/* * Copyright (c) 2009, 2010, 2011, 2012 Nicira Networks. * Copyright (c) 2010 Jean Tourrilhes - HP-Labs. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ofproto.h" #include #include #include #include #include "bitmap.h" #include "byte-order.h" #include "classifier.h" #include "connmgr.h" #include "coverage.h" #include "dynamic-string.h" #include "hash.h" #include "hmap.h" #include "meta-flow.h" #include "netdev.h" #include "nx-match.h" #include "ofp-errors.h" #include "ofp-print.h" #include "ofp-util.h" #include "ofpbuf.h" #include "ofproto-provider.h" #include "openflow/nicira-ext.h" #include "openflow/openflow.h" #include "packets.h" #include "pinsched.h" #include "pktbuf.h" #include "poll-loop.h" #include "random.h" #include "shash.h" #include "sset.h" #include "timeval.h" #include "unaligned.h" #include "unixctl.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(ofproto); COVERAGE_DEFINE(ofproto_error); COVERAGE_DEFINE(ofproto_flush); COVERAGE_DEFINE(ofproto_no_packet_in); COVERAGE_DEFINE(ofproto_packet_out); COVERAGE_DEFINE(ofproto_queue_req); COVERAGE_DEFINE(ofproto_recv_openflow); COVERAGE_DEFINE(ofproto_reinit_ports); COVERAGE_DEFINE(ofproto_uninstallable); COVERAGE_DEFINE(ofproto_update_port); enum ofproto_state { S_OPENFLOW, /* Processing OpenFlow commands. */ S_EVICT, /* Evicting flows from over-limit tables. */ S_FLUSH, /* Deleting all flow table rules. */ }; enum ofoperation_type { OFOPERATION_ADD, OFOPERATION_DELETE, OFOPERATION_MODIFY }; /* A single OpenFlow request can execute any number of operations. The * ofopgroup maintain OpenFlow state common to all of the operations, e.g. the * ofconn to which an error reply should be sent if necessary. * * ofproto initiates some operations internally. These operations are still * assigned to groups but will not have an associated ofconn. */ struct ofopgroup { struct ofproto *ofproto; /* Owning ofproto. */ struct list ofproto_node; /* In ofproto's "pending" list. */ struct list ops; /* List of "struct ofoperation"s. */ /* Data needed to send OpenFlow reply on failure or to send a buffered * packet on success. * * If list_is_empty(ofconn_node) then this ofopgroup never had an * associated ofconn or its ofconn's connection dropped after it initiated * the operation. In the latter case 'ofconn' is a wild pointer that * refers to freed memory, so the 'ofconn' member must be used only if * !list_is_empty(ofconn_node). */ struct list ofconn_node; /* In ofconn's list of pending opgroups. */ struct ofconn *ofconn; /* ofconn for reply (but see note above). */ struct ofp_header *request; /* Original request (truncated at 64 bytes). */ uint32_t buffer_id; /* Buffer id from original request. */ int error; /* 0 if no error yet, otherwise error code. */ }; static struct ofopgroup *ofopgroup_create_unattached(struct ofproto *); static struct ofopgroup *ofopgroup_create(struct ofproto *, struct ofconn *, const struct ofp_header *, uint32_t buffer_id); static void ofopgroup_submit(struct ofopgroup *); static void ofopgroup_destroy(struct ofopgroup *); /* A single flow table operation. */ struct ofoperation { struct ofopgroup *group; /* Owning group. */ struct list group_node; /* In ofopgroup's "ops" list. */ struct hmap_node hmap_node; /* In ofproto's "deletions" hmap. */ struct rule *rule; /* Rule being operated upon. */ enum ofoperation_type type; /* Type of operation. */ int status; /* -1 if pending, otherwise 0 or error code. */ struct rule *victim; /* OFOPERATION_ADDING: Replaced rule. */ union ofp_action *actions; /* OFOPERATION_MODIFYING: Replaced actions. */ int n_actions; /* OFOPERATION_MODIFYING: # of old actions. */ ovs_be64 flow_cookie; /* Rule's old flow cookie. */ }; static void ofoperation_create(struct ofopgroup *, struct rule *, enum ofoperation_type); static void ofoperation_destroy(struct ofoperation *); /* oftable. */ static void oftable_init(struct oftable *); static void oftable_destroy(struct oftable *); static void oftable_set_name(struct oftable *, const char *name); static void oftable_disable_eviction(struct oftable *); static void oftable_enable_eviction(struct oftable *, const struct mf_subfield *fields, size_t n_fields); static void oftable_remove_rule(struct rule *); static struct rule *oftable_replace_rule(struct rule *); static void oftable_substitute_rule(struct rule *old, struct rule *new); /* A set of rules within a single OpenFlow table (oftable) that have the same * values for the oftable's eviction_fields. A rule to be evicted, when one is * needed, is taken from the eviction group that contains the greatest number * of rules. * * An oftable owns any number of eviction groups, each of which contains any * number of rules. * * Membership in an eviction group is imprecise, based on the hash of the * oftable's eviction_fields (in the eviction_group's id_node.hash member). * That is, if two rules have different eviction_fields, but those * eviction_fields hash to the same value, then they will belong to the same * eviction_group anyway. * * (When eviction is not enabled on an oftable, we don't track any eviction * groups, to save time and space.) */ struct eviction_group { struct hmap_node id_node; /* In oftable's "eviction_groups_by_id". */ struct heap_node size_node; /* In oftable's "eviction_groups_by_size". */ struct heap rules; /* Contains "struct rule"s. */ }; static struct rule *choose_rule_to_evict(struct oftable *); static void ofproto_evict(struct ofproto *); static uint32_t rule_eviction_priority(struct rule *); /* ofport. */ static void ofport_destroy__(struct ofport *); static void ofport_destroy(struct ofport *); static void update_port(struct ofproto *, const char *devname); static int init_ports(struct ofproto *); static void reinit_ports(struct ofproto *); /* rule. */ static void ofproto_rule_destroy__(struct rule *); static void ofproto_rule_send_removed(struct rule *, uint8_t reason); static bool rule_is_modifiable(const struct rule *); static bool rule_is_hidden(const struct rule *); /* OpenFlow. */ static enum ofperr add_flow(struct ofproto *, struct ofconn *, const struct ofputil_flow_mod *, const struct ofp_header *); static void delete_flow__(struct rule *, struct ofopgroup *); static bool handle_openflow(struct ofconn *, struct ofpbuf *); static enum ofperr handle_flow_mod__(struct ofproto *, struct ofconn *, const struct ofputil_flow_mod *, const struct ofp_header *); /* ofproto. */ static uint64_t pick_datapath_id(const struct ofproto *); static uint64_t pick_fallback_dpid(void); static void ofproto_destroy__(struct ofproto *); static void update_mtu(struct ofproto *, struct ofport *); /* unixctl. */ static void ofproto_unixctl_init(void); /* All registered ofproto classes, in probe order. */ static const struct ofproto_class **ofproto_classes; static size_t n_ofproto_classes; static size_t allocated_ofproto_classes; /* Map from datapath name to struct ofproto, for use by unixctl commands. */ static struct hmap all_ofprotos = HMAP_INITIALIZER(&all_ofprotos); static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5); static void ofproto_initialize(void) { static bool inited; if (!inited) { inited = true; ofproto_class_register(&ofproto_dpif_class); } } /* 'type' should be a normalized datapath type, as returned by * ofproto_normalize_type(). Returns the corresponding ofproto_class * structure, or a null pointer if there is none registered for 'type'. */ static const struct ofproto_class * ofproto_class_find__(const char *type) { size_t i; ofproto_initialize(); for (i = 0; i < n_ofproto_classes; i++) { const struct ofproto_class *class = ofproto_classes[i]; struct sset types; bool found; sset_init(&types); class->enumerate_types(&types); found = sset_contains(&types, type); sset_destroy(&types); if (found) { return class; } } VLOG_WARN("unknown datapath type %s", type); return NULL; } /* Registers a new ofproto class. After successful registration, new ofprotos * of that type can be created using ofproto_create(). */ int ofproto_class_register(const struct ofproto_class *new_class) { size_t i; for (i = 0; i < n_ofproto_classes; i++) { if (ofproto_classes[i] == new_class) { return EEXIST; } } if (n_ofproto_classes >= allocated_ofproto_classes) { ofproto_classes = x2nrealloc(ofproto_classes, &allocated_ofproto_classes, sizeof *ofproto_classes); } ofproto_classes[n_ofproto_classes++] = new_class; return 0; } /* Unregisters a datapath provider. 'type' must have been previously * registered and not currently be in use by any ofprotos. After * unregistration new datapaths of that type cannot be opened using * ofproto_create(). */ int ofproto_class_unregister(const struct ofproto_class *class) { size_t i; for (i = 0; i < n_ofproto_classes; i++) { if (ofproto_classes[i] == class) { for (i++; i < n_ofproto_classes; i++) { ofproto_classes[i - 1] = ofproto_classes[i]; } n_ofproto_classes--; return 0; } } VLOG_WARN("attempted to unregister an ofproto class that is not " "registered"); return EAFNOSUPPORT; } /* Clears 'types' and enumerates all registered ofproto types into it. The * caller must first initialize the sset. */ void ofproto_enumerate_types(struct sset *types) { size_t i; ofproto_initialize(); for (i = 0; i < n_ofproto_classes; i++) { ofproto_classes[i]->enumerate_types(types); } } /* Returns the fully spelled out name for the given ofproto 'type'. * * Normalized type string can be compared with strcmp(). Unnormalized type * string might be the same even if they have different spellings. */ const char * ofproto_normalize_type(const char *type) { return type && type[0] ? type : "system"; } /* Clears 'names' and enumerates the names of all known created ofprotos with * the given 'type'. The caller must first initialize the sset. Returns 0 if * successful, otherwise a positive errno value. * * Some kinds of datapaths might not be practically enumerable. This is not * considered an error. */ int ofproto_enumerate_names(const char *type, struct sset *names) { const struct ofproto_class *class = ofproto_class_find__(type); return class ? class->enumerate_names(type, names) : EAFNOSUPPORT; } int ofproto_create(const char *datapath_name, const char *datapath_type, struct ofproto **ofprotop) { const struct ofproto_class *class; struct ofproto *ofproto; int error; *ofprotop = NULL; ofproto_initialize(); ofproto_unixctl_init(); datapath_type = ofproto_normalize_type(datapath_type); class = ofproto_class_find__(datapath_type); if (!class) { VLOG_WARN("could not create datapath %s of unknown type %s", datapath_name, datapath_type); return EAFNOSUPPORT; } ofproto = class->alloc(); if (!ofproto) { VLOG_ERR("failed to allocate datapath %s of type %s", datapath_name, datapath_type); return ENOMEM; } /* Initialize. */ memset(ofproto, 0, sizeof *ofproto); ofproto->ofproto_class = class; ofproto->name = xstrdup(datapath_name); ofproto->type = xstrdup(datapath_type); hmap_insert(&all_ofprotos, &ofproto->hmap_node, hash_string(ofproto->name, 0)); ofproto->datapath_id = 0; ofproto_set_flow_eviction_threshold(ofproto, OFPROTO_FLOW_EVICTON_THRESHOLD_DEFAULT); ofproto->forward_bpdu = false; ofproto->fallback_dpid = pick_fallback_dpid(); ofproto->mfr_desc = xstrdup(DEFAULT_MFR_DESC); ofproto->hw_desc = xstrdup(DEFAULT_HW_DESC); ofproto->sw_desc = xstrdup(DEFAULT_SW_DESC); ofproto->serial_desc = xstrdup(DEFAULT_SERIAL_DESC); ofproto->dp_desc = xstrdup(DEFAULT_DP_DESC); ofproto->frag_handling = OFPC_FRAG_NORMAL; hmap_init(&ofproto->ports); shash_init(&ofproto->port_by_name); ofproto->tables = NULL; ofproto->n_tables = 0; ofproto->connmgr = connmgr_create(ofproto, datapath_name, datapath_name); ofproto->state = S_OPENFLOW; list_init(&ofproto->pending); ofproto->n_pending = 0; hmap_init(&ofproto->deletions); ofproto->vlan_bitmap = NULL; ofproto->vlans_changed = false; ofproto->min_mtu = INT_MAX; error = ofproto->ofproto_class->construct(ofproto); if (error) { VLOG_ERR("failed to open datapath %s: %s", datapath_name, strerror(error)); ofproto_destroy__(ofproto); return error; } assert(ofproto->n_tables); ofproto->datapath_id = pick_datapath_id(ofproto); VLOG_INFO("using datapath ID %016"PRIx64, ofproto->datapath_id); init_ports(ofproto); *ofprotop = ofproto; return 0; } void ofproto_init_tables(struct ofproto *ofproto, int n_tables) { struct oftable *table; assert(!ofproto->n_tables); assert(n_tables >= 1 && n_tables <= 255); ofproto->n_tables = n_tables; ofproto->tables = xmalloc(n_tables * sizeof *ofproto->tables); OFPROTO_FOR_EACH_TABLE (table, ofproto) { oftable_init(table); } } void ofproto_set_datapath_id(struct ofproto *p, uint64_t datapath_id) { uint64_t old_dpid = p->datapath_id; p->datapath_id = datapath_id ? datapath_id : pick_datapath_id(p); if (p->datapath_id != old_dpid) { VLOG_INFO("datapath ID changed to %016"PRIx64, p->datapath_id); /* Force all active connections to reconnect, since there is no way to * notify a controller that the datapath ID has changed. */ ofproto_reconnect_controllers(p); } } void ofproto_set_controllers(struct ofproto *p, const struct ofproto_controller *controllers, size_t n_controllers) { connmgr_set_controllers(p->connmgr, controllers, n_controllers); } void ofproto_set_fail_mode(struct ofproto *p, enum ofproto_fail_mode fail_mode) { connmgr_set_fail_mode(p->connmgr, fail_mode); } /* Drops the connections between 'ofproto' and all of its controllers, forcing * them to reconnect. */ void ofproto_reconnect_controllers(struct ofproto *ofproto) { connmgr_reconnect(ofproto->connmgr); } /* Sets the 'n' TCP port addresses in 'extras' as ones to which 'ofproto''s * in-band control should guarantee access, in the same way that in-band * control guarantees access to OpenFlow controllers. */ void ofproto_set_extra_in_band_remotes(struct ofproto *ofproto, const struct sockaddr_in *extras, size_t n) { connmgr_set_extra_in_band_remotes(ofproto->connmgr, extras, n); } /* Sets the