summaryrefslogtreecommitdiff
path: root/datapath/flow.c
blob: d670925af436267f33584d89042d2e5f67311d5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/*
 * Distributed under the terms of the GNU GPL version 2.
 * Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
 *
 * Significant portions of this file may be copied from parts of the Linux
 * kernel, by Linus Torvalds and others.
 */

#include "flow.h"
#include "datapath.h"
#include <asm/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>

#include "vlan.h"

static struct kmem_cache *flow_cache;
static unsigned int hash_seed __read_mostly;

static inline bool arphdr_ok(struct sk_buff *skb)
{
	return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header);
}

static inline int check_iphdr(struct sk_buff *skb)
{
	unsigned int nh_ofs = skb_network_offset(skb);
	unsigned int ip_len;

	if (skb->len < nh_ofs + sizeof(struct iphdr))
		return -EINVAL;

	ip_len = ip_hdrlen(skb);
	if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)
		return -EINVAL;

	/*
	 * Pull enough header bytes to account for the IP header plus the
	 * longest transport header that we parse, currently 20 bytes for TCP.
	 */
	if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len)))
		return -ENOMEM;

	skb_set_transport_header(skb, nh_ofs + ip_len);
	return 0;
}

static inline bool tcphdr_ok(struct sk_buff *skb)
{
	int th_ofs = skb_transport_offset(skb);
	if (skb->len >= th_ofs + sizeof(struct tcphdr)) {
		int tcp_len = tcp_hdrlen(skb);
		return (tcp_len >= sizeof(struct tcphdr)
			&& skb->len >= th_ofs + tcp_len);
	}
	return false;
}

static inline bool udphdr_ok(struct sk_buff *skb)
{
	return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr);
}

static inline bool icmphdr_ok(struct sk_buff *skb)
{
	return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr);
}

u64 flow_used_time(unsigned long flow_jiffies)
{
	struct timespec cur_ts;
	u64 cur_ms, idle_ms;

	ktime_get_ts(&cur_ts);
	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
		 cur_ts.tv_nsec / NSEC_PER_MSEC;

	return cur_ms - idle_ms;
}

static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
{
	unsigned int nh_ofs = skb_network_offset(skb);
	unsigned int nh_len;
	int payload_ofs;
	struct ipv6hdr *nh;
	uint8_t nexthdr;

	if (unlikely(skb->len < nh_ofs + sizeof(*nh)))
		return -EINVAL;

	nh = ipv6_hdr(skb);
	nexthdr = nh->nexthdr;
	payload_ofs = (u8 *)(nh + 1) - skb->data;

	ipv6_addr_copy(&key->ipv6_src, &nh->saddr);
	ipv6_addr_copy(&key->ipv6_dst, &nh->daddr);
	key->nw_tos = ipv6_get_dsfield(nh) & ~INET_ECN_MASK;
	key->nw_proto = NEXTHDR_NONE;

	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr);
	if (unlikely(payload_ofs < 0))
		return -EINVAL;

	nh_len = payload_ofs - nh_ofs;

	/* Pull enough header bytes to account for the IP header plus the
	 * longest transport header that we parse, currently 20 bytes for TCP.
	 * To dig deeper than the transport header, transport parsers may need
	 * to pull more header bytes.
	 */
	if (unlikely(!pskb_may_pull(skb, min(nh_ofs + nh_len + 20, skb->len))))
		return -ENOMEM;

	skb_set_transport_header(skb, nh_ofs + nh_len);
	key->nw_proto = nexthdr;
	return nh_len;
}

static bool icmp6hdr_ok(struct sk_buff *skb)
{
	return skb->len >= skb_transport_offset(skb) + sizeof(struct icmp6hdr);
}

