/* libparted - a library for manipulating disk partitions Copyright (C) 2001, 2007, 2009-2014, 2019-2023 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Contributor: Ben Collins */ #include #include #include #include #if ENABLE_NLS # include # define _(String) dgettext (PACKAGE, String) #else # define _(String) (String) #endif /* ENABLE_NLS */ #include #include /* taken from ufs_fs.h in Linux */ #define UFS_MAXNAMLEN 255 #define UFS_MAXMNTLEN 512 #define UFS_MAXCSBUFS 31 #define UFS_LINK_MAX 32000 #define UFS_MAGIC 0x00011954 #define UFS_MAGIC_LFN 0x00095014 #define UFS_MAGIC_FEA 0x00195612 #define UFS_MAGIC_4GB 0x05231994 struct __attribute__ ((packed)) ufs_csum { uint32_t cs_ndir; /* number of directories */ uint32_t cs_nbfree; /* number of free blocks */ uint32_t cs_nifree; /* number of free inodes */ uint32_t cs_nffree; /* number of free frags */ }; struct __attribute__ ((packed)) ufs_super_block { uint32_t fs_link; /* UNUSED */ uint32_t fs_rlink; /* UNUSED */ uint32_t fs_sblkno; /* addr of super-block in filesys */ uint32_t fs_cblkno; /* offset of cyl-block in filesys */ uint32_t fs_iblkno; /* offset of inode-blocks in filesys */ uint32_t fs_dblkno; /* offset of first data after cg */ uint32_t fs_cgoffset; /* cylinder group offset in cylinder */ uint32_t fs_cgmask; /* used to calc mod fs_ntrak */ uint32_t fs_time; /* last time written -- time_t */ uint32_t fs_size; /* number of blocks in fs */ uint32_t fs_dsize; /* number of data blocks in fs */ uint32_t fs_ncg; /* number of cylinder groups */ uint32_t fs_bsize; /* size of basic blocks in fs */ uint32_t fs_fsize; /* size of frag blocks in fs */ uint32_t fs_frag; /* number of frags in a block in fs */ /* these are configuration parameters */ uint32_t fs_minfree; /* minimum percentage of free blocks */ uint32_t fs_rotdelay; /* num of ms for optimal next block */ uint32_t fs_rps; /* disk revolutions per second */ /* these fields can be computed from the others */ uint32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ uint32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ uint32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ uint32_t fs_fshift; /* ``numfrags'' calc number of frags */ /* these are configuration parameters */ uint32_t fs_maxcontig; /* max number of contiguous blks */ uint32_t fs_maxbpg; /* max number of blks per cyl group */ /* these fields can be computed from the others */ uint32_t fs_fragshift; /* block to frag shift */ uint32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ uint32_t fs_sbsize; /* actual size of super block */ uint32_t fs_csmask; /* csum block offset */ uint32_t fs_csshift; /* csum block number */ uint32_t fs_nindir; /* value of NINDIR */ uint32_t fs_inopb; /* value of INOPB */ uint32_t fs_nspf; /* value of NSPF */ /* yet another configuration parameter */ uint32_t fs_optim; /* optimization preference, see below */ /* these fields are derived from the hardware */ union { struct { uint32_t fs_npsect; /* # sectors/track including spares */ } fs_sun; struct { int32_t fs_state; /* file system state timestamp */ } fs_sunx86; } fs_u1; uint32_t fs_interleave; /* hardware sector interleave */ uint32_t fs_trackskew; /* sector 0 skew, per track */ /* a unique id for this file system (currently unused and unmaintained) */ /* In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek */ /* Neither of those fields is used in the Tahoe code right now but */ /* there could be problems if they are. */ uint32_t fs_id[2]; /* file system id */ /* sizes determined by number of cylinder groups and their sizes */ uint32_t fs_csaddr; /* blk addr of cyl grp summary area */ uint32_t fs_cssize; /* size of cyl grp summary area */ uint32_t fs_cgsize; /* cylinder group size */ /* these fields are derived from the hardware */ uint32_t fs_ntrak; /* tracks per cylinder */ uint32_t fs_nsect; /* sectors per track */ uint32_t fs_spc; /* sectors per cylinder */ /* this comes from the disk driver partitioning */ uint32_t fs_ncyl; /* cylinders in file system */ /* these fields can be computed from the others */ uint32_t fs_cpg; /* cylinders per group */ uint32_t fs_ipg; /* inodes per group */ uint32_t fs_fpg; /* blocks per group * fs_frag */ /* this data must be re-computed after crashes */ struct ufs_csum fs_cstotal; /* cylinder summary information */ /* these fields are cleared at mount time */ int8_t fs_fmod; /* super block modified flag */ int8_t fs_clean; /* file system