("%s: CFM configuration on port %"PRIu16" (%s) failed (%s)", ofproto->name, ofp_port, netdev_get_name(ofport->netdev), ovs_strerror(error)); } } /* Configures BFD on 'ofp_port' in 'ofproto'. This function has no effect if * 'ofproto' does not have a port 'ofp_port'. */ void ofproto_port_set_bfd(struct ofproto *ofproto, ofp_port_t ofp_port, const struct smap *cfg) { struct ofport *ofport; int error; ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure bfd on nonexistent port %"PRIu16, ofproto->name, ofp_port); return; } error = (ofproto->ofproto_class->set_bfd ? ofproto->ofproto_class->set_bfd(ofport, cfg) : EOPNOTSUPP); if (error) { VLOG_WARN("%s: bfd configuration on port %"PRIu16" (%s) failed (%s)", ofproto->name, ofp_port, netdev_get_name(ofport->netdev), ovs_strerror(error)); } } /* Checks the status change of BFD on 'ofport'. * * Returns true if 'ofproto_class' does not support 'bfd_status_changed'. */ bool ofproto_port_bfd_status_changed(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->bfd_status_changed ? ofproto->ofproto_class->bfd_status_changed(ofport) : true); } /* Populates 'status' with the status of BFD on 'ofport'. Returns 0 on * success. Returns a positive errno otherwise. Has no effect if 'ofp_port' * is not an OpenFlow port in 'ofproto'. * * The caller must provide and own '*status'. */ int ofproto_port_get_bfd_status(struct ofproto *ofproto, ofp_port_t ofp_port, struct smap *status) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->get_bfd_status ? ofproto->ofproto_class->get_bfd_status(ofport, status) : EOPNOTSUPP); } /* Checks the status of LACP negotiation for 'ofp_port' within ofproto. * Returns 1 if LACP partner information for 'ofp_port' is up-to-date, * 0 if LACP partner information is not current (generally indicating a * connectivity problem), or -1 if LACP is not enabled on 'ofp_port'. */ int ofproto_port_is_lacp_current(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->port_is_lacp_current ? ofproto->ofproto_class->port_is_lacp_current(ofport) : -1); } int ofproto_port_get_lacp_stats(const struct ofport *port, struct lacp_slave_stats *stats) { struct ofproto *ofproto = port->ofproto; int error; if (ofproto->ofproto_class->port_get_lacp_stats) { error = ofproto->ofproto_class->port_get_lacp_stats(port, stats); } else { error = EOPNOTSUPP; } return error; } /* Bundles. */ /* Registers a "bundle" associated with client data pointer 'aux' in 'ofproto'. * A bundle is the same concept as a Port in OVSDB, that is, it consists of one * or more "slave" devices (Interfaces, in OVSDB) along with a VLAN * configuration plus, if there is more than one slave, a bonding * configuration. * * If 'aux' is already registered then this function updates its configuration * to 's'. Otherwise, this function registers a new bundle. * * Bundles only affect the NXAST_AUTOPATH action and output to the OFPP_NORMAL * port. */ int ofproto_bundle_register(struct ofproto *ofproto, void *aux, const struct ofproto_bundle_settings *s) { return (ofproto->ofproto_class->bundle_set ? ofproto->ofproto_class->bundle_set(ofproto, aux, s) : EOPNOTSUPP); } /* Unregisters the bundle registered on 'ofproto' with auxiliary data 'aux'. * If no such bundle has been registered, this has no effect. */ int ofproto_bundle_unregister(struct ofproto *ofproto, void *aux) { return ofproto_bundle_register(ofproto, aux, NULL); } /* Registers a mirror associated with client data pointer 'aux' in 'ofproto'. * If 'aux' is already registered then this function updates its configuration * to 's'. Otherwise, this function registers a new mirror. */ int ofproto_mirror_register(struct ofproto *ofproto, void *aux, const struct ofproto_mirror_settings *s) { return (ofproto->ofproto_class->mirror_set ? ofproto->ofproto_class->mirror_set(ofproto, aux, s) : EOPNOTSUPP); } /* Unregisters the mirror registered on 'ofproto' with auxiliary data 'aux'. * If no mirror has been registered, this has no effect. */ int ofproto_mirror_unregister(struct ofproto *ofproto, void *aux) { return ofproto_mirror_register(ofproto, aux, NULL); } /* Retrieves statistics from mirror associated with client data pointer * 'aux' in 'ofproto'. Stores packet and byte counts in 'packets' and * 'bytes', respectively. If a particular counters is not supported, * the appropriate argument is set to UINT64_MAX. */ int ofproto_mirror_get_stats(struct ofproto *ofproto, void *aux, uint64_t *packets, uint64_t *bytes) { if (!ofproto->ofproto_class->mirror_get_stats) { *packets = *bytes = UINT64_MAX; return EOPNOTSUPP; } return ofproto->ofproto_class->mirror_get_stats(ofproto, aux, packets, bytes); } /* Configures the VLANs whose bits are set to 1 in 'flood_vlans' as VLANs on * which all packets are flooded, instead of using MAC learning. If * 'flood_vlans' is NULL, then MAC learning applies to all VLANs. * * Flood VLANs affect only the treatment of packets output to the OFPP_NORMAL * port. */ int ofproto_set_flood_vlans(struct ofproto *ofproto, unsigned long *flood_vlans) { return (ofproto->ofproto_class->set_flood_vlans ? ofproto->ofproto_class->set_flood_vlans(ofproto, flood_vlans) : EOPNOTSUPP); } /* Returns true if 'aux' is a registered bundle that is currently in use as the * output for a mirror. */ bool ofproto_is_mirror_output_bundle(const struct ofproto *ofproto, void *aux) { return (ofproto->ofproto_class->is_mirror_output_bundle ? ofproto->ofproto_class->is_mirror_output_bundle(ofproto, aux) : false); } /* Configuration of OpenFlow tables. */ /* Returns the number of OpenFlow tables in 'ofproto'. */ int ofproto_get_n_tables(const struct ofproto *ofproto) { return ofproto->n_tables; } /* Returns the number of Controller visible OpenFlow tables * in 'ofproto'. This number will exclude Hidden tables. * This funtion's return value should be less or equal to that of * ofproto_get_n_tables() . */ uint8_t ofproto_get_n_visible_tables(const struct ofproto *ofproto) { uint8_t n = ofproto->n_tables; /* Count only non-hidden tables in the number of tables. (Hidden tables, * if present, are always at the end.) */ while(n && (ofproto->tables[n - 1].flags & OFTABLE_HIDDEN)) { n--; } return n; } /* Configures the OpenFlow table in 'ofproto' with id 'table_id' with the * settings from 's'. 'table_id' must be in the range 0 through the number of * OpenFlow tables in 'ofproto' minus 1, inclusive. * * For read-only tables, only the name may be configured. */ void ofproto_configure_table(struct ofproto *ofproto, int table_id, const struct ofproto_table_settings *s) { struct oftable *table; ovs_assert(table_id >= 0 && table_id < ofproto->n_tables); table = &ofproto->tables[table_id]; oftable_set_name(table, s->name); if (table->flags & OFTABLE_READONLY) { return; } if (classifier_set_prefix_fields(&table->cls, s->prefix_fields, s->n_prefix_fields)) { /* XXX: Trigger revalidation. */ } ovs_mutex_lock(&ofproto_mutex); unsigned int new_eviction = (s->enable_eviction ? table->eviction | EVICTION_CLIENT : table->eviction & ~EVICTION_CLIENT); oftable_configure_eviction(table, new_eviction, s->groups, s->n_groups); table->max_flows = s->max_flows; evict_rules_from_table(table); ovs_mutex_unlock(&ofproto_mutex); } bool ofproto_has_snoops(const struct ofproto *ofproto) { return connmgr_has_snoops(ofproto->connmgr); } void ofproto_get_snoops(const struct ofproto *ofproto, struct sset *snoops) { connmgr_get_snoops(ofproto->connmgr, snoops); } /* Deletes 'rule' from 'ofproto'. * * Within an ofproto implementation, this function allows an ofproto * implementation to destroy any rules that remain when its ->destruct() * function is called. This function is not suitable for use elsewhere in an * ofproto implementation. * * This function implements steps 4.4 and 4.5 in the section titled "Rule Life * Cycle" in ofproto-provider.h. */ void ofproto_rule_delete(struct ofproto *ofproto, struct rule *rule) OVS_EXCLUDED(ofproto_mutex) { /* This skips the ofmonitor and flow-removed notifications because the * switch is being deleted and any OpenFlow channels have been or soon will * be killed. */ ovs_mutex_lock(&ofproto_mutex); if (!rule->removed) { /* Make sure there is no postponed removal of the rule. */ ovs_assert(cls_rule_visible_in_version(&rule->cr, CLS_MAX_VERSION)); if (!classifier_remove(&rule->ofproto->tables[rule->table_id].cls, &rule->cr)) { OVS_NOT_REACHED(); } ofproto_rule_remove__(rule->ofproto, rule); if (ofproto->ofproto_class->rule_delete) { ofproto->ofproto_class->rule_delete(rule); } ofproto_rule_unref(rule); } ovs_mutex_unlock(&ofproto_mutex); } static void ofproto_flush__(struct ofproto *ofproto) OVS_EXCLUDED(ofproto_mutex) { struct oftable *table; /* This will flush all datapath flows. */ if (ofproto->ofproto_class->flush) { ofproto->ofproto_class->flush(ofproto); } /* XXX: There is a small race window here, where new datapath flows can be * created by upcall handlers based on the existing flow table. We can not * call ofproto class flush while holding 'ofproto_mutex' to prevent this, * as then we could deadlock on syncing with the handler threads waiting on * the same mutex. */ ovs_mutex_lock(&ofproto_mutex); OFPROTO_FOR_EACH_TABLE (table, ofproto) { struct rule_collection rules; struct rule *rule; if (table->flags & OFTABLE_HIDDEN) { continue; } rule_collection_init(&rules); CLS_FOR_EACH (rule, cr, &table->cls) { rule_collection_add(&rules, rule); } delete_flows__(&rules, OFPRR_DELETE, NULL); } /* XXX: Concurrent handler threads may insert new learned flows based on * learn actions of the now deleted flows right after we release * 'ofproto_mutex'. */ ovs_mutex_unlock(&ofproto_mutex); } static void delete_group(struct ofproto *ofproto, uint32_t group_id); static void ofproto_destroy__(struct ofproto *ofproto) OVS_EXCLUDED(ofproto_mutex) { struct oftable *table; destroy_rule_executes(ofproto); guarded_list_destroy(&ofproto->rule_executes); ovs_rwlock_destroy(&ofproto->groups_rwlock); hmap_destroy(&ofproto->groups); hmap_remove(&all_ofprotos, &ofproto->hmap_node); free(ofproto->name); free(ofproto->type); free(ofproto->mfr_desc); free(ofproto->hw_desc); free(ofproto->sw_desc); free(ofproto->serial_desc); free(ofproto->dp_desc); hmap_destroy(&ofproto->ports); hmap_destroy(&ofproto->ofport_usage); shash_destroy(&ofproto->port_by_name); simap_destroy(&ofproto->ofp_requests); OFPROTO_FOR_EACH_TABLE (table, ofproto) { oftable_destroy(table); } free(ofproto->tables); ovs_assert(hindex_is_empty(&ofproto->cookies)); hindex_destroy(&ofproto->cookies); ovs_assert(hmap_is_empty(&ofproto->learned_cookies)); hmap_destroy(&ofproto->learned_cookies); ofproto->ofproto_class->dealloc(ofproto); } /* Destroying rules is doubly deferred, must have 'ofproto' around for them. * - 1st we defer the removal of the rules from the classifier * - 2nd we defer the actual destruction of the rules. */ static void ofproto_destroy_defer__(struct ofproto *ofproto) OVS_EXCLUDED(ofproto_mutex) { ovsrcu_postpone(ofproto_destroy__, ofproto); } void ofproto_destroy(struct ofproto *p, bool del) OVS_EXCLUDED(ofproto_mutex) { struct ofport *ofport, *next_ofport; struct ofport_usage *usage; if (!p) { return; } if (p->meters) { meter_delete(p, 1, p->meter_features.max_meters); p->meter_features.max_meters = 0; free(p->meters); p->meters = NULL; } ofproto_flush__(p); HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) { ofport_destroy(ofport, del); } HMAP_FOR_EACH_POP (usage, hmap_node, &p->ofport_usage) { free(usage); } p->ofproto_class->destruct(p); /* We should not postpone this because it involves deleting a listening * socket which we may want to reopen soon. 'connmgr' should not be used * by other threads */ connmgr_destroy(p->connmgr); /* Destroying rules is deferred, must have 'ofproto' around for them. */ ovsrcu_postpone(ofproto_destroy_defer__, p); } /* Destroys the datapath with the respective 'name' and 'type'. With the Linux * kernel datapath, for example, this destroys the datapath in the kernel, and * with the netdev-based datapath, it tears down the data structures that * represent the datapath. * * The datapath should not be currently open as an ofproto. */ int ofproto_delete(const char *name, const char *type) { const struct ofproto_class *class = ofproto_class_find__(type); return (!class ? EAFNOSUPPORT : !class->del ? EACCES : class->del(type, name)); } static void process_port_change(struct ofproto *ofproto, int error, char *devname) { if (error == ENOBUFS) { reinit_ports(ofproto); } else if (!error) { update_port(ofproto, devname); free(devname); } } int ofproto_type_run(const char *datapath_type) { const struct ofproto_class *class; int error; datapath_type = ofproto_normalize_type(datapath_type); class = ofproto_class_find__(datapath_type); error = class->type_run ? class->type_run(datapath_type) : 0; if (error && error != EAGAIN) { VLOG_ERR_RL(&rl, "%s: type_run failed (%s)", datapath_type, ovs_strerror(error)); } return error; } void ofproto_type_wait(const char *datapath_type) { const struct ofproto_class *class; datapath_type = ofproto_normalize_type(datapath_type); class = ofproto_class_find__(datapath_type); if (class->type_wait) { class->type_wait(datapath_type); } } int ofproto_run(struct ofproto *p) { int error; uint64_t new_seq; error = p->ofproto_class->run(p); if (error && error != EAGAIN) { VLOG_ERR_RL(&rl, "%s: run failed (%s)", p->name, ovs_strerror(error)); } run_rule_executes(p); /* Restore the eviction group heap invariant occasionally. */ if (p->eviction_group_timer < time_msec()) { size_t i; p->eviction_group_timer = time_msec() + 1000; for (i = 0; i < p->n_tables; i++) { struct oftable *table = &p->tables[i]; struct eviction_group *evg; struct rule *rule; if (!table->eviction) { continue; } if (table->n_flows > 100000) { static struct vlog_rate_limit count_rl = VLOG_RATE_LIMIT_INIT(1, 1); VLOG_WARN_RL(&count_rl, "Table %"PRIuSIZE" has an excessive" " number of rules: %d", i, table->n_flows); } ovs_mutex_lock(&ofproto_mutex); CLS_FOR_EACH (rule, cr, &table->cls) { if (rule->idle_timeout || rule->hard_timeout) { if (!rule->eviction_group) { eviction_group_add_rule(rule); } else { heap_raw_change(&rule->evg_node, rule_eviction_priority(p, rule)); } } } HEAP_FOR_EACH (evg, size_node, &table->eviction_groups_by_size) { heap_rebuild(&evg->rules); } ovs_mutex_unlock(&ofproto_mutex); } } if (p->ofproto_class->port_poll) { char *devname; while ((error = p->ofproto_class->port_poll(p, &devname)) != EAGAIN) { process_port_change(p, error, devname); } } new_seq = seq_read(connectivity_seq_get()); if (new_seq != p->change_seq) { struct sset devnames; const char *devname; struct ofport *ofport; /* Update OpenFlow port status for any port whose netdev has changed. * * Refreshing a given 'ofport' can cause an arbitrary ofport to be * destroyed, so it's not safe to update ports directly from the * HMAP_FOR_EACH loop, or even to use HMAP_FOR_EACH_SAFE. Instead, we * need this two-phase approach. */ sset_init(&devnames); HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { uint64_t port_change_seq; port_change_seq = netdev_get_change_seq(ofport->netdev); if (ofport->change_seq != port_change_seq) { ofport->change_seq = port_change_seq; sset_add(&devnames, netdev_get_name(ofport->netdev)); } } SSET_FOR_EACH (devname, &devnames) { update_port(p, devname); } sset_destroy(&devnames); p->change_seq = new_seq; } connmgr_run(p->connmgr, handle_openflow); return error; } void ofproto_wait(struct ofproto *p) { p->ofproto_class->wait(p); if (p->ofproto_class->port_poll_wait) { p->ofproto_class->port_poll_wait(p); } seq_wait(connectivity_seq_get(), p->change_seq); connmgr_wait(p->connmgr); } bool ofproto_is_alive(const struct ofproto *p) { return connmgr_has_controllers(p->connmgr); } /* Adds some memory usage statistics for 'ofproto' into 'usage', for use with * memory_report(). */ void ofproto_get_memory_usage(const struct ofproto *ofproto, struct simap *usage) { const struct oftable *table; unsigned int n_rules; simap_increase(usage, "ports", hmap_count(&ofproto->ports)); n_rules = 0; OFPROTO_FOR_EACH_TABLE (table, ofproto) { n_rules += table->n_flows; } simap_increase(usage, "rules", n_rules); if (ofproto->ofproto_class->get_memory_usage) { ofproto->ofproto_class->get_memory_usage(ofproto, usage); } connmgr_get_memory_usage(ofproto->connmgr, usage); } void ofproto_type_get_memory_usage(const char *datapath_type, struct simap *usage) { const struct ofproto_class *class; datapath_type = ofproto_normalize_type(datapath_type); class = ofproto_class_find__(datapath_type); if (class && class->type_get_memory_usage) { class->type_get_memory_usage(datapath_type, usage); } } void ofproto_get_ofproto_controller_info(const struct ofproto *ofproto, struct shash *info) { connmgr_get_controller_info(ofproto->connmgr, info); } void ofproto_free_ofproto_controller_info(struct shash *info) { connmgr_free_controller_info(info); } /* Makes a deep copy of 'old' into 'port'. */ void ofproto_port_clone(struct ofproto_port *port, const struct ofproto_port *old) { port->name = xstrdup(old->name); port->type = xstrdup(old->type); port->ofp_port = old->ofp_port; } /* Frees memory allocated to members of 'ofproto_port'. * * Do not call this function on an ofproto_port obtained from * ofproto_port_dump_next(): that function retains ownership of the data in the * ofproto_port. */ void ofproto_port_destroy(struct ofproto_port *ofproto_port) { free(ofproto_port->name); free(ofproto_port->type); } /* Initializes 'dump' to begin dumping the ports in an ofproto. * * This function provides no status indication. An error status for the entire * dump operation is provided when it is completed by calling * ofproto_port_dump_done(). */ void ofproto_port_dump_start(struct ofproto_port_dump *dump, const struct ofproto *ofproto) { dump->ofproto = ofproto; dump->error = ofproto->ofproto_class->port_dump_start(ofproto, &dump->state); } /* Attempts to retrieve another port from 'dump', which must have been created * with ofproto_port_dump_start(). On success, stores a new ofproto_port into * 'port' and returns true. On failure, returns false. * * Failure might indicate an actual error or merely that the last port has been * dumped. An error status for the entire dump operation is provided when it * is completed by calling ofproto_port_dump_done(). * * The ofproto owns the data stored in 'port'. It will remain valid until at * least the next time 'dump' is passed to ofproto_port_dump_next() or * ofproto_port_dump_done(). */ bool ofproto_port_dump_next(struct ofproto_port_dump *dump, struct ofproto_port *port) { const struct ofproto *ofproto = dump->ofproto; if (dump->error) { return false; } dump->error = ofproto->ofproto_class->port_dump_next(ofproto, dump->state, port); if (dump->error) { ofproto->ofproto_class->port_dump_done(ofproto, dump->state); return false; } return true; } /* Completes port table dump operation 'dump', which must have been created * with ofproto_port_dump_start(). Returns 0 if the dump operation was * error-free, otherwise a positive errno value describing the problem. */ int ofproto_port_dump_done(struct ofproto_port_dump *dump) { const struct ofproto *ofproto = dump->ofproto; if (!dump->error) { dump->error = ofproto->ofproto_class->port_dump_done(ofproto, dump->state); } return dump->error == EOF ? 