/* * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Tests for classifier, written with knowledge of and to advantage of the * classifier's internal structure. * * With very few exceptions, these tests obtain complete coverage of every * basic block and every branch in the classifier implementation, e.g. a clean * report from "gcov -b". (Covering the exceptions would require finding * collisions in the hash function used for flow data, etc.) * * This test should receive a clean report from "valgrind --leak-check=full": * it frees every heap block that it allocates. */ #include #undef NDEBUG #include "classifier.h" #include #include #include #include "byte-order.h" #include "classifier-private.h" #include "command-line.h" #include "fatal-signal.h" #include "flow.h" #include "ovstest.h" #include "ovs-atomic.h" #include "ovs-thread.h" #include "packets.h" #include "random.h" #include "timeval.h" #include "unaligned.h" #include "util.h" static bool versioned = false; /* Fields in a rule. */ #define CLS_FIELDS \ /* struct flow all-caps */ \ /* member name name */ \ /* ----------- -------- */ \ CLS_FIELD(tunnel.tun_id, TUN_ID) \ CLS_FIELD(metadata, METADATA) \ CLS_FIELD(nw_src, NW_SRC) \ CLS_FIELD(nw_dst, NW_DST) \ CLS_FIELD(in_port.ofp_port, IN_PORT) \ CLS_FIELD(vlans[0].tci, VLAN_TCI) \ CLS_FIELD(dl_type, DL_TYPE) \ CLS_FIELD(tp_src, TP_SRC) \ CLS_FIELD(tp_dst, TP_DST) \ CLS_FIELD(dl_src, DL_SRC) \ CLS_FIELD(dl_dst, DL_DST) \ CLS_FIELD(nw_proto, NW_PROTO) \ CLS_FIELD(nw_tos, NW_DSCP) /* Field indexes. * * (These are also indexed into struct classifier's 'tables' array.) */ enum { #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME, CLS_FIELDS #undef CLS_FIELD CLS_N_FIELDS }; /* Field information. */ struct cls_field { int ofs; /* Offset in struct flow. */ int len; /* Length in bytes. */ const char *name; /* Name (for debugging). */ }; static const struct cls_field cls_fields[CLS_N_FIELDS] = { #define CLS_FIELD(MEMBER, NAME) \ { offsetof(struct flow, MEMBER), \ sizeof ((struct flow *)0)->MEMBER, \ #NAME }, CLS_FIELDS #undef CLS_FIELD }; struct test_rule { struct ovs_list list_node; int aux; /* Auxiliary data. */ struct cls_rule cls_rule; /* Classifier rule data. */ }; static struct test_rule * test_rule_from_cls_rule(const struct cls_rule *rule) { return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL; } static void test_rule_destroy(struct test_rule *rule) { if (rule) { cls_rule_destroy(&rule->cls_rule); free(rule); } } static struct test_rule *make_rule(int wc_fields, int priority, int value_pat); static void free_rule(struct test_rule *); static struct test_rule *clone_rule(const struct test_rule *); /* Trivial (linear) classifier. */ struct tcls { size_t n_rules; size_t allocated_rules; struct test_rule **rules; }; static void tcls_init(struct tcls *tcls) { tcls->n_rules = 0; tcls->allocated_rules = 0; tcls->rules = NULL; } static void tcls_destroy(struct tcls *tcls) { if (tcls) { size_t i; for (i = 0; i < tcls->n_rules; i++) { test_rule_destroy(tcls->rules[i]); } free(tcls->rules); } } static bool tcls_is_empty(const struct tcls *tcls) { return tcls->n_rules == 0; } static struct test_rule * tcls_insert(struct tcls *tcls, const struct test_rule *rule) { size_t i; for (i = 0; i < tcls->n_rules; i++) { const struct cls_rule *pos = &tcls->rules[i]->cls_rule; if (cls_rule_equal(pos, &rule->cls_rule)) { /* Exact match. */ ovsrcu_postpone(free_rule, tcls->rules[i]); tcls->rules[i] = clone_rule(rule); return tcls->rules[i]; } else if (pos->priority < rule->cls_rule.priority) { break; } } if (tcls->n_rules >= tcls->allocated_rules) { tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules, sizeof *tcls->rules); } if (i != tcls->n_rules) { memmove(&tcls->rules[i + 1], &tcls->rules[i], sizeof *tcls->rules * (tcls->n_rules - i)); } tcls->rules[i] = clone_rule(rule); tcls->n_rules++; return tcls->rules[i]; } static void tcls_remove(struct tcls *cls, const struct test_rule *rule) { size_t i; for (i = 0; i < cls->n_rules; i++) { struct test_rule *pos = cls->rules[i]; if (pos == rule) { test_rule_destroy(pos); memmove(&cls->rules[i], &cls->rules[i + 1], sizeof *cls->rules * (cls->n_rules - i - 1)); cls->n_rules--; return; } } OVS_NOT_REACHED(); } static bool match(const struct cls_rule *wild_, const struct flow *fixed) { struct match wild; int f_idx; minimatch_expand(&wild_->match, &wild); for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) { bool eq; if (f_idx == CLS_F_IDX_NW_SRC) { eq = !((fixed->nw_src ^ wild.flow.nw_src) & wild.wc.masks.nw_src); } else if (f_idx == CLS_F_IDX_NW_DST) { eq = !((fixed->nw_dst ^ wild.flow.nw_dst) & wild.wc.masks.nw_dst); } else if (f_idx == CLS_F_IDX_TP_SRC) { eq = !((fixed->tp_src ^ wild.flow.tp_src) & wild.wc.masks.tp_src); } else if (f_idx == CLS_F_IDX_TP_DST) { eq = !((fixed->tp_dst ^ wild.flow.tp_dst) & wild.wc.masks.tp_dst); } else if (f_idx == CLS_F_IDX_DL_SRC) { eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src, wild.wc.masks.dl_src); } else if (f_idx == CLS_F_IDX_DL_DST) { eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst, wild.wc.masks.dl_dst); } else if (f_idx == CLS_F_IDX_VLAN_TCI) { eq = !((fixed->vlans[0].tci ^ wild.flow.vlans[0].tci) & wild.wc.masks.vlans[0].tci); } else if (f_idx == CLS_F_IDX_TUN_ID) { eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id) & wild.wc.masks.tunnel.tun_id); } else if (f_idx == CLS_F_IDX_METADATA) { eq = !((fixed->metadata ^ wild.flow.metadata) & wild.wc.masks.metadata); } else if (f_idx == CLS_F_IDX_NW_DSCP) { eq = !((fixed->nw_tos ^ wild.flow.nw_tos) & (wild.wc.masks.nw_tos & IP_DSCP_MASK)); } else if (f_idx == CLS_F_IDX_NW_PROTO) { eq = !((fixed->nw_proto ^ wild.flow.nw_proto) & wild.wc.masks.nw_proto); } else if (f_idx == CLS_F_IDX_DL_TYPE) { eq = !((fixed->dl_type ^ wild.flow.dl_type) & wild.wc.masks.dl_type); } else if (f_idx == CLS_F_IDX_IN_PORT) { eq = !