summaryrefslogtreecommitdiff
path: root/src/libotutil/ot-variant-builder.c
blob: e4347f391cc6e732a68c93c4710618dd43446683 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
/*
 * Copyright (C) 2017 Alexander Larsson <alexl@redhat.com>.
 *
 * SPDX-License-Identifier: LGPL-2.0+
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 *
 * Author: Alexander Larsson <alexl@redhat.com>.
 */

#include "config.h"

#include "ot-variant-builder.h"
#include "libglnx/libglnx.h"

/*****************************************************************************************
 * This code is copied from gvariant in glib. With the following copyright:
 *
 * SPDX-License-Identifier: LGPL-2.0+
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright © 2007, 2008 Ryan Lortie
 * Copyright © 2010 Codethink Limited
 *****************************************************************************************/

typedef struct _GVariantTypeInfo GVariantTypeInfo;

#define G_VARIANT_TYPE_INFO_CHAR_MAYBE      'm'
#define G_VARIANT_TYPE_INFO_CHAR_ARRAY      'a'
#define G_VARIANT_TYPE_INFO_CHAR_TUPLE      '('
#define G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY '{'
#define G_VARIANT_TYPE_INFO_CHAR_VARIANT    'v'
#define g_variant_type_info_get_type_char(info) \
  (g_variant_type_info_get_type_string(info)[0])

struct _GVariantTypeInfo
{
  gsize fixed_size;
  guchar alignment;
  guchar container_class;
};

typedef struct
{
  GVariantTypeInfo *type_info;

  gsize i, a;
  gint8 b, c;

  guint8 ending_type;
} GVariantMemberInfo;

#define G_VARIANT_MEMBER_ENDING_FIXED   0
#define G_VARIANT_MEMBER_ENDING_LAST    1
#define G_VARIANT_MEMBER_ENDING_OFFSET  2

typedef struct
{
  GVariantTypeInfo info;

  gchar *type_string;
  gint ref_count;
} ContainerInfo;

typedef struct
{
  ContainerInfo container;

  GVariantTypeInfo *element;
} ArrayInfo;

typedef struct
{
  ContainerInfo container;

  GVariantMemberInfo *members;
  gsize n_members;
} TupleInfo;

/* Hard-code the base types in a constant array */
static const GVariantTypeInfo g_variant_type_info_basic_table[24] = {
#define fixed_aligned(x)  x, x - 1
#define not_a_type             0,
#define unaligned         0, 0
#define aligned(x)        0, x - 1
  /* 'b' */ { fixed_aligned(1) },   /* boolean */
  /* 'c' */ { not_a_type },
  /* 'd' */ { fixed_aligned(8) },   /* double */
  /* 'e' */ { not_a_type },
  /* 'f' */ { not_a_type },
  /* 'g' */ { unaligned        },   /* signature string */
  /* 'h' */ { fixed_aligned(4) },   /* file handle (int32) */
  /* 'i' */ { fixed_aligned(4) },   /* int32 */
  /* 'j' */ { not_a_type },
  /* 'k' */ { not_a_type },
  /* 'l' */ { not_a_type },
  /* 'm' */ { not_a_type },
  /* 'n' */ { fixed_aligned(2) },   /* int16 */
  /* 'o' */ { unaligned        },   /* object path string */
  /* 'p' */ { not_a_type },
  /* 'q' */ { fixed_aligned(2) },   /* uint16 */
  /* 'r' */ { not_a_type },
  /* 's' */ { unaligned        },   /* string */
  /* 't' */ { fixed_aligned(8) },   /* uint64 */
  /* 'u' */ { fixed_aligned(4) },   /* uint32 */
  /* 'v' */ { aligned(8)       },   /* variant */
  /* 'w' */ { not_a_type },
  /* 'x' */ { fixed_aligned(8) },   /* int64 */
  /* 'y' */ { fixed_aligned(1) },   /* byte */
#undef fixed_aligned
#undef not_a_type
#undef unaligned
#undef aligned
};

static GRecMutex g_variant_type_info_lock;
static GHashTable *g_variant_type_info_table;

static GVariantTypeInfo * g_variant_type_info_ref (GVariantTypeInfo *info);
static void g_variant_type_info_unref (GVariantTypeInfo *info);
static GVariantTypeInfo * g_variant_type_info_get (const GVariantType *type);