0 : dump->error; } /* Returns the type to pass to netdev_open() when a datapath of type * 'datapath_type' has a port of type 'port_type', for a few special * cases when a netdev type differs from a port type. For example, when * using the userspace datapath, a port of type "internal" needs to be * opened as "tap". * * Returns either 'type' itself or a string literal, which must not be * freed. */ const char * ofproto_port_open_type(const char *datapath_type, const char *port_type) { const struct ofproto_class *class; datapath_type = ofproto_normalize_type(datapath_type); class = ofproto_class_find__(datapath_type); if (!class) { return port_type; } return (class->port_open_type ? class->port_open_type(datapath_type, port_type) : port_type); } /* Attempts to add 'netdev' as a port on 'ofproto'. If 'ofp_portp' is * non-null and '*ofp_portp' is not OFPP_NONE, attempts to use that as * the port's OpenFlow port number. * * If successful, returns 0 and sets '*ofp_portp' to the new port's * OpenFlow port number (if 'ofp_portp' is non-null). On failure, * returns a positive errno value and sets '*ofp_portp' to OFPP_NONE (if * 'ofp_portp' is non-null). */ int ofproto_port_add(struct ofproto *ofproto, struct netdev *netdev, ofp_port_t *ofp_portp) { ofp_port_t ofp_port = ofp_portp ? *ofp_portp : OFPP_NONE; int error; error = ofproto->ofproto_class->port_add(ofproto, netdev); if (!error) { const char *netdev_name = netdev_get_name(netdev); simap_put(&ofproto->ofp_requests, netdev_name, ofp_to_u16(ofp_port)); error = update_port(ofproto, netdev_name); } if (ofp_portp) { *ofp_portp = OFPP_NONE; if (!error) { struct ofproto_port ofproto_port; error = ofproto_port_query_by_name(ofproto, netdev_get_name(netdev), &ofproto_port); if (!error) { *ofp_portp = ofproto_port.ofp_port; ofproto_port_destroy(&ofproto_port); } } } return error; } /* Looks up a port named 'devname' in 'ofproto'. On success, returns 0 and * initializes '*port' appropriately; on failure, returns a positive errno * value. * * The caller owns the data in 'ofproto_port' and must free it with * ofproto_port_destroy() when it is no longer needed. */ int ofproto_port_query_by_name(const struct ofproto *ofproto, const char *devname, struct ofproto_port *port) { int error; error = ofproto->ofproto_class->port_query_by_name(ofproto, devname, port); if (error) { memset(port, 0, sizeof *port); } return error; } /* Deletes port number 'ofp_port' from the datapath for 'ofproto'. * Returns 0 if successful, otherwise a positive errno. */ int ofproto_port_del(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); const char *name = ofport ? netdev_get_name(ofport->netdev) : ""; struct simap_node *ofp_request_node; int error; ofp_request_node = simap_find(&ofproto->ofp_requests, name); if (ofp_request_node) { simap_delete(&ofproto->ofp_requests, ofp_request_node); } error = ofproto->ofproto_class->port_del(ofproto, ofp_port); if (!error && ofport) { /* 'name' is the netdev's name and update_port() is going to close the * netdev. Just in case update_port() refers to 'name' after it * destroys 'ofport', make a copy of it around the update_port() * call. */ char *devname = xstrdup(name); update_port(ofproto, devname); free(devname); } return error; } static void flow_mod_init(struct ofputil_flow_mod *fm, const struct match *match, int priority, const struct ofpact *ofpacts, size_t ofpacts_len, enum ofp_flow_mod_command command) { *fm = (struct ofputil_flow_mod) { .match = *match, .priority = priority, .table_id = 0, .command = command, .buffer_id = UINT32_MAX, .out_port = OFPP_ANY, .out_group = OFPG_ANY, .ofpacts = CONST_CAST(struct ofpact *, ofpacts), .ofpacts_len = ofpacts_len, .delete_reason = OFPRR_DELETE, }; } static int simple_flow_mod(struct ofproto *ofproto, const struct match *match, int priority, const struct ofpact *ofpacts, size_t ofpacts_len, enum ofp_flow_mod_command command) { struct ofproto_flow_mod ofm; flow_mod_init(&ofm.fm, match, priority, ofpacts, ofpacts_len, command); return handle_flow_mod__(ofproto, &ofm, NULL); } /* Adds a flow to OpenFlow flow table 0 in 'p' that matches 'cls_rule' and * performs the 'n_actions' actions in 'actions'. The new flow will not * timeout. * * If cls_rule->priority is in the range of priorities supported by OpenFlow * (0...65535, inclusive) then the flow will be visible to OpenFlow * controllers; otherwise, it will be hidden. * * The caller retains ownership of 'cls_rule' and 'ofpacts'. * * This is a helper function for in-band control and fail-open. */ void ofproto_add_flow(struct ofproto *ofproto, const struct match *match, int priority, const struct ofpact *ofpacts, size_t ofpacts_len) OVS_EXCLUDED(ofproto_mutex) { const struct rule *rule; bool must_add; /* First do a cheap check whether the rule we're looking for already exists * with the actions that we want. If it does, then we're done. */ rule = rule_from_cls_rule(classifier_find_match_exactly( &ofproto->tables[0].cls, match, priority, CLS_MAX_VERSION)); if (rule) { const struct rule_actions *actions = rule_get_actions(rule); must_add = !ofpacts_equal(actions->ofpacts, actions->ofpacts_len, ofpacts, ofpacts_len); } else { must_add = true; } /* If there's no such rule or the rule doesn't have the actions we want, * fall back to a executing a full flow mod. We can't optimize this at * all because we didn't take enough locks above to ensure that the flow * table didn't already change beneath us. */ if (must_add) { simple_flow_mod(ofproto, match, priority, ofpacts, ofpacts_len, OFPFC_MODIFY_STRICT); } } /* Executes the flow modification specified in 'fm'. Returns 0 on success, or * an OFPERR_* OpenFlow error code on failure. * * This is a helper function for in-band control and fail-open and the "learn" * action. */ enum ofperr ofproto_flow_mod(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_EXCLUDED(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; /* Optimize for the most common case of a repeated learn action. * If an identical flow already exists we only need to update its * 'modified' time. */ if (fm->command == OFPFC_MODIFY_STRICT && fm->table_id != OFPTT_ALL && !(fm->flags & OFPUTIL_FF_RESET_COUNTS)) { struct oftable *table = &ofproto->tables[fm->table_id]; struct rule *rule; bool done = false; rule = rule_from_cls_rule(classifier_find_match_exactly( &table->cls, &fm->match, fm->priority, CLS_MAX_VERSION)); if (rule) { /* Reading many of the rule fields and writing on 'modified' * requires the rule->mutex. Also, rule->actions may change * if rule->mutex is not held. */ const struct rule_actions *actions; ovs_mutex_lock(&rule->mutex); actions = rule_get_actions(rule); if (rule->idle_timeout == fm->idle_timeout && rule->hard_timeout == fm->hard_timeout && rule->importance == fm->importance && rule->flags == (fm->flags & OFPUTIL_FF_STATE) && (!fm->modify_cookie || (fm->new_cookie == rule->flow_cookie)) && ofpacts_equal(fm->ofpacts, fm->ofpacts_len, actions->ofpacts, actions->ofpacts_len)) { /* Rule already exists and need not change, only update the modified timestamp. */ rule->modified = time_msec(); done = true; } ovs_mutex_unlock(&rule->mutex); } if (done) { return 0; } } return handle_flow_mod__(ofproto, ofm, NULL); } /* Searches for a rule with matching criteria exactly equal to 'target' in * ofproto's table 0 and, if it finds one, deletes it. * * This is a helper function for in-band control and fail-open. */ void ofproto_delete_flow(struct ofproto *ofproto, const struct match *target, int priority) OVS_EXCLUDED(ofproto_mutex) { struct classifier *cls = &ofproto->tables[0].cls; struct rule *rule; /* First do a cheap check whether the rule we're looking for has already * been deleted. If so, then we're done. */ rule = rule_from_cls_rule(classifier_find_match_exactly( cls, target, priority, CLS_MAX_VERSION)); if (!rule) { return; } /* Execute a flow mod. We can't optimize this at all because we didn't * take enough locks above to ensure that the flow table didn't already * change beneath us. */ simple_flow_mod(ofproto, target, priority, NULL, 0, OFPFC_DELETE_STRICT); } /* Delete all of the flows from all of ofproto's flow tables, then reintroduce * the flows required by in-band control and fail-open. */ void ofproto_flush_flows(struct ofproto *ofproto) { COVERAGE_INC(ofproto_flush); ofproto_flush__(ofproto); connmgr_flushed(ofproto->connmgr); } static void reinit_ports(struct ofproto *p) { struct ofproto_port_dump dump; struct sset devnames; struct ofport *ofport; struct ofproto_port ofproto_port; const char *devname; COVERAGE_INC(ofproto_reinit_ports); sset_init(&devnames); HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { sset_add(&devnames, netdev_get_name(ofport->netdev)); } OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) { sset_add(&devnames, ofproto_port.name); } SSET_FOR_EACH (devname, &devnames) { update_port(p, devname); } sset_destroy(&devnames); } static ofp_port_t alloc_ofp_port(struct ofproto *ofproto, const char *netdev_name) { uint16_t port_idx; port_idx = simap_get(&ofproto->ofp_requests, netdev_name); port_idx = port_idx ? port_idx : UINT16_MAX; if (port_idx >= ofproto->max_ports || ofport_get_usage(ofproto, u16_to_ofp(port_idx)) == LLONG_MAX) { uint16_t lru_ofport = 0, end_port_no = ofproto->alloc_port_no; long long int last_used_at, lru = LLONG_MAX; /* Search for a free OpenFlow port number. We try not to * immediately reuse them to prevent problems due to old * flows. * * We limit the automatically assigned port numbers to the lower half * of the port range, to reserve the upper half for assignment by * controllers. */ for (;;) { if (++ofproto->alloc_port_no >= MIN(ofproto->max_ports, 32768)) { ofproto->alloc_port_no = 1; } last_used_at = ofport_get_usage(ofproto, u16_to_ofp(ofproto->alloc_port_no)); if (!last_used_at) { port_idx = ofproto->alloc_port_no; break; } else if ( last_used_at < time_msec() - 60*60*1000) { /* If the port with ofport 'ofproto->alloc_port_no' was deleted * more than an hour ago, consider it usable. */ ofport_remove_usage(ofproto, u16_to_ofp(ofproto->alloc_port_no)); port_idx = ofproto->alloc_port_no; break; } else if (last_used_at < lru) { lru = last_used_at; lru_ofport = ofproto->alloc_port_no; } if (ofproto->alloc_port_no == end_port_no) { if (lru_ofport) { port_idx = lru_ofport; break; } return OFPP_NONE; } } } ofport_set_usage(ofproto, u16_to_ofp(port_idx), LLONG_MAX); return u16_to_ofp(port_idx); } static void dealloc_ofp_port(struct ofproto *ofproto, ofp_port_t ofp_port) { if (ofp_to_u16(ofp_port) < ofproto->max_ports) { ofport_set_usage(ofproto, ofp_port, time_msec()); } } /* Opens and returns a netdev for 'ofproto_port' in 'ofproto', or a null * pointer if the netdev cannot be opened. On success, also fills in * '*pp'. */ static struct netdev * ofport_open(struct ofproto *ofproto, struct ofproto_port *ofproto_port, struct ofputil_phy_port *pp) { enum netdev_flags flags; struct netdev *netdev; int error; error = netdev_open(ofproto_port->name, ofproto_port->type, &netdev); if (error) { VLOG_WARN_RL(&rl, "%s: ignoring port %s (%"PRIu16") because netdev %s " "cannot be opened (%s)", ofproto->name, ofproto_port->name, ofproto_port->ofp_port, ofproto_port->name, ovs_strerror(error)); return NULL; } if (ofproto_port->ofp_port == OFPP_NONE) { if (!strcmp(ofproto->name, ofproto_port->name)) { ofproto_port->ofp_port = OFPP_LOCAL; } else { ofproto_port->ofp_port = alloc_ofp_port(ofproto, ofproto_port->name); } } pp->port_no = ofproto_port->ofp_port; netdev_get_etheraddr(netdev, &pp->hw_addr); ovs_strlcpy(pp->name, ofproto_port->name, sizeof pp->name); netdev_get_flags(netdev, &flags); pp->config = flags & NETDEV_UP ? 0 : OFPUTIL_PC_PORT_DOWN; pp->state = netdev_get_carrier(netdev) ? 0 : OFPUTIL_PS_LINK_DOWN; netdev_get_features(netdev, &pp->curr, &pp->advertised, &pp->supported, &pp->peer); pp->curr_speed = netdev_features_to_bps(pp->curr, 0) / 1000; pp->max_speed = netdev_features_to_bps(pp->supported, 0) / 1000; return netdev; } /* Returns true if most fields of 'a' and 'b' are equal. Differences in name, * port number, and 'config' bits other than OFPUTIL_PC_PORT_DOWN are * disregarded. */ static bool ofport_equal(const struct ofputil_phy_port *a, const struct ofputil_phy_port *b) { return (eth_addr_equals(a->hw_addr, b->hw_addr) && a->state == b->state && !((a->config ^ b->config) & OFPUTIL_PC_PORT_DOWN) && a->curr == b->curr && a->advertised == b->advertised && a->supported == b->supported && a->peer == b->peer && a->curr_speed == b->curr_speed && a->max_speed == b->max_speed); } /* Adds an ofport to 'p' initialized based on the given 'netdev' and 'opp'. * The caller must ensure that 'p' does not have a conflicting ofport (that is, * one with the same name or port number). */ static int ofport_install(struct ofproto *p, struct netdev *netdev, const struct ofputil_phy_port *pp) { const char *netdev_name = netdev_get_name(netdev); struct ofport *ofport; int error; /* Create ofport. */ ofport = p->ofproto_class->port_alloc(); if (!ofport) { error = ENOMEM; goto error; } ofport->ofproto = p; ofport->netdev = netdev; ofport->change_seq = netdev_get_change_seq(netdev); ofport->pp = *pp; ofport->ofp_port = pp->port_no; ofport->created = time_msec(); /* Add port to 'p'. */ hmap_insert(&p->ports, &ofport->hmap_node, hash_ofp_port(ofport->ofp_port)); shash_add(&p->port_by_name, netdev_name, ofport); update_mtu(p, ofport); /* Let the ofproto_class initialize its private data. */ error = p->ofproto_class->port_construct(ofport); if (error) { goto error; } connmgr_send_port_status(p->connmgr, NULL, pp, OFPPR_ADD); return 0; error: VLOG_WARN_RL(&rl, "%s: could not add port %s (%s)", p->name, netdev_name, ovs_strerror(error)); if (ofport) { ofport_destroy__(ofport); } else { netdev_close(netdev); } return error; } /* Removes 'ofport' from 'p' and destroys it. */ static void ofport_remove(struct ofport *ofport) { struct ofproto *p = ofport->ofproto; bool is_internal = ofport_is_internal(ofport); connmgr_send_port_status(ofport->ofproto->connmgr, NULL, &ofport->pp, OFPPR_DELETE); ofport_destroy(ofport, true); if (!is_internal) { update_mtu_ofproto(p); } } /* If 'ofproto' contains an ofport named 'name', removes it from 'ofproto' and * destroys it. */ static void ofport_remove_with_name(struct ofproto *ofproto, const char *name) { struct ofport *port = shash_find_data(&ofproto->port_by_name, name); if (port) { ofport_remove(port); } } /* Updates 'port' with new 'pp' description. * * Does not handle a name or port number change. The caller must implement * such a change as a delete followed by an add. */ static void ofport_modified(struct ofport *port, struct ofputil_phy_port *pp) { port->pp.hw_addr = pp->hw_addr; port->pp.config = ((port->pp.config & ~OFPUTIL_PC_PORT_DOWN) | (pp->config & OFPUTIL_PC_PORT_DOWN)); port->pp.state = ((port->pp.state & ~OFPUTIL_PS_LINK_DOWN) | (pp->state & OFPUTIL_PS_LINK_DOWN)); port->pp.curr = pp->curr; port->pp.advertised = pp->advertised; port->pp.supported = pp->supported; port->pp.peer = pp->peer; port->pp.curr_speed = pp->curr_speed; port->pp.max_speed = pp->max_speed; connmgr_send_port_status(port->ofproto->connmgr, NULL, &port->pp, OFPPR_MODIFY); } /* Update OpenFlow 'state' in 'port' and notify controller. */ void ofproto_port_set_state(struct ofport *port, enum ofputil_port_state state) { if (port->pp.state != state) { port->pp.state = state; connmgr_send_port_status(port->ofproto->connmgr, NULL, &port->pp, OFPPR_MODIFY); } } void ofproto_port_unregister(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *port = ofproto_get_port(ofproto, ofp_port); if (port) { if (port->ofproto->ofproto_class->set_stp_port) { port->ofproto->ofproto_class->set_stp_port(port, NULL); } if (port->ofproto->ofproto_class->set_rstp_port) { port->ofproto->ofproto_class->set_rstp_port(port, NULL); } if (port->ofproto->ofproto_class->set_cfm) { port->ofproto->ofproto_class->set_cfm(port, NULL); } if (port->ofproto->ofproto_class->bundle_remove) { port->ofproto->ofproto_class->bundle_remove(port); } } } static void ofport_destroy__(struct ofport *port) { struct ofproto *ofproto = port->ofproto; const char *name = netdev_get_name(port->netdev); hmap_remove(&ofproto->ports, &port->hmap_node); shash_delete(&ofproto->port_by_name, shash_find(&ofproto->port_by_name, name)); netdev_close(port->netdev); ofproto->ofproto_class->port_dealloc(port); } static void ofport_destroy(struct ofport *port, bool del) { if (port) { dealloc_ofp_port(port->ofproto, port->ofp_port); port->ofproto->ofproto_class->port_destruct(port, del); ofport_destroy__(port); } } struct ofport * ofproto_get_port(const struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *port; HMAP_FOR_EACH_IN_BUCKET (port, hmap_node, hash_ofp_port(ofp_port), &ofproto->ports) { if (port->ofp_port == ofp_port) { return port; } } return NULL; } static long long int ofport_get_usage(const struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport_usage *usage; HMAP_FOR_EACH_IN_BUCKET (usage, hmap_node, hash_ofp_port(ofp_port), &ofproto->ofport_usage) { if (usage->ofp_port == ofp_port) { return usage->last_used; } } return 0; } static void ofport_set_usage(struct ofproto *ofproto, ofp_port_t ofp_port, long long int last_used) { struct ofport_usage *usage; HMAP_FOR_EACH_IN_BUCKET (usage, hmap_node, hash_ofp_port(ofp_port), &ofproto->ofport_usage) { if (usage->ofp_port == ofp_port) { usage->last_used = last_used; return; } } ovs_assert(last_used == LLONG_MAX); usage = xmalloc(sizeof *usage); usage->ofp_port = ofp_port; usage->last_used = last_used; hmap_insert(&ofproto->ofport_usage, &usage->hmap_node, hash_ofp_port(ofp_port)); } static void ofport_remove_usage(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport_usage *usage; HMAP_FOR_EACH_IN_BUCKET (usage, hmap_node, hash_ofp_port(ofp_port), &ofproto->ofport_usage) { if (usage->ofp_port == ofp_port) { hmap_remove(&ofproto->ofport_usage, &usage->hmap_node); free(usage); break; } } } int ofproto_port_get_stats(const struct ofport *port, struct netdev_stats *stats) { struct ofproto *ofproto = port->ofproto; int error; if (ofproto->ofproto_class->port_get_stats) { error = ofproto->ofproto_class->port_get_stats(port, stats); } else { error = EOPNOTSUPP; } return error; } static int update_port(struct ofproto *ofproto, const char *name) { struct ofproto_port ofproto_port; struct ofputil_phy_port pp; struct netdev *netdev; struct ofport *port; int error = 0; COVERAGE_INC(ofproto_update_port); /* Fetch 'name''s location and properties from the datapath. */ netdev = (!ofproto_port_query_by_name(ofproto, name, &ofproto_port) ? ofport_open(ofproto, &ofproto_port, &pp) : NULL); if (netdev) { port = ofproto_get_port(ofproto, ofproto_port.ofp_port); if (port && !strcmp(netdev_get_name(port->netdev), name)) { struct netdev *old_netdev = port->netdev; /* 'name' hasn't changed location. Any properties changed? */ if (!ofport_equal(&port->pp, &pp)) { ofport_modified(port, &pp); } update_mtu(ofproto, port); /* Install the newly opened netdev in case it has changed. * Don't close the old netdev yet in case port_modified has to * remove a retained reference to it.*/ port->netdev = netdev; port->change_seq = netdev_get_change_seq(netdev); if (port->ofproto->ofproto_class->port_modified) { port->ofproto->ofproto_class->port_modified(port); } netdev_close(old_netdev); } else { /* If 'port' is nonnull then its name differs from 'name' and thus * we should delete it. If we think there's a port named 'name' * then its port number must be wrong now so delete it too. */ if (port) { ofport_remove(port); } ofport_remove_with_name(ofproto, name); error = ofport_install(ofproto, netdev, &pp); } } else { /* Any port named 'name' is gone now. */ ofport_remove_with_name(ofproto, name); } ofproto_port_destroy(&ofproto_port); return error; } static int init_ports(struct ofproto *p) { struct ofproto_port_dump dump; struct ofproto_port ofproto_port; struct shash_node *node, *next; OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) { const char *name = ofproto_port.name; if (shash_find(&p->port_by_name, name)) { VLOG_WARN_RL(&rl, "%s: ignoring duplicate device %s in datapath", p->name, name); } else { struct ofputil_phy_port pp; struct netdev *netdev; /* Check if an OpenFlow port number had been requested. */ node = shash_find(&init_ofp_ports, name); if (node) { const struct iface_hint *iface_hint = node->data; simap_put(&p->ofp_requests, name, ofp_to_u16(iface_hint->ofp_port)); } netdev = ofport_open(p, &ofproto_port, &pp); if (netdev) { ofport_install(p, netdev, &pp); if (ofp_to_u16(ofproto_port.ofp_port) < p->max_ports) { p->alloc_port_no = MAX(p->alloc_port_no, ofp_to_u16(ofproto_port.ofp_port)); } } } } SHASH_FOR_EACH_SAFE(node, next, &init_ofp_ports) { struct iface_hint *iface_hint = node->data; if (!strcmp(iface_hint->br_name, p->name)) { free(iface_hint->br_name); free(iface_hint->br_type); free(iface_hint); shash_delete(&init_ofp_ports, node); } } return 0; } static inline bool ofport_is_internal(const struct ofport *port) { return !strcmp(netdev_get_type(port->netdev), "internal"); } /* Find the minimum MTU of all non-datapath devices attached to 'p'. * Returns ETH_PAYLOAD_MAX or the minimum of the ports. */ static int find_min_mtu(struct ofproto *p) { struct ofport *ofport; int mtu = 0; HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { struct netdev *netdev = ofport->netdev; int dev_mtu; /* Skip any internal ports, since that's what we're trying to * set. */ if (ofport_is_internal(ofport)) { continue; } if (netdev_get_mtu(netdev, &dev_mtu)) { continue; } if (!mtu || dev_mtu < mtu) { mtu = dev_mtu; } } return mtu ? mtu: ETH_PAYLOAD_MAX; } /* Update MTU of all datapath devices on 'p' to the minimum of the * non-datapath ports in event of 'port' added or changed. */ static void update_mtu(struct ofproto *p, struct ofport *port) { struct netdev *netdev = port->netdev; int dev_mtu; if (netdev_get_mtu(netdev, &dev_mtu)) { port->mtu = 0; return; } if (ofport_is_internal(port)) { if (dev_mtu > p->min_mtu) { if (!netdev_set_mtu(port->netdev, p->min_mtu)) { dev_mtu = p->min_mtu; } } port->mtu = dev_mtu; return; } port->mtu = dev_mtu; /* For non-internal port find new min mtu. */ update_mtu_ofproto(p); } static void update_mtu_ofproto(struct ofproto *p) { /* For non-internal port find new min mtu. */ struct ofport *ofport; int old_min = p->min_mtu; p->min_mtu = find_min_mtu(p); if (p->min_mtu == old_min) { return; } HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { struct netdev *netdev = ofport->netdev; if (ofport_is_internal(ofport)) { if (!netdev_set_mtu(netdev, p->min_mtu)) { ofport->mtu = p->min_mtu; } } } } static void ofproto_rule_destroy__(struct rule *rule) OVS_NO_THREAD_SAFETY_ANALYSIS { cls_rule_destroy(CONST_CAST(struct cls_rule *, &rule->cr)); rule_actions_destroy(rule_get_actions(rule)); ovs_mutex_destroy(&rule->mutex); rule->ofproto->ofproto_class->rule_dealloc(rule); } static void rule_destroy_cb(struct rule *rule) OVS_NO_THREAD_SAFETY_ANALYSIS { /* Send rule removed if needed. */ if (rule->flags & OFPUTIL_FF_SEND_FLOW_REM && rule->removed_reason != OVS_OFPRR_NONE && !rule_is_hidden(rule)) { ofproto_rule_send_removed(rule); } rule->ofproto->ofproto_class->rule_destruct(rule); ofproto_rule_destroy__(rule); } void ofproto_rule_ref(struct rule *rule) { if (rule) { ovs_refcount_ref(&rule->ref_count); } } bool ofproto_rule_try_ref(struct rule *rule) { if (rule) { return ovs_refcount_try_ref_rcu(&rule->ref_count); } return false; } /* Decrements 'rule''s ref_count and schedules 'rule' to be destroyed if the * ref_count reaches 0. * * Use of RCU allows short term use (between RCU quiescent periods) without * keeping a reference. A reference must be taken if the rule needs to * stay around accross the RCU quiescent periods. */ void ofproto_rule_unref(struct rule *rule) { if (rule && ovs_refcount_unref_relaxed(&rule->ref_count) == 1) { ovsrcu_postpone(rule_destroy_cb, rule); } } static void remove_rule_rcu__(struct rule *rule) OVS_REQUIRES(ofproto_mutex) { struct ofproto *ofproto = rule->ofproto; struct oftable *table = &ofproto->tables[rule->table_id]; ovs_assert(!cls_rule_visible_in_version(&rule->cr, CLS_MAX_VERSION)); if (!classifier_remove(&table->cls, &rule->cr)) { OVS_NOT_REACHED(); } if (ofproto->ofproto_class->rule_delete) { ofproto->ofproto_class->rule_delete(rule); } ofproto_rule_unref(rule); } static void remove_rule_rcu(struct rule *rule) OVS_EXCLUDED(ofproto_mutex) { ovs_mutex_lock(&ofproto_mutex); remove_rule_rcu__(rule); ovs_mutex_unlock(&ofproto_mutex); } /* Removes and deletes rules from a NULL-terminated array of rule pointers. */ static void remove_rules_rcu(struct rule **rules) OVS_EXCLUDED(ofproto_mutex) { struct rule **orig_rules = rules; if (*rules) { struct ofproto *ofproto = rules[0]->ofproto; unsigned long tables[BITMAP_N_LONGS(256)]; struct rule *rule; size_t table_id; memset(tables, 0, sizeof tables); ovs_mutex_lock(&ofproto_mutex); while ((rule = *rules++)) { /* Defer once for each new table. This defers the subtable cleanup * until later, so that when removing large number of flows the * operation is faster. */ if (!bitmap_is_set(tables, rule->table_id)) { struct classifier *cls = &ofproto->tables[rule->table_id].cls; bitmap_set1(tables, rule->table_id); classifier_defer(cls); } remove_rule_rcu__(rule); } BITMAP_FOR_EACH_1(table_id, 256, tables) { struct classifier *cls = &ofproto->tables[table_id].cls; classifier_publish(cls); } ovs_mutex_unlock(&ofproto_mutex); } free(orig_rules); } void ofproto_group_ref(struct ofgroup *group) { if (group) { ovs_refcount_ref(&group->ref_count); } } void ofproto_group_unref(struct ofgroup *group) { if (group && ovs_refcount_unref(&group->ref_count) == 1) { group->ofproto->ofproto_class->group_destruct(group); ofputil_bucket_list_destroy(&group->buckets); group->ofproto->ofproto_class->group_dealloc(group); } } static uint32_t get_provider_meter_id(const struct ofproto *, uint32_t of_meter_id); /* Creates and returns a new 'struct rule_actions', whose actions are a copy * of from the 'ofpacts_len' bytes of 'ofpacts'. */ const struct rule_actions * rule_actions_create(const struct ofpact *ofpacts, size_t ofpacts_len) { struct rule_actions *actions; actions = xmalloc(sizeof *actions + ofpacts_len); actions->ofpacts_len = ofpacts_len; actions->has_meter = ofpacts_get_meter(ofpacts, ofpacts_len) != 0; memcpy(actions->ofpacts, ofpacts, ofpacts_len); actions->has_learn_with_delete = (next_learn_with_delete(actions, NULL) != NULL); return actions; } /* Free the actions after the RCU quiescent period is reached. */ void rule_actions_destroy(const struct rule_actions *actions) { if (actions) { ovsrcu_postpone(free, CONST_CAST(struct rule_actions *, actions)); } } /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action * that outputs to 'port' (output to OFPP_FLOOD and OFPP_ALL doesn't count). */ bool ofproto_rule_has_out_port(const struct rule *rule, ofp_port_t port) OVS_REQUIRES(ofproto_mutex) { if (port == OFPP_ANY) { return true; } else { const struct rule_actions *actions = rule_get_actions(rule); return ofpacts_output_to_port(actions->ofpacts, actions->ofpacts_len, port); } } /* Returns true if 'rule' has group and equals group_id. */ static bool ofproto_rule_has_out_group(const struct rule *rule, uint32_t group_id) OVS_REQUIRES(ofproto_mutex) { if (group_id == OFPG_ANY) { return true; } else { const struct rule_actions *actions = rule_get_actions(rule); return ofpacts_output_to_group(actions->ofpacts, actions->ofpacts_len, group_id); } } static void rule_execute_destroy(struct rule_execute *e) { ofproto_rule_unref(e->rule); ovs_list_remove(&e->list_node); free(e); } /* Executes all "rule_execute" operations queued up in ofproto->rule_executes, * by passing them to the ofproto provider. */ static void run_rule_executes(struct ofproto *ofproto) OVS_EXCLUDED(ofproto_mutex) { struct rule_execute *e, *next; struct ovs_list executes; guarded_list_pop_all(&ofproto->rule_executes, &executes); LIST_FOR_EACH_SAFE (e, next, list_node, &executes) { struct flow flow; flow_extract(e->packet, &flow); flow.in_port.ofp_port = e->in_port; ofproto->ofproto_class->rule_execute(e->rule, &flow, e->packet); rule_execute_destroy(e); } } /* Destroys and discards all "rule_execute" operations queued up in * ofproto->rule_executes. */ static void destroy_rule_executes(struct ofproto *ofproto) { struct rule_execute *e, *next; struct ovs_list executes; guarded_list_pop_all(&ofproto->rule_executes, &executes); LIST_FOR_EACH_SAFE (e, next, list_node, &executes) { dp_packet_delete(e->packet); rule_execute_destroy(e); } } static bool rule_is_readonly(const struct rule *rule) { const struct oftable *table = &rule->ofproto->tables[rule->table_id]; return (table->flags & OFTABLE_READONLY) != 0; } static uint32_t hash_learned_cookie(ovs_be64 cookie_, uint8_t table_id) { uint64_t cookie = (OVS_FORCE uint64_t) cookie_; return hash_3words(cookie, cookie >> 32, table_id); } static void learned_cookies_update_one__(struct ofproto *ofproto, const struct ofpact_learn *learn, int delta, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex) { uint32_t hash = hash_learned_cookie(learn->cookie, learn->table_id); struct learned_cookie *c; HMAP_FOR_EACH_WITH_HASH (c, u.hmap_node, hash, &ofproto->learned_cookies) { if (c->cookie == learn->cookie && c->table_id == learn->table_id) { c->n += delta; ovs_assert(c->n >= 0); if (!c->n) { hmap_remove(&ofproto->learned_cookies, &c->u.hmap_node); ovs_list_push_back(dead_cookies, &c->u.list_node); } return; } } ovs_assert(delta > 0); c = xmalloc(sizeof *c); hmap_insert(&ofproto->learned_cookies, &c->u.hmap_node, hash); c->cookie = learn->cookie; c->table_id = learn->table_id; c->n = delta; } static const struct ofpact_learn * next_learn_with_delete(const struct rule_actions *actions, const struct ofpact_learn *start) { const struct ofpact *pos; for (pos = start ? ofpact_next(&start->ofpact) : actions->ofpacts; pos < ofpact_end(actions->ofpacts, actions->ofpacts_len); pos = ofpact_next(pos)) { if (pos->type == OFPACT_LEARN) { const struct ofpact_learn *learn = ofpact_get_LEARN(pos); if (learn->flags & NX_LEARN_F_DELETE_LEARNED) { return learn; } } } return NULL; } static void learned_cookies_update__(struct ofproto *ofproto, const struct rule_actions *actions, int delta, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex) { if (actions->has_learn_with_delete) { const struct ofpact_learn *learn; for (learn = next_learn_with_delete(actions, NULL); learn; learn = next_learn_with_delete(actions, learn)) { learned_cookies_update_one__(ofproto, learn, delta, dead_cookies); } } } static void learned_cookies_inc(struct ofproto *ofproto, const struct rule_actions *actions) OVS_REQUIRES(ofproto_mutex) { learned_cookies_update__(ofproto, actions, +1, NULL); } static void learned_cookies_dec(struct ofproto *ofproto, const struct rule_actions *actions, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex) { learned_cookies_update__(ofproto, actions, -1, dead_cookies); } static void learned_cookies_flush(struct ofproto *ofproto, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex) { struct learned_cookie *c; LIST_FOR_EACH_POP (c, u.list_node, dead_cookies) { struct rule_criteria criteria; struct rule_collection rules; struct match match; match_init_catchall(&match); rule_criteria_init(&criteria, c->table_id, &match, 0, CLS_MAX_VERSION, c->cookie, OVS_BE64_MAX, OFPP_ANY, OFPG_ANY); rule_criteria_require_rw(&criteria, false); collect_rules_loose(ofproto, &criteria, &rules); rule_criteria_destroy(&criteria); delete_flows__(&rules, OFPRR_DELETE, NULL); free(c); } } static enum ofperr handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh) { ofconn_send_reply(ofconn, make_echo_reply(oh)); return 0; } static void query_tables(struct ofproto *ofproto, struct ofputil_table_features **featuresp, struct ofputil_table_stats **statsp) { struct mf_bitmap rw_fields = oxm_writable_fields(); struct mf_bitmap match = oxm_matchable_fields(); struct mf_bitmap mask = oxm_maskable_fields(); struct ofputil_table_features *features; struct ofputil_table_stats *stats; int i; features = *featuresp = xcalloc(ofproto->n_tables, sizeof *features); for (i = 0; i < ofproto->n_tables; i++) { struct ofputil_table_features *f = &features[i]; f->table_id = i; sprintf(f->name, "table%d", i); f->metadata_match = OVS_BE64_MAX; f->metadata_write = OVS_BE64_MAX; atomic_read_relaxed(&ofproto->tables[i].miss_config, &f->miss_config); f->max_entries = 1000000; bool more_tables = false; for (int j = i + 1; j < ofproto->n_tables; j++) { if (!(ofproto->tables[j].flags & OFTABLE_HIDDEN)) { bitmap_set1(f->nonmiss.next, j); more_tables = true; } } f->nonmiss.instructions = (1u << N_OVS_INSTRUCTIONS) - 1; if (!more_tables) { f->nonmiss.instructions &= ~(1u << OVSINST_OFPIT11_GOTO_TABLE); } f->nonmiss.write.ofpacts = (UINT64_C(1) << N_OFPACTS) - 1; f->nonmiss.write.set_fields = rw_fields; f->nonmiss.apply = f->nonmiss.write; f->miss = f->nonmiss; f->match = match; f->mask = mask; f->wildcard = match; } if (statsp) { stats = *statsp = xcalloc(ofproto->n_tables, sizeof *stats); for (i = 0; i < ofproto->n_tables; i++) { struct ofputil_table_stats *s = &stats[i]; s->table_id = i; s->active_count = ofproto->tables[i].n_flows; if (i == 0) { s->active_count -= connmgr_count_hidden_rules( ofproto->connmgr); } } } else { stats = NULL; } ofproto->ofproto_class->query_tables(ofproto, features, stats); for (i = 0; i < ofproto->n_tables; i++) { const struct oftable *table = &ofproto->tables[i]; struct ofputil_table_features *f = &features[i]; if (table->name) { ovs_strzcpy(f->name, table->name, sizeof f->name); } if (table->max_flows < f->max_entries) { f->max_entries = table->max_flows; } } } static void query_switch_features(struct ofproto *ofproto, bool *arp_match_ip, uint64_t *ofpacts) { struct ofputil_table_features *features, *f; *arp_match_ip = false; *ofpacts = 0; query_tables(ofproto, &features, NULL); for (f = features; f < &features[ofproto->n_tables]; f++) { *ofpacts |= f->nonmiss.apply.ofpacts | f->miss.apply.ofpacts; if (bitmap_is_set(f->match.bm, MFF_ARP_SPA) || bitmap_is_set(f->match.bm, MFF_ARP_TPA)) { *arp_match_ip = true; } } free(features); /* Sanity check. */ ovs_assert(*ofpacts & (UINT64_C(1) << OFPACT_OUTPUT)); } static enum ofperr handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_switch_features features; struct ofport *port; bool arp_match_ip; struct ofpbuf *b; query_switch_features(ofproto, &arp_match_ip, &features.ofpacts); features.datapath_id = ofproto->datapath_id; features.n_buffers = pktbuf_capacity(); features.n_tables = ofproto_get_n_visible_tables(ofproto); features.capabilities = (OFPUTIL_C_FLOW_STATS | OFPUTIL_C_TABLE_STATS | OFPUTIL_C_PORT_STATS | OFPUTIL_C_QUEUE_STATS | OFPUTIL_C_GROUP_STATS); if (arp_match_ip) { features.capabilities |= OFPUTIL_C_ARP_MATCH_IP; } /* FIXME: Fill in proper features.auxiliary_id for auxiliary connections */ features.auxiliary_id = 0; b = ofputil_encode_switch_features(&features, ofconn_get_protocol(ofconn), oh->xid); HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { ofputil_put_switch_features_port(&port->pp, b); } ofconn_send_reply(ofconn, b); return 0; } static enum ofperr handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_switch_config config; config.frag = ofconn_get_ofproto(ofconn)->frag_handling; config.invalid_ttl_to_controller = ofconn_get_invalid_ttl_to_controller(ofconn); config.miss_send_len = ofconn_get_miss_send_len(ofconn); ofconn_send_reply(ofconn, ofputil_encode_get_config_reply(oh, &config)); return 0; } static enum ofperr handle_set_config(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_switch_config config; enum ofperr error; error = ofputil_decode_set_config(oh, &config); if (error) { return error; } if (ofconn_get_type(ofconn) != OFCONN_PRIMARY || ofconn_get_role(ofconn) != OFPCR12_ROLE_SLAVE) { enum ofputil_frag_handling cur = ofproto->frag_handling; enum ofputil_frag_handling next = config.frag; if (cur != next) { if (ofproto->ofproto_class->set_frag_handling(ofproto, next)) { ofproto->frag_handling = next; } else { VLOG_WARN_RL(&rl, "%s: unsupported fragment handling mode %s", ofproto->name, ofputil_frag_handling_to_string(next)); } } } if (config.invalid_ttl_to_controller >= 0) { ofconn_set_invalid_ttl_to_controller(ofconn, config.invalid_ttl_to_controller); } ofconn_set_miss_send_len(ofconn, config.miss_send_len); return 0; } /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow * error message code for the caller to propagate upward. Otherwise, returns * 0. * * The log message mentions 'msg_type'. */ static enum ofperr reject_slave_controller(struct ofconn *ofconn) { if (ofconn_get_type(ofconn) == OFCONN_PRIMARY && ofconn_get_role(ofconn) == OFPCR12_ROLE_SLAVE) { return OFPERR_OFPBRC_IS_SLAVE; } else { return 0; } } /* Checks that the 'ofpacts_len' bytes of action in 'ofpacts' are appropriate * for 'ofproto': * * - If they use a meter, then 'ofproto' has that meter configured. * * - If they use any groups, then 'ofproto' has that group configured. * * Returns 0 if successful, otherwise an OpenFlow error. */ enum ofperr ofproto_check_ofpacts(struct ofproto *ofproto, const struct ofpact ofpacts[], size_t ofpacts_len) { const struct ofpact *a; uint32_t mid; mid = ofpacts_get_meter(ofpacts, ofpacts_len); if (mid && get_provider_meter_id(ofproto, mid) == UINT32_MAX) { return OFPERR_OFPMMFC_INVALID_METER; } OFPACT_FOR_EACH_FLATTENED (a, ofpacts, ofpacts_len) { if (a->type == OFPACT_GROUP && !ofproto_group_exists(ofproto, ofpact_get_GROUP(a)->group_id)) { return OFPERR_OFPBAC_BAD_OUT_GROUP; } } return 0; } static enum ofperr handle_packet_out(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofputil_packet_out po; struct dp_packet *payload; uint64_t ofpacts_stub[1024 / 8]; struct ofpbuf ofpacts; struct flow flow; enum ofperr error; COVERAGE_INC(ofproto_packet_out); error = reject_slave_controller(ofconn); if (error) { goto exit; } /* Decode message. */ ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); error = ofputil_decode_packet_out(&po, oh, &ofpacts); if (error) { goto exit_free_ofpacts; } if (ofp_to_u16(po.in_port) >= p->max_ports && ofp_to_u16(po.in_port) < ofp_to_u16(OFPP_MAX)) { error = OFPERR_OFPBRC_BAD_PORT; goto exit_free_ofpacts; } /* Get payload. */ if (po.buffer_id != UINT32_MAX) { error = ofconn_pktbuf_retrieve(ofconn, po.buffer_id, &payload, NULL); if (error) { goto exit_free_ofpacts; } } else { /* Ensure that the L3 header is 32-bit aligned. */ payload = dp_packet_clone_data_with_headroom(po.packet, po.packet_len, 2); } /* Verify actions against packet, then send packet if successful. */ flow_extract(payload, &flow); flow.in_port.ofp_port = po.in_port; /* Check actions like for flow mods. We pass a 'table_id' of 0 to * ofproto_check_consistency(), which isn't strictly correct because these * actions aren't in any table. This is OK as 'table_id' is only used to * check instructions (e.g., goto-table), which can't appear on the action * list of a packet-out. */ error = ofpacts_check_consistency(po.ofpacts, po.ofpacts_len, &flow, u16_to_ofp(p->max_ports), 0, p->n_tables, ofconn_get_protocol(ofconn)); if (!error) { error = ofproto_check_ofpacts(p, po.ofpacts, po.ofpacts_len); if (!error) { error = p->ofproto_class->packet_out(p, payload, &flow, po.ofpacts, po.ofpacts_len); } } dp_packet_delete(payload); exit_free_ofpacts: ofpbuf_uninit(&ofpacts); exit: return error; } static enum ofperr handle_nxt_resume(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_packet_in_private pin; enum ofperr error; error = ofputil_decode_packet_in_private(oh, false, &pin, NULL, NULL); if (error) { return error; } error = (ofproto->ofproto_class->nxt_resume ? ofproto->ofproto_class->nxt_resume(ofproto, &pin) : OFPERR_NXR_NOT_SUPPORTED); ofputil_packet_in_private_destroy(&pin); return error; } static void update_port_config(struct ofconn *ofconn, struct ofport *port, enum ofputil_port_config config, enum ofputil_port_config mask) { enum ofputil_port_config toggle = (config ^ port->pp.config) & mask; if (toggle & OFPUTIL_PC_PORT_DOWN && (config & OFPUTIL_PC_PORT_DOWN ? netdev_turn_flags_off(port->netdev, NETDEV_UP, NULL) : netdev_turn_flags_on(port->netdev, NETDEV_UP, NULL))) { /* We tried to bring the port up or down, but it failed, so don't * update the "down" bit. */ toggle &= ~OFPUTIL_PC_PORT_DOWN; } if (toggle) { enum ofputil_port_config old_config = port->pp.config; port->pp.config ^= toggle; port->ofproto->ofproto_class->port_reconfigured(port, old_config); connmgr_send_port_status(port->ofproto->connmgr, ofconn, &port->pp, OFPPR_MODIFY); } } static enum ofperr port_mod_start(struct ofconn *ofconn, struct ofputil_port_mod *pm, struct ofport **port) { struct ofproto *p = ofconn_get_ofproto(ofconn); *port = ofproto_get_port(p, pm->port_no); if (!*port) { return OFPERR_OFPPMFC_BAD_PORT; } if (!eth_addr_equals((*port)->pp.hw_addr, pm->hw_addr)) { return OFPERR_OFPPMFC_BAD_HW_ADDR; } return 0; } static void port_mod_finish(struct ofconn *ofconn, struct ofputil_port_mod *pm, struct ofport *port) { update_port_config(ofconn, port, pm->config, pm->mask); if (pm->advertise) { netdev_set_advertisements(port->netdev, pm->advertise); } } static enum ofperr handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_port_mod pm; struct ofport *port; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_port_mod(oh, &pm, false); if (error) { return error; } error = port_mod_start(ofconn, &pm, &port); if (!error) { port_mod_finish(ofconn, &pm, port); } return error; } static enum ofperr handle_desc_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { static const char *default_mfr_desc = "Nicira, Inc."; static const char *default_hw_desc = "Open vSwitch"; static const char *default_sw_desc = VERSION; static const char *default_serial_desc = "None"; static const char *default_dp_desc = "None"; struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofp_desc_stats *ods; struct ofpbuf *msg; msg = ofpraw_alloc_stats_reply(request, 0); ods = ofpbuf_put_zeros(msg, sizeof *ods); ovs_strlcpy(ods->mfr_desc, p->mfr_desc ? p->mfr_desc : default_mfr_desc, sizeof ods->mfr_desc); ovs_strlcpy(ods->hw_desc, p->hw_desc ? p->hw_desc : default_hw_desc, sizeof ods->hw_desc); ovs_strlcpy(ods->sw_desc, p->sw_desc ? p->sw_desc : default_sw_desc, sizeof ods->sw_desc); ovs_strlcpy(ods->serial_num, p->serial_desc ? p->serial_desc : default_serial_desc, sizeof ods->serial_num); ovs_strlcpy(ods->dp_desc, p->dp_desc ? p->dp_desc : default_dp_desc, sizeof ods->dp_desc); ofconn_send_reply(ofconn, msg); return 0; } static enum ofperr handle_table_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_table_features *features; struct ofputil_table_stats *stats; struct ofpbuf *reply; size_t i; query_tables(ofproto, &features, &stats); reply = ofputil_encode_table_stats_reply(request); for (i = 0; i < ofproto->n_tables; i++) { if (!(ofproto->tables[i].flags & OFTABLE_HIDDEN)) { ofputil_append_table_stats_reply(reply, &stats[i], &features[i]); } } ofconn_send_reply(ofconn, reply); free(features); free(stats); return 0; } static enum ofperr handle_table_features_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofpbuf msg = ofpbuf_const_initializer(request, ntohs(request->length)); ofpraw_pull_assert(&msg); if (msg.size || ofpmp_more(request)) { return OFPERR_OFPTFFC_EPERM; } struct ofputil_table_features *features; query_tables(ofproto, &features, NULL); struct ovs_list replies; ofpmp_init(&replies, request); for (size_t i = 0; i < ofproto->n_tables; i++) { if (!(ofproto->tables[i].flags & OFTABLE_HIDDEN)) { ofputil_append_table_features_reply(&features[i], &replies); } } ofconn_send_replies(ofconn, &replies); free(features); return 0; } /* Returns the vacancy of 'oftable', a number that ranges from 0 (if the table * is full) to 100 (if the table is empty). * * A table without a limit on flows is considered to be empty. */ static uint8_t oftable_vacancy(const struct oftable *t) { return (!t->max_flows ? 100 : t->n_flows >= t->max_flows ? 0 : (t->max_flows - t->n_flows) * 100.0 / t->max_flows); } static void query_table_desc__(struct ofputil_table_desc *td, struct ofproto *ofproto, uint8_t table_id) { const struct oftable *t = &ofproto->tables[table_id]; td->table_id = table_id; td->eviction = (t->eviction & EVICTION_OPENFLOW ? OFPUTIL_TABLE_EVICTION_ON : OFPUTIL_TABLE_EVICTION_OFF); td->eviction_flags = OFPROTO_EVICTION_FLAGS; td->vacancy = (t->vacancy_event ? OFPUTIL_TABLE_VACANCY_ON : OFPUTIL_TABLE_VACANCY_OFF); td->table_vacancy.vacancy_down = t->vacancy_down; td->table_vacancy.vacancy_up = t->vacancy_up; td->table_vacancy.vacancy = oftable_vacancy(t); } /* This function queries the database for dumping table-desc. */ static void query_tables_desc(struct ofproto *ofproto, struct ofputil_table_desc **descp) { struct ofputil_table_desc *table_desc; size_t i; table_desc = *descp = xcalloc(ofproto->n_tables, sizeof *table_desc); for (i = 0; i < ofproto->n_tables; i++) { struct ofputil_table_desc *td = &table_desc[i]; query_table_desc__(td, ofproto, i); } } /* Function to handle dump-table-desc request. */ static enum ofperr handle_table_desc_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_table_desc *table_desc; struct ovs_list replies; size_t i; query_tables_desc(ofproto, &table_desc); ofpmp_init(&replies, request); for (i = 0; i < ofproto->n_tables; i++) { if (!