((fixed->in_port.ofp_port ^ wild.flow.in_port.ofp_port) & wild.wc.masks.in_port.ofp_port); } else { OVS_NOT_REACHED(); } if (!eq) { return false; } } return true; } static struct cls_rule * tcls_lookup(const struct tcls *cls, const struct flow *flow) { size_t i; for (i = 0; i < cls->n_rules; i++) { struct test_rule *pos = cls->rules[i]; if (match(&pos->cls_rule, flow)) { return &pos->cls_rule; } } return NULL; } static void tcls_delete_matches(struct tcls *cls, const struct cls_rule *target) { size_t i; for (i = 0; i < cls->n_rules; ) { struct test_rule *pos = cls->rules[i]; if (!minimask_has_extra(pos->cls_rule.match.mask, target->match.mask)) { struct flow flow; miniflow_expand(pos->cls_rule.match.flow, &flow); if (match(target, &flow)) { tcls_remove(cls, pos); continue; } } i++; } } static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001), CONSTANT_HTONL(0xc0a04455) }; static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002), CONSTANT_HTONL(0xc0a04455) }; static ovs_be64 tun_id_values[] = { 0, CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) }; static ovs_be64 metadata_values[] = { 0, CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) }; static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL }; static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) }; static ovs_be16 dl_type_values[] = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) }; static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362), CONSTANT_HTONS(80) }; static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) }; static struct eth_addr dl_src_values[] = { ETH_ADDR_C(00,02,e3,0f,80,a4), ETH_ADDR_C(5e,33,7f,5f,1e,99) }; static struct eth_addr dl_dst_values[] = { ETH_ADDR_C(4a,27,71,ae,64,c1), ETH_ADDR_C(ff,ff,ff,ff,ff,ff) }; static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP }; static uint8_t nw_dscp_values[] = { 48, 0 }; static void *values[CLS_N_FIELDS][2]; static void init_values(void) { values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0]; values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1]; values[CLS_F_IDX_METADATA][0] = &metadata_values[0]; values[CLS_F_IDX_METADATA][1] = &metadata_values[1]; values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0]; values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1]; values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0]; values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1]; values[CLS_F_IDX_DL_SRC][0] = &dl_src_values[0]; values[CLS_F_IDX_DL_SRC][1] = &dl_src_values[1]; values[CLS_F_IDX_DL_DST][0] = &dl_dst_values[0]; values[CLS_F_IDX_DL_DST][1] = &dl_dst_values[1]; values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0]; values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1]; values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0]; values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1]; values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0]; values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1]; values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0]; values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1]; values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0]; values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1]; values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0]; values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1]; values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0]; values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1]; } #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values) #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values) #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values) #define N_METADATA_VALUES ARRAY_SIZE(metadata_values) #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values) #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values) #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values) #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values) #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values) #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values) #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values) #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values) #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values) #define N_FLOW_VALUES (N_NW_SRC_VALUES * \ N_NW_DST_VALUES * \ N_TUN_ID_VALUES * \ N_IN_PORT_VALUES * \ N_VLAN_TCI_VALUES * \ N_DL_TYPE_VALUES * \ N_TP_SRC_VALUES * \ N_TP_DST_VALUES * \ N_DL_SRC_VALUES * \ N_DL_DST_VALUES * \ N_NW_PROTO_VALUES * \ N_NW_DSCP_VALUES) static unsigned int get_value(unsigned int *x, unsigned n_values) { unsigned int rem = *x % n_values; *x /= n_values; return rem; } static void compare_classifiers(struct classifier *cls, size_t n_invisible_rules, ovs_version_t version, struct tcls *tcls) { static const int confidence = 500; unsigned int i; assert(classifier_count(cls) == tcls->n_rules + n_invisible_rules); for (i = 0; i < confidence; i++) { const struct cls_rule *cr0, *cr1, *cr2; struct flow flow; struct flow_wildcards wc; unsigned int x; flow_wildcards_init_catchall(&wc); x = random_range(N_FLOW_VALUES); memset(&flow, 0, sizeof flow); flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)]; flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)]; flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)]; flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)]; flow.in_port.ofp_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)]; flow.vlans[0].tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)]; flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)]; flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)]; flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)]; flow.dl_src = dl_src_values[get_value(&x, N_DL_SRC_VALUES)]; flow.dl_dst = dl_dst_values[get_value(&x, N_DL_DST_VALUES)]; flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)]; flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)]; /* This