#define GV_ARRAY_INFO_CLASS 'a'
static ArrayInfo *
GV_ARRAY_INFO (GVariantTypeInfo *info)
{
  return (ArrayInfo *) info;
}

static void
array_info_free (GVariantTypeInfo *info)
{
  ArrayInfo *array_info;

  g_assert (info->container_class == GV_ARRAY_INFO_CLASS);
  array_info = (ArrayInfo *) info;

  g_variant_type_info_unref (array_info->element);
  g_slice_free (ArrayInfo, array_info);
}

static ContainerInfo *
array_info_new (const GVariantType *type)
{
  ArrayInfo *info;

  info = g_slice_new (ArrayInfo);
  info->container.info.container_class = GV_ARRAY_INFO_CLASS;

  info->element = g_variant_type_info_get (g_variant_type_element (type));
  info->container.info.alignment = info->element->alignment;
  info->container.info.fixed_size = 0;

  return (ContainerInfo *) info;
}

/* == tuple == */
#define GV_TUPLE_INFO_CLASS 'r'
static TupleInfo *
GV_TUPLE_INFO (GVariantTypeInfo *info)
{
  return (TupleInfo *) info;
}

static void
tuple_info_free (GVariantTypeInfo *info)
{
  TupleInfo *tuple_info;
  gint i;

  g_assert (info->container_class == GV_TUPLE_INFO_CLASS);
  tuple_info = (TupleInfo *) info;

  for (i = 0; i < tuple_info->n_members; i++)
    g_variant_type_info_unref (tuple_info->members[i].type_info);

  g_slice_free1 (sizeof (GVariantMemberInfo) * tuple_info->n_members,
                 tuple_info->members);
  g_slice_free (TupleInfo, tuple_info);
}

static void
tuple_allocate_members (const GVariantType  *type,
                        GVariantMemberInfo **members,
                        gsize               *n_members)
{
  const GVariantType *item_type;
  gsize i = 0;

  *n_members = g_variant_type_n_items (type);
  *members = g_slice_alloc (sizeof (GVariantMemberInfo) * *n_members);

  item_type = g_variant_type_first (type);
  while (item_type)
    {
      GVariantMemberInfo *member = &(*members)[i++];

      member->type_info = g_variant_type_info_get (item_type);
      item_type = g_variant_type_next (item_type);

      if (member->type_info->fixed_size)
        member->ending_type = G_VARIANT_MEMBER_ENDING_FIXED;
      else if (item_type == NULL)
        member->ending_type = G_VARIANT_MEMBER_ENDING_LAST;
      else
        member->ending_type = G_VARIANT_MEMBER_ENDING_OFFSET;
    }

  g_assert (i == *n_members);
}

/* this is g_variant_type_info_query for a given member of the tuple.
 * before the access is done, it is ensured that the item is within
 * range and %FALSE is returned if not.
 */
static gboolean
tuple_get_item (TupleInfo          *info,
                GVariantMemberInfo *item,
                gsize              *d,
                gsize              *e)
{
  if (&info->members[info->n_members] == item)
    return FALSE;

  *d = item->type_info->alignment;
  *e = item->type_info->fixed_size;
  return TRUE;
}

/* Read the documentation for #GVariantMemberInfo in gvarianttype.h
 * before attempting to understand this.
 *
 * This function adds one set of "magic constant" values (for one item
 * in the tuple) to the table.
 *
 * The algorithm in tuple_generate_table() calculates values of 'a', 'b'
 * and 'c' for each item, such that the procedure for finding the item
 * is to start at the end of the previous variable-sized item, add 'a',
 * then round up to the nearest multiple of 'b', then add 'c'.
 * Note that 'b' is stored in the usual "one less than" form.  ie:
 *
 *   start = ROUND_UP(prev_end + a, (b + 1)) + c;
 *
 * We tweak these values a little to allow for a slightly easier
 * computation and more compact storage.
 */
static void
tuple_table_append (GVariantMemberInfo **items,
                    gsize                i,
                    gsize                a,
                    gsize                b,
                    gsize                c)
{
  GVariantMemberInfo *item = (*items)++;