#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f

void flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
	u8 tcp_flags = 0;

	if (flow->key.dl_type == htons(ETH_P_IP) &&
	    flow->key.nw_proto == IPPROTO_TCP) {
		u8 *tcp = (u8 *)tcp_hdr(skb);
		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
	}

	spin_lock_bh(&flow->lock);
	flow->used = jiffies;
	flow->packet_count++;
	flow->byte_count += skb->len;
	flow->tcp_flags |= tcp_flags;
	spin_unlock_bh(&flow->lock);
}

struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
{
	int actions_len = nla_len(actions);
	struct sw_flow_actions *sfa;

	/* At least DP_MAX_PORTS actions are required to be able to flood a
	 * packet to every port.  Factor of 2 allows for setting VLAN tags,
	 * etc. */
	if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
		return ERR_PTR(-EINVAL);

	sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = actions_len;
	memcpy(sfa->actions, nla_data(actions), actions_len);
	return sfa;
}

struct sw_flow *flow_alloc(void)
{
	struct sw_flow *flow;

	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
	if (!flow)
		return ERR_PTR(-ENOMEM);

	spin_lock_init(&flow->lock);
	atomic_set(&flow->refcnt, 1);
	flow->sf_acts = NULL;
	flow->dead = false;

	return flow;
}

void flow_free_tbl(struct tbl_node *node)
{
	struct sw_flow *flow = flow_cast(node);

	flow->dead = true;
	flow_put(flow);
}

/* RCU callback used by flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);

	flow->dead = true;
	flow_put(flow);
}

/* Schedules 'flow' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free(struct sw_flow *flow)
{
	call_rcu(&flow->rcu, rcu_free_flow_callback);
}

void flow_hold(struct sw_flow *flow)
{
	atomic_inc(&flow->refcnt);
}

void flow_put(struct sw_flow *flow)
{
	if (unlikely(!flow))
		return;

	if (atomic_dec_and_test(&flow->refcnt)) {
		kfree((struct sf_flow_acts __force *)flow->sf_acts);
		kmem_cache_free(flow_cache, flow);
	}
}

/* RCU callback used by flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
	struct sw_flow_actions *sf_acts = container_of(rcu,
			struct sw_flow_actions, rcu);
	kfree(sf_acts);
}

/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
	call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}

static void parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
	struct qtag_prefix {
		__be16 eth_type; /* ETH_P_8021Q */
		__be16 tci;
	};
	struct qtag_prefix *qp;

	if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))
		return;

	qp = (struct qtag_prefix *) skb->data;
	key->dl_tci = qp->tci | htons(VLAN_TAG_PRESENT);
	__skb_pull(skb, sizeof(struct qtag_prefix));
}

static __be16 parse_ethertype(struct sk_buff *skb)
{
	struct llc_snap_hdr {
		u8  dsap;  /* Always 0xAA */
		u8  ssap;  /* Always 0xAA */
		u8  ctrl;
		u8  oui[3];
		__be16 ethertype;
	};
	struct llc_snap_hdr *llc;
	__be16 proto;

	proto = *(__be16 *) skb->data;
	__skb_pull(skb, sizeof(__be16));

	if (ntohs(proto) >= 1536)
		return proto;

	if (unlikely(skb->len < sizeof(struct llc_snap_hdr)))
		return htons(ETH_P_802_2);

	llc = (struct llc_snap_hdr *) skb->data;
	if (llc->dsap != LLC_SAP_SNAP ||
	    llc->ssap != LLC_SAP_SNAP ||
	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
		return htons(ETH_P_802_2);

	__skb_pull(skb, sizeof(struct llc_snap_hdr));
	return llc->ethertype;
}

static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
			int nh_len)
{
	struct icmp6hdr *icmp = icmp6_hdr(skb);

	/* The ICMPv6 type and code fields use the 16-bit transport port
	 * fields, so we need to store them in 16-bit network byte order.
	 */
	key->tp_src = htons(icmp->icmp6_type);
	key->tp_dst = htons(icmp->icmp6_code);

	if (icmp->icmp6_code == 0 &&
	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
		int icmp_len = skb->len - skb_transport_offset(skb);
		struct nd_msg *nd;
		int offset;