(ofproto->tables[i].flags & OFTABLE_HIDDEN)) { ofputil_append_table_desc_reply(&table_desc[i], &replies, request->version); } } ofconn_send_replies(ofconn, &replies); free(table_desc); return 0; } /* This function determines and sends the vacancy event, based on the value * of current vacancy and threshold vacancy. If the current vacancy is less * than or equal to vacancy_down, vacancy up events must be enabled, and when * the current vacancy is greater or equal to vacancy_up, vacancy down events * must be enabled. */ static void send_table_status(struct ofproto *ofproto, uint8_t table_id) { struct oftable *t = &ofproto->tables[table_id]; if (!t->vacancy_event) { return; } uint8_t vacancy = oftable_vacancy(t); enum ofp14_table_reason event; if (vacancy < t->vacancy_down) { event = OFPTR_VACANCY_DOWN; } else if (vacancy > t->vacancy_up) { event = OFPTR_VACANCY_UP; } else { return; } if (event == t->vacancy_event) { struct ofputil_table_desc td; query_table_desc__(&td, ofproto, table_id); connmgr_send_table_status(ofproto->connmgr, &td, event); t->vacancy_event = (event == OFPTR_VACANCY_DOWN ? OFPTR_VACANCY_UP : OFPTR_VACANCY_DOWN); } } static void append_port_stat(struct ofport *port, struct ovs_list *replies) { struct ofputil_port_stats ops = { .port_no = port->pp.port_no }; calc_duration(port->created, time_msec(), &ops.duration_sec, &ops.duration_nsec); /* Intentionally ignore return value, since errors will set * 'stats' to all-1s, which is correct for OpenFlow, and * netdev_get_stats() will log errors. */ ofproto_port_get_stats(port, &ops.stats); ofputil_append_port_stat(replies, &ops); } static void handle_port_request(struct ofconn *ofconn, const struct ofp_header *request, ofp_port_t port_no, void (*cb)(struct ofport *, struct ovs_list *replies)) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofport *port; struct ovs_list replies; ofpmp_init(&replies, request); if (port_no != OFPP_ANY) { port = ofproto_get_port(ofproto, port_no); if (port) { cb(port, &replies); } } else { HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { cb(port, &replies); } } ofconn_send_replies(ofconn, &replies); } static enum ofperr handle_port_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { ofp_port_t port_no; enum ofperr error; error = ofputil_decode_port_stats_request(request, &port_no); if (!error) { handle_port_request(ofconn, request, port_no, append_port_stat); } return error; } static void append_port_desc(struct ofport *port, struct ovs_list *replies) { ofputil_append_port_desc_stats_reply(&port->pp, replies); } static enum ofperr handle_port_desc_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { ofp_port_t port_no; enum ofperr error; error = ofputil_decode_port_desc_stats_request(request, &port_no); if (!error) { handle_port_request(ofconn, request, port_no, append_port_desc); } return error; } static uint32_t hash_cookie(ovs_be64 cookie) { return hash_uint64((OVS_FORCE uint64_t)cookie); } static void cookies_insert(struct ofproto *ofproto, struct rule *rule) OVS_REQUIRES(ofproto_mutex) { hindex_insert(&ofproto->cookies, &rule->cookie_node, hash_cookie(rule->flow_cookie)); } static void cookies_remove(struct ofproto *ofproto, struct rule *rule) OVS_REQUIRES(ofproto_mutex) { hindex_remove(&ofproto->cookies, &rule->cookie_node); } static void calc_duration(long long int start, long long int now, uint32_t *sec, uint32_t *nsec) { long long int msecs = now - start; *sec = msecs / 1000; *nsec = (msecs % 1000) * (1000 * 1000); } /* Checks whether 'table_id' is 0xff or a valid table ID in 'ofproto'. Returns * true if 'table_id' is OK, false otherwise. */ static bool check_table_id(const struct ofproto *ofproto, uint8_t table_id) { return table_id == OFPTT_ALL || table_id < ofproto->n_tables; } static struct oftable * next_visible_table(const struct ofproto *ofproto, uint8_t table_id) { struct oftable *table; for (table = &ofproto->tables[table_id]; table < &ofproto->tables[ofproto->n_tables]; table++) { if (!(table->flags & OFTABLE_HIDDEN)) { return table; } } return NULL; } static struct oftable * first_matching_table(const struct ofproto *ofproto, uint8_t table_id) { if (table_id == 0xff) { return next_visible_table(ofproto, 0); } else if (table_id < ofproto->n_tables) { return &ofproto->tables[table_id]; } else { return NULL; } } static struct oftable * next_matching_table(const struct ofproto *ofproto, const struct oftable *table, uint8_t table_id) { return (table_id == 0xff ? next_visible_table(ofproto, (table - ofproto->tables) + 1) : NULL); } /* Assigns TABLE to each oftable, in turn, that matches TABLE_ID in OFPROTO: * * - If TABLE_ID is 0xff, this iterates over every classifier table in * OFPROTO, skipping tables marked OFTABLE_HIDDEN. * * - If TABLE_ID is the number of a table in OFPROTO, then the loop iterates * only once, for that table. (This can be used to access tables marked * OFTABLE_HIDDEN.) * * - Otherwise, TABLE_ID isn't valid for OFPROTO, so the loop won't be * entered at all. (Perhaps you should have validated TABLE_ID with * check_table_id().) * * All parameters are evaluated multiple times. */ #define FOR_EACH_MATCHING_TABLE(TABLE, TABLE_ID, OFPROTO) \ for ((TABLE) = first_matching_table(OFPROTO, TABLE_ID); \ (TABLE) != NULL; \ (TABLE) = next_matching_table(OFPROTO, TABLE, TABLE_ID)) /* Initializes 'criteria' in a straightforward way based on the other * parameters. * * By default, the criteria include flows that are read-only, on the assumption * that the collected flows won't be modified. Call rule_criteria_require_rw() * if flows will be modified. * * For "loose" matching, the 'priority' parameter is unimportant and may be * supplied as 0. */ static void rule_criteria_init(struct rule_criteria *criteria, uint8_t table_id, const struct match *match, int priority, cls_version_t version, ovs_be64 cookie, ovs_be64 cookie_mask, ofp_port_t out_port, uint32_t out_group) { criteria->table_id = table_id; cls_rule_init(&criteria->cr, match, priority); criteria->version = version; criteria->cookie = cookie; criteria->cookie_mask = cookie_mask; criteria->out_port = out_port; criteria->out_group = out_group; /* We ordinarily want to skip hidden rules, but there has to be a way for * code internal to OVS to modify and delete them, so if the criteria * specify a priority that can only be for a hidden flow, then allow hidden * rules to be selected. (This doesn't allow OpenFlow clients to meddle * with hidden flows because OpenFlow uses only a 16-bit field to specify * priority.) */ criteria->include_hidden = priority > UINT16_MAX; /* We assume that the criteria are being used to collect flows for reading * but not modification. Thus, we should collect read-only flows. */ criteria->include_readonly = true; } /* By default, criteria initialized by rule_criteria_init() will match flows * that are read-only, on the assumption that the collected flows won't be * modified. Call this function to match only flows that are be modifiable. * * Specify 'can_write_readonly' as false in ordinary circumstances, true if the * caller has special privileges that allow it to modify even "read-only" * flows. */ static void rule_criteria_require_rw(struct rule_criteria *criteria, bool can_write_readonly) { criteria->include_readonly = can_write_readonly; } static void rule_criteria_destroy(struct rule_criteria *criteria) { cls_rule_destroy(&criteria->cr); } void rule_collection_init(struct rule_collection *rules) { rules->rules = rules->stub; rules->n = 0; rules->capacity = ARRAY_SIZE(rules->stub); } void rule_collection_add(struct rule_collection *rules, struct rule *rule) { if (rules->n >= rules->capacity) { size_t old_size, new_size; old_size = rules->capacity * sizeof *rules->rules; rules->capacity *= 2; new_size = rules->capacity * sizeof *rules->rules; if (rules->rules == rules->stub) { rules->rules = xmalloc(new_size); memcpy(rules->rules, rules->stub, old_size); } else { rules->rules = xrealloc(rules->rules, new_size); } } rules->rules[rules->n++] = rule; } void rule_collection_ref(struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { size_t i; for (i = 0; i < rules->n; i++) { ofproto_rule_ref(rules->rules[i]); } } void rule_collection_unref(struct rule_collection *rules) { size_t i; for (i = 0; i < rules->n; i++) { ofproto_rule_unref(rules->rules[i]); } } /* Returns a NULL-terminated array of rule pointers, * destroys 'rules'. */ static struct rule ** rule_collection_detach(struct rule_collection *rules) { struct rule **rule_array; rule_collection_add(rules, NULL); if (rules->rules == rules->stub) { rules->rules = xmemdup(rules->rules, rules->n * sizeof *rules->rules); } rule_array = rules->rules; rule_collection_init(rules); return rule_array; } void rule_collection_destroy(struct rule_collection *rules) { if (rules->rules != rules->stub) { free(rules->rules); } /* Make repeated destruction harmless. */ rule_collection_init(rules); } /* Schedules postponed removal of rules, destroys 'rules'. */ static void rule_collection_remove_postponed(struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { if (rules->n > 0) { if (rules->n == 1) { ovsrcu_postpone(remove_rule_rcu, rules->rules[0]); } else { ovsrcu_postpone(remove_rules_rcu, rule_collection_detach(rules)); } } } /* Checks whether 'rule' matches 'c' and, if so, adds it to 'rules'. This * function verifies most of the criteria in 'c' itself, but the caller must * check 'c->cr' itself. * * Rules that have already been marked for removal are not collected. * * Increments '*n_readonly' if 'rule' wasn't added because it's read-only (and * 'c' only includes modifiable rules). */ static void collect_rule(struct rule *rule, const struct rule_criteria *c, struct rule_collection *rules, size_t *n_readonly) OVS_REQUIRES(ofproto_mutex) { if ((c->table_id == rule->table_id || c->table_id == 0xff) && ofproto_rule_has_out_port(rule, c->out_port) && ofproto_rule_has_out_group(rule, c->out_group) && !((rule->flow_cookie ^ c->cookie) & c->cookie_mask) && (!rule_is_hidden(rule) || c->include_hidden) && cls_rule_visible_in_version(&rule->cr, c->version)) { /* Rule matches all the criteria... */ if (!rule_is_readonly(rule) || c->include_readonly) { /* ...add it. */ rule_collection_add(rules, rule); } else { /* ...except it's read-only. */ ++*n_readonly; } } } /* Searches 'ofproto' for rules that match the criteria in 'criteria'. Matches * on classifiers rules are done in the "loose" way required for OpenFlow * OFPFC_MODIFY and OFPFC_DELETE requests. Puts the selected rules on list * 'rules'. * * Returns 0 on success, otherwise an OpenFlow error code. */ static enum ofperr collect_rules_loose(struct ofproto *ofproto, const struct rule_criteria *criteria, struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { struct oftable *table; enum ofperr error = 0; size_t n_readonly = 0; rule_collection_init(rules); if (!check_table_id(ofproto, criteria->table_id)) { error = OFPERR_OFPBRC_BAD_TABLE_ID; goto exit; } if (criteria->cookie_mask == OVS_BE64_MAX) { struct rule *rule; HINDEX_FOR_EACH_WITH_HASH (rule, cookie_node, hash_cookie(criteria->cookie), &ofproto->cookies) { if (cls_rule_is_loose_match(&rule->cr, &criteria->cr.match)) { collect_rule(rule, criteria, rules, &n_readonly); } } } else { FOR_EACH_MATCHING_TABLE (table, criteria->table_id, ofproto) { struct rule *rule; CLS_FOR_EACH_TARGET (rule, cr, &table->cls, &criteria->cr, criteria->version) { collect_rule(rule, criteria, rules, &n_readonly); } } } exit: if (!error && !rules->n && n_readonly) { /* We didn't find any rules to modify. We did find some read-only * rules that we're not allowed to modify, so report that. */ error = OFPERR_OFPBRC_EPERM; } if (error) { rule_collection_destroy(rules); } return error; } /* Searches 'ofproto' for rules that match the criteria in 'criteria'. Matches * on classifiers rules are done in the "strict" way required for OpenFlow * OFPFC_MODIFY_STRICT and OFPFC_DELETE_STRICT requests. Puts the selected * rules on list 'rules'. * * Returns 0 on success, otherwise an OpenFlow error code. */ static enum ofperr collect_rules_strict(struct ofproto *ofproto, const struct rule_criteria *criteria, struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { struct oftable *table; size_t n_readonly = 0; enum ofperr error = 0; rule_collection_init(rules); if (!check_table_id(ofproto, criteria->table_id)) { error = OFPERR_OFPBRC_BAD_TABLE_ID; goto exit; } if (criteria->cookie_mask == OVS_BE64_MAX) { struct rule *rule; HINDEX_FOR_EACH_WITH_HASH (rule, cookie_node, hash_cookie(criteria->cookie), &ofproto->cookies) { if (cls_rule_equal(&rule->cr, &criteria->cr)) { collect_rule(rule, criteria, rules, &n_readonly); } } } else { FOR_EACH_MATCHING_TABLE (table, criteria->table_id, ofproto) { struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly( &table->cls, &criteria->cr, criteria->version)); if (rule) { collect_rule(rule, criteria, rules, &n_readonly); } } } exit: if (!error && !rules->n && n_readonly) { /* We didn't find any rules to modify. We did find some read-only * rules that we're not allowed to modify, so report that. */ error = OFPERR_OFPBRC_EPERM; } if (error) { rule_collection_destroy(rules); } return error; } /* Returns 'age_ms' (a duration in milliseconds), converted to seconds and * forced into the range of a uint16_t. */ static int age_secs(long long int age_ms) { return (age_ms < 0 ? 0 : age_ms >= UINT16_MAX * 1000 ? UINT16_MAX : (unsigned int) age_ms / 1000); } static enum ofperr handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_header *request) OVS_EXCLUDED(ofproto_mutex) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_flow_stats_request fsr; struct rule_criteria criteria; struct rule_collection rules; struct ovs_list replies; enum ofperr error; size_t i; error = ofputil_decode_flow_stats_request(&fsr, request); if (error) { return error; } rule_criteria_init(&criteria, fsr.table_id, &fsr.match, 0, CLS_MAX_VERSION, fsr.cookie, fsr.cookie_mask, fsr.out_port, fsr.out_group); ovs_mutex_lock(&ofproto_mutex); error = collect_rules_loose(ofproto, &criteria, &rules); rule_criteria_destroy(&criteria); if (!error) { rule_collection_ref(&rules); } ovs_mutex_unlock(&ofproto_mutex); if (error) { return error; } ofpmp_init(&replies, request); for (i = 0; i < rules.n; i++) { struct rule *rule = rules.rules[i]; long long int now = time_msec(); struct ofputil_flow_stats fs; long long int created, used, modified; const struct rule_actions *actions; enum ofputil_flow_mod_flags flags; ovs_mutex_lock(&rule->mutex); fs.cookie = rule->flow_cookie; fs.idle_timeout = rule->idle_timeout; fs.hard_timeout = rule->hard_timeout; fs.importance = rule->importance; created = rule->created; modified = rule->modified; actions = rule_get_actions(rule); flags = rule->flags; ovs_mutex_unlock(&rule->mutex); ofproto->ofproto_class->rule_get_stats(rule, &fs.packet_count, &fs.byte_count, &used); minimatch_expand(&rule->cr.match, &fs.match); fs.table_id = rule->table_id; calc_duration(created, now, &fs.duration_sec, &fs.duration_nsec); fs.priority = rule->cr.priority; fs.idle_age = age_secs(now - used); fs.hard_age = age_secs(now - modified); fs.ofpacts = actions->ofpacts; fs.ofpacts_len = actions->ofpacts_len; fs.flags = flags; ofputil_append_flow_stats_reply(&fs, &replies); } rule_collection_unref(&rules); rule_collection_destroy(&rules); ofconn_send_replies(ofconn, &replies); return 0; } static void flow_stats_ds(struct rule *rule, struct ds *results) { uint64_t packet_count, byte_count; const struct rule_actions *actions; long long int created, used; rule->ofproto->ofproto_class->rule_get_stats(rule, &packet_count, &byte_count, &used); ovs_mutex_lock(&rule->mutex); actions = rule_get_actions(rule); created = rule->created; ovs_mutex_unlock(&rule->mutex); if (rule->table_id != 0) { ds_put_format(results, "table_id=%"PRIu8", ", rule->table_id); } ds_put_format(results, "duration=%llds, ", (time_msec() - created) / 1000); ds_put_format(results, "n_packets=%"PRIu64", ", packet_count); ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count); cls_rule_format(&rule->cr, results); ds_put_char(results, ','); ds_put_cstr(results, "actions="); ofpacts_format(actions->ofpacts, actions->ofpacts_len, results); ds_put_cstr(results, "\n"); } /* Adds a pretty-printed description of all flows to 'results', including * hidden flows (e.g., set up by in-band control). */ void ofproto_get_all_flows(struct ofproto *p, struct ds *results) { struct oftable *table; OFPROTO_FOR_EACH_TABLE (table, p) { struct rule *rule; CLS_FOR_EACH (rule, cr, &table->cls) { flow_stats_ds(rule, results); } } } /* Obtains the NetFlow engine type and engine ID for 'ofproto' into * '*engine_type' and '*engine_id', respectively. */ void ofproto_get_netflow_ids(const struct ofproto *ofproto, uint8_t *engine_type, uint8_t *engine_id) { ofproto->ofproto_class->get_netflow_ids(ofproto, engine_type, engine_id); } /* Checks the status change of CFM on 'ofport'. * * Returns true if 'ofproto_class' does not support 'cfm_status_changed'. */ bool ofproto_port_cfm_status_changed(struct ofproto *ofproto, ofp_port_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->cfm_status_changed ? ofproto->ofproto_class->cfm_status_changed(ofport) : true); } /* Checks the status of CFM configured on 'ofp_port' within 'ofproto'. * Returns 0 if the port's CFM status was successfully stored into * '*status'. Returns positive errno if the port did not have CFM * configured. * * The caller must provide and own '*status', and must free 'status->rmps'. * '*status' is indeterminate if the return value is non-zero. */ int ofproto_port_get_cfm_status(const struct ofproto *ofproto, ofp_port_t ofp_port, struct cfm_status *status) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->get_cfm_status ? ofproto->ofproto_class->get_cfm_status(ofport, status) : EOPNOTSUPP); } static enum ofperr handle_aggregate_stats_request(struct ofconn *ofconn, const struct ofp_header *oh) OVS_EXCLUDED(ofproto_mutex) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_flow_stats_request request; struct ofputil_aggregate_stats stats; bool unknown_packets, unknown_bytes; struct rule_criteria criteria; struct rule_collection rules; struct ofpbuf *reply; enum ofperr error; size_t i; error = ofputil_decode_flow_stats_request(&request, oh); if (error) { return error; } rule_criteria_init(&criteria, request.table_id, &request.match, 0, CLS_MAX_VERSION, request.cookie, request.cookie_mask, request.out_port, request.out_group); ovs_mutex_lock(&ofproto_mutex); error = collect_rules_loose(ofproto, &criteria, &rules); rule_criteria_destroy(&criteria); if (!error) { rule_collection_ref(&rules); } ovs_mutex_unlock(&ofproto_mutex); if (error) { return error; } memset(&stats, 0, sizeof stats); unknown_packets = unknown_bytes = false; for (i = 0; i < rules.n; i++) { struct rule *rule = rules.rules[i]; uint64_t packet_count; uint64_t byte_count; long long int used; ofproto->ofproto_class->rule_get_stats(rule, &packet_count, &byte_count, &used); if (packet_count == UINT64_MAX) { unknown_packets = true; } else { stats.packet_count += packet_count; } if (byte_count == UINT64_MAX) { unknown_bytes = true; } else { stats.byte_count += byte_count; } stats.flow_count++; } if (unknown_packets) { stats.packet_count = UINT64_MAX; } if (unknown_bytes) { stats.byte_count = UINT64_MAX; } rule_collection_unref(&rules); rule_collection_destroy(&rules); reply = ofputil_encode_aggregate_stats_reply(&stats, oh); ofconn_send_reply(ofconn, reply); return 0; } struct queue_stats_cbdata { struct ofport *ofport; struct ovs_list replies; long long int now; }; static void put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id, const struct netdev_queue_stats *stats) { struct ofputil_queue_stats oqs; oqs.port_no = cbdata->ofport->pp.port_no; oqs.queue_id = queue_id; oqs.tx_bytes = stats->tx_bytes; oqs.tx_packets = stats->tx_packets; oqs.tx_errors = stats->tx_errors; if (stats->created != LLONG_MIN) { calc_duration(stats->created, cbdata->now, &oqs.duration_sec, &oqs.duration_nsec); } else { oqs.duration_sec = oqs.duration_nsec = UINT32_MAX; } ofputil_append_queue_stat(&cbdata->replies, &oqs); } static void handle_queue_stats_dump_cb(uint32_t queue_id, struct netdev_queue_stats *stats, void *cbdata_) { struct queue_stats_cbdata *cbdata = cbdata_; put_queue_stats(cbdata, queue_id, stats); } static enum ofperr handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id, struct queue_stats_cbdata *cbdata) { cbdata->ofport = port; if (queue_id == OFPQ_ALL) { netdev_dump_queue_stats(port->netdev, handle_queue_stats_dump_cb, cbdata); } else { struct netdev_queue_stats stats; if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) { put_queue_stats(cbdata, queue_id, &stats); } else { return OFPERR_OFPQOFC_BAD_QUEUE; } } return 0; } static enum ofperr handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_header *rq) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct queue_stats_cbdata cbdata; struct ofport *port; enum ofperr error; struct ofputil_queue_stats_request oqsr; COVERAGE_INC(ofproto_queue_req); ofpmp_init(&cbdata.replies, rq); cbdata.now = time_msec(); error = ofputil_decode_queue_stats_request(rq, &oqsr); if (error) { return error; } if (oqsr.port_no == OFPP_ANY) { error = OFPERR_OFPQOFC_BAD_QUEUE; HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { if (!handle_queue_stats_for_port(port, oqsr.queue_id, &cbdata)) { error = 0; } } } else { port = ofproto_get_port(ofproto, oqsr.port_no); error = (port ? handle_queue_stats_for_port(port, oqsr.queue_id, &cbdata) : OFPERR_OFPQOFC_BAD_PORT); } if (!error) { ofconn_send_replies(ofconn, &cbdata.replies); } else { ofpbuf_list_delete(&cbdata.replies); } return error; } static enum ofperr evict_rules_from_table(struct oftable *table) OVS_REQUIRES(ofproto_mutex) { enum ofperr error = 0; struct rule_collection rules; unsigned int count = table->n_flows; unsigned int max_flows = table->max_flows; rule_collection_init(&rules); while (count-- > max_flows) { struct rule *rule; if (!choose_rule_to_evict(table, &rule)) { error = OFPERR_OFPFMFC_TABLE_FULL; break; } else { eviction_group_remove_rule(rule); rule_collection_add(&rules, rule); } } delete_flows__(&rules, OFPRR_EVICTION, NULL); return error; } static void get_conjunctions(const struct ofputil_flow_mod *fm, struct cls_conjunction **conjsp, size_t *n_conjsp) OVS_REQUIRES(ofproto_mutex) { struct cls_conjunction *conjs = NULL; int n_conjs = 0; const struct ofpact *ofpact; OFPACT_FOR_EACH (ofpact, fm->ofpacts, fm->ofpacts_len) { if (ofpact->type == OFPACT_CONJUNCTION) { n_conjs++; } else if (ofpact->type != OFPACT_NOTE) { /* "conjunction" may appear with "note" actions but not with any * other type of actions. */ ovs_assert(!n_conjs); break; } } if (n_conjs) { int i = 0; conjs = xzalloc(n_conjs * sizeof *conjs); OFPACT_FOR_EACH (ofpact, fm->ofpacts, fm->ofpacts_len) { if (ofpact->type == OFPACT_CONJUNCTION) { struct ofpact_conjunction *oc = ofpact_get_CONJUNCTION(ofpact); conjs[i].clause = oc->clause; conjs[i].n_clauses = oc->n_clauses; conjs[i].id = oc->id; i++; } } } *conjsp = conjs; *n_conjsp = n_conjs; } /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT * in which no matching flow already exists in the flow table. * * Adds the flow specified by 'fm', to the ofproto's flow table. Returns 0 on * success, or an OpenFlow error code on failure. * * On successful return the caller must complete the operation either by * calling add_flow_finish(), or add_flow_revert() if the operation needs to * be reverted. * * The caller retains ownership of 'fm->ofpacts'. */ static enum ofperr add_flow_start(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule **old_rule = &ofm->old_rules.stub[0]; struct rule **new_rule = &ofm->new_rules.stub[0]; struct oftable *table; struct cls_rule cr; struct rule *rule; uint8_t table_id; struct cls_conjunction *conjs; size_t n_conjs; enum ofperr error; if (!check_table_id(ofproto, fm->table_id)) { error = OFPERR_OFPBRC_BAD_TABLE_ID; return error; } /* Pick table. */ if (fm->table_id == 0xff) { if (ofproto->ofproto_class->rule_choose_table) { error = ofproto->ofproto_class->rule_choose_table(ofproto, &fm->match, &table_id); if (error) { return error; } ovs_assert(table_id < ofproto->n_tables); } else { table_id = 0; } } else if (fm->table_id < ofproto->n_tables) { table_id = fm->table_id; } else { return OFPERR_OFPBRC_BAD_TABLE_ID; } table = &ofproto->tables[table_id]; if (table->flags & OFTABLE_READONLY && !