is clean flag */ int8_t fs_ronly; /* mounted read-only flag */ int8_t fs_flags; /* currently unused flag */ int8_t fs_fsmnt[UFS_MAXMNTLEN]; /* name mounted on */ /* these fields retain the current block allocation info */ uint32_t fs_cgrotor; /* last cg searched */ uint32_t fs_csp[UFS_MAXCSBUFS]; /* list of fs_cs info buffers */ uint32_t fs_maxcluster; uint32_t fs_cpc; /* cyl per cycle in postbl */ uint16_t fs_opostbl[16][8]; /* old rotation block list head */ union { struct { int32_t fs_sparecon[53];/* reserved for future constants */ int32_t fs_reclaim; int32_t fs_sparecon2[1]; int32_t fs_state; /* file system state timestamp */ uint32_t fs_qbmask[2]; /* ~usb_bmask */ uint32_t fs_qfmask[2]; /* ~usb_fmask */ } fs_sun; struct { int32_t fs_sparecon[53];/* reserved for future constants */ int32_t fs_reclaim; int32_t fs_sparecon2[1]; uint32_t fs_npsect; /* # sectors/track including spares */ uint32_t fs_qbmask[2]; /* ~usb_bmask */ uint32_t fs_qfmask[2]; /* ~usb_fmask */ } fs_sunx86; struct { int32_t fs_sparecon[50];/* reserved for future constants */ int32_t fs_contigsumsize;/* size of cluster summary array */ int32_t fs_maxsymlinklen;/* max length of an internal symlink */ int32_t fs_inodefmt; /* format of on-disk inodes */ uint32_t fs_maxfilesize[2]; /* max representable file size */ uint32_t fs_qbmask[2]; /* ~usb_bmask */ uint32_t fs_qfmask[2]; /* ~usb_fmask */ int32_t fs_state; /* file system state timestamp */ } fs_44; } fs_u2; int32_t fs_postblformat; /* format of positional layout tables */ int32_t fs_nrpos; /* number of rotational positions */ int32_t fs_postbloff; /* (__s16) rotation block list head */ int32_t fs_rotbloff; /* (uint8_t) blocks for each rotation */ int32_t fs_magic; /* magic number */ uint8_t fs_space[4]; /* list of blocks for each rotation */ }; static PedGeometry* ufs_probe_sun (PedGeometry* geom) { const int sectors = ((3 * 512) + geom->dev->sector_size - 1) / geom->dev->sector_size; uint8_t* buf = alloca (sectors * geom->dev->sector_size); struct ufs_super_block *sb; if (geom->length < 5) return 0; if (!ped_geometry_read (geom, buf, 16 * 512 / geom->dev->sector_size, sectors)) return 0; sb = (struct ufs_super_block *)buf; if (PED_BE32_TO_CPU(sb->fs_magic) == UFS_MAGIC) { PedSector block_size = PED_BE32_TO_CPU(sb->fs_bsize) / geom->dev->sector_size; PedSector block_count = PED_BE32_TO_CPU(sb->fs_size); return ped_geometry_new (geom->dev, geom->start, block_size * block_count); } if (PED_LE32_TO_CPU(sb->fs_magic) == UFS_MAGIC) { PedSector block_size = PED_LE32_TO_CPU(sb->fs_bsize) / geom->dev->sector_size; PedSector block_count = PED_LE32_TO_CPU(sb->fs_size); return ped_geometry_new (geom->dev, geom->start, block_size * block_count); } return NULL; } static PedGeometry* ufs_probe_hp (PedGeometry* geom) { struct ufs_super_block *sb; PedSector block_size; PedSector block_count; if (geom->length < 5) return 0; const int sectors = ((3 * 512) + geom->dev->sector_size - 1) / geom->dev->sector_size; uint8_t* buf = alloca (sectors * geom->dev->sector_size); if (!ped_geometry_read (geom, buf, 16 * 512 / geom->dev->sector_size, sectors)) return 0; sb = (struct ufs_super_block *)buf; /* Try sane bytesex */ switch (PED_BE32_TO_CPU(sb->fs_magic)) { case UFS_MAGIC_LFN: case UFS_MAGIC_FEA: case UFS_MAGIC_4GB: block_size = PED_BE32_TO_CPU(sb->fs_bsize) / geom->dev->sector_size; block_count = PED_BE32_TO_CPU(sb->fs_size); return ped_geometry_new (geom->dev, geom->start, block_size * block_count); } /* Try perverted bytesex */ switch (PED_LE32_TO_CPU(sb->fs_magic)) { case UFS_MAGIC_LFN: case UFS_MAGIC_FEA: case UFS_MAGIC_4GB: block_size = PED_LE32_TO_CPU(sb->fs_bsize) / geom->dev->sector_size; block_count = PED_LE32_TO_CPU(sb->fs_size); return ped_geometry_new (geom->dev, geom->start, block_size * block_count); } return NULL; } static PedFileSystemOps ufs_ops_sun = { probe: ufs_probe_sun, }; static PedFileSystemOps ufs_ops_hp = { probe: ufs_probe_hp, }; static PedFileSystemType ufs_type_sun = { next: NULL, ops: &ufs_ops_sun, name: "sun-ufs", }; static PedFileSystemType ufs_type_hp = { next: NULL, ops: &ufs_ops_hp, name: "hp-ufs", }; void ped_file_system_ufs_init () { PED_ASSERT (sizeof (struct ufs_super_block) == 1380); ped_file_system_type_register (&ufs_type_sun); ped_file_system_type_register (&ufs_type_hp); } void ped_file_system_ufs_done () { ped_file_system_type_unregister (&ufs_type_hp); ped_file_system_type_unregister (&ufs_type_sun); }