assertion is here to suppress a GCC 4.9 array-bounds warning */ ovs_assert(cls->n_tries <= CLS_MAX_TRIES); cr0 = classifier_lookup(cls, version, &flow, &wc); cr1 = tcls_lookup(tcls, &flow); assert((cr0 == NULL) == (cr1 == NULL)); if (cr0 != NULL) { const struct test_rule *tr0 = test_rule_from_cls_rule(cr0); const struct test_rule *tr1 = test_rule_from_cls_rule(cr1); assert(cls_rule_equal(cr0, cr1)); assert(tr0->aux == tr1->aux); /* Make sure the rule should have been visible. */ assert(cls_rule_visible_in_version(cr0, version)); } cr2 = classifier_lookup(cls, version, &flow, NULL); assert(cr2 == cr0); } } static void destroy_classifier(struct classifier *cls) { struct test_rule *rule; classifier_defer(cls); CLS_FOR_EACH (rule, cls_rule, cls) { classifier_remove_assert(cls, &rule->cls_rule); ovsrcu_postpone(free_rule, rule); } classifier_destroy(cls); } static void pvector_verify(const struct pvector *pvec) { void *ptr OVS_UNUSED; int prev_priority = INT_MAX; PVECTOR_FOR_EACH (ptr, pvec) { int priority = cursor__.vector[cursor__.entry_idx].priority; if (priority > prev_priority) { ovs_abort(0, "Priority vector is out of order (%u > %u)", priority, prev_priority); } prev_priority = priority; } } static unsigned int trie_verify(const rcu_trie_ptr *trie, unsigned int ofs, unsigned int n_bits) { const struct trie_node *node = ovsrcu_get(struct trie_node *, trie); if (node) { assert(node->n_rules == 0 || node->n_bits > 0); ofs += node->n_bits; assert((ofs > 0 || (ofs == 0 && node->n_bits == 0)) && ofs <= n_bits); return node->n_rules + trie_verify(&node->edges[0], ofs, n_bits) + trie_verify(&node->edges[1], ofs, n_bits); } return 0; } static void verify_tries(struct classifier *cls) OVS_NO_THREAD_SAFETY_ANALYSIS { unsigned int n_rules = 0; int i; for (i = 0; i < cls->n_tries; i++) { const struct mf_field * cls_field = ovsrcu_get(struct mf_field *, &cls->tries[i].field); n_rules += trie_verify(&cls->tries[i].root, 0, cls_field->n_bits); } assert(n_rules <= cls->n_rules); } static void check_tables(const struct classifier *cls, int n_tables, int n_rules, int n_dups, int n_invisible, ovs_version_t version) OVS_NO_THREAD_SAFETY_ANALYSIS { const struct cls_subtable *table; struct test_rule *test_rule; int found_tables = 0; int found_tables_with_visible_rules = 0; int found_rules = 0; int found_dups = 0; int found_invisible = 0; int found_visible_but_removable = 0; int found_rules2 = 0; pvector_verify(&cls->subtables); CMAP_FOR_EACH (table, cmap_node, &cls->subtables_map) { const struct cls_match *head; int max_priority = INT_MIN; unsigned int max_count = 0; bool found = false; bool found_visible_rules = false; const struct cls_subtable *iter; /* Locate the subtable from 'subtables'. */ PVECTOR_FOR_EACH (iter, &cls->subtables) { if (iter == table) { if (found) { ovs_abort(0, "Subtable %p duplicated in 'subtables'.", table); } found = true; } } if (!found) { ovs_abort(0, "Subtable %p not found from 'subtables'.", table); } assert(!cmap_is_empty(&table->rules)); assert(trie_verify(&table->ports_trie, 0, table->ports_mask_len) == (table->ports_mask_len ? cmap_count(&table->rules) : 0)); found_tables++; CMAP_FOR_EACH (head, cmap_node, &table->rules) { int prev_priority = INT_MAX; ovs_version_t prev_version = 0; const struct cls_match *rule, *prev; bool found_visible_rules_in_list = false; assert(head->priority <= table->max_priority); if (head->priority > max_priority) { max_priority = head->priority; max_count = 0; } FOR_EACH_RULE_IN_LIST_PROTECTED(rule, prev, head) { ovs_version_t rule_version; const struct cls_rule *found_rule; /* Priority may not increase. */ assert(rule->priority <= prev_priority); if (rule->priority == max_priority) { ++max_count; } /* Count invisible rules and visible duplicates. */ if (!cls_match_visible_in_version(rule, version)) { found_invisible++; } else { if (cls_match_is_eventually_invisible(rule)) { found_visible_but_removable++; } if (found_visible_rules_in_list) { found_dups++; } found_visible_rules_in_list = true; found_visible_rules = true; } /* Rule must be visible in the version it was inserted. */ rule_version = rule->versions.add_version; assert(cls_match_visible_in_version(rule, rule_version)); /* We should always find the latest version of the rule, * unless all rules have been marked for removal. * Later versions must always be later in the list. */ found_rule = classifier_find_rule_exactly(cls, rule->cls_rule, rule_version); if (found_rule && found_rule != rule->cls_rule) { struct cls_match *cls_match; cls_match = get_cls_match_protected(found_rule); assert(found_rule->priority == rule->priority); /* Found rule may not have a lower version. */ assert(cls_match->versions.add_version >= rule_version); /* This rule must not be visible in the found rule's * version. */ assert(!cls_match_visible_in_version( rule, cls_match->versions.add_version)); } if (rule->priority == prev_priority) { /* Exact duplicate rule may not have a lower version. */ assert(rule_version >= prev_version); /* Previous rule must not be visible in rule's version. */ assert(!cls_match_visible_in_version(prev, rule_version)); } prev_priority = rule->priority; prev_version = rule_version; found_rules++; } } if (found_visible_rules) { found_tables_with_visible_rules++; } assert(table->max_priority == max_priority); assert(table->max_count == max_count); } assert(found_tables == cmap_count(&cls->subtables_map)); assert(found_tables == pvector_count(&cls->subtables)); assert(n_tables == -1 || n_tables == found_tables_with_visible_rules); assert(n_rules == -1 || found_rules == n_rules + found_invisible); assert(n_dups == -1 || found_dups == n_dups); assert(found_invisible == n_invisible); CLS_FOR_EACH (test_rule, cls_rule, cls) { found_rules2++; } /* Iteration does not see removable rules. */ assert(found_rules == found_rules2 + found_visible_but_removable + found_invisible); } static struct test_rule * make_rule(int