  /* We can shift multiples of the alignment size from 'c' into 'a'.
   * As long as we're shifting whole multiples, it won't affect the
   * result.  This means that we can take the "aligned" portion off of
   * 'c' and add it into 'a'.
   *
   *  Imagine (for sake of clarity) that ROUND_10 rounds up to the
   *  nearest 10.  It is clear that:
   *
   *   ROUND_10(a) + c == ROUND_10(a + 10*(c / 10)) + (c % 10)
   *
   * ie: remove the 10s portion of 'c' and add it onto 'a'.
   *
   * To put some numbers on it, imagine we start with a = 34 and c = 27:
   *
   *  ROUND_10(34) + 27 = 40 + 27 = 67
   *
   * but also, we can split 27 up into 20 and 7 and do this:
   *
   *  ROUND_10(34 + 20) + 7 = ROUND_10(54) + 7 = 60 + 7 = 67
   *                ^^    ^
   * without affecting the result.  We do that here.
   *
   * This reduction in the size of 'c' means that we can store it in a
   * gchar instead of a gsize.  Due to how the structure is packed, this
   * ends up saving us 'two pointer sizes' per item in each tuple when
   * allocating using GSlice.
   */
  a += ~b & c;    /* take the "aligned" part of 'c' and add to 'a' */
  c &= b;         /* chop 'c' to contain only the unaligned part */


  /* Finally, we made one last adjustment.  Recall:
   *
   *   start = ROUND_UP(prev_end + a, (b + 1)) + c;
   *
   * Forgetting the '+ c' for the moment:
   *
   *   ROUND_UP(prev_end + a, (b + 1));
   *
   * we can do a "round up" operation by adding 1 less than the amount
   * to round up to, then rounding down.  ie:
   *
   *   #define ROUND_UP(x, y)    ROUND_DOWN(x + (y-1), y)
   *
   * Of course, for rounding down to a power of two, we can just mask
   * out the appropriate number of low order bits:
   *
   *   #define ROUND_DOWN(x, y)  (x & ~(y - 1))
   *
   * Which gives us
   *
   *   #define ROUND_UP(x, y)    (x + (y - 1) & ~(y - 1))
   *
   * but recall that our alignment value 'b' is already "one less".
   * This means that to round 'prev_end + a' up to 'b' we can just do:
   *
   *   ((prev_end + a) + b) & ~b
   *
   * Associativity, and putting the 'c' back on:
   *
   *   (prev_end + (a + b)) & ~b + c
   *
   * Now, since (a + b) is constant, we can just add 'b' to 'a' now and
   * store that as the number to add to prev_end.  Then we use ~b as the
   * number to take a bitwise 'and' with.  Finally, 'c' is added on.
   *
   * Note, however, that all the low order bits of the 'aligned' value
   * are masked out and that all of the high order bits of 'c' have been
   * "moved" to 'a' (in the previous step).  This means that there are
   * no overlapping bits in the addition -- so we can do a bitwise 'or'
   * equivalently.
   *
   * This means that we can now compute the start address of a given
   * item in the tuple using the algorithm given in the documentation
   * for #GVariantMemberInfo:
   *
   *   item_start = ((prev_end + a) & b) | c;
   */

  item->i = i;
  item->a = a + b;
  item->b = ~b;
  item->c = c;
}

static gsize
tuple_align (gsize offset,
             guint alignment)
{
  return offset + ((-offset) & alignment);
}

/* This function is the heart of the algorithm for calculating 'i', 'a',
 * 'b' and 'c' for each item in the tuple.
 *
 * Imagine we want to find the start of the "i" in the type "(su(qx)ni)".
 * That's a string followed by a uint32, then a tuple containing a
 * uint16 and a int64, then an int16, then our "i".  In order to get to
 * our "i" we:
 *
 * Start at the end of the string, align to 4 (for the uint32), add 4.
 * Align to 8, add 16 (for the tuple).  Align to 2, add 2 (for the
 * int16).  Then we're there.  It turns out that, given 3 simple rules,
 * we can flatten this iteration into one addition, one alignment, then
 * one more addition.
 *
 * The loop below plays through each item in the tuple, querying its
 * alignment and fixed_size into 'd' and 'e', respectively.  At all
 * times the variables 'a', 'b', and 'c' are maintained such that in
 * order to get to the current point, you add 'a', align to 'b' then add
 * 'c'.  'b' is kept in "one less than" form.  For each item, the proper
 * alignment is applied to find the values of 'a', 'b' and 'c' to get to
 * the start of that item.  Those values are recorded into the table.
 * The fixed size of the item (if applicable) is then added on.
 *
 * These 3 rules are how 'a', 'b' and 'c' are modified for alignment and
 * addition of fixed size.  They have been proven correct but are
 * presented here, without proof:
 *
 *  1) in order to "align to 'd'" where 'd' is less than or equal to the
 *     largest level of alignment seen so far ('b'), you align 'c' to
 *     'd'.
 *  2) in order to "align to 'd'" where 'd' is greater than the largest
 *     level of alignment seen so far, you add 'c' aligned to 'b' to the
 *     value of 'a', set 'b' to 'd' (ie: increase the 'largest alignment
 *     seen') and reset 'c' to 0.
 *  3) in order to "add 'e'", just add 'e' to 'c'.
 */
static void
tuple_generate_table (TupleInfo *info)
{
  GVariantMemberInfo *items = info->members;
  gsize i = -1, a = 0, b = 0, c = 0, d, e;

