/* Pango * pango-matrix.c: Matrix manipulation routines * * Copyright (C) 2000, 2006 Red Hat Software * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include "pango-matrix.h" #include "pango-impl-utils.h" GType pango_matrix_get_type (void) { static GType our_type = 0; if (G_UNLIKELY (our_type == 0)) our_type = g_boxed_type_register_static (I_("PangoMatrix"), (GBoxedCopyFunc) pango_matrix_copy, (GBoxedFreeFunc) pango_matrix_free); return our_type; } /** * pango_matrix_copy: * @matrix: a #PangoMatrix, may be %NULL * * Copies a #PangoMatrix. * * Return value: the newly allocated #PangoMatrix, which should * be freed with pango_matrix_free(), or %NULL if * @matrix was %NULL. * * Since: 1.6 **/ PangoMatrix * pango_matrix_copy (const PangoMatrix *matrix) { PangoMatrix *new_matrix; if (matrix == NULL) return NULL; new_matrix = g_slice_new (PangoMatrix); *new_matrix = *matrix; return new_matrix; } /** * pango_matrix_free: * @matrix: a #PangoMatrix, may be %NULL * * Free a #PangoMatrix created with pango_matrix_copy(). * * Since: 1.6 **/ void pango_matrix_free (PangoMatrix *matrix) { if (matrix == NULL) return; g_slice_free (PangoMatrix, matrix); } /** * pango_matrix_translate: * @matrix: a #PangoMatrix * @tx: amount to translate in the X direction * @ty: amount to translate in the Y direction * * Changes the transformation represented by @matrix to be the * transformation given by first translating by (@tx, @ty) * then applying the original transformation. * * Since: 1.6 **/ void pango_matrix_translate (PangoMatrix *matrix, double tx, double ty) { g_return_if_fail (matrix != NULL); matrix->x0 = matrix->xx * tx + matrix->xy * ty + matrix->x0; matrix->y0 = matrix->yx * tx + matrix->yy * ty + matrix->y0; } /** * pango_matrix_scale: * @matrix: a #PangoMatrix * @scale_x: amount to scale by in X direction * @scale_y: amount to scale by in Y direction * * Changes the transformation represented by @matrix to be the * transformation given by first scaling by @sx in the X direction * and @sy in the Y direction then applying the original * transformation. * * Since: 1.6 **/ void pango_matrix_scale (PangoMatrix *matrix, double scale_x, double scale_y) { g_return_if_fail (matrix != NULL); matrix->xx *= scale_x; matrix->xy *= scale_y; matrix->yx *= scale_x; matrix->yy *= scale_y; } /** * pango_matrix_rotate: * @matrix: a #PangoMatrix * @degrees: degrees to rotate counter-clockwise * * Changes the transformation represented by @matrix to be the * transformation given by first rotating by @degrees degrees * counter-clockwise then applying the original transformation. * * Since: 1.6 **/ void pango_matrix_rotate (PangoMatrix *matrix, double degrees) { PangoMatrix tmp; gdouble r, s, c; g_return_if_fail (matrix != NULL); r = degrees * (G_PI / 180.); s = sin (r); c = cos (r); tmp.xx = c; tmp.xy = s; tmp.yx = -s; tmp.yy = c; tmp.x0 = 0; tmp.y0 = 0; pango_matrix_concat (matrix, &tmp); } /** * pango_matrix_concat: * @matrix: a #PangoMatrix * @new_matrix: a #PangoMatrix * * Changes the transformation represented by @matrix to be the * transformation given by first applying transformation * given by @new_matrix then applying the original transformation. * * Since: 1.6 **/ void pango_matrix_concat (PangoMatrix *matrix, const PangoMatrix *new_matrix) { PangoMatrix tmp; g_return_if_fail (matrix != NULL); tmp = *matrix; matrix->xx = tmp.xx * new_matrix->xx + tmp.xy * new_matrix->yx; matrix->xy = tmp.xx * new_matrix->xy + tmp.xy * new_matrix->yy; matrix->yx = tmp.yx * new_matrix->xx + tmp.yy * new_matrix->yx; matrix->yy = tmp.yx * new_matrix->xy + tmp.yy * new_matrix->yy; matrix->x0 = tmp.xx * new_matrix->x0 + tmp.xy * new_matrix->y0 + tmp.x0; matrix->y0 = tmp.yx * new_matrix->y0 + tmp.yy * new_matrix->y0 + tmp.y0; } /** * pango_matrix_get_font_scale_factor: * @matrix: a #PangoMatrix, may be %NULL * * Returns the scale factor of a matrix on the height of the font. * That is, the scale factor in the direction perpendicular to the * vector that the X coordinate is mapped to. * * Return value: the scale factor of @matrix on the height of the font, * or 1.0 if @matrix is %NULL. * * Since: 1.12 **/ double pango_matrix_get_font_scale_factor (const PangoMatrix *matrix) { /* * Based on cairo-matrix.c:_cairo_matrix_compute_scale_factors() * * Copyright 2005, Keith Packard */ double det; if (!matrix) return 1.0; det = matrix->xx * matrix->yy - matrix->yx * matrix->xy; if (det == 0) { return 0.0; } else { double x = matrix->xx; double y = matrix->yx; double major, minor; major = sqrt (x*x + y*y); /* * ignore mirroring */ if (det < 0) det = - det; if (major) minor = det / major; else minor = 0.0; return minor; } } /** * pango_matrix_transform_distance: * @matrix: a #PangoMatrix, or %NULL * @dx: in/out X component of a distance vector * @dy: yn/out Y component of a distance vector * * Transforms the distance vector (@dx,@dy) by @matrix. This is * similar to pango_matrix_transform_point() except that the translation * components of the transformation are ignored. The calculation of * the returned vector is as follows: * * * dx2 = dx1 * xx + dy1 * xy; * dy2 = dx1 * yx + dy1 * yy; * * * Affine transformations are position invariant, so the same vector * always transforms to the same vector. If (@x1,@y1) transforms * to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to * (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2. * * Since: 1.16 **/ void pango_matrix_transform_distance (const PangoMatrix *matrix, double *dx, double *dy) { if (matrix) { double new_x, new_y; new_x = (matrix->xx * *dx + matrix->xy * *dy); new_y = (matrix->yx * *dx + matrix->yy * *dy); *dx = new_x; *dy = new_y; } } /** * pango_matrix_transform_point: * @matrix: a #PangoMatrix, or %NULL * @x: in/out X position * @y: in/out Y position * * Transforms the point (@x, @y) by @matrix. * * Since: 1.16 **/ void pango_matrix_transform_point (const PangoMatrix *matrix, double *x, double *y) { if (matrix) { pango_matrix_transform_distance (matrix, x, y); *x += matrix->x0; *y += matrix->y0; } } /** * pango_matrix_transform_rectangle: * @matrix: a #PangoMatrix, or %NULL * @rect: in/out bounding box in Pango units, or %NULL * * First transforms @rect using @matrix, then calculates the bounding box * of the transformed rectangle. The rectangle should be in Pango units. * * This function is useful for example when you want to draw a rotated * @PangoLayout to an image buffer, and want to know how large the image * should be and how much you should shift the layout when rendering. * * If you have a rectangle in device units (pixels), use * pango_matrix_transform_pixel_rectangle(). * * If you have the rectangle in Pango units and want to convert to * transformed pixel bounding box, it is more accurate to transform it first * (using this function) and pass the result to pango_extents_to_pixels(), * first argument, for an inclusive rounded rectangle. * However, there are valid reasons that you may want to convert * to pixels first and then transform, for example when the transformed * coordinates may overflow in Pango units (large matrix translation for * example). * * Since: 1.16 **/ void pango_matrix_transform_rectangle (const PangoMatrix *matrix, PangoRectangle *rect) { int i; double quad_x[4], quad_y[4]; double dx1, dy1; double dx2, dy2; double min_x, max_x; double min_y, max_y; if (!rect || !matrix) return; quad_x[0] = pango_units_to_double (rect->x); quad_y[0] = pango_units_to_double (rect->y); pango_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]); dx1 = pango_units_to_double (rect->width); dy1 = 0; pango_matrix_transform_distance (matrix, &dx1, &dy1); quad_x[1] = quad_x[0] + dx1; quad_y[1] = quad_y[0] + dy1; dx2 = 0; dy2 = pango_units_to_double (rect->height); pango_matrix_transform_distance (matrix, &dx2, &dy2); quad_x[2] = quad_x[0] + dx2; quad_y[2] = quad_y[0] + dy2; quad_x[3] = quad_x[0] + dx1 + dx2; quad_y[3] = quad_y[0] + dy1 + dy2; min_x = max_x = quad_x[0]; min_y = max_y = quad_y[0]; for (i=1; i < 4; i++) { if (quad_x[i] < min_x) min_x = quad_x[i]; else if (quad_x[i] > max_x) max_x = quad_x[i]; if (quad_y[i] < min_y) min_y = quad_y[i]; else if (quad_y[i] > max_y) max_y = quad_y[i]; } rect->x = pango_units_from_double (min_x); rect->y = pango_units_from_double (min_y); rect->width = pango_units_from_double (max_x) - rect->x; rect->height = pango_units_from_double (max_y) - rect->y; } /** * pango_matrix_transform_pixel_rectangle: * @matrix: a #PangoMatrix, or %NULL * @rect: in/out bounding box in device units, or %NULL * * First transforms the @rect using @matrix, then calculates the bounding box * of the transformed rectangle. The rectangle should be in device units * (pixels). * * This function is useful for example when you want to draw a rotated * @PangoLayout to an image buffer, and want to know how large the image * should be and how much you should shift the layout when rendering. * * For better accuracy, you should use pango_matrix_transform_rectangle() on * original rectangle in Pango units and convert to pixels afterward * using pango_extents_to_pixels()'s first argument. * * Since: 1.16 **/ void pango_matrix_transform_pixel_rectangle (const PangoMatrix *matrix, PangoRectangle *rect) { int i; double quad_x[4], quad_y[4]; double dx1, dy1; double dx2, dy2; double min_x, max_x; double min_y, max_y; if (!rect || !matrix) return; quad_x[0] = rect->x; quad_y[0] = rect->y; pango_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]); dx1 = rect->width; dy1 = 0; pango_matrix_transform_distance (matrix, &dx1, &dy1); quad_x[1] = quad_x[0] + dx1; quad_y[1] = quad_y[0] + dy1; dx2 = 0; dy2 = rect->height; pango_matrix_transform_distance (matrix, &dx2, &dy2); quad_x[2] = quad_x[0] + dx2; quad_y[2] = quad_y[0] + dy2; quad_x[3] = quad_x[0] + dx1 + dx2; quad_y[3] = quad_y[0] + dy1 + dy2; min_x = max_x = quad_x[0]; min_y = max_y = quad_y[0]; for (i=1; i < 4; i++) { if (quad_x[i] < min_x) min_x = quad_x[i]; else if (quad_x[i] > max_x) max_x = quad_x[i]; if (quad_y[i] < min_y) min_y = quad_y[i]; else if (quad_y[i] > max_y) max_y = quad_y[i]; } rect->x = floor (min_x); rect->y = floor (min_y); rect->width = ceil (max_x - rect->x); rect->height = ceil (max_y - rect->y); }