		/* In order to process neighbor discovery options, we need the
		 * entire packet.
		 */
		if (unlikely(icmp_len < sizeof(*nd)))
			return 0;
		if (unlikely(skb_linearize(skb)))
			return -ENOMEM;

		nd = (struct nd_msg *)skb_transport_header(skb);
		ipv6_addr_copy(&key->nd_target, &nd->target);

		icmp_len -= sizeof(*nd);
		offset = 0;
		while (icmp_len >= 8) {
			struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset);
			int opt_len = nd_opt->nd_opt_len * 8;

			if (unlikely(!opt_len || opt_len > icmp_len))
				goto invalid;

			/* Store the link layer address if the appropriate
			 * option is provided.  It is considered an error if
			 * the same link layer option is specified twice.
			 */
			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
			    && opt_len == 8) {
				if (unlikely(!is_zero_ether_addr(key->arp_sha)))
					goto invalid;
				memcpy(key->arp_sha,
				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
				   && opt_len == 8) {
				if (unlikely(!is_zero_ether_addr(key->arp_tha)))
					goto invalid;
				memcpy(key->arp_tha,
				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
			}

			icmp_len -= opt_len;
			offset += opt_len;
		}
	}

	return 0;

invalid:
	memset(&key->nd_target, 0, sizeof(key->nd_target));
	memset(key->arp_sha, 0, sizeof(key->arp_sha));
	memset(key->arp_tha, 0, sizeof(key->arp_tha));

	return 0;
}

/**
 * flow_extract - extracts a flow key from an Ethernet frame.
 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 * Ethernet header
 * @in_port: port number on which @skb was received.
 * @key: output flow key
 * @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
 * not contain an IPv4 packet or if it is not a fragment.
 *
 * The caller must ensure that skb->len >= ETH_HLEN.
 *
 * Returns 0 if successful, otherwise a negative errno value.
 *
 * Initializes @skb header pointers as follows:
 *
 *    - skb->mac_header: the Ethernet header.
 *
 *    - skb->network_header: just past the Ethernet header, or just past the
 *      VLAN header, to the first byte of the Ethernet payload.
 *
 *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
 *      on output, then just past the IP header, if one is present and
 *      of a correct length, otherwise the same as skb->network_header.
 *      For other key->dl_type values it is left untouched.
 */
int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
		 bool *is_frag)
{
	struct ethhdr *eth;

	memset(key, 0, sizeof(*key));
	key->tun_id = OVS_CB(skb)->tun_id;
	key->in_port = in_port;
	*is_frag = false;

	/*
	 * We would really like to pull as many bytes as we could possibly
	 * want to parse into the linear data area.  Currently, for IPv4,
	 * that is:
	 *
	 *    14     Ethernet header
	 *     4     VLAN header
	 *    60     max IP header with options
	 *    20     max TCP/UDP/ICMP header (don't care about options)
	 *    --
	 *    98
	 *
	 * But Xen only allocates 64 or 72 bytes for the linear data area in
	 * netback, which means that we would reallocate and copy the skb's
	 * linear data on every packet if we did that.  So instead just pull 64
	 * bytes, which is always sufficient without IP options, and then check
	 * whether we need to pull more later when we look at the IP header.
	 */
	if (!pskb_may_pull(skb, min(skb->len, 64u)))
		return -ENOMEM;

	skb_reset_mac_header(skb);

	/* Link layer. */
	eth = eth_hdr(skb);
	memcpy(key->dl_src, eth->h_source, ETH_ALEN);
	memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);

	/* dl_type, dl_vlan, dl_vlan_pcp. */
	__skb_pull(skb, 2 * ETH_ALEN);

	if (vlan_tx_tag_present(skb))
		key->dl_tci = htons(vlan_get_tci(skb));
	else if (eth->h_proto == htons(ETH_P_8021Q))
		parse_vlan(skb, key);

	key->dl_type = parse_ethertype(skb);
	skb_reset_network_header(skb);
	__skb_push(skb, skb->data - (unsigned char *)eth);