(fm->flags & OFPUTIL_FF_NO_READONLY)) { return OFPERR_OFPBRC_EPERM; } if (!(fm->flags & OFPUTIL_FF_HIDDEN_FIELDS) && !match_has_default_hidden_fields(&fm->match)) { VLOG_WARN_RL(&rl, "%s: (add_flow) only internal flows can set " "non-default values to hidden fields", ofproto->name); return OFPERR_OFPBRC_EPERM; } cls_rule_init(&cr, &fm->match, fm->priority); /* Check for the existence of an identical rule. * This will not return rules earlier marked for removal. */ rule = rule_from_cls_rule(classifier_find_rule_exactly(&table->cls, &cr, ofm->version)); *old_rule = rule; if (!rule) { /* Check for overlap, if requested. */ if (fm->flags & OFPUTIL_FF_CHECK_OVERLAP && classifier_rule_overlaps(&table->cls, &cr, ofm->version)) { cls_rule_destroy(&cr); return OFPERR_OFPFMFC_OVERLAP; } /* If necessary, evict an existing rule to clear out space. */ if (table->n_flows >= table->max_flows) { if (!choose_rule_to_evict(table, &rule)) { error = OFPERR_OFPFMFC_TABLE_FULL; cls_rule_destroy(&cr); return error; } eviction_group_remove_rule(rule); /* Marks '*old_rule' as an evicted rule rather than replaced rule. */ fm->delete_reason = OFPRR_EVICTION; *old_rule = rule; } } else { fm->modify_cookie = true; } /* Allocate new rule. */ error = replace_rule_create(ofproto, fm, &cr, table - ofproto->tables, rule, new_rule); if (error) { return error; } get_conjunctions(fm, &conjs, &n_conjs); replace_rule_start(ofproto, ofm->version, rule, *new_rule, conjs, n_conjs); free(conjs); return 0; } /* Revert the effects of add_flow_start(). */ static void add_flow_revert(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule *old_rule = ofm->old_rules.stub[0]; struct rule *new_rule = ofm->new_rules.stub[0]; if (old_rule && fm->delete_reason == OFPRR_EVICTION) { /* Revert the eviction. */ eviction_group_add_rule(old_rule); } replace_rule_revert(ofproto, old_rule, new_rule); } /* To be called after version bump. */ static void add_flow_finish(struct ofproto *ofproto, struct ofproto_flow_mod *ofm, const struct flow_mod_requester *req) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule *old_rule = ofm->old_rules.stub[0]; struct rule *new_rule = ofm->new_rules.stub[0]; struct ovs_list dead_cookies = OVS_LIST_INITIALIZER(&dead_cookies); replace_rule_finish(ofproto, fm, req, old_rule, new_rule, &dead_cookies); learned_cookies_flush(ofproto, &dead_cookies); if (old_rule) { ovsrcu_postpone(remove_rule_rcu, old_rule); } else { ofmonitor_report(ofproto->connmgr, new_rule, NXFME_ADDED, 0, req ? req->ofconn : NULL, req ? req->request->xid : 0, NULL); /* Send Vacancy Events for OF1.4+. */ send_table_status(ofproto, new_rule->table_id); } send_buffered_packet(req, fm->buffer_id, new_rule); } /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */ /* Create a new rule based on attributes in 'fm', match in 'cr', 'table_id', * and 'old_rule'. Note that the rule is NOT inserted into a any data * structures yet. Takes ownership of 'cr'. */ static enum ofperr replace_rule_create(struct ofproto *ofproto, struct ofputil_flow_mod *fm, struct cls_rule *cr, uint8_t table_id, struct rule *old_rule, struct rule **new_rule) { struct rule *rule; enum ofperr error; /* Allocate new rule. */ rule = ofproto->ofproto_class->rule_alloc(); if (!rule) { cls_rule_destroy(cr); VLOG_WARN_RL(&rl, "%s: failed to allocate a rule.", ofproto->name); return OFPERR_OFPFMFC_UNKNOWN; } /* Initialize base state. */ *CONST_CAST(struct ofproto **, &rule->ofproto) = ofproto; cls_rule_move(CONST_CAST(struct cls_rule *, &rule->cr), cr); ovs_refcount_init(&rule->ref_count); rule->flow_cookie = fm->new_cookie; rule->created = rule->modified = time_msec(); ovs_mutex_init(&rule->mutex); ovs_mutex_lock(&rule->mutex); rule->idle_timeout = fm->idle_timeout; rule->hard_timeout = fm->hard_timeout; *CONST_CAST(uint16_t *, &rule->importance) = fm->importance; rule->removed_reason = OVS_OFPRR_NONE; *CONST_CAST(uint8_t *, &rule->table_id) = table_id; rule->flags = fm->flags & OFPUTIL_FF_STATE; *CONST_CAST(const struct rule_actions **, &rule->actions) = rule_actions_create(fm->ofpacts, fm->ofpacts_len); ovs_list_init(&rule->meter_list_node); rule->eviction_group = NULL; ovs_list_init(&rule->expirable); rule->monitor_flags = 0; rule->add_seqno = 0; rule->modify_seqno = 0; /* Copy values from old rule for modify semantics. */ if (old_rule && fm->delete_reason != OFPRR_EVICTION) { bool change_cookie = (fm->modify_cookie && fm->new_cookie != OVS_BE64_MAX && fm->new_cookie != old_rule->flow_cookie); ovs_mutex_lock(&old_rule->mutex); if (fm->command != OFPFC_ADD) { rule->idle_timeout = old_rule->idle_timeout; rule->hard_timeout = old_rule->hard_timeout; *CONST_CAST(uint16_t *, &rule->importance) = old_rule->importance; rule->flags = old_rule->flags; rule->created = old_rule->created; } if (!change_cookie) { rule->flow_cookie = old_rule->flow_cookie; } ovs_mutex_unlock(&old_rule->mutex); } ovs_mutex_unlock(&rule->mutex); /* Construct rule, initializing derived state. */ error = ofproto->ofproto_class->rule_construct(rule); if (error) { ofproto_rule_destroy__(rule); return error; } rule->removed = true; /* Not yet in ofproto data structures. */ *new_rule = rule; return 0; } static void replace_rule_start(struct ofproto *ofproto, cls_version_t version, struct rule *old_rule, struct rule *new_rule, struct cls_conjunction *conjs, size_t n_conjs) { struct oftable *table = &ofproto->tables[new_rule->table_id]; /* 'old_rule' may be either an evicted rule or replaced rule. */ if (old_rule) { /* Mark the old rule for removal in the next version. */ cls_rule_make_invisible_in_version(&old_rule->cr, version); } else { table->n_flows++; } /* Insert flow to the classifier, so that later flow_mods may relate * to it. This is reversible, in case later errors require this to * be reverted. */ ofproto_rule_insert__(ofproto, new_rule); /* Make the new rule visible for classifier lookups only from the next * version. */ classifier_insert(&table->cls, &new_rule->cr, version, conjs, n_conjs); } static void replace_rule_revert(struct ofproto *ofproto, struct rule *old_rule, struct rule *new_rule) { struct oftable *table = &ofproto->tables[new_rule->table_id]; if (old_rule) { /* Restore the original visibility of the old rule. */ cls_rule_restore_visibility(&old_rule->cr); } else { /* Restore table's rule count. */ table->n_flows--; } /* Remove the new rule immediately. It was never visible to lookups. */ if (!classifier_remove(&table->cls, &new_rule->cr)) { OVS_NOT_REACHED(); } ofproto_rule_remove__(ofproto, new_rule); /* The rule was not inserted to the ofproto provider, so we can * release it without deleting it from the ofproto provider. */ ofproto_rule_unref(new_rule); } /* Adds the 'new_rule', replacing the 'old_rule'. */ static void replace_rule_finish(struct ofproto *ofproto, struct ofputil_flow_mod *fm, const struct flow_mod_requester *req, struct rule *old_rule, struct rule *new_rule, struct ovs_list *dead_cookies) OVS_REQUIRES(ofproto_mutex) { bool forward_stats = !(fm->flags & OFPUTIL_FF_RESET_COUNTS); struct rule *replaced_rule; replaced_rule = fm->delete_reason != OFPRR_EVICTION ? old_rule : NULL; /* Insert the new flow to the ofproto provider. A non-NULL 'replaced_rule' * is a duplicate rule the 'new_rule' is replacing. The provider should * link the stats from the old rule to the new one if 'forward_stats' is * 'true'. The 'replaced_rule' will be deleted right after this call. */ ofproto->ofproto_class->rule_insert(new_rule, replaced_rule, forward_stats); learned_cookies_inc(ofproto, rule_get_actions(new_rule)); if (old_rule) { const struct rule_actions *old_actions = rule_get_actions(old_rule); /* Remove the old rule from data structures. Removal from the * classifier and the deletion of the rule is RCU postponed by the * caller. */ ofproto_rule_remove__(ofproto, old_rule); learned_cookies_dec(ofproto, old_actions, dead_cookies); if (replaced_rule) { enum nx_flow_update_event event = fm->command == OFPFC_ADD ? NXFME_ADDED : NXFME_MODIFIED; bool change_cookie = (fm->modify_cookie && fm->new_cookie != OVS_BE64_MAX && fm->new_cookie != old_rule->flow_cookie); bool change_actions = !ofpacts_equal(fm->ofpacts, fm->ofpacts_len, old_actions->ofpacts, old_actions->ofpacts_len); if (event != NXFME_MODIFIED || change_actions || change_cookie) { ofmonitor_report(ofproto->connmgr, new_rule, event, 0, req ? req->ofconn : NULL, req ? req->request->xid : 0, change_actions ? old_actions : NULL); } } else { /* XXX: This is slight duplication with delete_flows_finish__() */ old_rule->removed_reason = OFPRR_EVICTION; ofmonitor_report(ofproto->connmgr, old_rule, NXFME_DELETED, OFPRR_EVICTION, req ? req->ofconn : NULL, req ? req->request->xid : 0, NULL); } } } static enum ofperr modify_flows_start__(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule_collection *old_rules = &ofm->old_rules; struct rule_collection *new_rules = &ofm->new_rules; enum ofperr error; rule_collection_init(new_rules); if (old_rules->n > 0) { struct cls_conjunction *conjs; size_t n_conjs; size_t i; /* Create a new 'modified' rule for each old rule. */ for (i = 0; i < old_rules->n; i++) { struct rule *old_rule = old_rules->rules[i]; struct rule *new_rule; struct cls_rule cr; cls_rule_clone(&cr, &old_rule->cr); error = replace_rule_create(ofproto, fm, &cr, old_rule->table_id, old_rule, &new_rule); if (!error) { rule_collection_add(new_rules, new_rule); } else { rule_collection_unref(new_rules); rule_collection_destroy(new_rules); return error; } } ovs_assert(new_rules->n == old_rules->n); get_conjunctions(fm, &conjs, &n_conjs); for (i = 0; i < old_rules->n; i++) { replace_rule_start(ofproto, ofm->version, old_rules->rules[i], new_rules->rules[i], conjs, n_conjs); } free(conjs); } else if (!(fm->cookie_mask != htonll(0) || fm->new_cookie == OVS_BE64_MAX)) { /* No match, add a new flow. */ error = add_flow_start(ofproto, ofm); if (!error) { ovs_assert(fm->delete_reason == OFPRR_EVICTION || !old_rules->rules[0]); } new_rules->n = 1; } else { error = 0; } return error; } /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code on * failure. * * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id, * if any. */ static enum ofperr modify_flows_start_loose(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule_collection *old_rules = &ofm->old_rules; struct rule_criteria criteria; enum ofperr error; rule_criteria_init(&criteria, fm->table_id, &fm->match, 0, CLS_MAX_VERSION, fm->cookie, fm->cookie_mask, OFPP_ANY, OFPG_ANY); rule_criteria_require_rw(&criteria, (fm->flags & OFPUTIL_FF_NO_READONLY) != 0); error = collect_rules_loose(ofproto, &criteria, old_rules); rule_criteria_destroy(&criteria); if (!error) { error = modify_flows_start__(ofproto, ofm); } if (error) { rule_collection_destroy(old_rules); } return error; } static void modify_flows_revert(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct rule_collection *old_rules = &ofm->old_rules; struct rule_collection *new_rules = &ofm->new_rules; /* Old rules were not changed yet, only need to revert new rules. */ if (old_rules->n == 0 && new_rules->n == 1) { add_flow_revert(ofproto, ofm); } else if (old_rules->n > 0) { for (size_t i = 0; i < old_rules->n; i++) { replace_rule_revert(ofproto, old_rules->rules[i], new_rules->rules[i]); } rule_collection_destroy(new_rules); rule_collection_destroy(old_rules); } } static void modify_flows_finish(struct ofproto *ofproto, struct ofproto_flow_mod *ofm, const struct flow_mod_requester *req) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule_collection *old_rules = &ofm->old_rules; struct rule_collection *new_rules = &ofm->new_rules; if (old_rules->n == 0 && new_rules->n == 1) { add_flow_finish(ofproto, ofm, req); } else if (old_rules->n > 0) { struct ovs_list dead_cookies = OVS_LIST_INITIALIZER(&dead_cookies); ovs_assert(new_rules->n == old_rules->n); for (size_t i = 0; i < old_rules->n; i++) { replace_rule_finish(ofproto, fm, req, old_rules->rules[i], new_rules->rules[i], &dead_cookies); } learned_cookies_flush(ofproto, &dead_cookies); rule_collection_remove_postponed(old_rules); send_buffered_packet(req, fm->buffer_id, new_rules->rules[0]); rule_collection_destroy(new_rules); } } /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error * code on failure. */ static enum ofperr modify_flow_start_strict(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct ofputil_flow_mod *fm = &ofm->fm; struct rule_collection *old_rules = &ofm->old_rules; struct rule_criteria criteria; enum ofperr error; rule_criteria_init(&criteria, fm->table_id, &fm->match, fm->priority, CLS_MAX_VERSION, fm->cookie, fm->cookie_mask, OFPP_ANY, OFPG_ANY); rule_criteria_require_rw(&criteria, (fm->flags & OFPUTIL_FF_NO_READONLY) != 0); error = collect_rules_strict(ofproto, &criteria, old_rules); rule_criteria_destroy(&criteria); if (!error) { /* collect_rules_strict() can return max 1 rule. */ error = modify_flows_start__(ofproto, ofm); } if (error) { rule_collection_destroy(old_rules); } return error; } /* OFPFC_DELETE implementation. */ static void delete_flows_start__(struct ofproto *ofproto, cls_version_t version, const struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { for (size_t i = 0; i < rules->n; i++) { struct rule *rule = rules->rules[i]; struct oftable *table = &ofproto->tables[rule->table_id]; table->n_flows--; cls_rule_make_invisible_in_version(&rule->cr, version); } } static void delete_flows_finish__(struct ofproto *ofproto, struct rule_collection *rules, enum ofp_flow_removed_reason reason, const struct flow_mod_requester *req) OVS_REQUIRES(ofproto_mutex) { if (rules->n) { struct ovs_list dead_cookies = OVS_LIST_INITIALIZER(&dead_cookies); for (size_t i = 0; i < rules->n; i++) { struct rule *rule = rules->rules[i]; /* This value will be used to send the flow removed message right * before the rule is actually destroyed. */ rule->removed_reason = reason; ofmonitor_report(ofproto->connmgr, rule, NXFME_DELETED, reason, req ? req->ofconn : NULL, req ? req->request->xid : 0, NULL); /* Send Vacancy Event for OF1.4+. */ send_table_status(ofproto, rule->table_id); ofproto_rule_remove__(ofproto, rule); learned_cookies_dec(ofproto, rule_get_actions(rule), &dead_cookies); } rule_collection_remove_postponed(rules); learned_cookies_flush(ofproto, &dead_cookies); } } /* Deletes the rules listed in 'rules'. * The deleted rules will become invisible to the lookups in the next version. * Destroys 'rules'. */ static void delete_flows__(struct rule_collection *rules, enum ofp_flow_removed_reason reason, const struct flow_mod_requester *req) OVS_REQUIRES(ofproto_mutex) { if (rules->n) { struct ofproto *ofproto = rules->rules[0]->ofproto; delete_flows_start__(ofproto, ofproto->tables_version + 1, rules); ofproto_bump_tables_version(ofproto); delete_flows_finish__(ofproto, rules, reason, req); ofmonitor_flush(ofproto->connmgr); } } /* Implements OFPFC_DELETE. */ static enum ofperr delete_flows_start_loose(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { const struct ofputil_flow_mod *fm = &ofm->fm; struct rule_collection *rules = &ofm->old_rules; struct rule_criteria criteria; enum ofperr error; rule_criteria_init(&criteria, fm->table_id, &fm->match, 0, CLS_MAX_VERSION, fm->cookie, fm->cookie_mask, fm->out_port, fm->out_group); rule_criteria_require_rw(&criteria, (fm->flags & OFPUTIL_FF_NO_READONLY) != 0); error = collect_rules_loose(ofproto, &criteria, rules); rule_criteria_destroy(&criteria); if (!error) { delete_flows_start__(ofproto, ofm->version, rules); } return error; } static void delete_flows_revert(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { struct rule_collection *rules = &ofm->old_rules; for (size_t i = 0; i < rules->n; i++) { struct rule *rule = rules->rules[i]; struct oftable *table = &ofproto->tables[rule->table_id]; /* Restore table's rule count. */ table->n_flows++; /* Restore the original visibility of the rule. */ cls_rule_restore_visibility(&rule->cr); } rule_collection_destroy(rules); } static void delete_flows_finish(struct ofproto *ofproto, struct ofproto_flow_mod *ofm, const struct flow_mod_requester *req) OVS_REQUIRES(ofproto_mutex) { delete_flows_finish__(ofproto, &ofm->old_rules, ofm->fm.delete_reason, req); } /* Implements OFPFC_DELETE_STRICT. */ static enum ofperr delete_flow_start_strict(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { const struct ofputil_flow_mod *fm = &ofm->fm; struct rule_collection *rules = &ofm->old_rules; struct rule_criteria criteria; enum ofperr error; rule_criteria_init(&criteria, fm->table_id, &fm->match, fm->priority, CLS_MAX_VERSION, fm->cookie, fm->cookie_mask, fm->out_port, fm->out_group); rule_criteria_require_rw(&criteria, (fm->flags & OFPUTIL_FF_NO_READONLY) != 0); error = collect_rules_strict(ofproto, &criteria, rules); rule_criteria_destroy(&criteria); if (!error) { delete_flows_start__(ofproto, ofm->version, rules); } return error; } /* This may only be called by rule_destroy_cb()! */ static void ofproto_rule_send_removed(struct rule *rule) OVS_EXCLUDED(ofproto_mutex) { struct ofputil_flow_removed fr; long long int used; minimatch_expand(&rule->cr.match, &fr.match); fr.priority = rule->cr.priority; ovs_mutex_lock(&ofproto_mutex); fr.cookie = rule->flow_cookie; fr.reason = rule->removed_reason; fr.table_id = rule->table_id; calc_duration(rule->created, time_msec(), &fr.duration_sec, &fr.duration_nsec); ovs_mutex_lock(&rule->mutex); fr.idle_timeout = rule->idle_timeout; fr.hard_timeout = rule->hard_timeout; ovs_mutex_unlock(&rule->mutex); rule->ofproto->ofproto_class->rule_get_stats(rule, &fr.packet_count, &fr.byte_count, &used); connmgr_send_flow_removed(rule->ofproto->connmgr, &fr); ovs_mutex_unlock(&ofproto_mutex); } /* Sends an OpenFlow "flow removed" message with the given 'reason' (either * OFPRR_HARD_TIMEOUT or OFPRR_IDLE_TIMEOUT), and then removes 'rule' from its * ofproto. * * ofproto implementation ->run() functions should use this function to expire * OpenFlow flows. */ void ofproto_rule_expire(struct rule *rule, uint8_t reason) OVS_REQUIRES(ofproto_mutex) { struct rule_collection rules; rules.rules = rules.stub; rules.n = 1; rules.stub[0] = rule; delete_flows__(&rules, reason, NULL); } /* Reduces '*timeout' to no more than 'max'. A value of zero in either case * means "infinite". */ static void reduce_timeout(uint16_t max, uint16_t *timeout) { if (max && (!