  /* iterate over each item in the tuple.
   *   'd' will be the alignment of the item (in one-less form)
   *   'e' will be the fixed size (or 0 for variable-size items)
   */
  while (tuple_get_item (info, items, &d, &e))
    {
      /* align to 'd' */
      if (d <= b)
        c = tuple_align (c, d);                   /* rule 1 */
      else
        a += tuple_align (c, b), b = d, c = 0;    /* rule 2 */

      /* the start of the item is at this point (ie: right after we
       * have aligned for it).  store this information in the table.
       */
      tuple_table_append (&items, i, a, b, c);

      /* "move past" the item by adding in its size. */
      if (e == 0)
        /* variable size:
         *
         * we'll have an offset stored to mark the end of this item, so
         * just bump the offset index to give us a new starting point
         * and reset all the counters.
         */
        i++, a = b = c = 0;
      else
        /* fixed size */
        c += e;                                   /* rule 3 */
    }
}

static void
tuple_set_base_info (TupleInfo *info)
{
  GVariantTypeInfo *base = &info->container.info;

  if (info->n_members > 0)
    {
      GVariantMemberInfo *m;

      /* the alignment requirement of the tuple is the alignment
       * requirement of its largest item.
       */
      base->alignment = 0;
      for (m = info->members; m < &info->members[info->n_members]; m++)
        /* can find the max of a list of "one less than" powers of two
         * by 'or'ing them
         */
        base->alignment |= m->type_info->alignment;

      m--; /* take 'm' back to the last item */

      /* the structure only has a fixed size if no variable-size
       * offsets are stored and the last item is fixed-sized too (since
       * an offset is never stored for the last item).
       */
      if (m->i == -1 && m->type_info->fixed_size)
        /* in that case, the fixed size can be found by finding the
         * start of the last item (in the usual way) and adding its
         * fixed size.
         *
         * if a tuple has a fixed size then it is always a multiple of
         * the alignment requirement (to make packing into arrays
         * easier) so we round up to that here.
         */
        base->fixed_size =
          tuple_align (((m->a & m->b) | m->c) + m->type_info->fixed_size,
                       base->alignment);
      else
        /* else, the tuple is not fixed size */
        base->fixed_size = 0;
    }
  else
    {
      /* the empty tuple: '()'.
       *
       * has a size of 1 and an no alignment requirement.
       *
       * It has a size of 1 (not 0) for two practical reasons:
       *
       *  1) So we can determine how many of them are in an array
       *     without dividing by zero or without other tricks.
       *
       *  2) Even if we had some trick to know the number of items in
       *     the array (as GVariant did at one time) this would open a
       *     potential denial of service attack: an attacker could send
       *     you an extremely small array (in terms of number of bytes)
       *     containing trillions of zero-sized items.  If you iterated
       *     over this array you would effectively infinite-loop your
       *     program.  By forcing a size of at least one, we bound the
       *     amount of computation done in response to a message to a
       *     reasonable function of the size of that message.
       */
      base->alignment = 0;
      base->fixed_size = 1;
    }
}

static ContainerInfo *
tuple_info_new (const GVariantType *type)
{
  TupleInfo *info;

  info = g_slice_new (TupleInfo);
  info->container.info.container_class = GV_TUPLE_INFO_CLASS;

  tuple_allocate_members (type, &info->members, &info->n_members);
  tuple_generate_table (info);
  tuple_set_base_info (info);

  return (ContainerInfo *) info;
}

static const GVariantMemberInfo *
g_variant_type_info_member_info (GVariantTypeInfo *info,
                                 gsize             index)
{
  TupleInfo *tuple_info = GV_TUPLE_INFO (info);

  if (index < tuple_info->n_members)
    return &tuple_info->members[index];

  return NULL;
}

static GVariantTypeInfo *
g_variant_type_info_element (GVariantTypeInfo *info)
{
  return GV_ARRAY_INFO (info)->element;
}

static GVariantTypeInfo *
g_variant_type_info_ref (GVariantTypeInfo *info)
{
  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      g_assert_cmpint (container->ref_count, >, 0);
      g_atomic_int_inc (&container->ref_count);
    }