	/* Network layer. */
	if (key->dl_type == htons(ETH_P_IP)) {
		struct iphdr *nh;
		int error;

		error = check_iphdr(skb);
		if (unlikely(error)) {
			if (error == -EINVAL) {
				skb->transport_header = skb->network_header;
				return 0;
			}
			return error;
		}

		nh = ip_hdr(skb);
		key->ipv4_src = nh->saddr;
		key->ipv4_dst = nh->daddr;
		key->nw_tos = nh->tos & ~INET_ECN_MASK;
		key->nw_proto = nh->protocol;

		/* Transport layer. */
		if (!(nh->frag_off & htons(IP_MF | IP_OFFSET)) &&
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP)) {
			if (key->nw_proto == IPPROTO_TCP) {
				if (tcphdr_ok(skb)) {
					struct tcphdr *tcp = tcp_hdr(skb);
					key->tp_src = tcp->source;
					key->tp_dst = tcp->dest;
				}
			} else if (key->nw_proto == IPPROTO_UDP) {
				if (udphdr_ok(skb)) {
					struct udphdr *udp = udp_hdr(skb);
					key->tp_src = udp->source;
					key->tp_dst = udp->dest;
				}
			} else if (key->nw_proto == IPPROTO_ICMP) {
				if (icmphdr_ok(skb)) {
					struct icmphdr *icmp = icmp_hdr(skb);
					/* The ICMP type and code fields use the 16-bit
					 * transport port fields, so we need to store them
					 * in 16-bit network byte order. */
					key->tp_src = htons(icmp->type);
					key->tp_dst = htons(icmp->code);
				}
			}
		} else
			*is_frag = true;

	} else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
		struct arp_eth_header *arp;

		arp = (struct arp_eth_header *)skb_network_header(skb);

		if (arp->ar_hrd == htons(ARPHRD_ETHER)
				&& arp->ar_pro == htons(ETH_P_IP)
				&& arp->ar_hln == ETH_ALEN
				&& arp->ar_pln == 4) {

			/* We only match on the lower 8 bits of the opcode. */
			if (ntohs(arp->ar_op) <= 0xff)
				key->nw_proto = ntohs(arp->ar_op);

			if (key->nw_proto == ARPOP_REQUEST
					|| key->nw_proto == ARPOP_REPLY) {
				memcpy(&key->ipv4_src, arp->ar_sip, sizeof(key->ipv4_src));
				memcpy(&key->ipv4_dst, arp->ar_tip, sizeof(key->ipv4_dst));
				memcpy(key->arp_sha, arp->ar_sha, ETH_ALEN);
				memcpy(key->arp_tha, arp->ar_tha, ETH_ALEN);
			}
		}
	} else if (key->dl_type == htons(ETH_P_IPV6)) {
		int nh_len;             /* IPv6 Header + Extensions */

		nh_len = parse_ipv6hdr(skb, key);
		if (unlikely(nh_len < 0)) {
			if (nh_len == -EINVAL) {
				skb->transport_header = skb->network_header;
				return 0;
			}
			return nh_len;
		}

		/* Transport layer. */
		if (key->nw_proto == NEXTHDR_TCP) {
			if (tcphdr_ok(skb)) {
				struct tcphdr *tcp = tcp_hdr(skb);
				key->tp_src = tcp->source;
				key->tp_dst = tcp->dest;
			}
		} else if (key->nw_proto == NEXTHDR_UDP) {
			if (udphdr_ok(skb)) {
				struct udphdr *udp = udp_hdr(skb);
				key->tp_src = udp->source;
				key->tp_dst = udp->dest;
			}
		} else if (key->nw_proto == NEXTHDR_ICMP) {
			if (icmp6hdr_ok(skb)) {
				int error = parse_icmpv6(skb, key, nh_len);
				if (error < 0)
					return error;
			}
		}
	}
	return 0;
}