*timeout || *timeout > max)) { *timeout = max; } } /* If 'idle_timeout' is nonzero, and 'rule' has no idle timeout or an idle * timeout greater than 'idle_timeout', lowers 'rule''s idle timeout to * 'idle_timeout' seconds. Similarly for 'hard_timeout'. * * Suitable for implementing OFPACT_FIN_TIMEOUT. */ void ofproto_rule_reduce_timeouts(struct rule *rule, uint16_t idle_timeout, uint16_t hard_timeout) OVS_EXCLUDED(ofproto_mutex, rule->mutex) { if (!idle_timeout && !hard_timeout) { return; } ovs_mutex_lock(&ofproto_mutex); if (ovs_list_is_empty(&rule->expirable)) { ovs_list_insert(&rule->ofproto->expirable, &rule->expirable); } ovs_mutex_unlock(&ofproto_mutex); ovs_mutex_lock(&rule->mutex); reduce_timeout(idle_timeout, &rule->idle_timeout); reduce_timeout(hard_timeout, &rule->hard_timeout); ovs_mutex_unlock(&rule->mutex); } static enum ofperr handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh) OVS_EXCLUDED(ofproto_mutex) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofproto_flow_mod ofm; uint64_t ofpacts_stub[1024 / 8]; struct ofpbuf ofpacts; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { goto exit; } ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); error = ofputil_decode_flow_mod(&ofm.fm, oh, ofconn_get_protocol(ofconn), &ofpacts, u16_to_ofp(ofproto->max_ports), ofproto->n_tables); if (!error) { error = ofproto_check_ofpacts(ofproto, ofm.fm.ofpacts, ofm.fm.ofpacts_len); } if (!error) { struct flow_mod_requester req; req.ofconn = ofconn; req.request = oh; error = handle_flow_mod__(ofproto, &ofm, &req); } if (error) { goto exit_free_ofpacts; } ofconn_report_flow_mod(ofconn, ofm.fm.command); exit_free_ofpacts: ofpbuf_uninit(&ofpacts); exit: return error; } static enum ofperr handle_flow_mod__(struct ofproto *ofproto, struct ofproto_flow_mod *ofm, const struct flow_mod_requester *req) OVS_EXCLUDED(ofproto_mutex) { enum ofperr error; ovs_mutex_lock(&ofproto_mutex); ofm->version = ofproto->tables_version + 1; error = ofproto_flow_mod_start(ofproto, ofm); if (!error) { ofproto_bump_tables_version(ofproto); ofproto_flow_mod_finish(ofproto, ofm, req); } ofmonitor_flush(ofproto->connmgr); ovs_mutex_unlock(&ofproto_mutex); run_rule_executes(ofproto); return error; } static enum ofperr handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_role_request request; struct ofputil_role_request reply; struct ofpbuf *buf; enum ofperr error; error = ofputil_decode_role_message(oh, &request); if (error) { return error; } if (request.role != OFPCR12_ROLE_NOCHANGE) { if (request.role != OFPCR12_ROLE_EQUAL && request.have_generation_id && !ofconn_set_master_election_id(ofconn, request.generation_id)) { return OFPERR_OFPRRFC_STALE; } ofconn_set_role(ofconn, request.role); } reply.role = ofconn_get_role(ofconn); reply.have_generation_id = ofconn_get_master_election_id( ofconn, &reply.generation_id); buf = ofputil_encode_role_reply(oh, &reply); ofconn_send_reply(ofconn, buf); return 0; } static enum ofperr handle_nxt_flow_mod_table_id(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_flow_mod_table_id *msg = ofpmsg_body(oh); enum ofputil_protocol cur, next; cur = ofconn_get_protocol(ofconn); next = ofputil_protocol_set_tid(cur, msg->set != 0); ofconn_set_protocol(ofconn, next); return 0; } static enum ofperr handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_set_flow_format *msg = ofpmsg_body(oh); enum ofputil_protocol cur, next; enum ofputil_protocol next_base; next_base = ofputil_nx_flow_format_to_protocol(ntohl(msg->format)); if (!next_base) { return OFPERR_OFPBRC_EPERM; } cur = ofconn_get_protocol(ofconn); next = ofputil_protocol_set_base(cur, next_base); ofconn_set_protocol(ofconn, next); return 0; } static enum ofperr handle_nxt_set_packet_in_format(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_set_packet_in_format *msg = ofpmsg_body(oh); uint32_t format; format = ntohl(msg->format); if (!ofputil_packet_in_format_is_valid(format)) { return OFPERR_OFPBRC_EPERM; } ofconn_set_packet_in_format(ofconn, format); return 0; } static enum ofperr handle_nxt_set_async_config(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_async_cfg basis = ofconn_get_async_config(ofconn); struct ofputil_async_cfg ac; enum ofperr error; error = ofputil_decode_set_async_config(oh, false, &basis, &ac); if (error) { return error; } ofconn_set_async_config(ofconn, &ac); if (ofconn_get_type(ofconn) == OFCONN_SERVICE && !ofconn_get_miss_send_len(ofconn)) { ofconn_set_miss_send_len(ofconn, OFP_DEFAULT_MISS_SEND_LEN); } return 0; } static enum ofperr handle_nxt_get_async_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_async_cfg ac = ofconn_get_async_config(ofconn); ofconn_send_reply(ofconn, ofputil_encode_get_async_reply(oh, &ac)); return 0; } static enum ofperr handle_nxt_set_controller_id(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_controller_id *nci = ofpmsg_body(oh); if (!is_all_zeros(nci->zero, sizeof nci->zero)) { return OFPERR_NXBRC_MUST_BE_ZERO; } ofconn_set_controller_id(ofconn, ntohs(nci->controller_id)); return 0; } static enum ofperr handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofpbuf *buf; buf = ofpraw_alloc_reply((oh->version == OFP10_VERSION ? OFPRAW_OFPT10_BARRIER_REPLY : OFPRAW_OFPT11_BARRIER_REPLY), oh, 0); ofconn_send_reply(ofconn, buf); return 0; } static void ofproto_compose_flow_refresh_update(const struct rule *rule, enum nx_flow_monitor_flags flags, struct ovs_list *msgs) OVS_REQUIRES(ofproto_mutex) { const struct rule_actions *actions; struct ofputil_flow_update fu; struct match match; fu.event = (flags & (NXFMF_INITIAL | NXFMF_ADD) ? NXFME_ADDED : NXFME_MODIFIED); fu.reason = 0; ovs_mutex_lock(&rule->mutex); fu.idle_timeout = rule->idle_timeout; fu.hard_timeout = rule->hard_timeout; ovs_mutex_unlock(&rule->mutex); fu.table_id = rule->table_id; fu.cookie = rule->flow_cookie; minimatch_expand(&rule->cr.match, &match); fu.match = &match; fu.priority = rule->cr.priority; actions = flags & NXFMF_ACTIONS ? rule_get_actions(rule) : NULL; fu.ofpacts = actions ? actions->ofpacts : NULL; fu.ofpacts_len = actions ? actions->ofpacts_len : 0; if (ovs_list_is_empty(msgs)) { ofputil_start_flow_update(msgs); } ofputil_append_flow_update(&fu, msgs); } void ofmonitor_compose_refresh_updates(struct rule_collection *rules, struct ovs_list *msgs) OVS_REQUIRES(ofproto_mutex) { size_t i; for (i = 0; i < rules->n; i++) { struct rule *rule = rules->rules[i]; enum nx_flow_monitor_flags flags = rule->monitor_flags; rule->monitor_flags = 0; ofproto_compose_flow_refresh_update(rule, flags, msgs); } } static void ofproto_collect_ofmonitor_refresh_rule(const struct ofmonitor *m, struct rule *rule, uint64_t seqno, struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { enum nx_flow_monitor_flags update; if (rule_is_hidden(rule)) { return; } if (!ofproto_rule_has_out_port(rule, m->out_port)) { return; } if (seqno) { if (rule->add_seqno > seqno) { update = NXFMF_ADD | NXFMF_MODIFY; } else if (rule->modify_seqno > seqno) { update = NXFMF_MODIFY; } else { return; } if (!(m->flags & update)) { return; } } else { update = NXFMF_INITIAL; } if (!rule->monitor_flags) { rule_collection_add(rules, rule); } rule->monitor_flags |= update | (m->flags & NXFMF_ACTIONS); } static void ofproto_collect_ofmonitor_refresh_rules(const struct ofmonitor *m, uint64_t seqno, struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { const struct ofproto *ofproto = ofconn_get_ofproto(m->ofconn); const struct oftable *table; struct cls_rule target; cls_rule_init_from_minimatch(&target, &m->match, 0); FOR_EACH_MATCHING_TABLE (table, m->table_id, ofproto) { struct rule *rule; CLS_FOR_EACH_TARGET (rule, cr, &table->cls, &target, CLS_MAX_VERSION) { ofproto_collect_ofmonitor_refresh_rule(m, rule, seqno, rules); } } cls_rule_destroy(&target); } static void ofproto_collect_ofmonitor_initial_rules(struct ofmonitor *m, struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { if (m->flags & NXFMF_INITIAL) { ofproto_collect_ofmonitor_refresh_rules(m, 0, rules); } } void ofmonitor_collect_resume_rules(struct ofmonitor *m, uint64_t seqno, struct rule_collection *rules) OVS_REQUIRES(ofproto_mutex) { ofproto_collect_ofmonitor_refresh_rules(m, seqno, rules); } static enum ofperr flow_monitor_delete(struct ofconn *ofconn, uint32_t id) OVS_REQUIRES(ofproto_mutex) { struct ofmonitor *m; enum ofperr error; m = ofmonitor_lookup(ofconn, id); if (m) { ofmonitor_destroy(m); error = 0; } else { error = OFPERR_OFPMOFC_UNKNOWN_MONITOR; } return error; } static enum ofperr handle_flow_monitor_request(struct ofconn *ofconn, const struct ofp_header *oh) OVS_EXCLUDED(ofproto_mutex) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofpbuf b = ofpbuf_const_initializer(oh, ntohs(oh->length)); struct ofmonitor **monitors = NULL; size_t allocated_monitors = 0; size_t n_monitors = 0; enum ofperr error; ovs_mutex_lock(&ofproto_mutex); for (;;) { struct ofputil_flow_monitor_request request; struct ofmonitor *m; int retval; retval = ofputil_decode_flow_monitor_request(&request, &b); if (retval == EOF) { break; } else if (retval) { error = retval; goto error; } if (request.table_id != 0xff && request.table_id >= ofproto->n_tables) { error = OFPERR_OFPBRC_BAD_TABLE_ID; goto error; } error = ofmonitor_create(&request, ofconn, &m); if (error) { goto error; } if (n_monitors >= allocated_monitors) { monitors = x2nrealloc(monitors, &allocated_monitors, sizeof *monitors); } monitors[n_monitors++] = m; } struct rule_collection rules; rule_collection_init(&rules); for (size_t i = 0; i < n_monitors; i++) { ofproto_collect_ofmonitor_initial_rules(monitors[i], &rules); } struct ovs_list replies; ofpmp_init(&replies, oh); ofmonitor_compose_refresh_updates(&rules, &replies); ovs_mutex_unlock(&ofproto_mutex); rule_collection_destroy(&rules); ofconn_send_replies(ofconn, &replies); free(monitors); return 0; error: for (size_t i = 0; i < n_monitors; i++) { ofmonitor_destroy(monitors[i]); } free(monitors); ovs_mutex_unlock(&ofproto_mutex); return error; } static enum ofperr handle_flow_monitor_cancel(struct ofconn *ofconn, const struct ofp_header *oh) OVS_EXCLUDED(ofproto_mutex) { enum ofperr error; uint32_t id; id = ofputil_decode_flow_monitor_cancel(oh); ovs_mutex_lock(&ofproto_mutex); error = flow_monitor_delete(ofconn, id); ovs_mutex_unlock(&ofproto_mutex); return error; } /* Meters implementation. * * Meter table entry, indexed by the OpenFlow meter_id. * 'created' is used to compute the duration for meter stats. * 'list rules' is needed so that we can delete the dependent rules when the * meter table entry is deleted. * 'provider_meter_id' is for the provider's private use. */ struct meter { long long int created; /* Time created. */ struct ovs_list rules; /* List of "struct rule_dpif"s. */ ofproto_meter_id provider_meter_id; uint16_t flags; /* Meter flags. */ uint16_t n_bands; /* Number of meter bands. */ struct ofputil_meter_band *bands; }; /* * This is used in instruction validation at flow set-up time, * as flows may not use non-existing meters. * Return value of UINT32_MAX signifies an invalid meter. */ static uint32_t get_provider_meter_id(const struct ofproto *ofproto, uint32_t of_meter_id) { if (of_meter_id && of_meter_id <= ofproto->meter_features.max_meters) { const struct meter *meter = ofproto->meters[of_meter_id]; if (meter) { return meter->provider_meter_id.uint32; } } return UINT32_MAX; } /* Finds the meter invoked by 'rule''s actions and adds 'rule' to the meter's * list of rules. */ static void meter_insert_rule(struct rule *rule) { const struct rule_actions *a = rule_get_actions(rule); uint32_t meter_id = ofpacts_get_meter(a->ofpacts, a->ofpacts_len); struct meter *meter = rule->ofproto->meters[meter_id]; ovs_list_insert(&meter->rules, &rule->meter_list_node); } static void meter_update(struct meter *meter, const struct ofputil_meter_config *config) { free(meter->bands); meter->flags = config->flags; meter->n_bands = config->n_bands; meter->bands = xmemdup(config->bands, config->n_bands * sizeof *meter->bands); } static struct meter * meter_create(const struct ofputil_meter_config *config, ofproto_meter_id provider_meter_id) { struct meter *meter; meter = xzalloc(sizeof *meter); meter->provider_meter_id = provider_meter_id; meter->created = time_msec(); ovs_list_init(&meter->rules); meter_update(meter, config); return meter; } static void meter_delete(struct ofproto *ofproto, uint32_t first, uint32_t last) OVS_REQUIRES(ofproto_mutex) { uint32_t mid; for (mid = first; mid <= last; ++mid) { struct meter *meter = ofproto->meters[mid]; if (meter) { ofproto->meters[mid] = NULL; ofproto->ofproto_class->meter_del(ofproto, meter->provider_meter_id); free(meter->bands); free(meter); } } } static enum ofperr handle_add_meter(struct ofproto *ofproto, struct ofputil_meter_mod *mm) { ofproto_meter_id provider_meter_id = { UINT32_MAX }; struct meter **meterp = &ofproto->meters[mm->meter.meter_id]; enum ofperr error; if (*meterp) { return OFPERR_OFPMMFC_METER_EXISTS; } error = ofproto->ofproto_class->meter_set(ofproto, &provider_meter_id, &mm->meter); if (!error) { ovs_assert(provider_meter_id.uint32 != UINT32_MAX); *meterp = meter_create(&mm->meter, provider_meter_id); } return error; } static enum ofperr handle_modify_meter(struct ofproto *ofproto, struct ofputil_meter_mod *mm) { struct meter *meter = ofproto->meters[mm->meter.meter_id]; enum ofperr error; uint32_t provider_meter_id; if (!meter) { return OFPERR_OFPMMFC_UNKNOWN_METER; } provider_meter_id = meter->provider_meter_id.uint32; error = ofproto->ofproto_class->meter_set(ofproto, &meter->provider_meter_id, &mm->meter); ovs_assert(meter->provider_meter_id.uint32 == provider_meter_id); if (!error) { meter_update(meter, &mm->meter); } return error; } static enum ofperr handle_delete_meter(struct ofconn *ofconn, struct ofputil_meter_mod *mm) OVS_EXCLUDED(ofproto_mutex) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); uint32_t meter_id = mm->meter.meter_id; struct rule_collection rules; enum ofperr error = 0; uint32_t first, last; if (meter_id == OFPM13_ALL) { first = 1; last = ofproto->meter_features.max_meters; } else { if (!meter_id || meter_id > ofproto->meter_features.max_meters) { return 0; } first = last = meter_id; } /* First delete the rules that use this meter. If any of those rules are * currently being modified, postpone the whole operation until later. */ rule_collection_init(&rules); ovs_mutex_lock(&ofproto_mutex); for (meter_id = first; meter_id <= last; ++meter_id) { struct meter *meter = ofproto->meters[meter_id]; if (meter && !ovs_list_is_empty(&meter->rules)) { struct rule *rule; LIST_FOR_EACH (rule, meter_list_node, &meter->rules) { rule_collection_add(&rules, rule); } } } delete_flows__(&rules, OFPRR_METER_DELETE, NULL); /* Delete the meters. */ meter_delete(ofproto, first, last); ovs_mutex_unlock(&ofproto_mutex); return error; } static enum ofperr handle_meter_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_meter_mod mm; uint64_t bands_stub[256 / 8]; struct ofpbuf bands; uint32_t meter_id; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } ofpbuf_use_stub(&bands, bands_stub, sizeof bands_stub); error = ofputil_decode_meter_mod(oh, &mm, &bands); if (error) { goto exit_free_bands; } meter_id = mm.meter.meter_id; if (mm.command != OFPMC13_DELETE) { /* Fails also when meters are not implemented by the provider. */ if (meter_id == 0 || meter_id > OFPM13_MAX) { error = OFPERR_OFPMMFC_INVALID_METER; goto exit_free_bands; } else if (meter_id > ofproto->meter_features.max_meters) { error = OFPERR_OFPMMFC_OUT_OF_METERS; goto exit_free_bands; } if (mm.meter.n_bands > ofproto->meter_features.max_bands) { error = OFPERR_OFPMMFC_OUT_OF_BANDS; goto exit_free_bands; } } switch (mm.command) { case OFPMC13_ADD: error = handle_add_meter(ofproto, &mm); break; case OFPMC13_MODIFY: error = handle_modify_meter(ofproto, &mm); break; case OFPMC13_DELETE: error = handle_delete_meter(ofconn, &mm); break; default: error = OFPERR_OFPMMFC_BAD_COMMAND; break; } if (!error) { struct ofputil_requestforward rf; rf.xid = oh->xid; rf.reason = OFPRFR_METER_MOD; rf.meter_mod = &mm; connmgr_send_requestforward(ofproto->connmgr, ofconn, &rf); } exit_free_bands: ofpbuf_uninit(&bands); return error; } static enum ofperr handle_meter_features_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_meter_features features; struct ofpbuf *b; if (ofproto->ofproto_class->meter_get_features) { ofproto->ofproto_class->meter_get_features(ofproto, &features); } else { memset(&features, 0, sizeof features); } b = ofputil_encode_meter_features_reply(&features, request); ofconn_send_reply(ofconn, b); return 0; } static enum ofperr handle_meter_request(struct ofconn *ofconn, const struct ofp_header *request, enum ofptype type) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ovs_list replies; uint64_t bands_stub[256 / 8]; struct ofpbuf bands; uint32_t meter_id, first, last; ofputil_decode_meter_request(request, &meter_id); if (meter_id == OFPM13_ALL) { first = 1; last = ofproto->meter_features.max_meters; } else { if (!meter_id || meter_id > ofproto->meter_features.max_meters || !ofproto->meters[meter_id]) { return OFPERR_OFPMMFC_UNKNOWN_METER; } first = last = meter_id; } ofpbuf_use_stub(&bands, bands_stub, sizeof bands_stub); ofpmp_init(&replies, request); for (meter_id = first; meter_id <= last; ++meter_id) { struct meter *meter = ofproto->meters[meter_id]; if (!meter) { continue; /* Skip non-existing meters. */ } if (type == OFPTYPE_METER_STATS_REQUEST) { struct ofputil_meter_stats stats; stats.meter_id = meter_id; /* Provider sets the packet and byte counts, we do the rest. */ stats.flow_count = ovs_list_size(&meter->rules); calc_duration(meter->created, time_msec(), &stats.duration_sec, &stats.duration_nsec); stats.n_bands = meter->n_bands; ofpbuf_clear(&bands); stats.bands = ofpbuf_put_uninit(&bands, meter->n_bands * sizeof *stats.bands); if (!ofproto->ofproto_class->meter_get(ofproto, meter->provider_meter_id, &stats)) { ofputil_append_meter_stats(&replies, &stats); } } else { /* type == OFPTYPE_METER_CONFIG_REQUEST */ struct ofputil_meter_config config; config.meter_id = meter_id; config.flags = meter->flags; config.n_bands = meter->n_bands; config.bands = meter->bands; ofputil_append_meter_config(&replies, &config); } } ofconn_send_replies(ofconn, &replies); ofpbuf_uninit(&bands); return 0; } static bool ofproto_group_lookup__(const struct ofproto *ofproto, uint32_t group_id, struct ofgroup **group) OVS_REQ_RDLOCK(ofproto->groups_rwlock) { HMAP_FOR_EACH_IN_BUCKET (*group, hmap_node, hash_int(group_id, 0), &ofproto->groups) { if ((*group)->group_id == group_id) { return true; } } return false; } /* If the group exists, this function increments the groups's reference count. * * Make sure to call ofproto_group_unref() after no longer needing to maintain * a reference to the group. */ bool ofproto_group_lookup(const struct ofproto *ofproto, uint32_t group_id, struct ofgroup **group) { bool found; ovs_rwlock_rdlock(&ofproto->groups_rwlock); found = ofproto_group_lookup__(ofproto, group_id, group); if (found) { ofproto_group_ref(*group); } ovs_rwlock_unlock(&ofproto->groups_rwlock); return found; } static bool ofproto_group_exists__(const struct ofproto *ofproto, uint32_t group_id) OVS_REQ_RDLOCK(ofproto->groups_rwlock) { struct ofgroup *grp; HMAP_FOR_EACH_IN_BUCKET (grp, hmap_node, hash_int(group_id, 0), &ofproto->groups) { if (grp->group_id == group_id) { return true; } } return false; } static bool ofproto_group_exists(const struct ofproto *ofproto, uint32_t group_id) OVS_EXCLUDED(ofproto->groups_rwlock) { bool exists; ovs_rwlock_rdlock(&ofproto->groups_rwlock); exists = ofproto_group_exists__(ofproto, group_id); ovs_rwlock_unlock(&ofproto->groups_rwlock); return exists; } static uint32_t group_get_ref_count(struct ofgroup *group) OVS_EXCLUDED(ofproto_mutex) { struct ofproto *ofproto = CONST_CAST(struct ofproto *, group->ofproto); struct rule_criteria criteria; struct rule_collection rules; struct match match; enum ofperr error; uint32_t count; match_init_catchall(&match); rule_criteria_init(&criteria, 0xff, &match, 0, CLS_MAX_VERSION, htonll(0), htonll(0), OFPP_ANY, group->group_id); ovs_mutex_lock(&ofproto_mutex); error = collect_rules_loose(ofproto, &criteria, &rules); ovs_mutex_unlock(&ofproto_mutex); rule_criteria_destroy(&criteria); count = !error && rules.n < UINT32_MAX ? rules.n : UINT32_MAX; rule_collection_destroy(&rules); return count; } static void append_group_stats(struct ofgroup *group, struct ovs_list *replies) { struct ofputil_group_stats ogs; const struct ofproto *ofproto = group->ofproto; long long int now = time_msec(); int error; ogs.bucket_stats = xmalloc(group->n_buckets * sizeof *ogs.bucket_stats); /* Provider sets the packet and byte counts, we do the rest. */ ogs.ref_count = group_get_ref_count(group); ogs.n_buckets = group->n_buckets; error = (ofproto->ofproto_class->group_get_stats ? ofproto->ofproto_class->group_get_stats(group, &ogs) : EOPNOTSUPP); if (error) { ogs.packet_count = UINT64_MAX; ogs.byte_count = UINT64_MAX; memset(ogs.bucket_stats, 0xff, ogs.n_buckets * sizeof *ogs.bucket_stats); } ogs.group_id = group->group_id; calc_duration(group->created, now, &ogs.duration_sec, &ogs.duration_nsec); ofputil_append_group_stats(replies, &ogs); free(ogs.bucket_stats); } static void handle_group_request(struct ofconn *ofconn, const struct ofp_header *request, uint32_t group_id, void (*cb)(struct ofgroup *, struct ovs_list *replies)) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofgroup *group; struct ovs_list replies; ofpmp_init(&replies, request); if (group_id == OFPG_ALL) { ovs_rwlock_rdlock(&ofproto->groups_rwlock); HMAP_FOR_EACH (group, hmap_node, &ofproto->groups) { cb(group, &replies); } ovs_rwlock_unlock(&ofproto->groups_rwlock); } else { if (ofproto_group_lookup(ofproto, group_id, &group)) { cb(group, &replies); ofproto_group_unref(group); } } ofconn_send_replies(ofconn, &replies); } static enum ofperr handle_group_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { uint32_t group_id; enum ofperr error; error = ofputil_decode_group_stats_request(request, &group_id); if (error) { return error; } handle_group_request(ofconn, request, group_id, append_group_stats); return 0; } static void append_group_desc(struct ofgroup *group, struct ovs_list *replies) { struct ofputil_group_desc gds; gds.group_id = group->group_id; gds.type = group->type; gds.props = group->props; ofputil_append_group_desc_reply(&gds, &group->buckets, replies); } static enum ofperr handle_group_desc_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { handle_group_request(ofconn, request, ofputil_decode_group_desc_request(request), append_group_desc); return 0; } static enum ofperr handle_group_features_stats_request(struct ofconn *ofconn, const struct ofp_header *request) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofpbuf *msg; msg = ofputil_encode_group_features_reply(&p->ogf, request); if (msg) { ofconn_send_reply(ofconn, msg); } return 0; } static void put_queue_get_config_reply(struct ofport *port, uint32_t queue, struct ovs_list *replies) { struct ofputil_queue_config qc; /* None of the existing queues have compatible properties, so we hard-code * omitting min_rate and max_rate. */ qc.port = port->ofp_port; qc.queue = queue; qc.min_rate = UINT16_MAX; qc.max_rate = UINT16_MAX; ofputil_append_queue_get_config_reply(&qc, replies); } static int handle_queue_get_config_request_for_port(struct ofport *port, uint32_t queue, struct ovs_list *replies) { struct smap details = SMAP_INITIALIZER(&details); if (queue != OFPQ_ALL) { int error = netdev_get_queue(port->netdev, queue, &details); switch (error) { case 0: put_queue_get_config_reply(port, queue, replies); break; case EOPNOTSUPP: case EINVAL: return OFPERR_OFPQOFC_BAD_QUEUE; default: return OFPERR_NXQOFC_QUEUE_ERROR; } } else { struct netdev_queue_dump queue_dump; uint32_t queue_id; NETDEV_QUEUE_FOR_EACH (&queue_id, &details, &queue_dump, port->netdev) { put_queue_get_config_reply(port, queue_id, replies); } } smap_destroy(&details); return 0; } static enum ofperr handle_queue_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ovs_list replies; struct ofport *port; ofp_port_t req_port; uint32_t req_queue; enum ofperr error; error = ofputil_decode_queue_get_config_request(oh, &req_port, &req_queue); if (error) { return error; } ofputil_start_queue_get_config_reply(oh, &replies); if (req_port == OFPP_ANY) { error = OFPERR_OFPQOFC_BAD_QUEUE; HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { if (!handle_queue_get_config_request_for_port(port, req_queue, &replies)) { error = 0; } } } else { port = ofproto_get_port(ofproto, req_port); error = (port ? handle_queue_get_config_request_for_port(port, req_queue, &replies) : OFPERR_OFPQOFC_BAD_PORT); } if (!error) { ofconn_send_replies(ofconn, &replies); } else { ofpbuf_list_delete(&replies); } return error; } static enum ofperr init_group(struct ofproto *ofproto, const struct ofputil_group_mod *gm, struct ofgroup **ofgroup) { enum ofperr error; const long long int now = time_msec(); if (gm->group_id > OFPG_MAX) { return OFPERR_OFPGMFC_INVALID_GROUP; } if (gm->type > OFPGT11_FF) { return OFPERR_OFPGMFC_BAD_TYPE; } *ofgroup = ofproto->ofproto_class->group_alloc(); if (!