OpenFlow queue used by flows set up by in-band control on * 'ofproto' to 'queue_id'. If 'queue_id' is negative, then in-band control * flows will use the default queue. */ void ofproto_set_in_band_queue(struct ofproto *ofproto, int queue_id) { connmgr_set_in_band_queue(ofproto->connmgr, queue_id); } /* Sets the number of flows at which eviction from the kernel flow table * will occur. */ void ofproto_set_flow_eviction_threshold(struct ofproto *ofproto, unsigned threshold) { if (threshold < OFPROTO_FLOW_EVICTION_THRESHOLD_MIN) { ofproto->flow_eviction_threshold = OFPROTO_FLOW_EVICTION_THRESHOLD_MIN; } else { ofproto->flow_eviction_threshold = threshold; } } /* If forward_bpdu is true, the NORMAL action will forward frames with * reserved (e.g. STP) destination Ethernet addresses. if forward_bpdu is false, * the NORMAL action will drop these frames. */ void ofproto_set_forward_bpdu(struct ofproto *ofproto, bool forward_bpdu) { bool old_val = ofproto->forward_bpdu; ofproto->forward_bpdu = forward_bpdu; if (old_val != ofproto->forward_bpdu) { if (ofproto->ofproto_class->forward_bpdu_changed) { ofproto->ofproto_class->forward_bpdu_changed(ofproto); } } } /* Sets the MAC aging timeout for the OFPP_NORMAL action on 'ofproto' to * 'idle_time', in seconds. */ void ofproto_set_mac_idle_time(struct ofproto *ofproto, unsigned idle_time) { if (ofproto->ofproto_class->set_mac_idle_time) { ofproto->ofproto_class->set_mac_idle_time(ofproto, idle_time); } } void ofproto_set_desc(struct ofproto *p, const char *mfr_desc, const char *hw_desc, const char *sw_desc, const char *serial_desc, const char *dp_desc) { struct ofp_desc_stats *ods; if (mfr_desc) { if (strlen(mfr_desc) >= sizeof ods->mfr_desc) { VLOG_WARN("truncating mfr_desc, must be less than %zu characters", sizeof ods->mfr_desc); } free(p->mfr_desc); p->mfr_desc = xstrdup(mfr_desc); } if (hw_desc) { if (strlen(hw_desc) >= sizeof ods->hw_desc) { VLOG_WARN("truncating hw_desc, must be less than %zu characters", sizeof ods->hw_desc); } free(p->hw_desc); p->hw_desc = xstrdup(hw_desc); } if (sw_desc) { if (strlen(sw_desc) >= sizeof ods->sw_desc) { VLOG_WARN("truncating sw_desc, must be less than %zu characters", sizeof ods->sw_desc); } free(p->sw_desc); p->sw_desc = xstrdup(sw_desc); } if (serial_desc) { if (strlen(serial_desc) >= sizeof ods->serial_num) { VLOG_WARN("truncating serial_desc, must be less than %zu " "characters", sizeof ods->serial_num); } free(p->serial_desc); p->serial_desc = xstrdup(serial_desc); } if (dp_desc) { if (strlen(dp_desc) >= sizeof ods->dp_desc) { VLOG_WARN("truncating dp_desc, must be less than %zu characters", sizeof ods->dp_desc); } free(p->dp_desc); p->dp_desc = xstrdup(dp_desc); } } int ofproto_set_snoops(struct ofproto *ofproto, const struct sset *snoops) { return connmgr_set_snoops(ofproto->connmgr, snoops); } int ofproto_set_netflow(struct ofproto *ofproto, const struct netflow_options *nf_options) { if (nf_options && sset_is_empty(&nf_options->collectors)) { nf_options = NULL; } if (ofproto->ofproto_class->set_netflow) { return ofproto->ofproto_class->set_netflow(ofproto, nf_options); } else { return nf_options ? EOPNOTSUPP : 0; } } int ofproto_set_sflow(struct ofproto *ofproto, const struct ofproto_sflow_options *oso) { if (oso && sset_is_empty(&oso->targets)) { oso = NULL; } if (ofproto->ofproto_class->set_sflow) { return ofproto->ofproto_class->set_sflow(ofproto, oso); } else { return oso ? EOPNOTSUPP : 0; } } /* Spanning Tree Protocol (STP) configuration. */ /* Configures STP on 'ofproto' using the settings defined in 's'. If * 's' is NULL, disables STP. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_set_stp(struct ofproto *ofproto, const struct ofproto_stp_settings *s) { return (ofproto->ofproto_class->set_stp ? ofproto->ofproto_class->set_stp(ofproto, s) : EOPNOTSUPP); } /* Retrieves STP status of 'ofproto' and stores it in 's'. If the * 'enabled' member of 's' is false, then the other members are not * meaningful. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_get_stp_status(struct ofproto *ofproto, struct ofproto_stp_status *s) { return (ofproto->ofproto_class->get_stp_status ? ofproto->ofproto_class->get_stp_status(ofproto, s) : EOPNOTSUPP); } /* Configures STP on 'ofp_port' of 'ofproto' using the settings defined * in 's'. The caller is responsible for assigning STP port numbers * (using the 'port_num' member in the range of 1 through 255, inclusive) * and ensuring there are no duplicates. If the 's' is NULL, then STP * is disabled on the port. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_set_stp(struct ofproto *ofproto, uint16_t ofp_port, const struct ofproto_port_stp_settings *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure STP on nonexistent port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->set_stp_port ? ofproto->ofproto_class->set_stp_port(ofport, s) : EOPNOTSUPP); } /* Retrieves STP port status of 'ofp_port' on 'ofproto' and stores it in * 's'. If the 'enabled' member in 's' is false, then the other members * are not meaningful. * * Returns 0 if successful, otherwise a positive errno value.*/ int ofproto_port_get_stp_status(struct ofproto *ofproto, uint16_t ofp_port, struct ofproto_port_stp_status *s) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN_RL(&rl, "%s: cannot get STP status on nonexistent " "port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->get_stp_port_status ? ofproto->ofproto_class->get_stp_port_status(ofport, s) : EOPNOTSUPP); } /* Queue DSCP configuration. */ /* Registers meta-data associated with the 'n_qdscp' Qualities of Service * 'queues' attached to 'ofport'. This data is not intended to be sufficient * to implement QoS. Instead, it is used to implement features which require * knowledge of what queues exist on a port, and some basic information about * them. * * Returns 0 if successful, otherwise a positive errno value. */ int ofproto_port_set_queues(struct ofproto *ofproto, uint16_t ofp_port, const struct ofproto_port_queue *queues, size_t n_queues) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot set queues on nonexistent port %"PRIu16, ofproto->name, ofp_port); return ENODEV; } return (ofproto->ofproto_class->set_queues ? ofproto->ofproto_class->set_queues(ofport, queues, n_queues) : EOPNOTSUPP); } /* Connectivity Fault Management configuration. */ /* Clears the CFM configuration from 'ofp_port' on 'ofproto'. */ void ofproto_port_clear_cfm(struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); if (ofport && ofproto->ofproto_class->set_cfm) { ofproto->ofproto_class->set_cfm(ofport, NULL); } } /* Configures connectivity fault management on 'ofp_port' in 'ofproto'. Takes * basic configuration from the configuration members in 'cfm', and the remote * maintenance point ID from remote_mpid. Ignores the statistics members of * 'cfm'. * * This function has no effect if 'ofproto' does not have a port 'ofp_port'. */ void ofproto_port_set_cfm(struct ofproto *ofproto, uint16_t ofp_port, const struct cfm_settings *s) { struct ofport *ofport; int error; ofport = ofproto_get_port(ofproto, ofp_port); if (!ofport) { VLOG_WARN("%s: cannot configure CFM on nonexistent port %"PRIu16, ofproto->name, ofp_port); return; } /* XXX: For configuration simplicity, we only support one remote_mpid * outside of the CFM module. It's not clear if this is the correct long * term solution or not. */ error = (ofproto->ofproto_class->set_cfm ? ofproto->ofproto_class->set_cfm(ofport, s) : EOPNOTSUPP); if (error) { VLOG_WARN("%s: CFM configuration on port %"PRIu16" (%s) failed (%s)", ofproto->name, ofp_port, netdev_get_name(ofport->netdev), strerror(error)); } } /* Checks the status of LACP negotiation for 'ofp_port' within ofproto. * Returns 1 if LACP partner information for 'ofp_port' is up-to-date, * 0 if LACP partner information is not current (generally indicating a * connectivity problem), or -1 if LACP is not enabled on 'ofp_port'. */ int ofproto_port_is_lacp_current(struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->port_is_lacp_current ? ofproto->ofproto_class->port_is_lacp_current(ofport) : -1); } /* Bundles. */ /* Registers a "bundle" associated with client data pointer 'aux' in 'ofproto'. * A bundle is the same concept as a Port in OVSDB, that is, it consists of one * or more "slave" devices (Interfaces, in OVSDB) along with a VLAN * configuration plus, if there is more than one slave, a bonding * configuration. * * If 'aux' is already registered then this function updates its configuration * to 's'. Otherwise, this function registers a new bundle. * * Bundles only affect the NXAST_AUTOPATH action and output to the OFPP_NORMAL * port. */ int ofproto_bundle_register(struct ofproto *ofproto, void *aux, const struct ofproto_bundle_settings *s) { return (ofproto->ofproto_class->bundle_set ? ofproto->ofproto_class->bundle_set(ofproto, aux, s) : EOPNOTSUPP); } /* Unregisters the bundle registered on 'ofproto' with auxiliary data 'aux'. * If no such bundle has been registered, this has no effect. */ int ofproto_bundle_unregister(struct ofproto *ofproto, void *aux) { return ofproto_bundle_register(ofproto, aux, NULL); } /* Registers a mirror associated with client data pointer 'aux' in 'ofproto'. * If 'aux' is already registered then this function updates its configuration * to 's'. Otherwise, this function registers a new mirror. */ int ofproto_mirror_register(struct ofproto *ofproto, void *aux, const struct ofproto_mirror_settings *s) { return (ofproto->ofproto_class->mirror_set ? ofproto->ofproto_class->mirror_set(ofproto, aux, s) : EOPNOTSUPP); } /* Unregisters the mirror registered on 'ofproto' with auxiliary data 'aux'. * If no mirror has been registered, this has no effect. */ int ofproto_mirror_unregister(struct ofproto *ofproto, void *aux) { return ofproto_mirror_register(ofproto, aux, NULL); } /* Retrieves statistics from mirror associated with client data pointer * 'aux' in 'ofproto'. Stores packet and byte counts in 'packets' and * 'bytes', respectively. If a particular counters is not supported, * the appropriate argument is set to UINT64_MAX. */ int ofproto_mirror_get_stats(struct ofproto *ofproto, void *aux, uint64_t *packets, uint64_t *bytes) { if (!ofproto->ofproto_class->mirror_get_stats) { *packets = *bytes = UINT64_MAX; return EOPNOTSUPP; } return ofproto->ofproto_class->mirror_get_stats(ofproto, aux, packets, bytes); } /* Configures the VLANs whose bits are set to 1 in 'flood_vlans' as VLANs on * which all packets are flooded, instead of using MAC learning. If * 'flood_vlans' is NULL, then MAC learning applies to all VLANs. * * Flood VLANs affect only the treatment of packets output to the OFPP_NORMAL * port. */ int ofproto_set_flood_vlans(struct ofproto *ofproto, unsigned long *flood_vlans) { return (ofproto->ofproto_class->set_flood_vlans ? ofproto->ofproto_class->set_flood_vlans(ofproto, flood_vlans) : EOPNOTSUPP); } /* Returns true if 'aux' is a registered bundle that is currently in use as the * output for a mirror. */ bool ofproto_is_mirror_output_bundle(const struct ofproto *ofproto, void *aux) { return (ofproto->ofproto_class->is_mirror_output_bundle ? ofproto->ofproto_class->is_mirror_output_bundle(ofproto, aux) : false); } /* Configuration of OpenFlow tables. */ /* Returns the number of OpenFlow tables in 'ofproto'. */ int ofproto_get_n_tables(const struct ofproto *ofproto) { return ofproto->n_tables; } /* Configures the OpenFlow table in 'ofproto' with id 'table_id' with the * settings from 's'. 'table_id' must be in the range 0 through the number of * OpenFlow tables in 'ofproto' minus 1, inclusive. * * For read-only tables, only the name may be configured. */ void ofproto_configure_table(struct ofproto *ofproto, int table_id, const struct ofproto_table_settings *s) { struct oftable *table; assert(table_id >= 0 && table_id < ofproto->n_tables); table = &ofproto->tables[table_id]; oftable_set_name(table, s->name); if (table->flags & OFTABLE_READONLY) { return; } if (s->groups) { oftable_enable_eviction(table, s->groups, s->n_groups); } else { oftable_disable_eviction(table); } table->max_flows = s->max_flows; if (classifier_count(&table->cls) > table->max_flows && table->eviction_fields) { /* 'table' contains more flows than allowed. We might not be able to * evict them right away because of the asynchronous nature of flow * table changes. Schedule eviction for later. */ switch (ofproto->state) { case S_OPENFLOW: ofproto->state = S_EVICT; break; case S_EVICT: case S_FLUSH: /* We're already deleting flows, nothing more to do. */ break; } } } bool ofproto_has_snoops(const struct ofproto *ofproto) { return connmgr_has_snoops(ofproto->connmgr); } void ofproto_get_snoops(const struct ofproto *ofproto, struct sset *snoops) { connmgr_get_snoops(ofproto->connmgr, snoops); } static void ofproto_flush__(struct ofproto *ofproto) { struct ofopgroup *group; struct oftable *table; if (ofproto->ofproto_class->flush) { ofproto->ofproto_class->flush(ofproto); } group = ofopgroup_create_unattached(ofproto); OFPROTO_FOR_EACH_TABLE (table, ofproto) { struct rule *rule, *next_rule; struct cls_cursor cursor; if (table->flags & OFTABLE_HIDDEN) { continue; } cls_cursor_init(&cursor, &table->cls, NULL); CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cr, &cursor) { if (!rule->pending) { ofoperation_create(group, rule, OFOPERATION_DELETE); oftable_remove_rule(rule); ofproto->ofproto_class->rule_destruct(rule); } } } ofopgroup_submit(group); } static void ofproto_destroy__(struct ofproto *ofproto) { struct oftable *table; assert(list_is_empty(&ofproto->pending)); assert(!ofproto->n_pending); connmgr_destroy(ofproto->connmgr); hmap_remove(&all_ofprotos, &ofproto->hmap_node); free(ofproto->name); free(ofproto->type); free(ofproto->mfr_desc); free(ofproto->hw_desc); free(ofproto->sw_desc); free(ofproto->serial_desc); free(ofproto->dp_desc); hmap_destroy(&ofproto->ports); shash_destroy(&ofproto->port_by_name); OFPROTO_FOR_EACH_TABLE (table, ofproto) { oftable_destroy(table); } free(ofproto->tables); hmap_destroy(&ofproto->deletions); free(ofproto->vlan_bitmap); ofproto->ofproto_class->dealloc(ofproto); } void ofproto_destroy(struct ofproto *p) { struct ofport *ofport, *next_ofport; if (!p) { return; } ofproto_flush__(p); HMAP_FOR_EACH_SAFE (ofport, next_ofport, hmap_node, &p->ports) { ofport_destroy(ofport); } p->ofproto_class->destruct(p); ofproto_destroy__(p); } /* Destroys the datapath with the respective 'name' and 'type'. With the Linux * kernel datapath, for example, this destroys the datapath in the kernel, and * with the netdev-based datapath, it tears down the data structures that * represent the datapath. * * The datapath should not be currently open as an ofproto. */ int ofproto_delete(const char *name, const char *type) { const struct ofproto_class *class = ofproto_class_find__(type); return (!class ? EAFNOSUPPORT : !class->del ? EACCES : class->del(type, name)); } static void process_port_change(struct ofproto *ofproto, int error, char *devname) { if (error == ENOBUFS) { reinit_ports(ofproto); } else if (!error) { update_port(ofproto, devname); free(devname); } } int ofproto_run(struct ofproto *p) { struct sset changed_netdevs; const char *changed_netdev; struct ofport *ofport; int error; error = p->ofproto_class->run(p); if (error && error != EAGAIN) { VLOG_ERR_RL(&rl, "%s: run failed (%s)", p->name, strerror(error)); } if (p->ofproto_class->port_poll) { char *devname; while ((error = p->ofproto_class->port_poll(p, &devname)) != EAGAIN) { process_port_change(p, error, devname); } } /* Update OpenFlow port status for any port whose netdev has changed. * * Refreshing a given 'ofport' can cause an arbitrary ofport to be * destroyed, so it's not safe to update ports directly from the * HMAP_FOR_EACH loop, or even to use HMAP_FOR_EACH_SAFE. Instead, we * need this two-phase approach. */ sset_init(&changed_netdevs); HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { unsigned int change_seq = netdev_change_seq(ofport->netdev); if (ofport->change_seq != change_seq) { ofport->change_seq = change_seq; sset_add(&changed_netdevs, netdev_get_name(ofport->netdev)); } } SSET_FOR_EACH (changed_netdev, &changed_netdevs) { update_port(p, changed_netdev); } sset_destroy(&changed_netdevs); switch (p->state) { case S_OPENFLOW: connmgr_run(p->connmgr, handle_openflow); break; case S_EVICT: connmgr_run(p->connmgr, NULL); ofproto_evict(p); if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) { p->state = S_OPENFLOW; } break; case S_FLUSH: connmgr_run(p->connmgr, NULL); ofproto_flush__(p); if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) { connmgr_flushed(p->connmgr); p->state = S_OPENFLOW; } break; default: NOT_REACHED(); } return error; } /* Performs periodic activity required by 'ofproto' that needs to be done * with the least possible latency. * * It makes sense to call this function a couple of times per poll loop, to * provide a significant performance boost on some benchmarks with the * ofproto-dpif implementation. */ int ofproto_run_fast(struct ofproto *p) { int error; error = p->ofproto_class->run_fast ? p->ofproto_class->run_fast(p) : 0; if (error && error != EAGAIN) { VLOG_ERR_RL(&rl, "%s: fastpath run failed (%s)", p->name, strerror(error)); } return error; } void ofproto_wait(struct ofproto *p) { struct ofport *ofport; p->ofproto_class->wait(p); if (p->ofproto_class->port_poll_wait) { p->ofproto_class->port_poll_wait(p); } HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { if (ofport->change_seq != netdev_change_seq(ofport->netdev)) { poll_immediate_wake(); } } switch (p->state) { case S_OPENFLOW: connmgr_wait(p->connmgr, true); break; case S_EVICT: case S_FLUSH: connmgr_wait(p->connmgr, false); if (list_is_empty(&p->pending) && hmap_is_empty(&p->deletions)) { poll_immediate_wake(); } break; } } bool ofproto_is_alive(const struct ofproto *p) { return connmgr_has_controllers(p->connmgr); } void ofproto_get_ofproto_controller_info(const struct ofproto *ofproto, struct shash *info) { connmgr_get_controller_info(ofproto->connmgr, info); } void ofproto_free_ofproto_controller_info(struct shash *info) { connmgr_free_controller_info(info); } /* Makes a deep copy of 'old' into 'port'. */ void ofproto_port_clone(struct ofproto_port *port, const struct ofproto_port *old) { port->name = xstrdup(old->name); port->type = xstrdup(old->type); port->ofp_port = old->ofp_port; } /* Frees memory allocated to members of 'ofproto_port'. * * Do not call this function on an ofproto_port obtained from * ofproto_port_dump_next(): that function retains ownership of the data in the * ofproto_port. */ void ofproto_port_destroy(struct ofproto_port *ofproto_port) { free(ofproto_port->name); free(ofproto_port->type); } /* Initializes 'dump' to begin dumping the ports in an ofproto. * * This function provides no status indication. An error status for the entire * dump operation is provided when it is completed by calling * ofproto_port_dump_done(). */ void ofproto_port_dump_start(struct ofproto_port_dump *dump, const struct ofproto *ofproto) { dump->ofproto = ofproto; dump->error = ofproto->ofproto_class->port_dump_start(ofproto, &dump->state); } /* Attempts to retrieve another port from 'dump', which must have been created * with ofproto_port_dump_start(). On success, stores a new ofproto_port into * 'port' and returns true. On failure, returns false. * * Failure might indicate an actual error or merely that the last port has been * dumped. An error status for the entire dump operation is provided when it * is completed by calling ofproto_port_dump_done(). * * The ofproto owns the data stored in 'port'. It will remain valid until at * least the next time 'dump' is passed to ofproto_port_dump_next() or * ofproto_port_dump_done(). */ bool ofproto_port_dump_next(struct ofproto_port_dump *dump, struct ofproto_port *port) { const struct ofproto *ofproto = dump->ofproto; if (dump->error) { return false; } dump->error = ofproto->ofproto_class->port_dump_next(ofproto, dump->state, port); if (dump->error) { ofproto->ofproto_class->port_dump_done(ofproto, dump->state); return false; } return true; } /* Completes port table dump operation 'dump', which must have been created * with ofproto_port_dump_start(). Returns 0 if the dump operation was * error-free, otherwise a positive errno value describing the problem. */ int ofproto_port_dump_done(struct ofproto_port_dump *dump) { const struct ofproto *ofproto = dump->ofproto; if (!dump->error) { dump->error = ofproto->ofproto_class->port_dump_done(ofproto, dump->state); } return dump->error == EOF ? 0 : dump->error; } /* Attempts to add 'netdev' as a port on 'ofproto'. If successful, returns 0 * and sets '*ofp_portp' to the new port's OpenFlow port number (if 'ofp_portp' * is non-null). On failure, returns a positive errno value and sets * '*ofp_portp' to OFPP_NONE (if 'ofp_portp' is non-null). */ int ofproto_port_add(struct ofproto *ofproto, struct netdev *netdev, uint16_t *ofp_portp) { uint16_t ofp_port; int error; error = ofproto->ofproto_class->port_add(ofproto, netdev, &ofp_port); if (!error) { update_port(ofproto, netdev_get_name(netdev)); } if (ofp_portp) { *ofp_portp = error ? OFPP_NONE : ofp_port; } return error; } /* Looks up a port named 'devname' in 'ofproto'. On success, returns 0 and * initializes '*port' appropriately; on failure, returns a positive errno * value. * * The caller owns the data in 'ofproto_port' and must free it with * ofproto_port_destroy() when it is no longer needed. */ int ofproto_port_query_by_name(const struct ofproto *ofproto, const char *devname, struct ofproto_port *port) { int error; error = ofproto->ofproto_class->port_query_by_name(ofproto, devname, port); if (error) { memset(port, 0, sizeof *port); } return error; } /* Deletes port number 'ofp_port' from the datapath for 'ofproto'. * Returns 0 if successful, otherwise a positive errno. */ int ofproto_port_del(struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); const char *name = ofport ? netdev_get_name(ofport->netdev) : ""; int error; error = ofproto->ofproto_class->port_del(ofproto, ofp_port); if (!error && ofport) { /* 'name' is the netdev's name and update_port() is going to close the * netdev. Just in case update_port() refers to 'name' after it * destroys 'ofport', make a copy of it around the update_port() * call. */ char *devname = xstrdup(name); update_port(ofproto, devname); free(devname); } return error; } /* Adds a flow to OpenFlow flow table 0 in 'p' that matches 'cls_rule' and * performs the 'n_actions' actions in 'actions'. The new flow will not * timeout. * * If cls_rule->priority is in the range of priorities supported by OpenFlow * (0...65535, inclusive) then the flow will be visible to OpenFlow * controllers; otherwise, it will be hidden. * * The caller retains ownership of 'cls_rule' and 'actions'. * * This is a helper function for in-band control and fail-open. */ void ofproto_add_flow(struct ofproto *ofproto, const struct cls_rule *cls_rule, const union ofp_action *actions, size_t n_actions) { const struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly( &ofproto->tables[0].cls, cls_rule)); if (!rule || !ofputil_actions_equal(rule->actions, rule->n_actions, actions, n_actions)) { struct ofputil_flow_mod fm; memset(&fm, 0, sizeof fm); fm.cr = *cls_rule; fm.buffer_id = UINT32_MAX; fm.actions = (union ofp_action *) actions; fm.n_actions = n_actions; add_flow(ofproto, NULL, &fm, NULL); } } /* Executes the flow modification specified in 'fm'. Returns 0 on success, an * OFPERR_* OpenFlow error code on failure, or OFPROTO_POSTPONE if the * operation cannot be initiated now but may be retried later. * * This is a helper function for in-band control and fail-open. */ int ofproto_flow_mod(struct ofproto *ofproto, const struct ofputil_flow_mod *fm) { return handle_flow_mod__(ofproto, NULL, fm, NULL); } /* Searches for a rule with matching criteria exactly equal to 'target' in * ofproto's table 0 and, if it finds one, deletes it. * * This is a helper function for in-band control and fail-open. */ bool ofproto_delete_flow(struct ofproto *ofproto, const struct cls_rule *target) { struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly( &ofproto->tables[0].cls, target)); if (!rule) { /* No such rule -> success. */ return true; } else if (rule->pending) { /* An operation on the rule is already pending -> failure. * Caller must retry later if it's important. */ return false; } else { /* Initiate deletion -> success. */ struct ofopgroup *group = ofopgroup_create_unattached(ofproto); ofoperation_create(group, rule, OFOPERATION_DELETE); oftable_remove_rule(rule); ofproto->ofproto_class->rule_destruct(rule); ofopgroup_submit(group); return true; } } /* Starts the process of deleting all of the flows from all of ofproto's flow * tables and then reintroducing the flows required by in-band control and * fail-open. The process will complete in a later call to ofproto_run(). */ void ofproto_flush_flows(struct ofproto *ofproto) { COVERAGE_INC(ofproto_flush); ofproto->state = S_FLUSH; } static void reinit_ports(struct ofproto *p) { struct ofproto_port_dump dump; struct sset devnames; struct ofport *ofport; struct ofproto_port ofproto_port; const char *devname; COVERAGE_INC(ofproto_reinit_ports); sset_init(&devnames); HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { sset_add(&devnames, netdev_get_name(ofport->netdev)); } OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) { sset_add(&devnames, ofproto_port.name); } SSET_FOR_EACH (devname, &devnames) { update_port(p, devname); } sset_destroy(&devnames); } /* Opens and returns a netdev for 'ofproto_port', or a null pointer if the * netdev cannot be opened. On success, also fills in 'opp'. */ static struct netdev * ofport_open(const struct ofproto_port *ofproto_port, struct ofputil_phy_port *pp) { enum netdev_flags flags; struct netdev *netdev; int error; error = netdev_open(ofproto_port->name, ofproto_port->type, &netdev); if (error) { VLOG_WARN_RL(&rl, "ignoring port %s (%"PRIu16") because netdev %s " "cannot be opened (%s)", ofproto_port->name, ofproto_port->ofp_port, ofproto_port->name, strerror(error)); return NULL; } pp->port_no = ofproto_port->ofp_port; netdev_get_etheraddr(netdev, pp->hw_addr); ovs_strlcpy(pp->name, ofproto_port->name, sizeof pp->name); netdev_get_flags(netdev, &flags); pp->config = flags & NETDEV_UP ? 0 : OFPUTIL_PC_PORT_DOWN; pp->state = netdev_get_carrier(netdev) ? 0 : OFPUTIL_PS_LINK_DOWN; netdev_get_features(netdev, &pp->curr, &pp->advertised, &pp->supported, &pp->peer); pp->curr_speed = netdev_features_to_bps(pp->curr); pp->max_speed = netdev_features_to_bps(pp->supported); return netdev; } /* Returns true if most fields of 'a' and 'b' are equal. Differences in name, * port number, and 'config' bits other than OFPUTIL_PS_LINK_DOWN are * disregarded. */ static bool ofport_equal(const struct ofputil_phy_port *a, const struct ofputil_phy_port *b) { return (eth_addr_equals(a->hw_addr, b->hw_addr) && a->state == b->state && !