u32 flow_hash(const struct sw_flow_key *key)
{
	return jhash2((u32*)key, sizeof(*key) / sizeof(u32), hash_seed);
}

int flow_cmp(const struct tbl_node *node, void *key2_)
{
	const struct sw_flow_key *key1 = &flow_cast(node)->key;
	const struct sw_flow_key *key2 = key2_;

	return !memcmp(key1, key2, sizeof(struct sw_flow_key));
}

/**
 * flow_from_nlattrs - parses Netlink attributes into a flow key.
 * @swkey: receives the extracted flow key.
 * @key: Netlink attribute holding nested %ODP_KEY_ATTR_* Netlink attribute
 * sequence.
 *
 * This state machine accepts the following forms, with [] for optional
 * elements and | for alternatives:
 *
 * [tun_id] in_port ethernet [8021q] [ethertype \
 *              [IPv4 [TCP|UDP|ICMP] | IPv6 [TCP|UDP|ICMPv6 [ND]] | ARP]]
 */
int flow_from_nlattrs(struct sw_flow_key *swkey, const struct nlattr *attr)
{
	const struct nlattr *nla;
	u16 prev_type;
	int rem;

	memset(swkey, 0, sizeof(*swkey));
	swkey->dl_type = htons(ETH_P_802_2);

	prev_type = ODP_KEY_ATTR_UNSPEC;
	nla_for_each_nested(nla, attr, rem) {
		static const u32 key_lens[ODP_KEY_ATTR_MAX + 1] = {
			[ODP_KEY_ATTR_TUN_ID] = 8,
			[ODP_KEY_ATTR_IN_PORT] = 4,
			[ODP_KEY_ATTR_ETHERNET] = sizeof(struct odp_key_ethernet),
			[ODP_KEY_ATTR_8021Q] = sizeof(struct odp_key_8021q),
			[ODP_KEY_ATTR_ETHERTYPE] = 2,
			[ODP_KEY_ATTR_IPV4] = sizeof(struct odp_key_ipv4),
			[ODP_KEY_ATTR_IPV6] = sizeof(struct odp_key_ipv6),
			[ODP_KEY_ATTR_TCP] = sizeof(struct odp_key_tcp),
			[ODP_KEY_ATTR_UDP] = sizeof(struct odp_key_udp),
			[ODP_KEY_ATTR_ICMP] = sizeof(struct odp_key_icmp),
			[ODP_KEY_ATTR_ICMPV6] = sizeof(struct odp_key_icmpv6),
			[ODP_KEY_ATTR_ARP] = sizeof(struct odp_key_arp),
			[ODP_KEY_ATTR_ND] = sizeof(struct odp_key_nd),
		};

		const struct odp_key_ethernet *eth_key;
		const struct odp_key_8021q *q_key;
		const struct odp_key_ipv4 *ipv4_key;
		const struct odp_key_ipv6 *ipv6_key;
		const struct odp_key_tcp *tcp_key;
		const struct odp_key_udp *udp_key;
		const struct odp_key_icmp *icmp_key;
		const struct odp_key_icmpv6 *icmpv6_key;
		const struct odp_key_arp *arp_key;
		const struct odp_key_nd *nd_key;

                int type = nla_type(nla);

                if (type > ODP_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
                        return -EINVAL;