*ofgroup) { VLOG_WARN_RL(&rl, "%s: failed to allocate group", ofproto->name); return OFPERR_OFPGMFC_OUT_OF_GROUPS; } (*ofgroup)->ofproto = ofproto; *CONST_CAST(uint32_t *, &((*ofgroup)->group_id)) = gm->group_id; *CONST_CAST(enum ofp11_group_type *, &(*ofgroup)->type) = gm->type; *CONST_CAST(long long int *, &((*ofgroup)->created)) = now; *CONST_CAST(long long int *, &((*ofgroup)->modified)) = now; ovs_refcount_init(&(*ofgroup)->ref_count); ovs_list_init(&(*ofgroup)->buckets); ofputil_bucket_clone_list(&(*ofgroup)->buckets, &gm->buckets, NULL); *CONST_CAST(uint32_t *, &(*ofgroup)->n_buckets) = ovs_list_size(&(*ofgroup)->buckets); memcpy(CONST_CAST(struct ofputil_group_props *, &(*ofgroup)->props), &gm->props, sizeof (struct ofputil_group_props)); /* Construct called BEFORE any locks are held. */ error = ofproto->ofproto_class->group_construct(*ofgroup); if (error) { ofputil_bucket_list_destroy(&(*ofgroup)->buckets); ofproto->ofproto_class->group_dealloc(*ofgroup); } return error; } /* Implements the OFPGC11_ADD operation specified by 'gm', adding a group to * 'ofproto''s group table. Returns 0 on success or an OpenFlow error code on * failure. */ static enum ofperr add_group(struct ofproto *ofproto, const struct ofputil_group_mod *gm) { struct ofgroup *ofgroup; enum ofperr error; /* Allocate new group and initialize it. */ error = init_group(ofproto, gm, &ofgroup); if (error) { return error; } /* We wrlock as late as possible to minimize the time we jam any other * threads: No visible state changes before acquiring the lock. */ ovs_rwlock_wrlock(&ofproto->groups_rwlock); if (ofproto->n_groups[gm->type] >= ofproto->ogf.max_groups[gm->type]) { error = OFPERR_OFPGMFC_OUT_OF_GROUPS; goto unlock_out; } if (ofproto_group_exists__(ofproto, gm->group_id)) { error = OFPERR_OFPGMFC_GROUP_EXISTS; goto unlock_out; } if (!error) { /* Insert new group. */ hmap_insert(&ofproto->groups, &ofgroup->hmap_node, hash_int(ofgroup->group_id, 0)); ofproto->n_groups[ofgroup->type]++; ovs_rwlock_unlock(&ofproto->groups_rwlock); return error; } unlock_out: ovs_rwlock_unlock(&ofproto->groups_rwlock); ofproto->ofproto_class->group_destruct(ofgroup); ofputil_bucket_list_destroy(&ofgroup->buckets); ofproto->ofproto_class->group_dealloc(ofgroup); return error; } /* Adds all of the buckets from 'ofgroup' to 'new_ofgroup'. The buckets * already in 'new_ofgroup' will be placed just after the (copy of the) bucket * in 'ofgroup' with bucket ID 'command_bucket_id'. Special * 'command_bucket_id' values OFPG15_BUCKET_FIRST and OFPG15_BUCKET_LAST are * also honored. */ static enum ofperr copy_buckets_for_insert_bucket(const struct ofgroup *ofgroup, struct ofgroup *new_ofgroup, uint32_t command_bucket_id) { struct ofputil_bucket *last = NULL; if (command_bucket_id <= OFPG15_BUCKET_MAX) { /* Check here to ensure that a bucket corresponding to * command_bucket_id exists in the old bucket list. * * The subsequent search of below of new_ofgroup covers * both buckets in the old bucket list and buckets added * by the insert buckets group mod message this function processes. */ if (!ofputil_bucket_find(&ofgroup->buckets, command_bucket_id)) { return OFPERR_OFPGMFC_UNKNOWN_BUCKET; } if (!ovs_list_is_empty(&new_ofgroup->buckets)) { last = ofputil_bucket_list_back(&new_ofgroup->buckets); } } ofputil_bucket_clone_list(&new_ofgroup->buckets, &ofgroup->buckets, NULL); if (ofputil_bucket_check_duplicate_id(&new_ofgroup->buckets)) { VLOG_INFO_RL(&rl, "Duplicate bucket id"); return OFPERR_OFPGMFC_BUCKET_EXISTS; } /* Rearrange list according to command_bucket_id */ if (command_bucket_id == OFPG15_BUCKET_LAST) { if (!ovs_list_is_empty(&ofgroup->buckets)) { struct ofputil_bucket *new_first; const struct ofputil_bucket *first; first = ofputil_bucket_list_front(&ofgroup->buckets); new_first = ofputil_bucket_find(&new_ofgroup->buckets, first->bucket_id); ovs_list_splice(new_ofgroup->buckets.next, &new_first->list_node, &new_ofgroup->buckets); } } else if (command_bucket_id <= OFPG15_BUCKET_MAX && last) { struct ofputil_bucket *after; /* Presence of bucket is checked above so after should never be NULL */ after = ofputil_bucket_find(&new_ofgroup->buckets, command_bucket_id); ovs_list_splice(after->list_node.next, new_ofgroup->buckets.next, last->list_node.next); } return 0; } /* Appends all of the a copy of all the buckets from 'ofgroup' to 'new_ofgroup' * with the exception of the bucket whose bucket id is 'command_bucket_id'. * Special 'command_bucket_id' values OFPG15_BUCKET_FIRST, OFPG15_BUCKET_LAST * and OFPG15_BUCKET_ALL are also honored. */ static enum ofperr copy_buckets_for_remove_bucket(const struct ofgroup *ofgroup, struct ofgroup *new_ofgroup, uint32_t command_bucket_id) { const struct ofputil_bucket *skip = NULL; if (command_bucket_id == OFPG15_BUCKET_ALL) { return 0; } if (command_bucket_id == OFPG15_BUCKET_FIRST) { if (!ovs_list_is_empty(&ofgroup->buckets)) { skip = ofputil_bucket_list_front(&ofgroup->buckets); } } else if (command_bucket_id == OFPG15_BUCKET_LAST) { if (!ovs_list_is_empty(&ofgroup->buckets)) { skip = ofputil_bucket_list_back(&ofgroup->buckets); } } else { skip = ofputil_bucket_find(&ofgroup->buckets, command_bucket_id); if (!skip) { return OFPERR_OFPGMFC_UNKNOWN_BUCKET; } } ofputil_bucket_clone_list(&new_ofgroup->buckets, &ofgroup->buckets, skip); return 0; } /* Implements OFPGC11_MODIFY, OFPGC15_INSERT_BUCKET and * OFPGC15_REMOVE_BUCKET. Returns 0 on success or an OpenFlow error code * on failure. * * Note that the group is re-created and then replaces the old group in * ofproto's ofgroup hash map. Thus, the group is never altered while users of * the xlate module hold a pointer to the group. */ static enum ofperr modify_group(struct ofproto *ofproto, const struct ofputil_group_mod *gm) { struct ofgroup *ofgroup, *new_ofgroup, *retiring; enum ofperr error; error = init_group(ofproto, gm, &new_ofgroup); if (error) { return error; } retiring = new_ofgroup; ovs_rwlock_wrlock(&ofproto->groups_rwlock); if (!ofproto_group_lookup__(ofproto, gm->group_id, &ofgroup)) { error = OFPERR_OFPGMFC_UNKNOWN_GROUP; goto out; } /* Ofproto's group write lock is held now. */ if (ofgroup->type != gm->type && ofproto->n_groups[gm->type] >= ofproto->ogf.max_groups[gm->type]) { error = OFPERR_OFPGMFC_OUT_OF_GROUPS; goto out; } /* Manipulate bucket list for bucket commands */ if (gm->command == OFPGC15_INSERT_BUCKET) { error = copy_buckets_for_insert_bucket(ofgroup, new_ofgroup, gm->command_bucket_id); } else if (gm->command == OFPGC15_REMOVE_BUCKET) { error = copy_buckets_for_remove_bucket(ofgroup, new_ofgroup, gm->command_bucket_id); } if (error) { goto out; } /* The group creation time does not change during modification. */ *CONST_CAST(long long int *, &(new_ofgroup->created)) = ofgroup->created; *CONST_CAST(long long int *, &(new_ofgroup->modified)) = time_msec(); error = ofproto->ofproto_class->group_modify(new_ofgroup); if (error) { goto out; } retiring = ofgroup; /* Replace ofgroup in ofproto's groups hash map with new_ofgroup. */ hmap_remove(&ofproto->groups, &ofgroup->hmap_node); hmap_insert(&ofproto->groups, &new_ofgroup->hmap_node, hash_int(new_ofgroup->group_id, 0)); if (ofgroup->type != new_ofgroup->type) { ofproto->n_groups[ofgroup->type]--; ofproto->n_groups[new_ofgroup->type]++; } out: ofproto_group_unref(retiring); ovs_rwlock_unlock(&ofproto->groups_rwlock); return error; } /* Implements the OFPGC11_ADD_OR_MOD command which creates the group when it does not * exist yet and modifies it otherwise */ static enum ofperr add_or_modify_group(struct ofproto *ofproto, const struct ofputil_group_mod *gm) { struct ofgroup *ofgroup; enum ofperr error; bool exists; ovs_rwlock_rdlock(&ofproto->groups_rwlock); exists = ofproto_group_lookup__(ofproto, gm->group_id, &ofgroup); ovs_rwlock_unlock(&ofproto->groups_rwlock); if (!exists) { error = add_group(ofproto, gm); } else { error = modify_group(ofproto, gm); } return error; } static void delete_group__(struct ofproto *ofproto, struct ofgroup *ofgroup) OVS_RELEASES(ofproto->groups_rwlock) { struct match match; struct ofproto_flow_mod ofm; /* Delete all flow entries containing this group in a group action */ match_init_catchall(&match); flow_mod_init(&ofm.fm, &match, 0, NULL, 0, OFPFC_DELETE); ofm.fm.delete_reason = OFPRR_GROUP_DELETE; ofm.fm.out_group = ofgroup->group_id; ofm.fm.table_id = OFPTT_ALL; handle_flow_mod__(ofproto, &ofm, NULL); hmap_remove(&ofproto->groups, &ofgroup->hmap_node); /* No-one can find this group any more. */ ofproto->n_groups[ofgroup->type]--; ovs_rwlock_unlock(&ofproto->groups_rwlock); ofproto_group_unref(ofgroup); } /* Implements OFPGC11_DELETE. */ static void delete_group(struct ofproto *ofproto, uint32_t group_id) { struct ofgroup *ofgroup; ovs_rwlock_wrlock(&ofproto->groups_rwlock); if (group_id == OFPG_ALL) { for (;;) { struct hmap_node *node = hmap_first(&ofproto->groups); if (!node) { break; } ofgroup = CONTAINER_OF(node, struct ofgroup, hmap_node); delete_group__(ofproto, ofgroup); /* Lock for each node separately, so that we will not jam the * other threads for too long time. */ ovs_rwlock_wrlock(&ofproto->groups_rwlock); } } else { HMAP_FOR_EACH_IN_BUCKET (ofgroup, hmap_node, hash_int(group_id, 0), &ofproto->groups) { if (ofgroup->group_id == group_id) { delete_group__(ofproto, ofgroup); return; } } } ovs_rwlock_unlock(&ofproto->groups_rwlock); } /* Delete all groups from 'ofproto'. * * This is intended for use within an ofproto provider's 'destruct' * function. */ void ofproto_group_delete_all(struct ofproto *ofproto) { delete_group(ofproto, OFPG_ALL); } static enum ofperr handle_group_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_group_mod gm; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_group_mod(oh, &gm); if (error) { return error; } switch (gm.command) { case OFPGC11_ADD: error = add_group(ofproto, &gm); break; case OFPGC11_MODIFY: error = modify_group(ofproto, &gm); break; case OFPGC11_ADD_OR_MOD: error = add_or_modify_group(ofproto, &gm); break; case OFPGC11_DELETE: delete_group(ofproto, gm.group_id); error = 0; break; case OFPGC15_INSERT_BUCKET: error = modify_group(ofproto, &gm); break; case OFPGC15_REMOVE_BUCKET: error = modify_group(ofproto, &gm); break; default: if (gm.command > OFPGC11_DELETE) { VLOG_INFO_RL(&rl, "%s: Invalid group_mod command type %d", ofproto->name, gm.command); } error = OFPERR_OFPGMFC_BAD_COMMAND; } if (!error) { struct ofputil_requestforward rf; rf.xid = oh->xid; rf.reason = OFPRFR_GROUP_MOD; rf.group_mod = &gm; connmgr_send_requestforward(ofproto->connmgr, ofconn, &rf); } ofputil_bucket_list_destroy(&gm.buckets); return error; } enum ofputil_table_miss ofproto_table_get_miss_config(const struct ofproto *ofproto, uint8_t table_id) { enum ofputil_table_miss miss; atomic_read_relaxed(&ofproto->tables[table_id].miss_config, &miss); return miss; } static void table_mod__(struct oftable *oftable, const struct ofputil_table_mod *tm) { if (tm->miss == OFPUTIL_TABLE_MISS_DEFAULT) { /* This is how an OFPT_TABLE_MOD decodes if it doesn't specify any * table-miss configuration (because the protocol used doesn't have * such a concept), so there's nothing to do. */ } else { atomic_store_relaxed(&oftable->miss_config, tm->miss); } unsigned int new_eviction = oftable->eviction; if (tm->eviction == OFPUTIL_TABLE_EVICTION_ON) { new_eviction |= EVICTION_OPENFLOW; } else if (tm->eviction == OFPUTIL_TABLE_EVICTION_OFF) { new_eviction &= ~EVICTION_OPENFLOW; } if (new_eviction != oftable->eviction) { ovs_mutex_lock(&ofproto_mutex); oftable_configure_eviction(oftable, new_eviction, oftable->eviction_fields, oftable->n_eviction_fields); ovs_mutex_unlock(&ofproto_mutex); } if (tm->vacancy != OFPUTIL_TABLE_VACANCY_DEFAULT) { ovs_mutex_lock(&ofproto_mutex); oftable->vacancy_down = tm->table_vacancy.vacancy_down; oftable->vacancy_up = tm->table_vacancy.vacancy_up; if (tm->vacancy == OFPUTIL_TABLE_VACANCY_OFF) { oftable->vacancy_event = 0; } else if (!oftable->vacancy_event) { uint8_t vacancy = oftable_vacancy(oftable); oftable->vacancy_event = (vacancy < oftable->vacancy_up ? OFPTR_VACANCY_UP : OFPTR_VACANCY_DOWN); } ovs_mutex_unlock(&ofproto_mutex); } } static enum ofperr table_mod(struct ofproto *ofproto, const struct ofputil_table_mod *tm) { if (!check_table_id(ofproto, tm->table_id)) { return OFPERR_OFPTMFC_BAD_TABLE; } /* Don't allow the eviction flags to be changed (except to the only fixed * value that OVS supports). OF1.4 says this is normal: "The * OFPTMPT_EVICTION property usually cannot be modified using a * OFP_TABLE_MOD request, because the eviction mechanism is switch * defined". */ if (tm->eviction_flags != UINT32_MAX && tm->eviction_flags != OFPROTO_EVICTION_FLAGS) { return OFPERR_OFPTMFC_BAD_CONFIG; } if (tm->table_id == OFPTT_ALL) { struct oftable *oftable; OFPROTO_FOR_EACH_TABLE (oftable, ofproto) { if (!(oftable->flags & (OFTABLE_HIDDEN | OFTABLE_READONLY))) { table_mod__(oftable, tm); } } } else { struct oftable *oftable = &ofproto->tables[tm->table_id]; if (oftable->flags & OFTABLE_READONLY) { return OFPERR_OFPTMFC_EPERM; } table_mod__(oftable, tm); } return 0; } static enum ofperr handle_table_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_table_mod tm; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_table_mod(oh, &tm); if (error) { return error; } return table_mod(ofproto, &tm); } static enum ofperr ofproto_flow_mod_start(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { switch (ofm->fm.command) { case OFPFC_ADD: return add_flow_start(ofproto, ofm); /* , &be->old_rules.stub[0], &be->new_rules.stub[0]); */ case OFPFC_MODIFY: return modify_flows_start_loose(ofproto, ofm); case OFPFC_MODIFY_STRICT: return modify_flow_start_strict(ofproto, ofm); case OFPFC_DELETE: return delete_flows_start_loose(ofproto, ofm); case OFPFC_DELETE_STRICT: return delete_flow_start_strict(ofproto, ofm); } return OFPERR_OFPFMFC_BAD_COMMAND; } static void ofproto_flow_mod_revert(struct ofproto *ofproto, struct ofproto_flow_mod *ofm) OVS_REQUIRES(ofproto_mutex) { switch (ofm->fm.command) { case OFPFC_ADD: add_flow_revert(ofproto, ofm); break; case OFPFC_MODIFY: case OFPFC_MODIFY_STRICT: modify_flows_revert(ofproto, ofm); break; case OFPFC_DELETE: case OFPFC_DELETE_STRICT: delete_flows_revert(ofproto, ofm); break; default: break; } } static void ofproto_flow_mod_finish(struct ofproto *ofproto, struct ofproto_flow_mod *ofm, const struct flow_mod_requester *req) OVS_REQUIRES(ofproto_mutex) { switch (ofm->fm.command) { case OFPFC_ADD: add_flow_finish(ofproto, ofm, req); break; case OFPFC_MODIFY: case OFPFC_MODIFY_STRICT: modify_flows_finish(ofproto, ofm, req); break; case OFPFC_DELETE: case OFPFC_DELETE_STRICT: delete_flows_finish(ofproto, ofm, req); break; default: break; } } /* Commit phases (all while locking ofproto_mutex): * * 1. Begin: Gather resources and make changes visible in the next version. * - Mark affected rules for removal in the next version. * - Create new replacement rules, make visible in the next * version. * - Do not send any events or notifications. * * 2. Revert: Fail if any errors are found. After this point no errors are * possible. No visible changes were made, so rollback is minimal (remove * added invisible rules, restore visibility of rules marked for removal). * * 3. Finish: Make the changes visible for lookups. Insert replacement rules to * the ofproto provider. Remove replaced and deleted rules from ofproto data * structures, and Schedule postponed removal of deleted rules from the * classifier. Send notifications, buffered packets, etc. */ static enum ofperr do_bundle_commit(struct ofconn *ofconn, uint32_t id, uint16_t flags) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); cls_version_t version = ofproto->tables_version + 1; struct ofp_bundle *bundle; struct ofp_bundle_entry *be; enum ofperr error; bundle = ofconn_get_bundle(ofconn, id); if (!bundle) { return OFPERR_OFPBFC_BAD_ID; } if (bundle->flags != flags) { error = OFPERR_OFPBFC_BAD_FLAGS; } else { bool prev_is_port_mod = false; error = 0; ovs_mutex_lock(&ofproto_mutex); /* 1. Begin. */ LIST_FOR_EACH (be, node, &bundle->msg_list) { if (be->type == OFPTYPE_PORT_MOD) { /* Our port mods are not atomic. */ if (flags & OFPBF_ATOMIC) { error = OFPERR_OFPBFC_MSG_FAILED; } else { prev_is_port_mod = true; error = port_mod_start(ofconn, &be->opm.pm, &be->opm.port); } } else if (be->type == OFPTYPE_FLOW_MOD) { /* Flow mods between port mods are applied as a single * version, but the versions are published only after * we know the commit is successful. */ if (prev_is_port_mod) { ++version; } prev_is_port_mod = false; /* Store the version in which the changes should take * effect. */ be->ofm.version = version; error = ofproto_flow_mod_start(ofproto, &be->ofm); } else { OVS_NOT_REACHED(); } if (error) { break; } } if (error) { /* Send error referring to the original message. */ if (error) { ofconn_send_error(ofconn, be->ofp_msg, error); error = OFPERR_OFPBFC_MSG_FAILED; } /* 2. Revert. Undo all the changes made above. */ LIST_FOR_EACH_REVERSE_CONTINUE(be, node, &bundle->msg_list) { if (be->type == OFPTYPE_FLOW_MOD) { ofproto_flow_mod_revert(ofproto, &be->ofm); } /* Nothing needs to be reverted for a port mod. */ } } else { /* 4. Finish. */ LIST_FOR_EACH (be, node, &bundle->msg_list) { if (be->type == OFPTYPE_FLOW_MOD) { struct flow_mod_requester req = { ofconn, be->ofp_msg }; /* Bump the lookup version to the one of the current * message. This makes all the changes in the bundle at * this version visible to lookups at once. */ if (ofproto->tables_version < be->ofm.version) { ofproto->tables_version = be->ofm.version; ofproto->ofproto_class->set_tables_version( ofproto, ofproto->tables_version); } ofproto_flow_mod_finish(ofproto, &be->ofm, &req); } else if (be->type == OFPTYPE_PORT_MOD) { /* Perform the actual port mod. This is not atomic, i.e., * the effects will be immediately seen by upcall * processing regardless of the lookup version. It should * be noted that port configuration changes can originate * also from OVSDB changes asynchronously to all upcall * processing. */ port_mod_finish(ofconn, &be->opm.pm, be->opm.port); } } } ofmonitor_flush(ofproto->connmgr); ovs_mutex_unlock(&ofproto_mutex); run_rule_executes(ofproto); } /* The bundle is discarded regardless the outcome. */ ofp_bundle_remove__(ofconn, bundle, !error); return error; } static enum ofperr handle_bundle_control(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_bundle_ctrl_msg bctrl; struct ofputil_bundle_ctrl_msg reply; struct ofpbuf *buf; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_bundle_ctrl(oh, &bctrl); if (error) { return error; } reply.flags = 0; reply.bundle_id = bctrl.bundle_id; switch (bctrl.type) { case OFPBCT_OPEN_REQUEST: error = ofp_bundle_open(ofconn, bctrl.bundle_id, bctrl.flags); reply.type = OFPBCT_OPEN_REPLY; break; case OFPBCT_CLOSE_REQUEST: error = ofp_bundle_close(ofconn, bctrl.bundle_id, bctrl.flags); reply.type = OFPBCT_CLOSE_REPLY; break; case OFPBCT_COMMIT_REQUEST: error = do_bundle_commit(ofconn, bctrl.bundle_id, bctrl.flags); reply.type = OFPBCT_COMMIT_REPLY; break; case OFPBCT_DISCARD_REQUEST: error = ofp_bundle_discard(ofconn, bctrl.bundle_id); reply.type = OFPBCT_DISCARD_REPLY; break; case OFPBCT_OPEN_REPLY: case OFPBCT_CLOSE_REPLY: case OFPBCT_COMMIT_REPLY: case