  return info;
}

static void
g_variant_type_info_unref (GVariantTypeInfo *info)
{
  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      g_rec_mutex_lock (&g_variant_type_info_lock);
      if (g_atomic_int_dec_and_test (&container->ref_count))
        {
          g_hash_table_remove (g_variant_type_info_table,
                               container->type_string);
          if (g_hash_table_size (g_variant_type_info_table) == 0)
            {
              g_hash_table_unref (g_variant_type_info_table);
              g_variant_type_info_table = NULL;
            }
          g_rec_mutex_unlock (&g_variant_type_info_lock);

          g_free (container->type_string);

          if (info->container_class == GV_ARRAY_INFO_CLASS)
            array_info_free (info);

          else if (info->container_class == GV_TUPLE_INFO_CLASS)
            tuple_info_free (info);

          else
            g_assert_not_reached ();
        }
      else
        g_rec_mutex_unlock (&g_variant_type_info_lock);
    }
}

static GVariantTypeInfo *
g_variant_type_info_get (const GVariantType *type)
{
  char type_char;

  type_char = g_variant_type_peek_string (type)[0];

  if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_TUPLE ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY)
    {
      GVariantTypeInfo *info;
      gchar *type_string;

      type_string = g_variant_type_dup_string (type);

      g_rec_mutex_lock (&g_variant_type_info_lock);

      if (g_variant_type_info_table == NULL)
        g_variant_type_info_table = g_hash_table_new (g_str_hash,
                                                      g_str_equal);
      info = g_hash_table_lookup (g_variant_type_info_table, type_string);

      if (info == NULL)
        {
          ContainerInfo *container;

          if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
              type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY)
            {
              container = array_info_new (type);
            }
          else /* tuple or dict entry */
            {
              container = tuple_info_new (type);
            }

          info = (GVariantTypeInfo *) container;
          container->type_string = type_string;
          container->ref_count = 1;

          g_hash_table_insert (g_variant_type_info_table, type_string, info);
          type_string = NULL;
        }
      else
        g_variant_type_info_ref (info);

      g_rec_mutex_unlock (&g_variant_type_info_lock);
      g_free (type_string);

      return info;
    }
  else
    {
      const GVariantTypeInfo *info;
      int index;

      index = type_char - 'b';
      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
      g_assert_cmpint (0, <=, index);
      g_assert_cmpint (index, <, 24);

      info = g_variant_type_info_basic_table + index;

      return (GVariantTypeInfo *) info;
    }
}

static inline void
gvs_write_unaligned_le (guchar *bytes,
                        gsize   value,
                        guint   size)
{
  union
  {
    guchar bytes[GLIB_SIZEOF_SIZE_T];
    gsize integer;
  } tmpvalue;

  tmpvalue.integer = GSIZE_TO_LE (value);
  memcpy (bytes, &tmpvalue.bytes, size);
}

static guint
gvs_get_offset_size (gsize size)
{
  if (size > G_MAXUINT32)
    return 8;

  else if (size > G_MAXUINT16)
    return 4;

  else if (size > G_MAXUINT8)
    return 2;

  else if (size > 0)
    return 1;

  return 0;
}

static gsize
gvs_calculate_total_size (gsize body_size,
                          gsize offsets)
{
  if (body_size + 1 * offsets <= G_MAXUINT8)
    return body_size + 1 * offsets;

  if (body_size + 2 * offsets <= G_MAXUINT16)
    return body_size + 2 * offsets;

  if (body_size + 4 * offsets <= G_MAXUINT32)
    return body_size + 4 * offsets;

  return body_size + 8 * offsets;
}


/*****************************************************************************************
 *  End of glib code
 *****************************************************************************************/

typedef struct _OtVariantBuilderInfo OtVariantBuilderInfo;

struct _OtVariantBuilderInfo {
  OtVariantBuilderInfo *parent;
  OtVariantBuilder *builder;
  GVariantType *type;
  GVariantTypeInfo *type_info;
  guint64 offset;
  int n_children;
  GArray *child_ends;

  /* type constraint explicitly specified by 'type'.
   * for tuple types, this moves along as we add more items.
   */
  const GVariantType *expected_type;

  /* type constraint implied by previous array item.
   */
  const GVariantType *prev_item_type;
  GVariantType *prev_item_type_base;

  /* constraints on the number of children.  max = -1 for unlimited. */
  gsize min_items;
  gsize max_items;