#define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE))
		switch (TRANSITION(prev_type, type)) {
		case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_TUN_ID):
			swkey->tun_id = nla_get_be64(nla);
			break;

		case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_IN_PORT):
		case TRANSITION(ODP_KEY_ATTR_TUN_ID, ODP_KEY_ATTR_IN_PORT):
			if (nla_get_u32(nla) >= DP_MAX_PORTS)
				return -EINVAL;
			swkey->in_port = nla_get_u32(nla);
			break;

		case TRANSITION(ODP_KEY_ATTR_IN_PORT, ODP_KEY_ATTR_ETHERNET):
			eth_key = nla_data(nla);
			memcpy(swkey->dl_src, eth_key->eth_src, ETH_ALEN);
			memcpy(swkey->dl_dst, eth_key->eth_dst, ETH_ALEN);
			break;

		case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_8021Q):
			q_key = nla_data(nla);
			/* Only standard 0x8100 VLANs currently supported. */
			if (q_key->q_tpid != htons(ETH_P_8021Q))
				return -EINVAL;
			if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
				return -EINVAL;
			swkey->dl_tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
			break;

		case TRANSITION(ODP_KEY_ATTR_8021Q, ODP_KEY_ATTR_ETHERTYPE):
		case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_ETHERTYPE):
			swkey->dl_type = nla_get_be16(nla);
			if (ntohs(swkey->dl_type) < 1536)
				return -EINVAL;
			break;

		case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV4):
			if (swkey->dl_type != htons(ETH_P_IP))
				return -EINVAL;
			ipv4_key = nla_data(nla);
			swkey->ipv4_src = ipv4_key->ipv4_src;
			swkey->ipv4_dst = ipv4_key->ipv4_dst;
			swkey->nw_proto = ipv4_key->ipv4_proto;
			swkey->nw_tos = ipv4_key->ipv4_tos;
			if (swkey->nw_tos & INET_ECN_MASK)
				return -EINVAL;
			break;

		case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV6):
			if (swkey->dl_type != htons(ETH_P_IPV6))
				return -EINVAL;
			ipv6_key = nla_data(nla);
			memcpy(&swkey->ipv6_src, ipv6_key->ipv6_src,
					sizeof(swkey->ipv6_src));
			memcpy(&swkey->ipv6_dst, ipv6_key->ipv6_dst,
					sizeof(swkey->ipv6_dst));
			swkey->nw_proto = ipv6_key->ipv6_proto;
			swkey->nw_tos = ipv6_key->ipv6_tos;
			if (swkey->nw_tos & INET_ECN_MASK)
				return -EINVAL;
			break;

		case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_TCP):
		case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_TCP):
			if (swkey->nw_proto != IPPROTO_TCP)
				return -EINVAL;
			tcp_key = nla_data(nla);
			swkey->tp_src = tcp_key->tcp_src;
			swkey->tp_dst = tcp_key->tcp_dst;
			break;

		case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_UDP):
		case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_UDP):
			if (swkey->nw_proto != IPPROTO_UDP)
				return -EINVAL;
			udp_key = nla_data(nla);
			swkey->tp_src = udp_key->udp_src;
			swkey->tp_dst = udp_key->udp_dst;
			break;

		case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_ICMP):
			if (swkey->nw_proto != IPPROTO_ICMP)
				return -EINVAL;
			icmp_key = nla_data(nla);
			swkey->tp_src = htons(icmp_key->icmp_type);
			swkey->tp_dst = htons(icmp_key->icmp_code);
			break;

		case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_ICMPV6):
			if (swkey->nw_proto != IPPROTO_ICMPV6)
				return -EINVAL;
			icmpv6_key = nla_data(nla);
			swkey->tp_src = htons(icmpv6_key->icmpv6_type);
			swkey->tp_dst = htons(icmpv6_key->icmpv6_code);
			break;

		case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_ARP):
			if (swkey->dl_type != htons(ETH_P_ARP))
				return -EINVAL;
			arp_key = nla_data(nla);
			swkey->ipv4_src = arp_key->arp_sip;
			swkey->ipv4_dst = arp_key->arp_tip;
			if (arp_key->arp_op & htons(0xff00))
				return -EINVAL;
			swkey->nw_proto = ntohs(arp_key->arp_op);
			memcpy(swkey->arp_sha, arp_key->arp_sha, ETH_ALEN);
			memcpy(swkey->arp_tha, arp_key->arp_tha, ETH_ALEN);
			break;