OFPBCT_DISCARD_REPLY: return OFPERR_OFPBFC_BAD_TYPE; break; } if (!error) { buf = ofputil_encode_bundle_ctrl_reply(oh, &reply); ofconn_send_reply(ofconn, buf); } return error; } static enum ofperr handle_bundle_add(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); enum ofperr error; struct ofputil_bundle_add_msg badd; struct ofp_bundle_entry *bmsg; enum ofptype type; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_bundle_add(oh, &badd, &type); if (error) { return error; } bmsg = ofp_bundle_entry_alloc(type, badd.msg); if (type == OFPTYPE_PORT_MOD) { error = ofputil_decode_port_mod(badd.msg, &bmsg->opm.pm, false); } else if (type == OFPTYPE_FLOW_MOD) { struct ofpbuf ofpacts; uint64_t ofpacts_stub[1024 / 8]; ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub); error = ofputil_decode_flow_mod(&bmsg->ofm.fm, badd.msg, ofconn_get_protocol(ofconn), &ofpacts, u16_to_ofp(ofproto->max_ports), ofproto->n_tables); /* Move actions to heap. */ bmsg->ofm.fm.ofpacts = ofpbuf_steal_data(&ofpacts); if (!error && bmsg->ofm.fm.ofpacts_len) { error = ofproto_check_ofpacts(ofproto, bmsg->ofm.fm.ofpacts, bmsg->ofm.fm.ofpacts_len); } } else { OVS_NOT_REACHED(); } if (!error) { error = ofp_bundle_add_message(ofconn, badd.bundle_id, badd.flags, bmsg); } if (error) { ofp_bundle_entry_free(bmsg); } return error; } static enum ofperr handle_tlv_table_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_tlv_table_mod ttm; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_tlv_table_mod(oh, &ttm); if (error) { return error; } error = tun_metadata_table_mod(&ttm); ofputil_uninit_tlv_table(&ttm.mappings); return error; } static enum ofperr handle_tlv_table_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_tlv_table_reply ttr; struct ofpbuf *b; tun_metadata_table_request(&ttr); b = ofputil_encode_tlv_table_reply(oh, &ttr); ofputil_uninit_tlv_table(&ttr.mappings); ofconn_send_reply(ofconn, b); return 0; } static enum ofperr handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg) OVS_EXCLUDED(ofproto_mutex) { const struct ofp_header *oh = msg->data; enum ofptype type; enum ofperr error; error = ofptype_decode(&type, oh); if (error) { return error; } if (oh->version >= OFP13_VERSION && ofpmsg_is_stat_request(oh) && ofpmp_more(oh)) { /* We have no buffer implementation for multipart requests. * Report overflow for requests which consists of multiple * messages. */ return OFPERR_OFPBRC_MULTIPART_BUFFER_OVERFLOW; } switch (type) { /* OpenFlow requests. */ case OFPTYPE_ECHO_REQUEST: return handle_echo_request(ofconn, oh); case OFPTYPE_FEATURES_REQUEST: return handle_features_request(ofconn, oh); case OFPTYPE_GET_CONFIG_REQUEST: return handle_get_config_request(ofconn, oh); case OFPTYPE_SET_CONFIG: return handle_set_config(ofconn, oh); case OFPTYPE_PACKET_OUT: return handle_packet_out(ofconn, oh); case OFPTYPE_PORT_MOD: return handle_port_mod(ofconn, oh); case OFPTYPE_FLOW_MOD: return handle_flow_mod(ofconn, oh); case OFPTYPE_GROUP_MOD: return handle_group_mod(ofconn, oh); case OFPTYPE_TABLE_MOD: return handle_table_mod(ofconn, oh); case OFPTYPE_METER_MOD: return handle_meter_mod(ofconn, oh); case OFPTYPE_BARRIER_REQUEST: return handle_barrier_request(ofconn, oh); case OFPTYPE_ROLE_REQUEST: return handle_role_request(ofconn, oh); /* OpenFlow replies. */ case OFPTYPE_ECHO_REPLY: return 0; /* Nicira extension requests. */ case OFPTYPE_FLOW_MOD_TABLE_ID: return handle_nxt_flow_mod_table_id(ofconn, oh); case OFPTYPE_SET_FLOW_FORMAT: return handle_nxt_set_flow_format(ofconn, oh); case OFPTYPE_SET_PACKET_IN_FORMAT: return handle_nxt_set_packet_in_format(ofconn, oh); case OFPTYPE_SET_CONTROLLER_ID: return handle_nxt_set_controller_id(ofconn, oh); case OFPTYPE_FLOW_AGE: /* Nothing to do. */ return 0; case OFPTYPE_FLOW_MONITOR_CANCEL: return handle_flow_monitor_cancel(ofconn, oh); case OFPTYPE_SET_ASYNC_CONFIG: return handle_nxt_set_async_config(ofconn, oh); case OFPTYPE_GET_ASYNC_REQUEST: return handle_nxt_get_async_request(ofconn, oh); case OFPTYPE_NXT_RESUME: return handle_nxt_resume(ofconn, oh); /* Statistics requests. */ case OFPTYPE_DESC_STATS_REQUEST: return handle_desc_stats_request(ofconn, oh); case OFPTYPE_FLOW_STATS_REQUEST: return handle_flow_stats_request(ofconn, oh); case OFPTYPE_AGGREGATE_STATS_REQUEST: return handle_aggregate_stats_request(ofconn, oh); case OFPTYPE_TABLE_STATS_REQUEST: return handle_table_stats_request(ofconn, oh); case OFPTYPE_TABLE_FEATURES_STATS_REQUEST: return handle_table_features_request(ofconn, oh); case OFPTYPE_TABLE_DESC_REQUEST: return handle_table_desc_request(ofconn, oh); case OFPTYPE_PORT_STATS_REQUEST: return handle_port_stats_request(ofconn, oh); case OFPTYPE_QUEUE_STATS_REQUEST: return handle_queue_stats_request(ofconn, oh); case OFPTYPE_PORT_DESC_STATS_REQUEST: return handle_port_desc_stats_request(ofconn, oh); case OFPTYPE_FLOW_MONITOR_STATS_REQUEST: return handle_flow_monitor_request(ofconn, oh); case OFPTYPE_METER_STATS_REQUEST: case OFPTYPE_METER_CONFIG_STATS_REQUEST: return handle_meter_request(ofconn, oh, type); case OFPTYPE_METER_FEATURES_STATS_REQUEST: return handle_meter_features_request(ofconn, oh); case OFPTYPE_GROUP_STATS_REQUEST: return handle_group_stats_request(ofconn, oh); case OFPTYPE_GROUP_DESC_STATS_REQUEST: return handle_group_desc_stats_request(ofconn, oh); case OFPTYPE_GROUP_FEATURES_STATS_REQUEST: return handle_group_features_stats_request(ofconn, oh); case OFPTYPE_QUEUE_GET_CONFIG_REQUEST: return handle_queue_get_config_request(ofconn, oh); case OFPTYPE_BUNDLE_CONTROL: return handle_bundle_control(ofconn, oh); case OFPTYPE_BUNDLE_ADD_MESSAGE: return handle_bundle_add(ofconn, oh); case OFPTYPE_NXT_TLV_TABLE_MOD: return handle_tlv_table_mod(ofconn, oh); case OFPTYPE_NXT_TLV_TABLE_REQUEST: return handle_tlv_table_request(ofconn, oh); case OFPTYPE_IPFIX_BRIDGE_STATS_REQUEST: return handle_ipfix_bridge_stats_request(ofconn, oh); case OFPTYPE_IPFIX_FLOW_STATS_REQUEST: return handle_ipfix_flow_stats_request(ofconn, oh); case OFPTYPE_HELLO: case OFPTYPE_ERROR: case OFPTYPE_FEATURES_REPLY: case OFPTYPE_GET_CONFIG_REPLY: case OFPTYPE_PACKET_IN: case OFPTYPE_FLOW_REMOVED: case OFPTYPE_PORT_STATUS: case OFPTYPE_BARRIER_REPLY: case OFPTYPE_QUEUE_GET_CONFIG_REPLY: case OFPTYPE_DESC_STATS_REPLY: case OFPTYPE_FLOW_STATS_REPLY: case OFPTYPE_QUEUE_STATS_REPLY: case OFPTYPE_PORT_STATS_REPLY: case OFPTYPE_TABLE_STATS_REPLY: case OFPTYPE_AGGREGATE_STATS_REPLY: case OFPTYPE_PORT_DESC_STATS_REPLY: case OFPTYPE_ROLE_REPLY: case OFPTYPE_FLOW_MONITOR_PAUSED: case OFPTYPE_FLOW_MONITOR_RESUMED: case OFPTYPE_FLOW_MONITOR_STATS_REPLY: case OFPTYPE_GET_ASYNC_REPLY: case OFPTYPE_GROUP_STATS_REPLY: case OFPTYPE_GROUP_DESC_STATS_REPLY: case OFPTYPE_GROUP_FEATURES_STATS_REPLY: case OFPTYPE_METER_STATS_REPLY: case OFPTYPE_METER_CONFIG_STATS_REPLY: case OFPTYPE_METER_FEATURES_STATS_REPLY: case OFPTYPE_TABLE_FEATURES_STATS_REPLY: case OFPTYPE_TABLE_DESC_REPLY: case OFPTYPE_ROLE_STATUS: case OFPTYPE_REQUESTFORWARD: case OFPTYPE_TABLE_STATUS: case OFPTYPE_NXT_TLV_TABLE_REPLY: case OFPTYPE_IPFIX_BRIDGE_STATS_REPLY: case OFPTYPE_IPFIX_FLOW_STATS_REPLY: default: if (ofpmsg_is_stat_request(oh)) { return OFPERR_OFPBRC_BAD_STAT; } else { return OFPERR_OFPBRC_BAD_TYPE; } } } static void handle_openflow(struct ofconn *ofconn, const struct ofpbuf *ofp_msg) OVS_EXCLUDED(ofproto_mutex) { enum ofperr error = handle_openflow__(ofconn, ofp_msg); if (error) { ofconn_send_error(ofconn, ofp_msg->data, error); } COVERAGE_INC(ofproto_recv_openflow); } /* Asynchronous operations. */ static void send_buffered_packet(const struct flow_mod_requester *req, uint32_t buffer_id, struct rule *rule) OVS_REQUIRES(ofproto_mutex) { if (req && req->ofconn && buffer_id != UINT32_MAX) { struct ofproto *ofproto = ofconn_get_ofproto(req->ofconn); struct dp_packet *packet; ofp_port_t in_port; enum ofperr error; error = ofconn_pktbuf_retrieve(req->ofconn, buffer_id, &packet, &in_port); if (packet) { struct rule_execute *re; ofproto_rule_ref(rule); re = xmalloc(sizeof *re); re->rule = rule; re->in_port = in_port; re->packet = packet; if (!guarded_list_push_back(&ofproto->rule_executes, &re->list_node, 1024)) { ofproto_rule_unref(rule); dp_packet_delete(re->packet); free(re); } } else { ofconn_send_error(req->ofconn, req->request, error); } } } static uint64_t pick_datapath_id(const struct ofproto *ofproto) { const struct ofport *port; port = ofproto_get_port(ofproto, OFPP_LOCAL); if (port) { struct eth_addr ea; int error; error = netdev_get_etheraddr(port->netdev, &ea); if (!error) { return eth_addr_to_uint64(ea); } VLOG_WARN("%s: could not get MAC address for %s (%s)", ofproto->name, netdev_get_name(port->netdev), ovs_strerror(error)); } return ofproto->fallback_dpid; } static uint64_t pick_fallback_dpid(void) { struct eth_addr ea; eth_addr_nicira_random(&ea); return eth_addr_to_uint64(ea); } /* Table overflow policy. */ /* Chooses and updates 'rulep' with a rule to evict from 'table'. Sets 'rulep' * to NULL if the table is not configured to evict rules or if the table * contains no evictable rules. (Rules with a readlock on their evict rwlock, * or with no timeouts are not evictable.) */ static bool choose_rule_to_evict(struct oftable *table, struct rule **rulep) OVS_REQUIRES(ofproto_mutex) { struct eviction_group *evg; *rulep = NULL; if (!table->eviction) { return false; } /* In the common case, the outer and inner loops here will each be entered * exactly once: * * - The inner loop normally "return"s in its first iteration. If the * eviction group has any evictable rules, then it always returns in * some iteration. * * - The outer loop only iterates more than once if the largest eviction * group has no evictable rules. * * - The outer loop can exit only if table's 'max_flows' is all filled up * by unevictable rules. */ HEAP_FOR_EACH (evg, size_node, &table->eviction_groups_by_size) { struct rule *rule; HEAP_FOR_EACH (rule, evg_node, &evg->rules) { *rulep = rule; return true; } } return false; } /* Eviction groups. */ /* Returns the priority to use for an eviction_group that contains 'n_rules' * rules. The priority contains low-order random bits to ensure that eviction * groups with the same number of rules are prioritized randomly. */ static uint32_t eviction_group_priority(size_t n_rules) { uint16_t size = MIN(UINT16_MAX, n_rules); return (size << 16) | random_uint16(); } /* Updates 'evg', an eviction_group within 'table', following a change that * adds or removes rules in 'evg'. */ static void eviction_group_resized(struct oftable *table, struct eviction_group *evg) OVS_REQUIRES(ofproto_mutex) { heap_change(&table->eviction_groups_by_size, &evg->size_node, eviction_group_priority(heap_count(&evg->rules))); } /* Destroys 'evg', an eviction_group within 'table': * * - Removes all the rules, if any, from 'evg'. (It doesn't destroy the * rules themselves, just removes them from the eviction group.) * * - Removes 'evg' from 'table'. * * - Frees 'evg'. */ static void eviction_group_destroy(struct oftable *table, struct eviction_group *evg) OVS_REQUIRES(ofproto_mutex) { while (!heap_is_empty(&evg->rules)) { struct rule *rule; rule = CONTAINER_OF(heap_pop(&evg->rules), struct rule, evg_node); rule->eviction_group = NULL; } hmap_remove(&table->eviction_groups_by_id, &evg->id_node); heap_remove(&table->eviction_groups_by_size, &evg->size_node); heap_destroy(&evg->rules); free(evg); } /* Removes 'rule' from its eviction group, if any. */ static void eviction_group_remove_rule(struct rule *rule) OVS_REQUIRES(ofproto_mutex) { if (rule->eviction_group) { struct oftable *table = &rule->ofproto->tables[rule->table_id]; struct eviction_group *evg = rule->eviction_group; rule->eviction_group = NULL; heap_remove(&evg->rules, &rule->evg_node); if (heap_is_empty(&evg->rules)) { eviction_group_destroy(table, evg); } else { eviction_group_resized(table, evg); } } } /* Hashes the 'rule''s values for the eviction_fields of 'rule''s table, and * returns the hash value. */ static uint32_t eviction_group_hash_rule(struct rule *rule) OVS_REQUIRES(ofproto_mutex) { struct oftable *table = &rule->ofproto->tables[rule->table_id]; const struct mf_subfield *sf; struct flow flow; uint32_t hash; hash = table->eviction_group_id_basis; miniflow_expand(rule->cr.match.flow, &flow); for (sf = table->eviction_fields; sf < &table->eviction_fields[table->n_eviction_fields]; sf++) { if (mf_are_prereqs_ok(sf->field, &flow)) { union mf_value value; mf_get_value(sf->field, &flow, &value); if (sf->ofs) { bitwise_zero(&value, sf->field->n_bytes, 0, sf->ofs); } if (sf->ofs + sf->n_bits < sf->field->n_bytes * 8) { unsigned int start = sf->ofs + sf->n_bits; bitwise_zero(&value, sf->field->n_bytes, start, sf->field->n_bytes * 8 - start); } hash = hash_bytes(&value, sf->field->n_bytes, hash); } else { hash = hash_int(hash, 0); } } return hash; } /* Returns an eviction group within 'table' with the given 'id', creating one * if necessary. */ static struct eviction_group * eviction_group_find(struct oftable *table, uint32_t id) OVS_REQUIRES(ofproto_mutex) { struct eviction_group *evg; HMAP_FOR_EACH_WITH_HASH (evg, id_node, id, &table->eviction_groups_by_id) { return evg; } evg = xmalloc(sizeof *evg); hmap_insert(&table->eviction_groups_by_id, &evg->id_node, id); heap_insert(&table->eviction_groups_by_size, &evg->size_node, eviction_group_priority(0)); heap_init(&evg->rules); return evg; } /* Returns an eviction priority for 'rule'. The return value should be * interpreted so that higher priorities make a rule a more attractive * candidate for eviction. */ static uint64_t rule_eviction_priority(struct ofproto *ofproto, struct rule *rule) OVS_REQUIRES(ofproto_mutex) { /* Calculate absolute time when this flow will expire. If it will never * expire, then return 0 to make it unevictable. */ long long int expiration = LLONG_MAX; if (rule->hard_timeout) { /* 'modified' needs protection even when we hold 'ofproto_mutex'. */ ovs_mutex_lock(&rule->mutex); long long int modified = rule->modified; ovs_mutex_unlock(&rule->mutex); expiration = modified + rule->hard_timeout * 1000; } if (rule->idle_timeout) { uint64_t packets, bytes; long long int used; long long int idle_expiration; ofproto->ofproto_class->rule_get_stats(rule, &packets, &bytes, &used); idle_expiration = used + rule->idle_timeout * 1000; expiration = MIN(expiration, idle_expiration); } if (expiration == LLONG_MAX) { return 0; } /* Calculate the time of expiration as a number of (approximate) seconds * after program startup. * * This should work OK for program runs that last UINT32_MAX seconds or * less. Therefore, please restart OVS at least once every 136 years. */ uint32_t expiration_ofs = (expiration >> 10) - (time_boot_msec() >> 10); /* Combine expiration time with OpenFlow "importance" to form a single * priority value. We want flows with relatively low "importance" to be * evicted before even considering expiration time, so put "importance" in * the most significant bits and expiration time in the least significant * bits. * * Small 'priority' should be evicted before those with large 'priority'. * The caller expects the opposite convention (a large return value being * more attractive for eviction) so we invert it before returning. */ uint64_t priority = ((uint64_t) rule->importance << 32) + expiration_ofs; return UINT64_MAX - priority; } /* Adds 'rule' to an appropriate eviction group for its oftable's * configuration. Does nothing if 'rule''s oftable doesn't have eviction * enabled, or if 'rule' is a permanent rule (one that will never expire on its * own). * * The caller must ensure that 'rule' is not already in an eviction group. */ static void eviction_group_add_rule(struct rule *rule) OVS_REQUIRES(ofproto_mutex) { struct ofproto *ofproto = rule->ofproto; struct oftable *table = &ofproto->tables[rule->table_id]; bool has_timeout; /* Timeouts may be modified only when holding 'ofproto_mutex'. We have it * so no additional protection is needed. */ has_timeout = rule->hard_timeout || rule->idle_timeout; if (table->eviction && has_timeout) { struct eviction_group *evg; evg = eviction_group_find(table, eviction_group_hash_rule(rule)); rule->eviction_group = evg; heap_insert(&evg->rules, &rule->evg_node, rule_eviction_priority(ofproto, rule)); eviction_group_resized(table, evg); } } /* oftables. */ /* Initializes 'table'. */ static void oftable_init(struct oftable *table) { memset(table, 0, sizeof *table); classifier_init(&table->cls, flow_segment_u64s); table->max_flows = UINT_MAX; table->n_flows = 0; hmap_init(&table->eviction_groups_by_id); heap_init(&table->eviction_groups_by_size); atomic_init(&table->miss_config, OFPUTIL_TABLE_MISS_DEFAULT); classifier_set_prefix_fields(&table->cls, default_prefix_fields, ARRAY_SIZE(default_prefix_fields)); atomic_init(&table->n_matched, 0); atomic_init(&table->n_missed, 0); } /* Destroys 'table', including its classifier and eviction groups. * * The caller is responsible for freeing 'table' itself. */ static void oftable_destroy(struct oftable *table) { ovs_assert(classifier_is_empty(&table->cls)); ovs_mutex_lock(&ofproto_mutex); oftable_configure_eviction(table, 0, NULL, 0); ovs_mutex_unlock(&ofproto_mutex); hmap_destroy(&table->eviction_groups_by_id); heap_destroy(&table->eviction_groups_by_size); classifier_destroy(&table->cls); free(table->name); } /* Changes the name of 'table' to 'name'. If 'name' is NULL or the empty * string, then 'table' will use its default name. * * This only affects the name exposed for a table exposed through the OpenFlow * OFPST_TABLE (as printed by "ovs-ofctl dump-tables"). */ static void oftable_set_name(struct oftable *table, const char *name) { if (name && name[0]) { int len = strnlen(name, OFP_MAX_TABLE_NAME_LEN); if (!table->name || strncmp(name, table->name, len)) { free(table->name); table->name = xmemdup0(name, len); } } else { free(table->name); table->name = NULL; } } /* oftables support a choice of two policies when adding a rule would cause the * number of flows in the table to exceed the configured maximum number: either * they can refuse to add the new flow or they can evict some existing flow. * This function configures the latter policy on 'table', with fairness based * on the values of the 'n_fields' fields specified in 'fields'. (Specifying * 'n_fields' as 0 disables fairness.) */ static void oftable_configure_eviction(struct oftable *table, unsigned int eviction, const struct mf_subfield *fields, size_t n_fields) OVS_REQUIRES(ofproto_mutex) { struct rule *rule; if ((table->eviction != 0) == (eviction != 0) && n_fields == table->n_eviction_fields && (!n_fields || !memcmp(fields, table->eviction_fields, n_fields * sizeof *fields))) { /* The set of eviction fields did not change. If 'eviction' changed, * it remains nonzero, so that we can just update table->eviction * without fussing with the eviction groups. */ table->eviction = eviction; return; } /* Destroy existing eviction groups, then destroy and recreate data * structures to recover memory. */ struct eviction_group *evg, *next; HMAP_FOR_EACH_SAFE (evg, next, id_node, &table->eviction_groups_by_id) { eviction_group_destroy(table, evg); } hmap_destroy(&table->eviction_groups_by_id); hmap_init(&table->eviction_groups_by_id); heap_destroy(&table->eviction_groups_by_size); heap_init(&table->eviction_groups_by_size); /* Replace eviction groups by the new ones, if there is a change. Free the * old fields only after allocating the new ones, because 'fields == * table->eviction_fields' is possible. */ struct mf_subfield *old_fields = table->eviction_fields; table->n_eviction_fields = n_fields; table->eviction_fields = (fields ? xmemdup(fields, n_fields * sizeof *fields) : NULL); free(old_fields); /* Add the new eviction groups, if enabled. */ table->eviction = eviction; if (table->eviction) { table->eviction_group_id_basis = random_uint32(); CLS_FOR_EACH (rule, cr, &table->cls) { eviction_group_add_rule(rule); } } } /* Inserts 'rule' from the ofproto data structures BEFORE caller has inserted * it to the classifier. */ static void ofproto_rule_insert__(struct ofproto *ofproto, struct rule *rule) OVS_REQUIRES(ofproto_mutex) { const struct rule_actions *actions = rule_get_actions(rule); ovs_assert(rule->removed); if (rule->hard_timeout || rule->idle_timeout) { ovs_list_insert(&ofproto->expirable, &rule->expirable); } cookies_insert(ofproto, rule); eviction_group_add_rule(rule); if (actions->has_meter) { meter_insert_rule(rule); } rule->removed = false; } /* Removes 'rule' from the ofproto data structures. Caller may have deferred * the removal from the classifier. */ static void ofproto_rule_remove__(struct ofproto *ofproto, struct rule *rule) OVS_REQUIRES(ofproto_mutex) { ovs_assert(!rule->removed); cookies_remove(ofproto, rule); eviction_group_remove_rule(rule); if (!ovs_list_is_empty(&rule->expirable)) { ovs_list_remove(&rule->expirable); } if (!ovs_list_is_empty(&rule->meter_list_node)) { ovs_list_remove(&rule->meter_list_node); ovs_list_init(&rule->meter_list_node); } rule->removed = true; } /* unixctl commands. */ struct ofproto * ofproto_lookup(const char *name) { struct ofproto *ofproto; HMAP_FOR_EACH_WITH_HASH (ofproto, hmap_node, hash_string(name, 0), &all_ofprotos) { if (!strcmp(ofproto->name, name)) { return ofproto; } } return NULL; } static void ofproto_unixctl_list(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ofproto *ofproto; struct ds results; ds_init(&results); HMAP_FOR_EACH (ofproto, hmap_node, &all_ofprotos) { ds_put_format(&results, "%s\n", ofproto->name); } unixctl_command_reply(conn, ds_cstr(&results)); ds_destroy(&results); } static void ofproto_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register("ofproto/list", "", 0, 0, ofproto_unixctl_list, NULL); }