wc_fields, int priority, int value_pat) { const struct cls_field *f; struct test_rule *rule; struct match match; match_init_catchall(&match); for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) { int f_idx = f - cls_fields; int value_idx = (value_pat & (1u << f_idx)) != 0; memcpy((char *) &match.flow + f->ofs, values[f_idx][value_idx], f->len); if (f_idx == CLS_F_IDX_NW_SRC) { match.wc.masks.nw_src = OVS_BE32_MAX; } else if (f_idx == CLS_F_IDX_NW_DST) { match.wc.masks.nw_dst = OVS_BE32_MAX; } else if (f_idx == CLS_F_IDX_TP_SRC) { match.wc.masks.tp_src = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_TP_DST) { match.wc.masks.tp_dst = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_DL_SRC) { WC_MASK_FIELD(&match.wc, dl_src); } else if (f_idx == CLS_F_IDX_DL_DST) { WC_MASK_FIELD(&match.wc, dl_dst); } else if (f_idx == CLS_F_IDX_VLAN_TCI) { match.wc.masks.vlans[0].tci = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_TUN_ID) { match.wc.masks.tunnel.tun_id = OVS_BE64_MAX; } else if (f_idx == CLS_F_IDX_METADATA) { match.wc.masks.metadata = OVS_BE64_MAX; } else if (f_idx == CLS_F_IDX_NW_DSCP) { match.wc.masks.nw_tos |= IP_DSCP_MASK; } else if (f_idx == CLS_F_IDX_NW_PROTO) { match.wc.masks.nw_proto = UINT8_MAX; } else if (f_idx == CLS_F_IDX_DL_TYPE) { match.wc.masks.dl_type = OVS_BE16_MAX; } else if (f_idx == CLS_F_IDX_IN_PORT) { match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX); } else { OVS_NOT_REACHED(); } } rule = xzalloc(sizeof *rule); cls_rule_init(&rule->cls_rule, &match, wc_fields ? (priority == INT_MIN ? priority + 1 : priority == INT_MAX ? priority - 1 : priority) : 0); return rule; } static struct test_rule * clone_rule(const struct test_rule *src) { struct test_rule *dst; dst = xmalloc(sizeof *dst); dst->aux = src->aux; cls_rule_clone(&dst->cls_rule, &src->cls_rule); return dst; } static void free_rule(struct test_rule *rule) { cls_rule_destroy(&rule->cls_rule); free(rule); } static void shuffle(int *p, size_t n) { for (; n > 1; n--, p++) { int *q = &p[random_range(n)]; int tmp = *p; *p = *q; *q = tmp; } } static void shuffle_u32s(uint32_t *p, size_t n) { for (; n > 1; n--, p++) { uint32_t *q = &p[random_range(n)]; uint32_t tmp = *p; *p = *q; *q = tmp; } } /* Classifier tests. */ static enum mf_field_id trie_fields[2] = { MFF_IPV4_DST, MFF_IPV4_SRC }; static void set_prefix_fields(struct classifier *cls) { verify_tries(cls); classifier_set_prefix_fields(cls, trie_fields, ARRAY_SIZE(trie_fields)); verify_tries(cls); } /* Tests an empty classifier. */ static void test_empty(struct ovs_cmdl_context *ctx OVS_UNUSED) { struct classifier cls; struct tcls tcls; classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); tcls_init(&tcls); assert(classifier_is_empty(&cls)); assert(tcls_is_empty(&tcls)); compare_classifiers(&cls, 0, OVS_VERSION_MIN, &tcls); classifier_destroy(&cls); tcls_destroy(&tcls); } /* Destroys a null classifier. */ static void test_destroy_null(struct ovs_cmdl_context *ctx OVS_UNUSED) { classifier_destroy(NULL); } /* Tests classification with one rule at a time. */ static void test_single_rule(struct ovs_cmdl_context *ctx OVS_UNUSED) { unsigned int wc_fields; /* Hilarious. */ for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) { struct classifier cls; struct test_rule *rule, *tcls_rule; struct tcls tcls; rule = make_rule(wc_fields, hash_bytes(&wc_fields, sizeof wc_fields, 0), 0); classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); tcls_init(&tcls); tcls_rule = tcls_insert(&tcls, rule); classifier_insert(&cls, &rule->cls_rule, OVS_VERSION_MIN, NULL, 0); compare_classifiers(&cls, 0, OVS_VERSION_MIN, &tcls); check_tables(&cls, 1, 1, 0, 0, OVS_VERSION_MIN); classifier_remove_assert(&cls, &rule->cls_rule); tcls_remove(&tcls, tcls_rule); assert(classifier_is_empty(&cls)); assert(tcls_is_empty(&tcls)); compare_classifiers(&cls, 0, OVS_VERSION_MIN, &tcls); ovsrcu_postpone(free_rule, rule); classifier_destroy(&cls); tcls_destroy(&tcls); } } /* Tests replacing one rule by another. */ static void test_rule_replacement(struct ovs_cmdl_context *ctx OVS_UNUSED) { unsigned int wc_fields; for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) { struct classifier cls; struct test_rule *rule1; struct test_rule *rule2; struct tcls tcls; rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX); rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX); rule2->aux += 5; rule2->aux += 5; classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); tcls_init(&tcls); tcls_insert(&tcls, rule1); classifier_insert(&cls, &rule1->cls_rule, OVS_VERSION_MIN, NULL, 0); compare_classifiers(&cls, 0, OVS_VERSION_MIN, &tcls); check_tables(&cls, 1, 1, 0, 0, OVS_VERSION_MIN); tcls_destroy(&tcls); tcls_init(&tcls); tcls_insert(&tcls, rule2); assert(test_rule_from_cls_rule( classifier_replace(&cls, &rule2->cls_rule, OVS_VERSION_MIN, NULL, 0)) == rule1); ovsrcu_postpone(free_rule, rule1); compare_classifiers(&cls, 0, OVS_VERSION_MIN, &tcls); check_tables(&cls, 1, 1, 0, 0, OVS_VERSION_MIN); classifier_defer(&cls); classifier_remove_assert(&cls, &rule2->cls_rule); tcls_destroy(&tcls); destroy_classifier(&cls); } } static int factorial(int n_items) { int n, i; n = 1; for (i = 2; i <= n_items; i++) { n *= i; } return n; } static void swap(int *a, int *b) { int tmp = *a; *a = *b; *b = tmp; } static void reverse(int *a, int n) { int i; for (i = 0; i < n / 2; i++) { int j = n - (i + 1); swap(&a[i], &a[j]); } } static bool next_permutation(int *a, int n) { int k; for (k = n - 2; k >= 0; k--) { if (a[k] < a[k + 1]) { int l; for (l = n - 1; ; l--) { if (a[l] > a[k]) { swap(&a[k], &a[l]); reverse(a + (k + 1), n - (k + 1)); return true; } } } } return false; } /* Tests classification with rules that have the same matching criteria. */ static void test_many_rules_in_one_list (struct ovs_cmdl_context *ctx OVS_UNUSED) { enum { N_RULES = 3 }; int n_pris; for (n_pris = N_RULES; n_pris >= 1; n_pris--) { int ops[N_RULES * 2]; int pris[N_RULES]; int n_permutations; int i; pris[0] = 0; for (i = 1; i < N_RULES; i++) { pris[i] = pris[i - 1] + (n_pris > i); } for (i = 0; i < N_RULES * 2; i++) { ops[i] = i / 2; } n_permutations = 0; do { struct test_rule *rules[N_RULES]; struct test_rule *tcls_rules[N_RULES]; int pri_rules[N_RULES]; struct classifier cls; struct tcls tcls; ovs_version_t version = OVS_VERSION_MIN; size_t n_invisible_rules = 0; n_permutations++; for (i = 0; i < N_RULES; i++) { rules[i] = make_rule(456, pris[i], 0); tcls_rules[i] = NULL; pri_rules[i] = -1; } classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); tcls_init(&tcls); for (i = 0; i < ARRAY_SIZE(ops); i++) { struct test_rule *displaced_rule = NULL; struct cls_rule *removable_rule = NULL; int j = ops[i]; int m, n; if (!tcls_rules[j]) { tcls_rules[j] = tcls_insert(&tcls, rules[j]); if (versioned) { /* Insert the new rule in the next version. */ ++version; displaced_rule = test_rule_from_cls_rule( classifier_find_rule_exactly(&cls, &rules[j]->cls_rule, version)); if (displaced_rule) { /* Mark the old rule for removal after the current * version. */ cls_rule_make_invisible_in_version( &displaced_rule->cls_rule, version); n_invisible_rules++; removable_rule = &displaced_rule->cls_rule; } classifier_insert(&cls, &rules[j]->cls_rule, version, NULL, 0); } else { displaced_rule = test_rule_from_cls_rule( classifier_replace(&cls, &rules[j]->cls_rule, version, NULL, 0)); } if (pri_rules[pris[j]] >= 0) { int k = pri_rules[pris[j]]; assert(displaced_rule != NULL); assert(displaced_rule != rules[j]); assert(pris[j] == displaced_rule->cls_rule.priority); tcls_rules[k] = NULL; } else { assert(displaced_rule == NULL); } pri_rules[pris[j]] = j; } else { if (versioned) { /* Mark the rule for removal after the current * version. */ ++version; cls_rule_make_invisible_in_version( &rules[j]->cls_rule, version); n_invisible_rules++; removable_rule = &rules[j]->cls_rule; } else { classifier_remove_assert(&cls, &rules[j]->cls_rule); } tcls_remove(&tcls, tcls_rules[j]); tcls_rules[j] = NULL; pri_rules[pris[j]] = -1; } compare_classifiers(&cls, n_invisible_rules, version, &tcls); n = 0; for (m = 0; m < N_RULES; m++) { n += tcls_rules[m] != NULL; } check_tables(&cls, n > 0, n, n - 1, n_invisible_rules, version); if (versioned && removable_rule) { struct cls_match *cls_match = get_cls_match_protected(removable_rule); /* Removable rule is no longer visible. */ assert(cls_match); assert(!cls_match_visible_in_version(cls_match, version)); classifier_remove_assert(&cls, removable_rule); n_invisible_rules--; } } classifier_defer(&cls); for (i = 0; i < N_RULES; i++) { if (classifier_remove(&cls, &rules[i]->cls_rule)) { ovsrcu_postpone(free_rule, rules[i]); } } classifier_destroy(&cls); tcls_destroy(&tcls); } while (next_permutation(ops, ARRAY_SIZE(ops))); assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES)); } } static int count_ones(unsigned long int x) { int n = 0; while (x) { x = zero_rightmost_1bit(x); n++; } return n; } static bool array_contains(int *array, int n, int value) { int i; for (i = 0; i < n; i++) { if (array[i] == value) { return true; } } return false; } /* Tests classification with two rules at a time that fall into the same * table but different lists. */ static void test_many_rules_in_one_table(struct ovs_cmdl_context *ctx OVS_UNUSED) { int iteration; for (iteration = 0; iteration < 50; iteration++) { enum { N_RULES = 20 }; struct test_rule *rules[N_RULES]; struct test_rule *tcls_rules[N_RULES]; struct classifier cls; struct tcls tcls; ovs_version_t version = OVS_VERSION_MIN; size_t n_invisible_rules = 0; int value_pats[N_RULES]; int value_mask; int wcf; int i; do { wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1); value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1); } while ((1 << count_ones(value_mask)) < N_RULES); classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); tcls_init(&tcls); for (i = 0; i < N_RULES; i++) { int priority = random_range(INT_MAX); do { value_pats[i] = random_uint32() & value_mask; } while (array_contains(value_pats, i, value_pats[i])); ++version; rules[i] = make_rule(wcf, priority, value_pats[i]); tcls_rules[i] = tcls_insert(&tcls, rules[i]); classifier_insert(&cls, &rules[i]->cls_rule, version, NULL, 0); compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, 1, i + 1, 0, n_invisible_rules, version); } for (i = 0; i < N_RULES; i++) { tcls_remove(&tcls, tcls_rules[i]); if (versioned) { /* Mark the rule for removal after the current version. */ ++version; cls_rule_make_invisible_in_version(&rules[i]->cls_rule, version); n_invisible_rules++; } else { classifier_remove_assert(&cls, &rules[i]->cls_rule); } compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0, n_invisible_rules, version); if (!versioned) { ovsrcu_postpone(free_rule, rules[i]); } } if (versioned) { for (i = 0; i < N_RULES; i++) { classifier_remove_assert(&cls, &rules[i]->cls_rule); n_invisible_rules--; compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, 0, 0, 0, n_invisible_rules, version); ovsrcu_postpone(free_rule, rules[i]); } } classifier_destroy(&cls); tcls_destroy(&tcls); } } /* Tests classification with many rules at a time that fall into random lists * in 'n' tables. */ static void test_many_rules_in_n_tables(int n_tables) { enum { MAX_RULES = 50 }; int wcfs[10]; int iteration; int i; assert(n_tables < 10); for (i = 0; i < n_tables; i++) { do { wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1); } while (array_contains(wcfs, i, wcfs[i])); } for (iteration = 0; iteration < 30; iteration++) { int priorities[MAX_RULES]; struct classifier cls; struct tcls tcls; ovs_version_t version = OVS_VERSION_MIN; size_t n_invisible_rules = 0; struct ovs_list list = OVS_LIST_INITIALIZER(&list); random_set_seed(iteration + 1); for (i = 0; i < MAX_RULES; i++) { priorities[i] = (i * 