		case TRANSITION(ODP_KEY_ATTR_ICMPV6, ODP_KEY_ATTR_ND):
			if (swkey->tp_src != htons(NDISC_NEIGHBOUR_SOLICITATION)
			    && swkey->tp_src != htons(NDISC_NEIGHBOUR_ADVERTISEMENT))
				return -EINVAL;
			nd_key = nla_data(nla);
			memcpy(&swkey->nd_target, nd_key->nd_target,
					sizeof(swkey->nd_target));
			memcpy(swkey->arp_sha, nd_key->nd_sll, ETH_ALEN);
			memcpy(swkey->arp_tha, nd_key->nd_tll, ETH_ALEN);
			break;

		default:
			return -EINVAL;
		}

		prev_type = type;
	}
	if (rem)
		return -EINVAL;

	switch (prev_type) {
	case ODP_KEY_ATTR_UNSPEC:
		return -EINVAL;

	case ODP_KEY_ATTR_TUN_ID:
	case ODP_KEY_ATTR_IN_PORT:
		return -EINVAL;

	case ODP_KEY_ATTR_ETHERNET:
	case ODP_KEY_ATTR_8021Q:
		return 0;

	case ODP_KEY_ATTR_ETHERTYPE:
		if (swkey->dl_type == htons(ETH_P_IP) ||
		    swkey->dl_type == htons(ETH_P_ARP))
			return -EINVAL;
		return 0;

	case ODP_KEY_ATTR_IPV4:
		if (swkey->nw_proto == IPPROTO_TCP ||
		    swkey->nw_proto == IPPROTO_UDP ||
		    swkey->nw_proto == IPPROTO_ICMP)
			return -EINVAL;
		return 0;

	case ODP_KEY_ATTR_IPV6:
		if (swkey->nw_proto == IPPROTO_TCP ||
		    swkey->nw_proto == IPPROTO_UDP ||
		    swkey->nw_proto == IPPROTO_ICMPV6)
			return -EINVAL;
		return 0;

	case ODP_KEY_ATTR_ICMPV6:
		if (swkey->tp_src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
		    swkey->tp_src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT))
			return -EINVAL;
		return 0;

	case ODP_KEY_ATTR_TCP:
	case ODP_KEY_ATTR_UDP:
	case ODP_KEY_ATTR_ICMP:
	case ODP_KEY_ATTR_ARP:
	case ODP_KEY_ATTR_ND:
		return 0;
	}

	WARN_ON_ONCE(1);
	return -EINVAL;
}

int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
{
	struct odp_key_ethernet *eth_key;
	struct nlattr *nla;

	/* This is an imperfect sanity-check that FLOW_BUFSIZE doesn't need
	 * to be updated, but will at least raise awareness when new ODP key
	 * types are added. */
	BUILD_BUG_ON(__ODP_KEY_ATTR_MAX != 14);

	if (swkey->tun_id != cpu_to_be64(0))
		NLA_PUT_BE64(skb, ODP_KEY_ATTR_TUN_ID, swkey->tun_id);

	NLA_PUT_U32(skb, ODP_KEY_ATTR_IN_PORT, swkey->in_port);

	nla = nla_reserve(skb, ODP_KEY_ATTR_ETHERNET, sizeof(*eth_key));
	if (!nla)
		goto nla_put_failure;
	eth_key = nla_data(nla);
	memcpy(eth_key->eth_src, swkey->dl_src, ETH_ALEN);
	memcpy(eth_key->eth_dst, swkey->dl_dst, ETH_ALEN);

	if (swkey->dl_tci != htons(0)) {
		struct odp_key_8021q q_key;

		q_key.q_tpid = htons(ETH_P_8021Q);
		q_key.q_tci = swkey->dl_tci & ~htons(VLAN_TAG_PRESENT);
		NLA_PUT(skb, ODP_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
	}

	if (swkey->dl_type == htons(ETH_P_802_2))
		return 0;