((a->config ^ b->config) & OFPUTIL_PC_PORT_DOWN) && a->curr == b->curr && a->advertised == b->advertised && a->supported == b->supported && a->peer == b->peer && a->curr_speed == b->curr_speed && a->max_speed == b->max_speed); } /* Adds an ofport to 'p' initialized based on the given 'netdev' and 'opp'. * The caller must ensure that 'p' does not have a conflicting ofport (that is, * one with the same name or port number). */ static void ofport_install(struct ofproto *p, struct netdev *netdev, const struct ofputil_phy_port *pp) { const char *netdev_name = netdev_get_name(netdev); struct ofport *ofport; int error; /* Create ofport. */ ofport = p->ofproto_class->port_alloc(); if (!ofport) { error = ENOMEM; goto error; } ofport->ofproto = p; ofport->netdev = netdev; ofport->change_seq = netdev_change_seq(netdev); ofport->pp = *pp; ofport->ofp_port = pp->port_no; /* Add port to 'p'. */ hmap_insert(&p->ports, &ofport->hmap_node, hash_int(ofport->ofp_port, 0)); shash_add(&p->port_by_name, netdev_name, ofport); update_mtu(p, ofport); /* Let the ofproto_class initialize its private data. */ error = p->ofproto_class->port_construct(ofport); if (error) { goto error; } connmgr_send_port_status(p->connmgr, pp, OFPPR_ADD); return; error: VLOG_WARN_RL(&rl, "%s: could not add port %s (%s)", p->name, netdev_name, strerror(error)); if (ofport) { ofport_destroy__(ofport); } else { netdev_close(netdev); } } /* Removes 'ofport' from 'p' and destroys it. */ static void ofport_remove(struct ofport *ofport) { connmgr_send_port_status(ofport->ofproto->connmgr, &ofport->pp, OFPPR_DELETE); ofport_destroy(ofport); } /* If 'ofproto' contains an ofport named 'name', removes it from 'ofproto' and * destroys it. */ static void ofport_remove_with_name(struct ofproto *ofproto, const char *name) { struct ofport *port = shash_find_data(&ofproto->port_by_name, name); if (port) { ofport_remove(port); } } /* Updates 'port' with new 'pp' description. * * Does not handle a name or port number change. The caller must implement * such a change as a delete followed by an add. */ static void ofport_modified(struct ofport *port, struct ofputil_phy_port *pp) { memcpy(port->pp.hw_addr, pp->hw_addr, ETH_ADDR_LEN); port->pp.config = ((port->pp.config & ~OFPUTIL_PC_PORT_DOWN) | (pp->config & OFPUTIL_PC_PORT_DOWN)); port->pp.state = pp->state; port->pp.curr = pp->curr; port->pp.advertised = pp->advertised; port->pp.supported = pp->supported; port->pp.peer = pp->peer; port->pp.curr_speed = pp->curr_speed; port->pp.max_speed = pp->max_speed; connmgr_send_port_status(port->ofproto->connmgr, &port->pp, OFPPR_MODIFY); } /* Update OpenFlow 'state' in 'port' and notify controller. */ void ofproto_port_set_state(struct ofport *port, enum ofputil_port_state state) { if (port->pp.state != state) { port->pp.state = state; connmgr_send_port_status(port->ofproto->connmgr, &port->pp, OFPPR_MODIFY); } } void ofproto_port_unregister(struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *port = ofproto_get_port(ofproto, ofp_port); if (port) { if (port->ofproto->ofproto_class->set_realdev) { port->ofproto->ofproto_class->set_realdev(port, 0, 0); } if (port->ofproto->ofproto_class->set_stp_port) { port->ofproto->ofproto_class->set_stp_port(port, NULL); } if (port->ofproto->ofproto_class->set_cfm) { port->ofproto->ofproto_class->set_cfm(port, NULL); } if (port->ofproto->ofproto_class->bundle_remove) { port->ofproto->ofproto_class->bundle_remove(port); } } } static void ofport_destroy__(struct ofport *port) { struct ofproto *ofproto = port->ofproto; const char *name = netdev_get_name(port->netdev); hmap_remove(&ofproto->ports, &port->hmap_node); shash_delete(&ofproto->port_by_name, shash_find(&ofproto->port_by_name, name)); netdev_close(port->netdev); ofproto->ofproto_class->port_dealloc(port); } static void ofport_destroy(struct ofport *port) { if (port) { port->ofproto->ofproto_class->port_destruct(port); ofport_destroy__(port); } } struct ofport * ofproto_get_port(const struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *port; HMAP_FOR_EACH_IN_BUCKET (port, hmap_node, hash_int(ofp_port, 0), &ofproto->ports) { if (port->ofp_port == ofp_port) { return port; } } return NULL; } int ofproto_port_get_stats(const struct ofport *port, struct netdev_stats *stats) { struct ofproto *ofproto = port->ofproto; int error; if (ofproto->ofproto_class->port_get_stats) { error = ofproto->ofproto_class->port_get_stats(port, stats); } else { error = EOPNOTSUPP; } return error; } static void update_port(struct ofproto *ofproto, const char *name) { struct ofproto_port ofproto_port; struct ofputil_phy_port pp; struct netdev *netdev; struct ofport *port; COVERAGE_INC(ofproto_update_port); /* Fetch 'name''s location and properties from the datapath. */ netdev = (!ofproto_port_query_by_name(ofproto, name, &ofproto_port) ? ofport_open(&ofproto_port, &pp) : NULL); if (netdev) { port = ofproto_get_port(ofproto, ofproto_port.ofp_port); if (port && !strcmp(netdev_get_name(port->netdev), name)) { struct netdev *old_netdev = port->netdev; /* 'name' hasn't changed location. Any properties changed? */ if (!ofport_equal(&port->pp, &pp)) { ofport_modified(port, &pp); } update_mtu(ofproto, port); /* Install the newly opened netdev in case it has changed. * Don't close the old netdev yet in case port_modified has to * remove a retained reference to it.*/ port->netdev = netdev; port->change_seq = netdev_change_seq(netdev); if (port->ofproto->ofproto_class->port_modified) { port->ofproto->ofproto_class->port_modified(port); } netdev_close(old_netdev); } else { /* If 'port' is nonnull then its name differs from 'name' and thus * we should delete it. If we think there's a port named 'name' * then its port number must be wrong now so delete it too. */ if (port) { ofport_remove(port); } ofport_remove_with_name(ofproto, name); ofport_install(ofproto, netdev, &pp); } } else { /* Any port named 'name' is gone now. */ ofport_remove_with_name(ofproto, name); } ofproto_port_destroy(&ofproto_port); } static int init_ports(struct ofproto *p) { struct ofproto_port_dump dump; struct ofproto_port ofproto_port; OFPROTO_PORT_FOR_EACH (&ofproto_port, &dump, p) { uint16_t ofp_port = ofproto_port.ofp_port; if (ofproto_get_port(p, ofp_port)) { VLOG_WARN_RL(&rl, "ignoring duplicate port %"PRIu16" in datapath", ofp_port); } else if (shash_find(&p->port_by_name, ofproto_port.name)) { VLOG_WARN_RL(&rl, "ignoring duplicate device %s in datapath", ofproto_port.name); } else { struct ofputil_phy_port pp; struct netdev *netdev; netdev = ofport_open(&ofproto_port, &pp); if (netdev) { ofport_install(p, netdev, &pp); } } } return 0; } /* Find the minimum MTU of all non-datapath devices attached to 'p'. * Returns ETH_PAYLOAD_MAX or the minimum of the ports. */ static int find_min_mtu(struct ofproto *p) { struct ofport *ofport; int mtu = 0; HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { struct netdev *netdev = ofport->netdev; int dev_mtu; /* Skip any internal ports, since that's what we're trying to * set. */ if (!strcmp(netdev_get_type(netdev), "internal")) { continue; } if (netdev_get_mtu(netdev, &dev_mtu)) { continue; } if (!mtu || dev_mtu < mtu) { mtu = dev_mtu; } } return mtu ? mtu: ETH_PAYLOAD_MAX; } /* Update MTU of all datapath devices on 'p' to the minimum of the * non-datapath ports in event of 'port' added or changed. */ static void update_mtu(struct ofproto *p, struct ofport *port) { struct ofport *ofport; struct netdev *netdev = port->netdev; int dev_mtu, old_min; if (netdev_get_mtu(netdev, &dev_mtu)) { port->mtu = 0; return; } if (!strcmp(netdev_get_type(port->netdev), "internal")) { if (dev_mtu > p->min_mtu) { if (!netdev_set_mtu(port->netdev, p->min_mtu)) { dev_mtu = p->min_mtu; } } port->mtu = dev_mtu; return; } /* For non-internal port find new min mtu. */ old_min = p->min_mtu; port->mtu = dev_mtu; p->min_mtu = find_min_mtu(p); if (p->min_mtu == old_min) { return; } HMAP_FOR_EACH (ofport, hmap_node, &p->ports) { struct netdev *netdev = ofport->netdev; if (!strcmp(netdev_get_type(netdev), "internal")) { if (!netdev_set_mtu(netdev, p->min_mtu)) { ofport->mtu = p->min_mtu; } } } } static void ofproto_rule_destroy__(struct rule *rule) { if (rule) { free(rule->actions); rule->ofproto->ofproto_class->rule_dealloc(rule); } } /* This function allows an ofproto implementation to destroy any rules that * remain when its ->destruct() function is called. The caller must have * already uninitialized any derived members of 'rule' (step 5 described in the * large comment in ofproto/ofproto-provider.h titled "Life Cycle"). * This function implements steps 6 and 7. * * This function should only be called from an ofproto implementation's * ->destruct() function. It is not suitable elsewhere. */ void ofproto_rule_destroy(struct rule *rule) { assert(!rule->pending); oftable_remove_rule(rule); ofproto_rule_destroy__(rule); } /* Returns true if 'rule' has an OpenFlow OFPAT_OUTPUT or OFPAT_ENQUEUE action * that outputs to 'out_port' (output to OFPP_FLOOD and OFPP_ALL doesn't * count). */ static bool rule_has_out_port(const struct rule *rule, uint16_t out_port) { const union ofp_action *oa; size_t left; if (out_port == OFPP_NONE) { return true; } OFPUTIL_ACTION_FOR_EACH_UNSAFE (oa, left, rule->actions, rule->n_actions) { if (action_outputs_to_port(oa, htons(out_port))) { return true; } } return false; } /* Executes the actions indicated by 'rule' on 'packet' and credits 'rule''s * statistics appropriately. 'packet' must have at least sizeof(struct * ofp_packet_in) bytes of headroom. * * 'packet' doesn't necessarily have to match 'rule'. 'rule' will be credited * with statistics for 'packet' either way. * * Takes ownership of 'packet'. */ static int rule_execute(struct rule *rule, uint16_t in_port, struct ofpbuf *packet) { struct flow flow; assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in)); flow_extract(packet, 0, 0, in_port, &flow); return rule->ofproto->ofproto_class->rule_execute(rule, &flow, packet); } /* Returns true if 'rule' should be hidden from the controller. * * Rules with priority higher than UINT16_MAX are set up by ofproto itself * (e.g. by in-band control) and are intentionally hidden from the * controller. */ static bool rule_is_hidden(const struct rule *rule) { return rule->cr.priority > UINT16_MAX; } static enum oftable_flags rule_get_flags(const struct rule *rule) { return rule->ofproto->tables[rule->table_id].flags; } static bool rule_is_modifiable(const struct rule *rule) { return !(rule_get_flags(rule) & OFTABLE_READONLY); } static enum ofperr handle_echo_request(struct ofconn *ofconn, const struct ofp_header *oh) { ofconn_send_reply(ofconn, make_echo_reply(oh)); return 0; } static enum ofperr handle_features_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_switch_features features; struct ofport *port; bool arp_match_ip; struct ofpbuf *b; ofproto->ofproto_class->get_features(ofproto, &arp_match_ip, &features.actions); assert(features.actions & OFPUTIL_A_OUTPUT); /* sanity check */ features.datapath_id = ofproto->datapath_id; features.n_buffers = pktbuf_capacity(); features.n_tables = ofproto->n_tables; features.capabilities = (OFPUTIL_C_FLOW_STATS | OFPUTIL_C_TABLE_STATS | OFPUTIL_C_PORT_STATS | OFPUTIL_C_QUEUE_STATS); if (arp_match_ip) { features.capabilities |= OFPUTIL_C_ARP_MATCH_IP; } b = ofputil_encode_switch_features(&features, ofconn_get_protocol(ofconn), oh->xid); HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { ofputil_put_switch_features_port(&port->pp, b); } ofconn_send_reply(ofconn, b); return 0; } static enum ofperr handle_get_config_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofp_switch_config *osc; enum ofp_config_flags flags; struct ofpbuf *buf; /* Send reply. */ osc = make_openflow_xid(sizeof *osc, OFPT_GET_CONFIG_REPLY, oh->xid, &buf); flags = ofproto->frag_handling; if (ofconn_get_invalid_ttl_to_controller(ofconn)) { flags |= OFPC_INVALID_TTL_TO_CONTROLLER; } osc->flags = htons(flags); osc->miss_send_len = htons(ofconn_get_miss_send_len(ofconn)); ofconn_send_reply(ofconn, buf); return 0; } static enum ofperr handle_set_config(struct ofconn *ofconn, const struct ofp_switch_config *osc) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); uint16_t flags = ntohs(osc->flags); if (ofconn_get_type(ofconn) != OFCONN_PRIMARY || ofconn_get_role(ofconn) != NX_ROLE_SLAVE) { enum ofp_config_flags cur = ofproto->frag_handling; enum ofp_config_flags next = flags & OFPC_FRAG_MASK; assert((cur & OFPC_FRAG_MASK) == cur); if (cur != next) { if (ofproto->ofproto_class->set_frag_handling(ofproto, next)) { ofproto->frag_handling = next; } else { VLOG_WARN_RL(&rl, "%s: unsupported fragment handling mode %s", ofproto->name, ofputil_frag_handling_to_string(next)); } } } ofconn_set_invalid_ttl_to_controller(ofconn, (flags & OFPC_INVALID_TTL_TO_CONTROLLER)); ofconn_set_miss_send_len(ofconn, ntohs(osc->miss_send_len)); return 0; } /* Checks whether 'ofconn' is a slave controller. If so, returns an OpenFlow * error message code for the caller to propagate upward. Otherwise, returns * 0. * * The log message mentions 'msg_type'. */ static enum ofperr reject_slave_controller(struct ofconn *ofconn) { if (ofconn_get_type(ofconn) == OFCONN_PRIMARY && ofconn_get_role(ofconn) == NX_ROLE_SLAVE) { return OFPERR_OFPBRC_EPERM; } else { return 0; } } static enum ofperr handle_packet_out(struct ofconn *ofconn, const struct ofp_packet_out *opo) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofputil_packet_out po; struct ofpbuf *payload; struct flow flow; enum ofperr error; COVERAGE_INC(ofproto_packet_out); error = reject_slave_controller(ofconn); if (error) { return error; } /* Decode message. */ error = ofputil_decode_packet_out(&po, opo); if (error) { return error; } /* Get payload. */ if (po.buffer_id != UINT32_MAX) { error = ofconn_pktbuf_retrieve(ofconn, po.buffer_id, &payload, NULL); if (error || !payload) { return error; } } else { payload = xmalloc(sizeof *payload); ofpbuf_use_const(payload, po.packet, po.packet_len); } /* Send out packet. */ flow_extract(payload, 0, 0, po.in_port, &flow); error = p->ofproto_class->packet_out(p, payload, &flow, po.actions, po.n_actions); ofpbuf_delete(payload); return error; } static void update_port_config(struct ofport *port, enum ofputil_port_config config, enum ofputil_port_config mask) { enum ofputil_port_config old_config = port->pp.config; enum ofputil_port_config toggle; toggle = (config ^ port->pp.config) & mask; if (toggle & OFPUTIL_PC_PORT_DOWN) { if (config & OFPUTIL_PC_PORT_DOWN) { netdev_turn_flags_off(port->netdev, NETDEV_UP, true); } else { netdev_turn_flags_on(port->netdev, NETDEV_UP, true); } toggle &= ~OFPUTIL_PC_PORT_DOWN; } port->pp.config ^= toggle; if (port->pp.config != old_config) { port->ofproto->ofproto_class->port_reconfigured(port, old_config); } } static enum ofperr handle_port_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofputil_port_mod pm; struct ofport *port; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_port_mod(oh, &pm); if (error) { return error; } port = ofproto_get_port(p, pm.port_no); if (!port) { return OFPERR_OFPPMFC_BAD_PORT; } else if (!eth_addr_equals(port->pp.hw_addr, pm.hw_addr)) { return OFPERR_OFPPMFC_BAD_HW_ADDR; } else { update_port_config(port, pm.config, pm.mask); if (pm.advertise) { netdev_set_advertisements(port->netdev, pm.advertise); } } return 0; } static enum ofperr handle_desc_stats_request(struct ofconn *ofconn, const struct ofp_stats_msg *request) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofp_desc_stats *ods; struct ofpbuf *msg; ods = ofputil_make_stats_reply(sizeof *ods, request, &msg); ovs_strlcpy(ods->mfr_desc, p->mfr_desc, sizeof ods->mfr_desc); ovs_strlcpy(ods->hw_desc, p->hw_desc, sizeof ods->hw_desc); ovs_strlcpy(ods->sw_desc, p->sw_desc, sizeof ods->sw_desc); ovs_strlcpy(ods->serial_num, p->serial_desc, sizeof ods->serial_num); ovs_strlcpy(ods->dp_desc, p->dp_desc, sizeof ods->dp_desc); ofconn_send_reply(ofconn, msg); return 0; } static enum ofperr handle_table_stats_request(struct ofconn *ofconn, const struct ofp_stats_msg *request) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofp_table_stats *ots; struct ofpbuf *msg; size_t i; ofputil_make_stats_reply(sizeof(struct ofp_stats_msg), request, &msg); ots = ofpbuf_put_zeros(msg, sizeof *ots * p->n_tables); for (i = 0; i < p->n_tables; i++) { ots[i].table_id = i; sprintf(ots[i].name, "table%zu", i); ots[i].wildcards = htonl(OFPFW_ALL); ots[i].max_entries = htonl(1000000); /* An arbitrary big number. */ ots[i].active_count = htonl(classifier_count(&p->tables[i].cls)); } p->ofproto_class->get_tables(p, ots); for (i = 0; i < p->n_tables; i++) { const struct oftable *table = &p->tables[i]; if (table->name) { ovs_strzcpy(ots[i].name, table->name, sizeof ots[i].name); } if (table->max_flows < ntohl(ots[i].max_entries)) { ots[i].max_entries = htonl(table->max_flows); } } ofconn_send_reply(ofconn, msg); return 0; } static void append_port_stat(struct ofport *port, struct list *replies) { struct netdev_stats stats; struct ofp_port_stats *ops; /* Intentionally ignore return value, since errors will set * 'stats' to all-1s, which is correct for OpenFlow, and * netdev_get_stats() will log errors. */ ofproto_port_get_stats(port, &stats); ops = ofputil_append_stats_reply(sizeof *ops, replies); ops->port_no = htons(port->pp.port_no); memset(ops->pad, 0, sizeof ops->pad); put_32aligned_be64(&ops->rx_packets, htonll(stats.rx_packets)); put_32aligned_be64(&ops->tx_packets, htonll(stats.tx_packets)); put_32aligned_be64(&ops->rx_bytes, htonll(stats.rx_bytes)); put_32aligned_be64(&ops->tx_bytes, htonll(stats.tx_bytes)); put_32aligned_be64(&ops->rx_dropped, htonll(stats.rx_dropped)); put_32aligned_be64(&ops->tx_dropped, htonll(stats.tx_dropped)); put_32aligned_be64(&ops->rx_errors, htonll(stats.rx_errors)); put_32aligned_be64(&ops->tx_errors, htonll(stats.tx_errors)); put_32aligned_be64(&ops->rx_frame_err, htonll(stats.rx_frame_errors)); put_32aligned_be64(&ops->rx_over_err, htonll(stats.rx_over_errors)); put_32aligned_be64(&ops->rx_crc_err, htonll(stats.rx_crc_errors)); put_32aligned_be64(&ops->collisions, htonll(stats.collisions)); } static enum ofperr handle_port_stats_request(struct ofconn *ofconn, const struct ofp_port_stats_request *psr) { struct ofproto *p = ofconn_get_ofproto(ofconn); struct ofport *port; struct list replies; ofputil_start_stats_reply(&psr->osm, &replies); if (psr->port_no != htons(OFPP_NONE)) { port = ofproto_get_port(p, ntohs(psr->port_no)); if (port) { append_port_stat(port, &replies); } } else { HMAP_FOR_EACH (port, hmap_node, &p->ports) { append_port_stat(port, &replies); } } ofconn_send_replies(ofconn, &replies); return 0; } static void calc_flow_duration__(long long int start, long long int now, uint32_t *sec, uint32_t *nsec) { long long int msecs = now - start; *sec = msecs / 1000; *nsec = (msecs % 1000) * (1000 * 1000); } /* Checks whether 'table_id' is 0xff or a valid table ID in 'ofproto'. Returns * 0 if 'table_id' is OK, otherwise an OpenFlow error code. */ static enum ofperr check_table_id(const struct ofproto *ofproto, uint8_t table_id) { return (table_id == 0xff || table_id < ofproto->n_tables ? 0 : OFPERR_NXBRC_BAD_TABLE_ID); } static struct oftable * next_visible_table(struct ofproto *ofproto, uint8_t table_id) { struct oftable *table; for (table = &ofproto->tables[table_id]; table < &ofproto->tables[ofproto->n_tables]; table++) { if (!(table->flags & OFTABLE_HIDDEN)) { return table; } } return NULL; } static struct oftable * first_matching_table(struct ofproto *ofproto, uint8_t table_id) { if (table_id == 0xff) { return next_visible_table(ofproto, 0); } else if (table_id < ofproto->n_tables) { return &ofproto->tables[table_id]; } else { return NULL; } } static struct oftable * next_matching_table(struct ofproto *ofproto, struct oftable *table, uint8_t table_id) { return (table_id == 0xff ? next_visible_table(ofproto, (table - ofproto->tables) + 1) : NULL); } /* Assigns TABLE to each oftable, in turn, that matches TABLE_ID in OFPROTO: * * - If TABLE_ID is 0xff, this iterates over every classifier table in * OFPROTO, skipping tables marked OFTABLE_HIDDEN. * * - If TABLE_ID is the number of a table in OFPROTO, then the loop iterates * only once, for that table. (This can be used to access tables marked * OFTABLE_HIDDEN.) * * - Otherwise, TABLE_ID isn't valid for OFPROTO, so the loop won't be * entered at all. (Perhaps you should have validated TABLE_ID with * check_table_id().) * * All parameters are evaluated multiple times. */ #define FOR_EACH_MATCHING_TABLE(TABLE, TABLE_ID, OFPROTO) \ for ((TABLE) = first_matching_table(OFPROTO, TABLE_ID); \ (TABLE) != NULL; \ (TABLE) = next_matching_table(OFPROTO, TABLE, TABLE_ID)) /* Searches 'ofproto' for rules in table 'table_id' (or in all tables, if * 'table_id' is 0xff) that match 'match' in the "loose" way required for * OpenFlow OFPFC_MODIFY and OFPFC_DELETE requests and puts them on list * 'rules'. * * If 'out_port' is anything other than OFPP_NONE, then only rules that output * to 'out_port' are included. * * Hidden rules are always omitted. * * Returns 0 on success, otherwise an OpenFlow error code. */ static enum ofperr collect_rules_loose(struct ofproto *ofproto, uint8_t table_id, const struct cls_rule *match, ovs_be64 cookie, ovs_be64 cookie_mask, uint16_t out_port, struct list *rules) { struct oftable *table; enum ofperr error; error = check_table_id(ofproto, table_id); if (error) { return error; } list_init(rules); FOR_EACH_MATCHING_TABLE (table, table_id, ofproto) { struct cls_cursor cursor; struct rule *rule; cls_cursor_init(&cursor, &table->cls, match); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { if (rule->pending) { return OFPROTO_POSTPONE; } if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port) && !((rule->flow_cookie ^ cookie) & cookie_mask)) { list_push_back(rules, &rule->ofproto_node); } } } return 0; } /* Searches 'ofproto' for rules in table 'table_id' (or in all tables, if * 'table_id' is 0xff) that match 'match' in the "strict" way required for * OpenFlow OFPFC_MODIFY_STRICT and OFPFC_DELETE_STRICT requests and puts them * on list 'rules'. * * If 'out_port' is anything other than OFPP_NONE, then only rules that output * to 'out_port' are included. * * Hidden rules are always omitted. * * Returns 0 on success, otherwise an OpenFlow error code. */ static enum ofperr collect_rules_strict(struct ofproto *ofproto, uint8_t table_id, const struct cls_rule *match, ovs_be64 cookie, ovs_be64 cookie_mask, uint16_t out_port, struct list *rules) { struct oftable *table; int error; error = check_table_id(ofproto, table_id); if (error) { return error; } list_init(rules); FOR_EACH_MATCHING_TABLE (table, table_id, ofproto) { struct rule *rule; rule = rule_from_cls_rule(classifier_find_rule_exactly(&table->cls, match)); if (rule) { if (rule->pending) { return OFPROTO_POSTPONE; } if (!rule_is_hidden(rule) && rule_has_out_port(rule, out_port) && !((rule->flow_cookie ^ cookie) & cookie_mask)) { list_push_back(rules, &rule->ofproto_node); } } } return 0; } /* Returns 'age_ms' (a duration in milliseconds), converted to seconds and * forced into the range of a uint16_t. */ static int age_secs(long long int age_ms) { return (age_ms < 0 ? 0 : age_ms >= UINT16_MAX * 1000 ? UINT16_MAX : (unsigned int) age_ms / 1000); } static enum ofperr handle_flow_stats_request(struct ofconn *ofconn, const struct ofp_stats_msg *osm) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_flow_stats_request fsr; struct list replies; struct list rules; struct rule *rule; enum ofperr error; error = ofputil_decode_flow_stats_request(&fsr, &osm->header); if (error) { return error; } error = collect_rules_loose(ofproto, fsr.table_id, &fsr.match, fsr.cookie, fsr.cookie_mask, fsr.out_port, &rules); if (error) { return error; } ofputil_start_stats_reply(osm, &replies); LIST_FOR_EACH (rule, ofproto_node, &rules) { long long int now = time_msec(); struct ofputil_flow_stats fs; fs.rule = rule->cr; fs.cookie = rule->flow_cookie; fs.table_id = rule->table_id; calc_flow_duration__(rule->created, now, &fs.duration_sec, &fs.duration_nsec); fs.idle_timeout = rule->idle_timeout; fs.hard_timeout = rule->hard_timeout; fs.idle_age = age_secs(now - rule->used); fs.hard_age = age_secs(now - rule->modified); ofproto->ofproto_class->rule_get_stats(rule, &fs.packet_count, &fs.byte_count); fs.actions = rule->actions; fs.n_actions = rule->n_actions; ofputil_append_flow_stats_reply(&fs, &replies); } ofconn_send_replies(ofconn, &replies); return 0; } static void flow_stats_ds(struct rule *rule, struct ds *results) { uint64_t packet_count, byte_count; rule->ofproto->ofproto_class->rule_get_stats(rule, &packet_count, &byte_count); if (rule->table_id != 0) { ds_put_format(results, "table_id=%"PRIu8", ", rule->table_id); } ds_put_format(results, "duration=%llds, ", (time_msec() - rule->created) / 1000); ds_put_format(results, "priority=%u, ", rule->cr.priority); ds_put_format(results, "n_packets=%"PRIu64", ", packet_count); ds_put_format(results, "n_bytes=%"PRIu64", ", byte_count); cls_rule_format(&rule->cr, results); ds_put_char(results, ','); if (rule->n_actions > 0) { ofp_print_actions(results, rule->actions, rule->n_actions); } else { ds_put_cstr(results, "drop"); } ds_put_cstr(results, "\n"); } /* Adds a pretty-printed description of all flows to 'results', including * hidden flows (e.g., set up by in-band control). */ void ofproto_get_all_flows(struct ofproto *p, struct ds *results) { struct oftable *table; OFPROTO_FOR_EACH_TABLE (table, p) { struct cls_cursor cursor; struct rule *rule; cls_cursor_init(&cursor, &table->cls, NULL); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { flow_stats_ds(rule, results); } } } /* Obtains the NetFlow engine type and engine ID for 'ofproto' into * '*engine_type' and '*engine_id', respectively. */ void ofproto_get_netflow_ids(const struct ofproto *ofproto, uint8_t *engine_type, uint8_t *engine_id) { ofproto->ofproto_class->get_netflow_ids(ofproto, engine_type, engine_id); } /* Checks the fault status of CFM for 'ofp_port' within 'ofproto'. Returns a * bitmask of 'cfm_fault_reason's to indicate a CFM fault (generally * indicating a connectivity problem). Returns zero if CFM is not faulted, * and -1 if CFM is not enabled on 'port'. */ int ofproto_port_get_cfm_fault(const struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->get_cfm_fault ? ofproto->ofproto_class->get_cfm_fault(ofport) : -1); } /* Gets the MPIDs of the remote maintenance points broadcasting to 'ofp_port' * within 'ofproto'. Populates 'rmps' with an array of MPIDs owned by * 'ofproto', and 'n_rmps' with the number of MPIDs in 'rmps'. Returns a * number less than 0 if CFM is not enabled on 'ofp_port'. */ int ofproto_port_get_cfm_remote_mpids(const struct ofproto *ofproto, uint16_t ofp_port, const uint64_t **rmps, size_t *n_rmps) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); *rmps = NULL; *n_rmps = 0; return (ofport && ofproto->ofproto_class->get_cfm_remote_mpids ? ofproto->ofproto_class->get_cfm_remote_mpids(ofport, rmps, n_rmps) : -1); } /* Checks the health of the CFM for 'ofp_port' within 'ofproto'. Returns an * integer value between 0 and 100 to indicate the health of the port as a * percentage which is the average of cfm health of all the remote_mpids or * returns -1 if CFM is not enabled on 'ofport'. */ int ofproto_port_get_cfm_health(const struct ofproto *ofproto, uint16_t ofp_port) { struct ofport *ofport = ofproto_get_port(ofproto, ofp_port); return (ofport && ofproto->ofproto_class->get_cfm_health ? ofproto->ofproto_class->get_cfm_health(ofport) : -1); } static enum ofperr handle_aggregate_stats_request(struct ofconn *ofconn, const struct ofp_stats_msg *osm) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct ofputil_flow_stats_request request; struct ofputil_aggregate_stats stats; bool unknown_packets, unknown_bytes; struct ofpbuf *reply; struct list rules; struct rule *rule; enum ofperr error; error = ofputil_decode_flow_stats_request(&request, &osm->header); if (error) { return error; } error = collect_rules_loose(ofproto, request.table_id, &request.match, request.cookie, request.cookie_mask, request.out_port, &rules); if (error) { return error; } memset(&stats, 0, sizeof stats); unknown_packets = unknown_bytes = false; LIST_FOR_EACH (rule, ofproto_node, &rules) { uint64_t packet_count; uint64_t