  /* set to '1' if all items in the container will have the same type
   * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
   */
  guint uniform_item_types : 1;
} ;

struct _OtVariantBuilder {
  gint ref_count;
  int fd;

  /* This is only useful for the topmost builder and points to the top
   * of the builder stack. Public APIs take the topmost builder reference
   * and use this to find the currently active builder */
  OtVariantBuilderInfo *head;
};

static OtVariantBuilderInfo *
ot_variant_builder_info_new (OtVariantBuilder *builder, const GVariantType *type)
{
  OtVariantBuilderInfo *info;

  info = (OtVariantBuilderInfo *) g_slice_new0 (OtVariantBuilderInfo);

  g_return_val_if_fail (g_variant_type_is_container (type), NULL);

  info->builder = builder;
  info->type = g_variant_type_copy (type);
  info->type_info = g_variant_type_info_get (type);
  info->offset = 0;
  info->n_children = 0;
  info->child_ends = g_array_new (FALSE, TRUE, sizeof (guint64));

  switch (*(const gchar *) type)
    {
    case G_VARIANT_CLASS_VARIANT:
      info->uniform_item_types = TRUE;
      info->expected_type = NULL;
      info->min_items = 1;
      info->max_items = 1;
      break;

    case G_VARIANT_CLASS_ARRAY:
      info->uniform_item_types = TRUE;
      info->expected_type =
        g_variant_type_element (info->type);
      info->min_items = 0;
      info->max_items = -1;
      break;

    case G_VARIANT_CLASS_MAYBE:
      info->uniform_item_types = TRUE;
      info->expected_type =
        g_variant_type_element (info->type);
      info->min_items = 0;
      info->max_items = 1;
      break;

    case G_VARIANT_CLASS_DICT_ENTRY:
      info->uniform_item_types = FALSE;
      info->expected_type =
        g_variant_type_key (info->type);
      info->min_items = 2;
      info->max_items = 2;
      break;

    case 'r': /* G_VARIANT_TYPE_TUPLE was given */
      info->uniform_item_types = FALSE;
      info->expected_type = NULL;
      info->min_items = 0;
      info->max_items = -1;
      break;

    case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
      info->expected_type =
        g_variant_type_first (info->type);
      info->min_items = g_variant_type_n_items (type);
      info->max_items = info->min_items;
      info->uniform_item_types = FALSE;
      break;

    default:
      g_assert_not_reached ();
   }

  return info;
}

static void
ot_variant_builder_info_free (OtVariantBuilderInfo *info)
{
  if (info->parent)
    ot_variant_builder_info_free (info);

  g_variant_type_free (info->type);
  g_array_unref (info->child_ends);
  g_free (info->prev_item_type_base);

  g_slice_free (OtVariantBuilderInfo, info);
}

OtVariantBuilder *
ot_variant_builder_new (const GVariantType *type,
                        int fd)
{
  OtVariantBuilder *builder;

  builder = (OtVariantBuilder *) g_slice_new0 (OtVariantBuilder);

  g_return_val_if_fail (g_variant_type_is_container (type), NULL);

  builder->head = ot_variant_builder_info_new (builder, type);
  builder->ref_count = 1;
  builder->fd = fd;

  return builder;
}

void
ot_variant_builder_unref (OtVariantBuilder *builder)
{
  if (--builder->ref_count)
    return;

  ot_variant_builder_info_free (builder->head);

  g_slice_free (OtVariantBuilder, builder);
}

OtVariantBuilder *
ot_variant_builder_ref (OtVariantBuilder *builder)
{
  builder->ref_count++;
  return builder;
}

/* This is called before adding a child to the container.  It updates
   the internal state and does the needed alignment */
static gboolean
ot_variant_builder_pre_add (OtVariantBuilderInfo *info,
                            const GVariantType *type,
                            GError         **error)
{
  guint alignment = 0;

  if (!info->uniform_item_types)
    {
      /* advance our expected type pointers */
      if (info->expected_type)
        info->expected_type =
          g_variant_type_next (info->expected_type);

      if (info->prev_item_type)
        info->prev_item_type =
          g_variant_type_next (info->prev_item_type);
    }
  else
    {
      g_free (info->prev_item_type_base);
      info->prev_item_type_base = (GVariantType *)g_strdup ((char *)type);
      info->prev_item_type = info->prev_item_type_base;
    }

  if (g_variant_type_is_tuple (info->type) ||
      g_variant_type_is_dict_entry (info->type))
    {
      const GVariantMemberInfo *member_info;