	NLA_PUT_BE16(skb, ODP_KEY_ATTR_ETHERTYPE, swkey->dl_type);

	if (swkey->dl_type == htons(ETH_P_IP)) {
		struct odp_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, ODP_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		memset(ipv4_key, 0, sizeof(struct odp_key_ipv4));
		ipv4_key->ipv4_src = swkey->ipv4_src;
		ipv4_key->ipv4_dst = swkey->ipv4_dst;
		ipv4_key->ipv4_proto = swkey->nw_proto;
		ipv4_key->ipv4_tos = swkey->nw_tos;
	} else if (swkey->dl_type == htons(ETH_P_IPV6)) {
		struct odp_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, ODP_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memset(ipv6_key, 0, sizeof(struct odp_key_ipv6));
		memcpy(ipv6_key->ipv6_src, &swkey->ipv6_src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &swkey->ipv6_dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_proto = swkey->nw_proto;
		ipv6_key->ipv6_tos = swkey->nw_tos;
	} else if (swkey->dl_type == htons(ETH_P_ARP)) {
		struct odp_key_arp *arp_key;

		nla = nla_reserve(skb, ODP_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct odp_key_arp));
		arp_key->arp_sip = swkey->ipv4_src;
		arp_key->arp_tip = swkey->ipv4_dst;
		arp_key->arp_op = htons(swkey->nw_proto);
		memcpy(arp_key->arp_sha, swkey->arp_sha, ETH_ALEN);
		memcpy(arp_key->arp_tha, swkey->arp_tha, ETH_ALEN);
	}

	if (swkey->dl_type == htons(ETH_P_IP) ||
	    swkey->dl_type == htons(ETH_P_IPV6)) {

		if (swkey->nw_proto == IPPROTO_TCP) {
			struct odp_key_tcp *tcp_key;

			nla = nla_reserve(skb, ODP_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
			tcp_key->tcp_src = swkey->tp_src;
			tcp_key->tcp_dst = swkey->tp_dst;
		} else if (swkey->nw_proto == IPPROTO_UDP) {
			struct odp_key_udp *udp_key;

			nla = nla_reserve(skb, ODP_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
			udp_key->udp_src = swkey->tp_src;
			udp_key->udp_dst = swkey->tp_dst;
		} else if (swkey->dl_type == htons(ETH_P_IP) &&
			   swkey->nw_proto == IPPROTO_ICMP) {
			struct odp_key_icmp *icmp_key;

			nla = nla_reserve(skb, ODP_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
			icmp_key->icmp_type = ntohs(swkey->tp_src);
			icmp_key->icmp_code = ntohs(swkey->tp_dst);
		} else if (swkey->dl_type == htons(ETH_P_IPV6) &&
			   swkey->nw_proto == IPPROTO_ICMPV6) {
			struct odp_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, ODP_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
			icmpv6_key->icmpv6_type = ntohs(swkey->tp_src);
			icmpv6_key->icmpv6_code = ntohs(swkey->tp_dst);

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct odp_key_nd *nd_key;

				nla = nla_reserve(skb, ODP_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &swkey->nd_target,
							sizeof(nd_key->nd_target));
				memcpy(nd_key->nd_sll, swkey->arp_sha, ETH_ALEN);
				memcpy(nd_key->nd_tll, swkey->arp_tha, ETH_ALEN);
			}
		}
	}

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

/* Initializes the flow module.
 * Returns zero if successful or a negative error code. */
int flow_init(void)
{
	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
					0, NULL);
	if (flow_cache == NULL)
		return -ENOMEM;

	get_random_bytes(&hash_seed, sizeof(hash_seed));

	return 0;
}

/* Uninitializes the flow module. */
void flow_exit(void)
{
	kmem_cache_destroy(flow_cache);
}