byte_count; ofproto->ofproto_class->rule_get_stats(rule, &packet_count, &byte_count); if (packet_count == UINT64_MAX) { unknown_packets = true; } else { stats.packet_count += packet_count; } if (byte_count == UINT64_MAX) { unknown_bytes = true; } else { stats.byte_count += byte_count; } stats.flow_count++; } if (unknown_packets) { stats.packet_count = UINT64_MAX; } if (unknown_bytes) { stats.byte_count = UINT64_MAX; } reply = ofputil_encode_aggregate_stats_reply(&stats, osm); ofconn_send_reply(ofconn, reply); return 0; } struct queue_stats_cbdata { struct ofport *ofport; struct list replies; }; static void put_queue_stats(struct queue_stats_cbdata *cbdata, uint32_t queue_id, const struct netdev_queue_stats *stats) { struct ofp_queue_stats *reply; reply = ofputil_append_stats_reply(sizeof *reply, &cbdata->replies); reply->port_no = htons(cbdata->ofport->pp.port_no); memset(reply->pad, 0, sizeof reply->pad); reply->queue_id = htonl(queue_id); put_32aligned_be64(&reply->tx_bytes, htonll(stats->tx_bytes)); put_32aligned_be64(&reply->tx_packets, htonll(stats->tx_packets)); put_32aligned_be64(&reply->tx_errors, htonll(stats->tx_errors)); } static void handle_queue_stats_dump_cb(uint32_t queue_id, struct netdev_queue_stats *stats, void *cbdata_) { struct queue_stats_cbdata *cbdata = cbdata_; put_queue_stats(cbdata, queue_id, stats); } static void handle_queue_stats_for_port(struct ofport *port, uint32_t queue_id, struct queue_stats_cbdata *cbdata) { cbdata->ofport = port; if (queue_id == OFPQ_ALL) { netdev_dump_queue_stats(port->netdev, handle_queue_stats_dump_cb, cbdata); } else { struct netdev_queue_stats stats; if (!netdev_get_queue_stats(port->netdev, queue_id, &stats)) { put_queue_stats(cbdata, queue_id, &stats); } } } static enum ofperr handle_queue_stats_request(struct ofconn *ofconn, const struct ofp_queue_stats_request *qsr) { struct ofproto *ofproto = ofconn_get_ofproto(ofconn); struct queue_stats_cbdata cbdata; struct ofport *port; unsigned int port_no; uint32_t queue_id; COVERAGE_INC(ofproto_queue_req); ofputil_start_stats_reply(&qsr->osm, &cbdata.replies); port_no = ntohs(qsr->port_no); queue_id = ntohl(qsr->queue_id); if (port_no == OFPP_ALL) { HMAP_FOR_EACH (port, hmap_node, &ofproto->ports) { handle_queue_stats_for_port(port, queue_id, &cbdata); } } else if (port_no < OFPP_MAX) { port = ofproto_get_port(ofproto, port_no); if (port) { handle_queue_stats_for_port(port, queue_id, &cbdata); } } else { ofpbuf_list_delete(&cbdata.replies); return OFPERR_OFPQOFC_BAD_PORT; } ofconn_send_replies(ofconn, &cbdata.replies); return 0; } static bool is_flow_deletion_pending(const struct ofproto *ofproto, const struct cls_rule *cls_rule, uint8_t table_id) { if (!hmap_is_empty(&ofproto->deletions)) { struct ofoperation *op; HMAP_FOR_EACH_WITH_HASH (op, hmap_node, cls_rule_hash(cls_rule, table_id), &ofproto->deletions) { if (cls_rule_equal(cls_rule, &op->rule->cr)) { return true; } } } return false; } /* Implements OFPFC_ADD and the cases for OFPFC_MODIFY and OFPFC_MODIFY_STRICT * in which no matching flow already exists in the flow table. * * Adds the flow specified by 'ofm', which is followed by 'n_actions' * ofp_actions, to the ofproto's flow table. Returns 0 on success, an OpenFlow * error code on failure, or OFPROTO_POSTPONE if the operation cannot be * initiated now but may be retried later. * * 'ofconn' is used to retrieve the packet buffer specified in ofm->buffer_id, * if any. */ static enum ofperr add_flow(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *request) { struct oftable *table; struct ofopgroup *group; struct rule *victim; struct rule *rule; int error; error = check_table_id(ofproto, fm->table_id); if (error) { return error; } /* Pick table. */ if (fm->table_id == 0xff) { uint8_t table_id; if (ofproto->ofproto_class->rule_choose_table) { error = ofproto->ofproto_class->rule_choose_table(ofproto, &fm->cr, &table_id); if (error) { return error; } assert(table_id < ofproto->n_tables); table = &ofproto->tables[table_id]; } else { table = &ofproto->tables[0]; } } else if (fm->table_id < ofproto->n_tables) { table = &ofproto->tables[fm->table_id]; } else { return OFPERR_NXFMFC_BAD_TABLE_ID; } if (table->flags & OFTABLE_READONLY) { return OFPERR_OFPBRC_EPERM; } /* Check for overlap, if requested. */ if (fm->flags & OFPFF_CHECK_OVERLAP && classifier_rule_overlaps(&table->cls, &fm->cr)) { return OFPERR_OFPFMFC_OVERLAP; } /* Serialize against pending deletion. */ if (is_flow_deletion_pending(ofproto, &fm->cr, table - ofproto->tables)) { return OFPROTO_POSTPONE; } /* Allocate new rule. */ rule = ofproto->ofproto_class->rule_alloc(); if (!rule) { VLOG_WARN_RL(&rl, "%s: failed to create rule (%s)", ofproto->name, strerror(error)); return ENOMEM; } rule->ofproto = ofproto; rule->cr = fm->cr; rule->pending = NULL; rule->flow_cookie = fm->cookie; rule->created = rule->modified = rule->used = time_msec(); rule->idle_timeout = fm->idle_timeout; rule->hard_timeout = fm->hard_timeout; rule->table_id = table - ofproto->tables; rule->send_flow_removed = (fm->flags & OFPFF_SEND_FLOW_REM) != 0; rule->actions = ofputil_actions_clone(fm->actions, fm->n_actions); rule->n_actions = fm->n_actions; rule->evictable = true; rule->eviction_group = NULL; /* Insert new rule. */ victim = oftable_replace_rule(rule); if (victim && !rule_is_modifiable(victim)) { error = OFPERR_OFPBRC_EPERM; } else if (victim && victim->pending) { error = OFPROTO_POSTPONE; } else { struct rule *evict; if (classifier_count(&table->cls) > table->max_flows) { bool was_evictable; was_evictable = rule->evictable; rule->evictable = false; evict = choose_rule_to_evict(table); rule->evictable = was_evictable; if (!evict) { error = OFPERR_OFPFMFC_ALL_TABLES_FULL; goto exit; } else if (evict->pending) { error = OFPROTO_POSTPONE; goto exit; } } else { evict = NULL; } group = ofopgroup_create(ofproto, ofconn, request, fm->buffer_id); ofoperation_create(group, rule, OFOPERATION_ADD); rule->pending->victim = victim; error = ofproto->ofproto_class->rule_construct(rule); if (error) { ofoperation_destroy(rule->pending); } else if (evict) { delete_flow__(evict, group); } ofopgroup_submit(group); } exit: /* Back out if an error occurred. */ if (error) { oftable_substitute_rule(rule, victim); ofproto_rule_destroy__(rule); } return error; } /* OFPFC_MODIFY and OFPFC_MODIFY_STRICT. */ /* Modifies the rules listed in 'rules', changing their actions to match those * in 'fm'. * * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id, * if any. * * Returns 0 on success, otherwise an OpenFlow error code. */ static enum ofperr modify_flows__(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *request, struct list *rules) { struct ofopgroup *group; struct rule *rule; enum ofperr error; group = ofopgroup_create(ofproto, ofconn, request, fm->buffer_id); error = OFPERR_OFPBRC_EPERM; LIST_FOR_EACH (rule, ofproto_node, rules) { if (rule_is_modifiable(rule)) { /* At least one rule is modifiable, don't report EPERM error. */ error = 0; } else { continue; } if (!ofputil_actions_equal(fm->actions, fm->n_actions, rule->actions, rule->n_actions)) { ofoperation_create(group, rule, OFOPERATION_MODIFY); rule->pending->actions = rule->actions; rule->pending->n_actions = rule->n_actions; rule->actions = ofputil_actions_clone(fm->actions, fm->n_actions); rule->n_actions = fm->n_actions; ofproto->ofproto_class->rule_modify_actions(rule); } else { rule->modified = time_msec(); } rule->flow_cookie = fm->cookie; } ofopgroup_submit(group); return error; } /* Implements OFPFC_MODIFY. Returns 0 on success or an OpenFlow error code on * failure. * * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id, * if any. */ static enum ofperr modify_flows_loose(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *request) { struct list rules; int error; error = collect_rules_loose(ofproto, fm->table_id, &fm->cr, fm->cookie, fm->cookie_mask, OFPP_NONE, &rules); return (error ? error : list_is_empty(&rules) ? add_flow(ofproto, ofconn, fm, request) : modify_flows__(ofproto, ofconn, fm, request, &rules)); } /* Implements OFPFC_MODIFY_STRICT. Returns 0 on success or an OpenFlow error * code on failure. * * 'ofconn' is used to retrieve the packet buffer specified in fm->buffer_id, * if any. */ static enum ofperr modify_flow_strict(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *request) { struct list rules; int error; error = collect_rules_strict(ofproto, fm->table_id, &fm->cr, fm->cookie, fm->cookie_mask, OFPP_NONE, &rules); return (error ? error : list_is_empty(&rules) ? add_flow(ofproto, ofconn, fm, request) : list_is_singleton(&rules) ? modify_flows__(ofproto, ofconn, fm, request, &rules) : 0); } /* OFPFC_DELETE implementation. */ static void delete_flow__(struct rule *rule, struct ofopgroup *group) { struct ofproto *ofproto = rule->ofproto; ofproto_rule_send_removed(rule, OFPRR_DELETE); ofoperation_create(group, rule, OFOPERATION_DELETE); oftable_remove_rule(rule); ofproto->ofproto_class->rule_destruct(rule); } /* Deletes the rules listed in 'rules'. * * Returns 0 on success, otherwise an OpenFlow error code. */ static enum ofperr delete_flows__(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofp_header *request, struct list *rules) { struct rule *rule, *next; struct ofopgroup *group; group = ofopgroup_create(ofproto, ofconn, request, UINT32_MAX); LIST_FOR_EACH_SAFE (rule, next, ofproto_node, rules) { delete_flow__(rule, group); } ofopgroup_submit(group); return 0; } /* Implements OFPFC_DELETE. */ static enum ofperr delete_flows_loose(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *request) { struct list rules; enum ofperr error; error = collect_rules_loose(ofproto, fm->table_id, &fm->cr, fm->cookie, fm->cookie_mask, fm->out_port, &rules); return (error ? error : !list_is_empty(&rules) ? delete_flows__(ofproto, ofconn, request, &rules) : 0); } /* Implements OFPFC_DELETE_STRICT. */ static enum ofperr delete_flow_strict(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *request) { struct list rules; enum ofperr error; error = collect_rules_strict(ofproto, fm->table_id, &fm->cr, fm->cookie, fm->cookie_mask, fm->out_port, &rules); return (error ? error : list_is_singleton(&rules) ? delete_flows__(ofproto, ofconn, request, &rules) : 0); } static void ofproto_rule_send_removed(struct rule *rule, uint8_t reason) { struct ofputil_flow_removed fr; if (rule_is_hidden(rule) || !rule->send_flow_removed) { return; } fr.rule = rule->cr; fr.cookie = rule->flow_cookie; fr.reason = reason; calc_flow_duration__(rule->created, time_msec(), &fr.duration_sec, &fr.duration_nsec); fr.idle_timeout = rule->idle_timeout; rule->ofproto->ofproto_class->rule_get_stats(rule, &fr.packet_count, &fr.byte_count); connmgr_send_flow_removed(rule->ofproto->connmgr, &fr); } void ofproto_rule_update_used(struct rule *rule, long long int used) { if (used > rule->used) { struct eviction_group *evg = rule->eviction_group; rule->used = used; if (evg) { heap_change(&evg->rules, &rule->evg_node, rule_eviction_priority(rule)); } } } /* Sends an OpenFlow "flow removed" message with the given 'reason' (either * OFPRR_HARD_TIMEOUT or OFPRR_IDLE_TIMEOUT), and then removes 'rule' from its * ofproto. * * ofproto implementation ->run() functions should use this function to expire * OpenFlow flows. */ void ofproto_rule_expire(struct rule *rule, uint8_t reason) { struct ofproto *ofproto = rule->ofproto; struct ofopgroup *group; assert(reason == OFPRR_HARD_TIMEOUT || reason == OFPRR_IDLE_TIMEOUT); ofproto_rule_send_removed(rule, reason); group = ofopgroup_create_unattached(ofproto); ofoperation_create(group, rule, OFOPERATION_DELETE); oftable_remove_rule(rule); ofproto->ofproto_class->rule_destruct(rule); ofopgroup_submit(group); } static enum ofperr handle_flow_mod(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofputil_flow_mod fm; enum ofperr error; error = reject_slave_controller(ofconn); if (error) { return error; } error = ofputil_decode_flow_mod(&fm, oh, ofconn_get_protocol(ofconn)); if (error) { return error; } /* We do not support the emergency flow cache. It will hopefully get * dropped from OpenFlow in the near future. */ if (fm.flags & OFPFF_EMERG) { /* There isn't a good fit for an error code, so just state that the * flow table is full. */ return OFPERR_OFPFMFC_ALL_TABLES_FULL; } return handle_flow_mod__(ofconn_get_ofproto(ofconn), ofconn, &fm, oh); } static enum ofperr handle_flow_mod__(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofputil_flow_mod *fm, const struct ofp_header *oh) { if (ofproto->n_pending >= 50) { assert(!list_is_empty(&ofproto->pending)); return OFPROTO_POSTPONE; } switch (fm->command) { case OFPFC_ADD: return add_flow(ofproto, ofconn, fm, oh); case OFPFC_MODIFY: return modify_flows_loose(ofproto, ofconn, fm, oh); case OFPFC_MODIFY_STRICT: return modify_flow_strict(ofproto, ofconn, fm, oh); case OFPFC_DELETE: return delete_flows_loose(ofproto, ofconn, fm, oh); case OFPFC_DELETE_STRICT: return delete_flow_strict(ofproto, ofconn, fm, oh); default: if (fm->command > 0xff) { VLOG_WARN_RL(&rl, "flow_mod has explicit table_id but " "flow_mod_table_id extension is not enabled"); } return OFPERR_OFPFMFC_BAD_COMMAND; } } static enum ofperr handle_role_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct nx_role_request *nrr = (struct nx_role_request *) oh; struct nx_role_request *reply; struct ofpbuf *buf; uint32_t role; role = ntohl(nrr->role); if (role != NX_ROLE_OTHER && role != NX_ROLE_MASTER && role != NX_ROLE_SLAVE) { return OFPERR_OFPRRFC_BAD_ROLE; } if (ofconn_get_role(ofconn) != role && ofconn_has_pending_opgroups(ofconn)) { return OFPROTO_POSTPONE; } ofconn_set_role(ofconn, role); reply = make_nxmsg_xid(sizeof *reply, NXT_ROLE_REPLY, oh->xid, &buf); reply->role = htonl(role); ofconn_send_reply(ofconn, buf); return 0; } static enum ofperr handle_nxt_flow_mod_table_id(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_flow_mod_table_id *msg = (const struct nx_flow_mod_table_id *) oh; enum ofputil_protocol cur, next; cur = ofconn_get_protocol(ofconn); next = ofputil_protocol_set_tid(cur, msg->set != 0); ofconn_set_protocol(ofconn, next); return 0; } static enum ofperr handle_nxt_set_flow_format(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_set_flow_format *msg = (const struct nx_set_flow_format *) oh; enum ofputil_protocol cur, next; enum ofputil_protocol next_base; next_base = ofputil_nx_flow_format_to_protocol(ntohl(msg->format)); if (!next_base) { return OFPERR_OFPBRC_EPERM; } cur = ofconn_get_protocol(ofconn); next = ofputil_protocol_set_base(cur, next_base); if (cur != next && ofconn_has_pending_opgroups(ofconn)) { /* Avoid sending async messages in surprising protocol. */ return OFPROTO_POSTPONE; } ofconn_set_protocol(ofconn, next); return 0; } static enum ofperr handle_nxt_set_packet_in_format(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_set_packet_in_format *msg; uint32_t format; msg = (const struct nx_set_packet_in_format *) oh; format = ntohl(msg->format); if (format != NXPIF_OPENFLOW10 && format != NXPIF_NXM) { return OFPERR_OFPBRC_EPERM; } if (format != ofconn_get_packet_in_format(ofconn) && ofconn_has_pending_opgroups(ofconn)) { /* Avoid sending async message in surprsing packet in format. */ return OFPROTO_POSTPONE; } ofconn_set_packet_in_format(ofconn, format); return 0; } static enum ofperr handle_nxt_set_async_config(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_async_config *msg = (const struct nx_async_config *) oh; uint32_t master[OAM_N_TYPES]; uint32_t slave[OAM_N_TYPES]; master[OAM_PACKET_IN] = ntohl(msg->packet_in_mask[0]); master[OAM_PORT_STATUS] = ntohl(msg->port_status_mask[0]); master[OAM_FLOW_REMOVED] = ntohl(msg->flow_removed_mask[0]); slave[OAM_PACKET_IN] = ntohl(msg->packet_in_mask[1]); slave[OAM_PORT_STATUS] = ntohl(msg->port_status_mask[1]); slave[OAM_FLOW_REMOVED] = ntohl(msg->flow_removed_mask[1]); ofconn_set_async_config(ofconn, master, slave); return 0; } static enum ofperr handle_nxt_set_controller_id(struct ofconn *ofconn, const struct ofp_header *oh) { const struct nx_controller_id *nci; nci = (const struct nx_controller_id *) oh; if (!is_all_zeros(nci->zero, sizeof nci->zero)) { return OFPERR_NXBRC_MUST_BE_ZERO; } ofconn_set_controller_id(ofconn, ntohs(nci->controller_id)); return 0; } static enum ofperr handle_barrier_request(struct ofconn *ofconn, const struct ofp_header *oh) { struct ofp_header *ob; struct ofpbuf *buf; if (ofconn_has_pending_opgroups(ofconn)) { return OFPROTO_POSTPONE; } ob = make_openflow_xid(sizeof *ob, OFPT10_BARRIER_REPLY, oh->xid, &buf); ofconn_send_reply(ofconn, buf); return 0; } static enum ofperr handle_openflow__(struct ofconn *ofconn, const struct ofpbuf *msg) { const struct ofp_header *oh = msg->data; const struct ofputil_msg_type *type; enum ofperr error; error = ofputil_decode_msg_type(oh, &type); if (error) { return error; } switch (ofputil_msg_type_code(type)) { /* OpenFlow requests. */ case OFPUTIL_OFPT_ECHO_REQUEST: return handle_echo_request(ofconn, oh); case OFPUTIL_OFPT_FEATURES_REQUEST: return handle_features_request(ofconn, oh); case OFPUTIL_OFPT_GET_CONFIG_REQUEST: return handle_get_config_request(ofconn, oh); case OFPUTIL_OFPT_SET_CONFIG: return handle_set_config(ofconn, msg->data); case OFPUTIL_OFPT_PACKET_OUT: return handle_packet_out(ofconn, msg->data); case OFPUTIL_OFPT_PORT_MOD: return handle_port_mod(ofconn, oh); case OFPUTIL_OFPT_FLOW_MOD: return handle_flow_mod(ofconn, oh); case OFPUTIL_OFPT_BARRIER_REQUEST: return handle_barrier_request(ofconn, oh); /* OpenFlow replies. */ case OFPUTIL_OFPT_ECHO_REPLY: return 0; /* Nicira extension requests. */ case OFPUTIL_NXT_ROLE_REQUEST: return handle_role_request(ofconn, oh); case OFPUTIL_NXT_FLOW_MOD_TABLE_ID: return handle_nxt_flow_mod_table_id(ofconn, oh); case OFPUTIL_NXT_SET_FLOW_FORMAT: return handle_nxt_set_flow_format(ofconn, oh); case OFPUTIL_NXT_SET_PACKET_IN_FORMAT: return handle_nxt_set_packet_in_format(ofconn, oh); case OFPUTIL_NXT_SET_CONTROLLER_ID: return handle_nxt_set_controller_id(ofconn, oh); case OFPUTIL_NXT_FLOW_MOD: return handle_flow_mod(ofconn, oh); case OFPUTIL_NXT_FLOW_AGE: /* Nothing to do. */ return 0; case OFPUTIL_NXT_SET_ASYNC_CONFIG: return handle_nxt_set_async_config(ofconn, oh); /* Statistics requests. */ case OFPUTIL_OFPST_DESC_REQUEST: return handle_desc_stats_request(ofconn, msg->data); case OFPUTIL_OFPST_FLOW_REQUEST: case OFPUTIL_NXST_FLOW_REQUEST: return handle_flow_stats_request(ofconn, msg->data); case OFPUTIL_OFPST_AGGREGATE_REQUEST: case OFPUTIL_NXST_AGGREGATE_REQUEST: return handle_aggregate_stats_request(ofconn, msg->data); case OFPUTIL_OFPST_TABLE_REQUEST: return handle_table_stats_request(ofconn, msg->data); case OFPUTIL_OFPST_PORT_REQUEST: return handle_port_stats_request(ofconn, msg->data); case OFPUTIL_OFPST_QUEUE_REQUEST: return handle_queue_stats_request(ofconn, msg->data); case OFPUTIL_MSG_INVALID: case OFPUTIL_OFPT_HELLO: case OFPUTIL_OFPT_ERROR: case OFPUTIL_OFPT_FEATURES_REPLY: case OFPUTIL_OFPT_GET_CONFIG_REPLY: case OFPUTIL_OFPT_PACKET_IN: case OFPUTIL_OFPT_FLOW_REMOVED: case OFPUTIL_OFPT_PORT_STATUS: case OFPUTIL_OFPT_BARRIER_REPLY: case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REQUEST: case OFPUTIL_OFPT_QUEUE_GET_CONFIG_REPLY: case OFPUTIL_OFPST_DESC_REPLY: case OFPUTIL_OFPST_FLOW_REPLY: case OFPUTIL_OFPST_QUEUE_REPLY: case OFPUTIL_OFPST_PORT_REPLY: case OFPUTIL_OFPST_TABLE_REPLY: case OFPUTIL_OFPST_AGGREGATE_REPLY: case OFPUTIL_NXT_ROLE_REPLY: case OFPUTIL_NXT_FLOW_REMOVED: case OFPUTIL_NXT_PACKET_IN: case OFPUTIL_NXST_FLOW_REPLY: case OFPUTIL_NXST_AGGREGATE_REPLY: default: return (oh->type == OFPT10_STATS_REQUEST || oh->type == OFPT10_STATS_REPLY ? OFPERR_OFPBRC_BAD_STAT : OFPERR_OFPBRC_BAD_TYPE); } } static bool handle_openflow(struct ofconn *ofconn, struct ofpbuf *ofp_msg) { int error = handle_openflow__(ofconn, ofp_msg); if (error && error != OFPROTO_POSTPONE) { ofconn_send_error(ofconn, ofp_msg->data, error); } COVERAGE_INC(ofproto_recv_openflow); return error != OFPROTO_POSTPONE; } /* Asynchronous operations. */ /* Creates and returns a new ofopgroup that is not associated with any * OpenFlow connection. * * The caller should add operations to the returned group with * ofoperation_create() and then submit it with ofopgroup_submit(). */ static struct ofopgroup * ofopgroup_create_unattached(struct ofproto *ofproto) { struct ofopgroup *group = xzalloc(sizeof *group); group->ofproto = ofproto; list_init(&group->ofproto_node); list_init(&group->ops); list_init(&group->ofconn_node); return group; } /* Creates and returns a new ofopgroup for 'ofproto'. * * If 'ofconn' is NULL, the new ofopgroup is not associated with any OpenFlow * connection. The 'request' and 'buffer_id' arguments are ignored. * * If 'ofconn' is nonnull, then the new ofopgroup is associated with 'ofconn'. * If the ofopgroup eventually fails, then the error reply will include * 'request'. If the ofopgroup eventually succeeds, then the packet with * buffer id 'buffer_id' on 'ofconn' will be sent by 'ofconn''s ofproto. * * The caller should add operations to the returned group with * ofoperation_create() and then submit it with ofopgroup_submit(). */ static struct ofopgroup * ofopgroup_create(struct ofproto *ofproto, struct ofconn *ofconn, const struct ofp_header *request, uint32_t buffer_id) { struct ofopgroup *group = ofopgroup_create_unattached(ofproto); if (ofconn) { size_t request_len = ntohs(request->length); assert(ofconn_get_ofproto(ofconn) == ofproto); ofconn_add_opgroup(ofconn, &group->ofconn_node); group->ofconn = ofconn; group->request = xmemdup(request, MIN(request_len, 64)); group->buffer_id = buffer_id; } return group; } /* Submits 'group' for processing. * * If 'group' contains no operations (e.g. none were ever added, or all of the * ones that were added completed synchronously), then it is destroyed * immediately. Otherwise it is added to the ofproto's list of pending * groups. */ static void ofopgroup_submit(struct ofopgroup *group) { if (list_is_empty(&group->ops)) { ofopgroup_destroy(group); } else { list_push_back(&group->ofproto->pending, &group->ofproto_node); group->ofproto->n_pending++; } } static void ofopgroup_destroy(struct ofopgroup *group) { assert(list_is_empty(&group->ops)); if (!list_is_empty(&group->ofproto_node)) { assert(group->ofproto->n_pending > 0); group->ofproto->n_pending--; list_remove(&group->ofproto_node); } if (!list_is_empty(&group->ofconn_node)) { list_remove(&group->ofconn_node); if (group->error) { ofconn_send_error(group->ofconn, group->request, group->error); } connmgr_retry(group->ofproto->connmgr); } free(group->request); free(group); } /* Initiates a new operation on 'rule', of the specified 'type', within * 'group'. Prior to calling, 'rule' must not have any pending operation. */ static void ofoperation_create(struct ofopgroup *group, struct rule *rule, enum ofoperation_type type) { struct ofoperation *op; assert(!rule->pending); op = rule->pending = xzalloc(sizeof *op); op->group = group; list_push_back(&group->ops, &op->group_node); op->rule = rule; op->type = type; op->status = -1; op->flow_cookie = rule->flow_cookie; if (type == OFOPERATION_DELETE) { hmap_insert(&op->group->ofproto->deletions, &op->hmap_node, cls_rule_hash(&rule->cr, rule->table_id)); } } static void ofoperation_destroy(struct ofoperation *op) { struct ofopgroup *group = op->group; if (op->rule) { op->rule->pending = NULL; } if (op->type == OFOPERATION_DELETE) { hmap_remove(&group->ofproto->deletions, &op->hmap_node); } list_remove(&op->group_node); free(op->actions); free(op); if (list_is_empty(&group->ops) && !list_is_empty(&group->ofproto_node)) { ofopgroup_destroy(group); } } /* Indicates that 'op' completed with status 'error', which is either 0 to * indicate success or an OpenFlow error code on failure. * * If 'error' is 0, indicating success, the operation will be committed * permanently to the flow table. There is one interesting subcase: * * - If 'op' is an "add flow" operation that is replacing an existing rule in * the flow table (the "victim" rule) by a new one, then the caller must * have uninitialized any derived state in the victim rule, as in step 5 in * the "Life Cycle" in ofproto/ofproto-provider.h. ofoperation_complete() * performs steps 6 and 7 for the victim rule, most notably by calling its * ->rule_dealloc() function. * * If 'error' is nonzero, then generally the operation will be rolled back: * * - If 'op' is an "add flow" operation, ofproto removes the new rule or * restores the original rule. The caller must have uninitialized any * derived state in the new rule, as in step 5 of in the "Life Cycle" in * ofproto/ofproto-provider.h. ofoperation_complete() performs steps 6 and * and 7 for the new rule, calling its ->rule_dealloc() function. * * - If 'op' is a "modify flow" operation, ofproto restores the original * actions. * * - 'op' must not be a "delete flow" operation. Removing a rule is not * allowed to fail. It must always succeed. * * Please see the large comment in ofproto/ofproto-provider.h titled * "Asynchronous Operation Support" for more information. */ void ofoperation_complete(struct ofoperation *op, enum ofperr error) { struct ofopgroup *group = op->group; struct rule *rule = op->rule; struct ofproto *ofproto = rule->ofproto; assert(rule->pending == op); assert(op->status < 0); if (!error && !group->error && op->type != OFOPERATION_DELETE && group->ofconn && group->buffer_id != UINT32_MAX && list_is_singleton(&op->group_node)) { struct ofpbuf *packet; uint16_t in_port; error = ofconn_pktbuf_retrieve(group->ofconn, group->buffer_id, &packet, &in_port); if (packet) { assert(!error); error = rule_execute(rule, in_port, packet); } } if (!group->error) { group->error = error; } switch (op->type) { case OFOPERATION_ADD: if (!error) { ofproto_rule_destroy__(op->victim); if ((rule->cr.wc.vlan_tci_mask & htons(VLAN_VID_MASK)) == htons(VLAN_VID_MASK)) { if (ofproto->vlan_bitmap) { uint16_t vid = vlan_tci_to_vid(rule->cr.flow.vlan_tci); if (!bitmap_is_set(ofproto->vlan_bitmap, vid)) { bitmap_set1(ofproto->vlan_bitmap, vid); ofproto->vlans_changed = true; } } else { ofproto->vlans_changed = true; } } } else { oftable_substitute_rule(rule, op->victim); ofproto_rule_destroy__(rule); } break; case OFOPERATION_DELETE: assert(!error); ofproto_rule_destroy__(rule); op->rule = NULL; break; case OFOPERATION_MODIFY: if (!error) { rule->modified = time_msec(); } else { free(rule->actions); rule->actions = op->actions; rule->n_actions = op->n_actions; op->actions = NULL; } break; default: NOT_REACHED(); } ofoperation_destroy(op); } struct rule * ofoperation_get_victim(struct ofoperation *op) { assert(op->type == OFOPERATION_ADD); return op->victim; } static uint64_t pick_datapath_id(const struct ofproto *ofproto) { const struct ofport *port; port = ofproto_get_port(ofproto, OFPP_LOCAL); if (port) { uint8_t ea[ETH_ADDR_LEN]; int error; error = netdev_get_etheraddr(port->netdev, ea); if (!error) { return eth_addr_to_uint64(ea); } VLOG_WARN("could not get MAC address for %s (%s)", netdev_get_name(port->netdev), strerror(error)); } return ofproto->fallback_dpid; } static uint64_t pick_fallback_dpid(void) { uint8_t ea[ETH_ADDR_LEN]; eth_addr_nicira_random(ea); return eth_addr_to_uint64(ea); } /* Table overflow policy. */ /* Chooses and returns a rule to evict from 'table'. Returns NULL if the table * is not configured to evict rules or if the table contains no evictable * rules. (Rules with 'evictable' set to false or with no timeouts are not * evictable.) */ static struct rule * choose_rule_to_evict(struct oftable *table) { struct eviction_group *evg; if (!table->eviction_fields) { return NULL; } /* In the common case, the outer and inner loops here will