      member_info = g_variant_type_info_member_info (info->type_info, info->n_children);
      g_assert (member_info);
      alignment = member_info->type_info->alignment;
    }
  else if (g_variant_type_is_array (info->type))
    {
      GVariantTypeInfo *element_info = g_variant_type_info_element (info->type_info);

      alignment = element_info->alignment;
    }
  else if (g_variant_type_is_variant (info->type))
    {
      alignment = info->type_info->alignment;
    }
  else
    return glnx_throw (error, "adding to type %s not supported", (char *)info->type);

  while (info->offset & alignment)
    {
      if (glnx_loop_write (info->builder->fd, "\0", 1) < 0)
        return glnx_throw_errno (error);
      info->offset++;
    }

  return TRUE;
}

static void
ot_variant_builder_add_child_end (OtVariantBuilderInfo *info)
{
  guint64 v = info->offset;
  g_array_append_val (info->child_ends, v);
}

/* This is called after adding a child to the container. It
   updates offset, n_children and keeps track of an offset
   table if needed */

static gboolean
ot_variant_builder_post_add (OtVariantBuilderInfo *info,
                             const GVariantType *type,
                             guint64 bytes_added,
                             GError         **error)
{
  info->offset += bytes_added;

  if (g_variant_type_is_tuple (info->type) ||
      g_variant_type_is_dict_entry (info->type))
    {
      const GVariantMemberInfo *member_info;

      member_info = g_variant_type_info_member_info (info->type_info, info->n_children);
      g_assert (member_info);
      if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
        ot_variant_builder_add_child_end (info);
    }
  else if (g_variant_type_is_array (info->type))
    {
      GVariantTypeInfo *element_info = g_variant_type_info_element (info->type_info);

      if (!element_info->fixed_size)
        ot_variant_builder_add_child_end (info);
    }
  else if (g_variant_type_is_variant (info->type))
    {
      /* Zero separate */
      if (glnx_loop_write (info->builder->fd, "\0", 1) < 0)
        return glnx_throw_errno (error);

      if (glnx_loop_write (info->builder->fd, (char *)type, strlen ((char *)type)) < 0)
        return glnx_throw_errno (error);

      info->offset += 1 + strlen ((char *)type);
    }
  else
    return glnx_throw (error, "adding to type %s not supported", (char *)info->type);

  info->n_children++;

  return TRUE;
}

gboolean
ot_variant_builder_add_from_fd (OtVariantBuilder    *builder,
                                const GVariantType  *type,
                                int                  fd,
                                guint64              size,
                                GError             **error)
{
  OtVariantBuilderInfo *info = builder->head;

  g_return_val_if_fail (info->n_children < info->max_items,
                        FALSE);
  g_return_val_if_fail (!info->expected_type ||
                        g_variant_type_is_subtype_of (type,
                                                      info->expected_type),
                        FALSE);
  g_return_val_if_fail (!info->prev_item_type ||
                        g_variant_type_is_subtype_of (info->prev_item_type,
                                                      type),
                        FALSE);

  if (!ot_variant_builder_pre_add (info, type, error))
    return FALSE;

  if (glnx_regfile_copy_bytes (fd, builder->fd, size) < 0)
    return glnx_throw_errno (error);

  if (!ot_variant_builder_post_add (info, type, size, error))
    return FALSE;

  return TRUE;
}

gboolean
ot_variant_builder_add_value (OtVariantBuilder *builder,
                              GVariant        *value,
                              GError         **error)
{
  OtVariantBuilderInfo *info = builder->head;
  gconstpointer data;
  gsize data_size;
  /* We ref-sink value, just like g_variant_builder_add_value does */
  g_autoptr(GVariant) keep_around_until_return G_GNUC_UNUSED = g_variant_ref_sink (value);

  g_return_val_if_fail (info->n_children < info->max_items,
                        FALSE);
  g_return_val_if_fail (!info->expected_type ||
                        g_variant_is_of_type (value,
                                              info->expected_type),
                        FALSE);
  g_return_val_if_fail (!info->prev_item_type ||
                        g_variant_is_of_type (value,
                                              info->prev_item_type),
                        FALSE);

  if (!ot_variant_builder_pre_add (info, g_variant_get_type (value), error))
    return FALSE;

  data = g_variant_get_data (value);
  data_size = g_variant_get_size (value);

  if (data)
    {
      if (glnx_loop_write (builder->fd, data, data_size) < 0)
        return glnx_throw_errno (error);
    }