129) & INT_MAX; } shuffle(priorities, ARRAY_SIZE(priorities)); classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); tcls_init(&tcls); for (i = 0; i < MAX_RULES; i++) { struct test_rule *rule; int priority = priorities[i]; int wcf = wcfs[random_range(n_tables)]; int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1); rule = make_rule(wcf, priority, value_pat); tcls_insert(&tcls, rule); classifier_insert(&cls, &rule->cls_rule, version, NULL, 0); compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, -1, i + 1, -1, n_invisible_rules, version); } while (classifier_count(&cls) - n_invisible_rules > 0) { struct test_rule *target; struct test_rule *rule; size_t n_removable_rules = 0; target = clone_rule(tcls.rules[random_range(tcls.n_rules)]); CLS_FOR_EACH_TARGET (rule, cls_rule, &cls, &target->cls_rule, version) { if (versioned) { /* Mark the rule for removal after the current version. */ cls_rule_make_invisible_in_version(&rule->cls_rule, version + 1); n_removable_rules++; compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, -1, -1, -1, n_invisible_rules, version); ovs_list_push_back(&list, &rule->list_node); } else if (classifier_remove(&cls, &rule->cls_rule)) { ovsrcu_postpone(free_rule, rule); } } ++version; n_invisible_rules += n_removable_rules; tcls_delete_matches(&tcls, &target->cls_rule); free_rule(target); compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, -1, -1, -1, n_invisible_rules, version); } if (versioned) { struct test_rule *rule; /* Remove rules that are no longer visible. */ LIST_FOR_EACH_POP (rule, list_node, &list) { classifier_remove_assert(&cls, &rule->cls_rule); n_invisible_rules--; compare_classifiers(&cls, n_invisible_rules, version, &tcls); check_tables(&cls, -1, -1, -1, n_invisible_rules, version); } } destroy_classifier(&cls); tcls_destroy(&tcls); } } static void test_many_rules_in_two_tables(struct ovs_cmdl_context *ctx OVS_UNUSED) { test_many_rules_in_n_tables(2); } static void test_many_rules_in_five_tables(struct ovs_cmdl_context *ctx OVS_UNUSED) { test_many_rules_in_n_tables(5); } /* Classifier benchmarks. */ static int n_rules; /* Number of rules to insert. */ static int n_priorities; /* Number of priorities to use. */ static int n_tables; /* Number of subtables. */ static int n_threads; /* Number of threads to search and mutate. */ static int n_lookups; /* Number of lookups each thread performs. */ static void benchmark(bool use_wc); static int elapsed(const struct timeval *start) { struct timeval end; xgettimeofday(&end); return timeval_to_msec(&end) - timeval_to_msec(start); } static void run_benchmarks(struct ovs_cmdl_context *ctx) { if (ctx->argc < 5 || (ctx->argc > 1 && !strcmp(ctx->argv[1], "--help"))) { printf( "usage: ovstest %s benchmark \n" "\n" "where:\n" "\n" " - The number of rules to install for lookups. More rules\n" " makes misses less likely.\n" " - How many different priorities to use. Using only 1\n" " priority will force lookups to continue through all\n" " subtables.\n" " - Number of subtables to use. Normally a classifier has\n" " rules with different kinds of masks, resulting in\n" " multiple subtables (one per mask). However, in some\n" " special cases a table may consist of only one kind of\n" " rules, so there will be only one subtable.\n" " - How many lookup threads to use. Using one thread should\n" " give less variance accross runs, but classifier\n" " scaling can be tested with multiple threads.\n" " - How many lookups each thread should perform.\n" "\n", program_name); return; } n_rules = strtol(ctx->argv[1], NULL, 10); n_priorities = strtol(ctx->argv[2], NULL, 10); n_tables = strtol(ctx->argv[3], NULL, 10); n_threads = strtol(ctx->argv[4], NULL, 10); n_lookups = strtol(ctx->argv[5], NULL, 10); printf("\nBenchmarking with:\n" "%d rules with %d priorities in %d tables, " "%d threads doing %d lookups each\n", n_rules, n_priorities, n_tables, n_threads, n_lookups); puts("\nWithout wildcards: \n"); benchmark(false); puts("\nWith wildcards: \n"); benchmark(true); } struct cls_aux { const struct classifier *cls; size_t n_lookup_flows; struct flow *lookup_flows; bool use_wc; atomic_int hits; atomic_int misses; }; static void * lookup_classifier(void *aux_) { struct cls_aux *aux = aux_; ovs_version_t version = OVS_VERSION_MIN; int hits = 0, old_hits; int misses = 0, old_misses; size_t i; random_set_seed(1); for (i = 0; i < n_lookups; i++) { const struct cls_rule *cr; struct flow_wildcards wc; unsigned int x; x = random_range(aux->n_lookup_flows); if (aux->use_wc) { flow_wildcards_init_catchall(&wc); cr = classifier_lookup(aux->cls, version, &aux->lookup_flows[x], &wc); } else { cr = classifier_lookup(aux->cls, version, &aux->lookup_flows[x], NULL); } if (cr) { hits++; } else { misses++; } } atomic_add(&aux->hits, hits, &old_hits); atomic_add(&aux->misses, misses, &old_misses); return NULL; } /* Benchmark classification. */ static void benchmark(bool use_wc) { struct classifier cls; ovs_version_t version = OVS_VERSION_MIN; struct cls_aux aux; int *wcfs = xmalloc(n_tables * sizeof *wcfs); int *priorities = xmalloc(n_priorities * sizeof *priorities); struct timeval start; pthread_t *threads; int i; fatal_signal_init(); random_set_seed(1); for (i = 0; i < n_tables; i++) { do { wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1); } while (array_contains(wcfs, i, wcfs[i])); } for (i = 0; i < n_priorities; i++) { priorities[i] = (i * 129) & INT_MAX; } shuffle(priorities, n_priorities); classifier_init(&cls, flow_segment_u64s); set_prefix_fields(&cls); /* Create lookup flows. */ aux.use_wc = use_wc; aux.cls = &cls; aux.n_lookup_flows = 2 * N_FLOW_VALUES; aux.lookup_flows = xzalloc(aux.n_lookup_flows * sizeof *aux.lookup_flows); for (i = 0; i < aux.n_lookup_flows; i++) { struct flow *flow = &aux.lookup_flows[i]; unsigned int x; x = random_range(N_FLOW_VALUES); flow->nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)]; flow->nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)]; flow->tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)]; flow->metadata = metadata_values[get_value(&x, N_METADATA_VALUES)]; flow->in_port.ofp_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)]; flow->vlans[0].tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)]; flow->dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)]; flow->tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)]; flow->tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)]; flow->dl_src = dl_src_values[get_value(&x, N_DL_SRC_VALUES)]; flow->dl_dst = dl_dst_values[get_value(&x, N_DL_DST_VALUES)]; flow->nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)]; flow->nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)]; } atomic_init(&aux.hits, 0); atomic_init(&aux.misses, 0); /* Rule insertion. */ for (i = 0; i < n_rules; i++) { struct test_rule *rule; const struct cls_rule *old_cr; int priority = priorities[random_range(n_priorities)]; int wcf = wcfs[random_range(n_tables)]; int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1); rule = make_rule(wcf, priority, value_pat); old_cr = classifier_find_rule_exactly(&cls, &rule->cls_rule, version); if (!old_cr) { classifier_insert(&cls, &rule->cls_rule, version, NULL, 0); } else { free_rule(rule); } } /* Lookup. */ xgettimeofday(&start); threads = xmalloc(n_threads * sizeof *threads); for (i = 0; i < n_threads; i++) { threads[i] = ovs_thread_create("lookups", lookup_classifier, &aux); } for (i = 0; i < n_threads; i++) { xpthread_join(threads[i], NULL); } int elapsed_msec = elapsed(&start); free(threads); int hits, misses; atomic_read(&aux.hits, &hits); atomic_read(&aux.misses, &misses); printf("hits: %d, misses: %d\n", hits, misses); printf("classifier lookups: %5d ms, %"PRId64" lookups/sec\n", elapsed_msec, (((uint64_t)hits + misses) * 1000) / elapsed_msec); destroy_classifier(&cls); free(aux.lookup_flows); free(priorities); free(wcfs); } /* Miniflow tests. */ static uint32_t random_value(void) { static const uint32_t values_[] = { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000, 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef }; return values_[random_range(ARRAY_SIZE(values_))]; } static bool choose(unsigned int n, unsigned int *idxp) { if (*idxp < n) { return true; } else { *idxp -= n; return false; } } #define FLOW_U32S (FLOW_U64S * 2) static bool init_consecutive_values(int n_consecutive, struct flow *flow, unsigned int *idxp) { uint32_t *flow_u32 = (uint32_t *) flow; if (choose(FLOW_U32S - n_consecutive + 1, idxp)) { int i; for (i = 0; i < n_consecutive; i++) { flow_u32[*idxp + i] = random_value(); } return true; } else { return false; } } static bool next_random_flow(struct flow *flow, unsigned int idx) { uint32_t *flow_u32 = (uint32_t *) flow; memset(flow, 0, sizeof *flow); /* Empty flow. */ if (choose(1, &idx)) { return true; } /* All flows with a small number of consecutive nonzero values. */ for (int i = 1; i <= 4; i++) { if (init_consecutive_values(i, flow, &idx)) { return true; } } /* All flows with a large number of consecutive nonzero values. */ for (int i = FLOW_U32S - 4; i <= FLOW_U32S; i++) { if (init_consecutive_values(i, flow, &idx)) { return true; } } /* All flows with exactly two nonconsecutive nonzero values. */ if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) { int ofs1; for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) { int ofs2; for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) { if (choose(1, &idx)) { flow_u32[ofs1] = random_value(); flow_u32[ofs2] = random_value(); return true; } } } OVS_NOT_REACHED(); } /* 16 randomly chosen flows with N >= 3 nonzero values. */ if (choose(16 * (FLOW_U32S - 4), &idx)) { int n = idx / 16 + 3; for (int i = 0; i < n; i++) { flow_u32[i] = random_value(); } shuffle_u32s(flow_u32, FLOW_U32S); return true; } return false; } static void any_random_flow(struct flow *flow) { static unsigned int max; if (!max) { while (next_random_flow(flow, max)) { max++; } } next_random_flow(flow, random_range(max)); } static void toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask) { const uint32_t *mask_u32 = (const uint32_t *) &mask->masks; uint32_t *flow_u32 = (uint32_t *) flow; int i; for (i = 0; i < FLOW_U32S; i++) { if (mask_u32[i] != 0) { uint32_t bit; do { bit = 1u << random_range(32); } while (!(bit & mask_u32[i])); flow_u32[i] ^= bit; } } } static void wildcard_extra_bits(struct flow_wildcards *mask) { uint32_t *mask_u32 = (uint32_t *) &mask->masks; int i; for (i = 0; i < FLOW_U32S; i++) { if (mask_u32[i] != 0) { uint32_t bit; do { bit = 1u << random_range(32); } while (!(bit & mask_u32[i])); mask_u32[i] &= ~bit; } } } /* Returns a copy of 'src'. The caller must eventually free the returned * miniflow with free(). */ static struct miniflow * miniflow_clone__(const struct miniflow *src) { struct miniflow *dst; size_t data_size; data_size = miniflow_alloc(&dst, 1, src); miniflow_clone(dst, src, data_size / sizeof(uint64_t)); return dst; } /* Returns a hash value for 'flow', given 'basis'. */ static inline uint32_t miniflow_hash__(const struct miniflow *flow, uint32_t basis) { const uint64_t *p = miniflow_get_values(flow); size_t n_values = miniflow_n_values(flow); struct flowmap hash_map = FLOWMAP_EMPTY_INITIALIZER; uint32_t hash = basis; size_t idx; FLOWMAP_FOR_EACH_INDEX(idx, flow->map) { uint64_t value = *p++; if (value) { hash = hash_add64(hash, value); flowmap_set(&hash_map, idx, 1); } } map_t map; FLOWMAP_FOR_EACH_MAP (map, hash_map) { hash = hash_add64(hash, map); } return hash_finish(hash, n_values); } static void test_miniflow(struct ovs_cmdl_context *ctx OVS_UNUSED) { struct flow flow; unsigned int idx; random_set_seed(0xb3faca38); for (idx = 0; next_random_flow(&flow, idx); idx++) { const uint64_t *flow_u64 = (const uint64_t *) &flow; struct miniflow *miniflow, *miniflow2, *miniflow3; struct flow flow2, flow3; struct flow_wildcards mask; struct minimask *minimask; int i; /* Convert flow to