each be entered * exactly once: * * - The inner loop normally "return"s in its first iteration. If the * eviction group has any evictable rules, then it always returns in * some iteration. * * - The outer loop only iterates more than once if the largest eviction * group has no evictable rules. * * - The outer loop can exit only if table's 'max_flows' is all filled up * by unevictable rules'. */ HEAP_FOR_EACH (evg, size_node, &table->eviction_groups_by_size) { struct rule *rule; HEAP_FOR_EACH (rule, evg_node, &evg->rules) { if (rule->evictable) { return rule; } } } return NULL; } /* Searches 'ofproto' for tables that have more flows than their configured * maximum and that have flow eviction enabled, and evicts as many flows as * necessary and currently feasible from them. * * This triggers only when an OpenFlow table has N flows in it and then the * client configures a maximum number of flows less than N. */ static void ofproto_evict(struct ofproto *ofproto) { struct ofopgroup *group; struct oftable *table; group = ofopgroup_create_unattached(ofproto); OFPROTO_FOR_EACH_TABLE (table, ofproto) { while (classifier_count(&table->cls) > table->max_flows && table->eviction_fields) { struct rule *rule; rule = choose_rule_to_evict(table); if (!rule || rule->pending) { break; } ofoperation_create(group, rule, OFOPERATION_DELETE); oftable_remove_rule(rule); ofproto->ofproto_class->rule_destruct(rule); } } ofopgroup_submit(group); } /* Eviction groups. */ /* Returns the priority to use for an eviction_group that contains 'n_rules' * rules. The priority contains low-order random bits to ensure that eviction * groups with the same number of rules are prioritized randomly. */ static uint32_t eviction_group_priority(size_t n_rules) { uint16_t size = MIN(UINT16_MAX, n_rules); return (size << 16) | random_uint16(); } /* Updates 'evg', an eviction_group within 'table', following a change that * adds or removes rules in 'evg'. */ static void eviction_group_resized(struct oftable *table, struct eviction_group *evg) { heap_change(&table->eviction_groups_by_size, &evg->size_node, eviction_group_priority(heap_count(&evg->rules))); } /* Destroys 'evg', an eviction_group within 'table': * * - Removes all the rules, if any, from 'evg'. (It doesn't destroy the * rules themselves, just removes them from the eviction group.) * * - Removes 'evg' from 'table'. * * - Frees 'evg'. */ static void eviction_group_destroy(struct oftable *table, struct eviction_group *evg) { while (!heap_is_empty(&evg->rules)) { struct rule *rule; rule = CONTAINER_OF(heap_pop(&evg->rules), struct rule, evg_node); rule->eviction_group = NULL; } hmap_remove(&table->eviction_groups_by_id, &evg->id_node); heap_remove(&table->eviction_groups_by_size, &evg->size_node); heap_destroy(&evg->rules); free(evg); } /* Removes 'rule' from its eviction group, if any. */ static void eviction_group_remove_rule(struct rule *rule) { if (rule->eviction_group) { struct oftable *table = &rule->ofproto->tables[rule->table_id]; struct eviction_group *evg = rule->eviction_group; rule->eviction_group = NULL; heap_remove(&evg->rules, &rule->evg_node); if (heap_is_empty(&evg->rules)) { eviction_group_destroy(table, evg); } else { eviction_group_resized(table, evg); } } } /* Hashes the 'rule''s values for the eviction_fields of 'rule''s table, and * returns the hash value. */ static uint32_t eviction_group_hash_rule(struct rule *rule) { struct oftable *table = &rule->ofproto->tables[rule->table_id]; const struct mf_subfield *sf; uint32_t hash; hash = table->eviction_group_id_basis; for (sf = table->eviction_fields; sf < &table->eviction_fields[table->n_eviction_fields]; sf++) { if (mf_are_prereqs_ok(sf->field, &rule->cr.flow)) { union mf_value value; mf_get_value(sf->field, &rule->cr.flow, &value); if (sf->ofs) { bitwise_zero(&value, sf->field->n_bytes, 0, sf->ofs); } if (sf->ofs + sf->n_bits < sf->field->n_bytes * 8) { unsigned int start = sf->ofs + sf->n_bits; bitwise_zero(&value, sf->field->n_bytes, start, sf->field->n_bytes * 8 - start); } hash = hash_bytes(&value, sf->field->n_bytes, hash); } else { hash = hash_int(hash, 0); } } return hash; } /* Returns an eviction group within 'table' with the given 'id', creating one * if necessary. */ static struct eviction_group * eviction_group_find(struct oftable *table, uint32_t id) { struct eviction_group *evg; HMAP_FOR_EACH_WITH_HASH (evg, id_node, id, &table->eviction_groups_by_id) { return evg; } evg = xmalloc(sizeof *evg); hmap_insert(&table->eviction_groups_by_id, &evg->id_node, id); heap_insert(&table->eviction_groups_by_size, &evg->size_node, eviction_group_priority(0)); heap_init(&evg->rules); return evg; } /* Returns an eviction priority for 'rule'. The return value should be * interpreted so that higher priorities make a rule more attractive candidates * for eviction. */ static uint32_t rule_eviction_priority(struct rule *rule) { long long int hard_expiration; long long int idle_expiration; long long int expiration; uint32_t expiration_offset; /* Calculate time of expiration. */ hard_expiration = (rule->hard_timeout ? rule->modified + rule->hard_timeout * 1000 : LLONG_MAX); idle_expiration = (rule->idle_timeout ? rule->used + rule->idle_timeout * 1000 : LLONG_MAX); expiration = MIN(hard_expiration, idle_expiration); if (expiration == LLONG_MAX) { return 0; } /* Calculate the time of expiration as a number of (approximate) seconds * after program startup. * * This should work OK for program runs that last UINT32_MAX seconds or * less. Therefore, please restart OVS at least once every 136 years. */ expiration_offset = (expiration >> 10) - (time_boot_msec() >> 10); /* Invert the expiration offset because we're using a max-heap. */ return UINT32_MAX - expiration_offset; } /* Adds 'rule' to an appropriate eviction group for its oftable's * configuration. Does nothing if 'rule''s oftable doesn't have eviction * enabled, or if 'rule' is a permanent rule (one that will never expire on its * own). * * The caller must ensure that 'rule' is not already in an eviction group. */ static void eviction_group_add_rule(struct rule *rule) { struct ofproto *ofproto = rule->ofproto; struct oftable *table = &ofproto->tables[rule->table_id]; if (table->eviction_fields && (rule->hard_timeout || rule->idle_timeout)) { struct eviction_group *evg; evg = eviction_group_find(table, eviction_group_hash_rule(rule)); rule->eviction_group = evg; heap_insert(&evg->rules, &rule->evg_node, rule_eviction_priority(rule)); eviction_group_resized(table, evg); } } /* oftables. */ /* Initializes 'table'. */ static void oftable_init(struct oftable *table) { memset(table, 0, sizeof *table); classifier_init(&table->cls); } /* Destroys 'table', including its classifier and eviction groups. * * The caller is responsible for freeing 'table' itself. */ static void oftable_destroy(struct oftable *table) { assert(classifier_is_empty(&table->cls)); oftable_disable_eviction(table); classifier_destroy(&table->cls); free(table->name); } /* Changes the name of 'table' to 'name'. If 'name' is NULL or the empty * string, then 'table' will use its default name. * * This only affects the name exposed for a table exposed through the OpenFlow * OFPST_TABLE (as printed by "ovs-ofctl dump-tables"). */ static void oftable_set_name(struct oftable *table, const char *name) { if (name && name[0]) { int len = strnlen(name, OFP_MAX_TABLE_NAME_LEN); if (!table->name || strncmp(name, table->name, len)) { free(table->name); table->name = xmemdup0(name, len); } } else { free(table->name); table->name = NULL; } } /* oftables support a choice of two policies when adding a rule would cause the * number of flows in the table to exceed the configured maximum number: either * they can refuse to add the new flow or they can evict some existing flow. * This function configures the former policy on 'table'. */ static void oftable_disable_eviction(struct oftable *table) { if (table->eviction_fields) { struct eviction_group *evg, *next; HMAP_FOR_EACH_SAFE (evg, next, id_node, &table->eviction_groups_by_id) { eviction_group_destroy(table, evg); } hmap_destroy(&table->eviction_groups_by_id); heap_destroy(&table->eviction_groups_by_size); free(table->eviction_fields); table->eviction_fields = NULL; table->n_eviction_fields = 0; } } /* oftables support a choice of two policies when adding a rule would cause the * number of flows in the table to exceed the configured maximum number: either * they can refuse to add the new flow or they can evict some existing flow. * This function configures the latter policy on 'table', with fairness based * on the values of the 'n_fields' fields specified in 'fields'. (Specifying * 'n_fields' as 0 disables fairness.) */ static void oftable_enable_eviction(struct oftable *table, const struct mf_subfield *fields, size_t n_fields) { struct cls_cursor cursor; struct rule *rule; if (table->eviction_fields && n_fields == table->n_eviction_fields && (!n_fields || !memcmp(fields, table->eviction_fields, n_fields * sizeof *fields))) { /* No change. */ return; } oftable_disable_eviction(table); table->n_eviction_fields = n_fields; table->eviction_fields = xmemdup(fields, n_fields * sizeof *fields); table->eviction_group_id_basis = random_uint32(); hmap_init(&table->eviction_groups_by_id); heap_init(&table->eviction_groups_by_size); cls_cursor_init(&cursor, &table->cls, NULL); CLS_CURSOR_FOR_EACH (rule, cr, &cursor) { eviction_group_add_rule(rule); } } /* Removes 'rule' from the oftable that contains it. */ static void oftable_remove_rule(struct rule *rule) { struct ofproto *ofproto = rule->ofproto; struct oftable *table = &ofproto->tables[rule->table_id]; classifier_remove(&table->cls, &rule->cr); eviction_group_remove_rule(rule); } /* Inserts 'rule' into its oftable. Removes any existing rule from 'rule''s * oftable that has an identical cls_rule. Returns the rule that was removed, * if any, and otherwise NULL. */ static struct rule * oftable_replace_rule(struct rule *rule) { struct ofproto *ofproto = rule->ofproto; struct oftable *table = &ofproto->tables[rule->table_id]; struct rule *victim; victim = rule_from_cls_rule(classifier_replace(&table->cls, &rule->cr)); if (victim) { eviction_group_remove_rule(victim); } eviction_group_add_rule(rule); return victim; } /* Removes 'old' from its oftable then, if 'new' is nonnull, inserts 'new'. */ static void oftable_substitute_rule(struct rule *old, struct rule *new) { if (new) { oftable_replace_rule(new); } else { oftable_remove_rule(old); } } /* unixctl commands. */ struct ofproto * ofproto_lookup(const char *name) { struct ofproto *ofproto; HMAP_FOR_EACH_WITH_HASH (ofproto, hmap_node, hash_string(name, 0), &all_ofprotos) { if (!strcmp(ofproto->name, name)) { return ofproto; } } return NULL; } static void ofproto_unixctl_list(struct unixctl_conn *conn, int argc OVS_UNUSED, const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED) { struct ofproto *ofproto; struct ds results; ds_init(&results); HMAP_FOR_EACH (ofproto, hmap_node, &all_ofprotos) { ds_put_format(&results, "%s\n", ofproto->name); } unixctl_command_reply(conn, ds_cstr(&results)); ds_destroy(&results); } static void ofproto_unixctl_init(void) { static bool registered; if (registered) { return; } registered = true; unixctl_command_register("ofproto/list", "", 0, 0, ofproto_unixctl_list, NULL); } /* Linux VLAN device support (e.g. "eth0.10" for VLAN 10.) * * This is deprecated. It is only for compatibility with broken device drivers * in old versions of Linux that do not properly support VLANs when VLAN * devices are not used. When broken device drivers are no longer in * widespread use, we will delete these interfaces. */ /* Sets a 1-bit in the 4096-bit 'vlan_bitmap' for each VLAN ID that is matched * (exactly) by an OpenFlow rule in 'ofproto'. */ void ofproto_get_vlan_usage(struct ofproto *ofproto, unsigned long int *vlan_bitmap) { const struct oftable *oftable; free(ofproto->vlan_bitmap); ofproto->vlan_bitmap = bitmap_allocate(4096); ofproto->vlans_changed = false; OFPROTO_FOR_EACH_TABLE (oftable, ofproto) { const struct cls_table *table; HMAP_FOR_EACH (table, hmap_node, &oftable->cls.tables) { if ((table->wc.vlan_tci_mask & htons(VLAN_VID_MASK)) == htons(VLAN_VID_MASK)) { const struct cls_rule *rule; HMAP_FOR_EACH (rule, hmap_node, &table->rules) { uint16_t vid = vlan_tci_to_vid(rule->flow.vlan_tci); bitmap_set1(vlan_bitmap, vid); bitmap_set1(ofproto->vlan_bitmap, vid); } } } } } /* Returns true if new VLANs have come into use by the flow table since the * last call to ofproto_get_vlan_usage(). * * We don't track when old VLANs stop being used. */ bool ofproto_has_vlan_usage_changed(const struct ofproto *ofproto) { return ofproto->vlans_changed; } /* Configures a VLAN splinter binding between the ports identified by OpenFlow * port numbers 'vlandev_ofp_port' and 'realdev_ofp_port'. If * 'realdev_ofp_port' is nonzero, then the VLAN device is enslaved to the real * device as a VLAN splinter for VLAN ID 'vid'. If 'realdev_ofp_port' is zero, * then the VLAN device is un-enslaved. */ int ofproto_port_set_realdev(struct ofproto *ofproto, uint16_t vlandev_ofp_port, uint16_t realdev_ofp_port, int vid) { struct ofport *ofport; int error; assert(vlandev_ofp_port != realdev_ofp_port); ofport = ofproto_get_port(ofproto, vlandev_ofp_port); if (!ofport) { VLOG_WARN("%s: cannot set realdev on nonexistent port %"PRIu16, ofproto->name, vlandev_ofp_port); return EINVAL; } if (!ofproto->ofproto_class->set_realdev) { if (!vlandev_ofp_port) { return 0; } VLOG_WARN("%s: vlan splinters not supported", ofproto->name); return EOPNOTSUPP; } error = ofproto->ofproto_class->set_realdev(ofport, realdev_ofp_port, vid); if (error) { VLOG_WARN("%s: setting realdev on port %"PRIu16" (%s) failed (%s)", ofproto->name, vlandev_ofp_port, netdev_get_name(ofport->netdev), strerror(error)); } return error; }