  if (!ot_variant_builder_post_add (info, g_variant_get_type (value), data_size, error))
    return FALSE;

  return TRUE;
}

gboolean
ot_variant_builder_add (OtVariantBuilder *builder,
                        GError          **error,
                        const gchar     *format_string,
                        ...)
{
  GVariant *variant;
  va_list ap;

  va_start (ap, format_string);
  variant = g_variant_new_va (format_string, NULL, &ap);
  va_end (ap);

  return ot_variant_builder_add_value (builder, variant, error);
}


gboolean
ot_variant_builder_open (OtVariantBuilder *builder,
                         const GVariantType *type,
                         GError **error)
{
  OtVariantBuilderInfo *info = builder->head;
  OtVariantBuilderInfo *new_info;

  g_assert (info->n_children < info->max_items);
  g_assert (!info->expected_type ||
                        g_variant_type_is_subtype_of (type,
                                                      info->expected_type));
  g_assert (!info->prev_item_type ||
                        g_variant_type_is_subtype_of (info->prev_item_type,
                                                      type));

  if (!ot_variant_builder_pre_add (info, type, error))
    return FALSE;

  new_info = ot_variant_builder_info_new (builder, type);
  new_info->parent = info;

  /* push the prev_item_type down into the subcontainer */
  if (info->prev_item_type)
    {
      if (!new_info->uniform_item_types)
        /* tuples and dict entries */
        new_info->prev_item_type =
          g_variant_type_first (info->prev_item_type);

      else if (!g_variant_type_is_variant (new_info->type))
        /* maybes and arrays */
        new_info->prev_item_type =
          g_variant_type_element (info->prev_item_type);
    }

  builder->head = new_info;
  return TRUE;
}

gboolean
ot_variant_builder_close (OtVariantBuilder *builder,
                          GError **error)
{
  OtVariantBuilderInfo *info = builder->head;
  OtVariantBuilderInfo *parent;

  g_return_val_if_fail (info->parent != NULL, FALSE);

  if (!ot_variant_builder_end (builder, error))
    return FALSE;

  parent = info->parent;

  if (!ot_variant_builder_post_add (parent, info->type, info->offset, error))
    return FALSE;

  builder->head = parent;

  info->parent = NULL;
  ot_variant_builder_info_free (info);

  return TRUE;
}

gboolean
ot_variant_builder_end (OtVariantBuilder *builder,
                        GError **error)
{
  OtVariantBuilderInfo *info = builder->head;
  gboolean add_offset_table = FALSE;
  gboolean reverse_offset_table = FALSE;

  g_return_val_if_fail (info->n_children >= info->min_items,
                        FALSE);
  g_return_val_if_fail (!info->uniform_item_types ||
                        info->prev_item_type != NULL ||
                        g_variant_type_is_definite (info->type),
                        FALSE);

  if (g_variant_type_is_tuple (info->type) ||
      g_variant_type_is_dict_entry (info->type))
    {
      add_offset_table = TRUE;
      reverse_offset_table = TRUE;
    }
  else if (g_variant_type_is_array (info->type))
    {
      GVariantTypeInfo *element_info = g_variant_type_info_element (info->type_info);

      if (!element_info->fixed_size)
        add_offset_table = TRUE;
    }
  else if (g_variant_type_is_variant (info->type))
    {
      /* noop */
    }
  else
    return glnx_throw (error, "closing type %s not supported", (char *)info->type);

  if (add_offset_table)
    {
      const gsize total_size = gvs_calculate_total_size (info->offset, info->child_ends->len);
      const gsize offset_size = gvs_get_offset_size (total_size);
      const gsize offset_table_size = total_size - info->offset;
      g_autofree guchar *offset_table = g_malloc (offset_table_size);
      guchar *p = offset_table;
      if (reverse_offset_table)
        {
          for (int i = info->child_ends->len - 1; i >= 0; i--)
            {
              gvs_write_unaligned_le (p, g_array_index (info->child_ends, guint64, i), offset_size);
              p += offset_size;
            }
        }
      else
        {
          for (int i = 0; i < info->child_ends->len; i++)
            {
              gvs_write_unaligned_le (p, g_array_index (info->child_ends, guint64, i), offset_size);
              p += offset_size;
            }
        }

      if (glnx_loop_write (builder->fd, offset_table, offset_table_size) < 0)
        return glnx_throw_errno (error);

      info->offset += offset_table_size;
    }
  else
    g_assert (info->child_ends->len == 0);

  return TRUE;
}