miniflow. */ miniflow = miniflow_create(&flow); /* Check that the flow equals its miniflow. */ for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) { assert(miniflow_get_vid(miniflow, i) == vlan_tci_to_vid(flow.vlans[i].tci)); } for (i = 0; i < FLOW_U64S; i++) { assert(miniflow_get(miniflow, i) == flow_u64[i]); } /* Check that the miniflow equals itself. */ assert(miniflow_equal(miniflow, miniflow)); /* Convert miniflow back to flow and verify that it's the same. */ miniflow_expand(miniflow, &flow2); assert(flow_equal(&flow, &flow2)); /* Check that copying a miniflow works properly. */ miniflow2 = miniflow_clone__(miniflow); assert(miniflow_equal(miniflow, miniflow2)); assert(miniflow_hash__(miniflow, 0) == miniflow_hash__(miniflow2, 0)); miniflow_expand(miniflow2, &flow3); assert(flow_equal(&flow, &flow3)); /* Check that masked matches work as expected for identical flows and * miniflows. */ do { next_random_flow(&mask.masks, 1); } while (flow_wildcards_is_catchall(&mask)); minimask = minimask_create(&mask); assert(minimask_is_catchall(minimask) == flow_wildcards_is_catchall(&mask)); assert(miniflow_equal_in_minimask(miniflow, miniflow2, minimask)); assert(miniflow_equal_flow_in_minimask(miniflow, &flow2, minimask)); assert(miniflow_hash_in_minimask(miniflow, minimask, 0x12345678) == flow_hash_in_minimask(&flow, minimask, 0x12345678)); assert(minimask_hash(minimask, 0) == miniflow_hash__(&minimask->masks, 0)); /* Check that masked matches work as expected for differing flows and * miniflows. */ toggle_masked_flow_bits(&flow2, &mask); assert(!miniflow_equal_flow_in_minimask(miniflow, &flow2, minimask)); miniflow3 = miniflow_create(&flow2); assert(!miniflow_equal_in_minimask(miniflow, miniflow3, minimask)); /* Clean up. */ free(miniflow); free(miniflow2); free(miniflow3); free(minimask); } } static void test_minimask_has_extra(struct ovs_cmdl_context *ctx OVS_UNUSED) { struct flow_wildcards catchall; struct minimask *minicatchall; struct flow flow; unsigned int idx; flow_wildcards_init_catchall(&catchall); minicatchall = minimask_create(&catchall); assert(minimask_is_catchall(minicatchall)); random_set_seed(0x2ec7905b); for (idx = 0; next_random_flow(&flow, idx); idx++) { struct flow_wildcards mask; struct minimask *minimask; mask.masks = flow; minimask = minimask_create(&mask); assert(!minimask_has_extra(minimask, minimask)); assert(minimask_has_extra(minicatchall, minimask) == !minimask_is_catchall(minimask)); if (!minimask_is_catchall(minimask)) { struct minimask *minimask2; wildcard_extra_bits(&mask); minimask2 = minimask_create(&mask); assert(minimask_has_extra(minimask2, minimask)); assert(!minimask_has_extra(minimask, minimask2)); free(minimask2); } free(minimask); } free(minicatchall); } static void test_minimask_combine(struct ovs_cmdl_context *ctx OVS_UNUSED) { struct flow_wildcards catchall; struct minimask *minicatchall; struct flow flow; unsigned int idx; flow_wildcards_init_catchall(&catchall); minicatchall = minimask_create(&catchall); assert(minimask_is_catchall(minicatchall)); random_set_seed(0x181bf0cd); for (idx = 0; next_random_flow(&flow, idx); idx++) { struct minimask *minimask, *minimask2; struct flow_wildcards mask, mask2, combined, combined2; struct { struct minimask minicombined; uint64_t storage[FLOW_U64S]; } m; struct flow flow2; mask.masks = flow; minimask = minimask_create(&mask); minimask_combine(&m.minicombined, minimask, minicatchall, m.storage); assert(minimask_is_catchall(&m.minicombined)); any_random_flow(&flow2); mask2.masks = flow2; minimask2 = minimask_create(&mask2); minimask_combine(&m.minicombined, minimask, minimask2, m.storage); flow_wildcards_and(&combined, &mask, &mask2); minimask_expand(&m.minicombined, &combined2); assert(flow_wildcards_equal(&combined, &combined2)); free(minimask); free(minimask2); } free(minicatchall); } static void help(struct ovs_cmdl_context *ctx); static const struct ovs_cmdl_command commands[] = { /* Classifier tests. */ {"empty", NULL, 0, 0, test_empty, OVS_RO }, {"destroy-null", NULL, 0, 0, test_destroy_null, OVS_RO }, {"single-rule", NULL, 0, 0, test_single_rule, OVS_RO }, {"rule-replacement", NULL, 0, 0, test_rule_replacement, OVS_RO }, {"many-rules-in-one-list", NULL, 0, 1, test_many_rules_in_one_list, OVS_RO }, {"many-rules-in-one-table", NULL, 0, 1, test_many_rules_in_one_table, OVS_RO }, {"many-rules-in-two-tables", NULL, 0, 0, test_many_rules_in_two_tables, OVS_RO }, {"many-rules-in-five-tables", NULL, 0, 0, test_many_rules_in_five_tables, OVS_RO }, {"benchmark", NULL, 0, 5, run_benchmarks, OVS_RO }, /* Miniflow and minimask tests. */ {"miniflow", NULL, 0, 0, test_miniflow, OVS_RO }, {"minimask_has_extra", NULL, 0, 0, test_minimask_has_extra, OVS_RO }, {"minimask_combine", NULL, 0, 0, test_minimask_combine, OVS_RO }, {"--help", NULL, 0, 0, help, OVS_RO }, {NULL, NULL, 0, 0, NULL, OVS_RO }, }; static void help(struct ovs_cmdl_context *ctx OVS_UNUSED) { const struct ovs_cmdl_command *p; struct ds test_names = DS_EMPTY_INITIALIZER; const int linesize = 80; printf("usage: ovstest %s TEST [TESTARGS]\n" "where TEST is one of the following:\n\n", program_name); for (p = commands; p->name != NULL; p++) { if (*p->name != '-') { /* Skip internal commands */ if (test_names.length > 1 && test_names.length + strlen(p->name) + 1 >= linesize) { test_names.length -= 1; printf ("%s\n", ds_cstr(&test_names)); ds_clear(&test_names); } ds_put_format(&test_names, "%s, ", p->name); } } if (test_names.length > 2) { test_names.length -= 2; printf("%s\n", ds_cstr(&test_names)); } ds_destroy(&test_names); } static void test_classifier_main(int argc, char *argv[]) { struct ovs_cmdl_context ctx = { .argc = argc - 1, .argv = argv + 1, }; set_program_name(argv[0]); if (argc > 1 && !strcmp(argv[1], "--versioned")) { versioned = true; ctx.argc--; ctx.argv++; } init_values(); ovs_cmdl_run_command(&ctx, commands); } OVSTEST_REGISTER("test-classifier", test_classifier_main);