1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
/*
libparted - a library for manipulating disk partitions
Copyright (C) 2000-2001, 2007, 2009-2014, 2019-2022 Free Software
Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \addtogroup PedConstraint
*
* \brief Constraint solver interface.
*
* Constraints are used to communicate restrictions on operations Constraints
* are restrictions on the location and alignment of the start and end of a
* partition, and the minimum and maximum size.
*
* Constraints are closed under intersection (for the proof see the source
* code). For background information see the Chinese Remainder Theorem.
*
* This interface consists of construction constraints, finding the intersection
* of constraints, and finding solutions to constraints.
*
* The constraint solver allows you to specify constraints on where a partition
* or file system (or any PedGeometry) may be placed/resized/etc. For example,
* you might want to make sure that a file system is at least 10 Gb, or that it
* starts at the beginning of new cylinder.
*
* The constraint solver in this file unifies solver in geom.c (which allows you
* to specify constraints on ranges) and natmath.c (which allows you to specify
* alignment constraints).
*
* @{
*/
#include <config.h>
#include <parted/parted.h>
#include <parted/debug.h>
#include <assert.h>
/**
* Initializes a pre-allocated piece of memory to contain a constraint
* with the supplied default values.
*
* \return \c 0 on failure.
*/
int
ped_constraint_init (
PedConstraint* constraint,
const PedAlignment* start_align,
const PedAlignment* end_align,
const PedGeometry* start_range,
const PedGeometry* end_range,
PedSector min_size,
PedSector max_size)
{
PED_ASSERT (constraint != NULL);
PED_ASSERT (start_range != NULL);
PED_ASSERT (end_range != NULL);
PED_ASSERT (min_size > 0);
PED_ASSERT (max_size > 0);
constraint->start_align = ped_alignment_duplicate (start_align);
constraint->end_align = ped_alignment_duplicate (end_align);
constraint->start_range = ped_geometry_duplicate (start_range);
constraint->end_range = ped_geometry_duplicate (end_range);
constraint->min_size = min_size;
constraint->max_size = max_size;
return 1;
}
/**
* Convenience wrapper for ped_constraint_init().
*
* Allocates a new piece of memory and initializes the constraint.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new (
const PedAlignment* start_align,
const PedAlignment* end_align,
const PedGeometry* start_range,
const PedGeometry* end_range,
PedSector min_size,
PedSector max_size)
{
PedConstraint* constraint;
constraint = (PedConstraint*) ped_malloc (sizeof (PedConstraint));
if (!constraint)
goto error;
if (!ped_constraint_init (constraint, start_align, end_align,
start_range, end_range, min_size, max_size))
goto error_free_constraint;
return constraint;
error_free_constraint:
free (constraint);
error:
return NULL;
}
/**
* Return a constraint that requires a region to be entirely contained inside
* \p max, and to entirely contain \p min.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new_from_min_max (
const PedGeometry* min,
const PedGeometry* max)
{
PedGeometry start_range;
PedGeometry end_range;
PED_ASSERT (min != NULL);
PED_ASSERT (max != NULL);
PED_ASSERT (ped_geometry_test_inside (max, min));
ped_geometry_init (&start_range, min->dev, max->start,
min->start - max->start + 1);
ped_geometry_init (&end_range, min->dev, min->end,
max->end - min->end + 1);
return ped_constraint_new (
ped_alignment_any, ped_alignment_any,
&start_range, &end_range,
min->length, max->length);
}
/**
* Return a constraint that requires a region to entirely contain \p min.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new_from_min (const PedGeometry* min)
{
PedGeometry full_dev;
PED_ASSERT (min != NULL);
ped_geometry_init (&full_dev, min->dev, 0, min->dev->length);
return ped_constraint_new_from_min_max (min, &full_dev);
}
/**
* Return a constraint that requires a region to be entirely contained inside
* \p max.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_new_from_max (const PedGeometry* max)
{
PED_ASSERT (max != NULL);
return ped_constraint_new (
ped_alignment_any, ped_alignment_any,
max, max, 1, max->length);
}
/**
* Duplicate a constraint.
*
* \return \c NULL on failure.
*/
PedConstraint*
ped_constraint_duplicate (const PedConstraint* constraint)
{
PED_ASSERT (constraint != NULL);
return ped_constraint_new (
constraint->start_align,
constraint->end_align,
constraint->start_range,
constraint->end_range,
constraint->min_size,
constraint->max_size);
}
/**
* Return a constraint that requires a region to satisfy both \p a and \p b.
*
* Moreover, any region satisfying \p a and \p b will also satisfy the returned
* constraint.
*
* \return \c NULL if no solution could be found (note that \c NULL is a valid
* PedConstraint).
*/
PedConstraint*
ped_constraint_intersect (const PedConstraint* a, const PedConstraint* b)
{
PedAlignment* start_align;
PedAlignment* end_align;
PedGeometry* start_range;
PedGeometry* end_range;
PedSector min_size;
PedSector max_size;
PedConstraint* constraint;
if (!a || !b)
return NULL;
start_align = ped_alignment_intersect (a->start_align, b->start_align);
if (!start_align)
goto empty;
end_align = ped_alignment_intersect (a->end_align, b->end_align);
if (!end_align)
goto empty_destroy_start_align;
start_range = ped_geometry_intersect (a->start_range, b->start_range);
if (!start_range)
goto empty_destroy_end_align;
end_range = ped_geometry_intersect (a->end_range, b->end_range);
if (!end_range)
goto empty_destroy_start_range;
min_size = PED_MAX (a->min_size, b->min_size);
max_size = PED_MIN (a->max_size, b->max_size);
constraint = ped_constraint_new (
start_align, end_align, start_range, end_range,
min_size, max_size);
if (!constraint)
goto empty_destroy_end_range;
ped_alignment_destroy (start_align);
ped_alignment_destroy (end_align);
ped_geometry_destroy (start_range);
ped_geometry_destroy (end_range);
return constraint;
empty_destroy_end_range:
ped_geometry_destroy (end_range);
empty_destroy_start_range:
ped_geometry_destroy (start_range);
empty_destroy_end_align:
ped_alignment_destroy (end_align);
empty_destroy_start_align:
ped_alignment_destroy (start_align);
empty:
return NULL;
}
/**
* Release the memory allocated for a PedConstraint constructed with
* ped_constraint_init().
*/
void
ped_constraint_done (PedConstraint* constraint)
{
PED_ASSERT (constraint != NULL);
ped_alignment_destroy (constraint->start_align);
ped_alignment_destroy (constraint->end_align);
ped_geometry_destroy (constraint->start_range);
ped_geometry_destroy (constraint->end_range);
}
/**
* Release the memory allocated for a PedConstraint constructed with
* ped_constraint_new().
*/
void
ped_constraint_destroy (PedConstraint* constraint)
{
if (constraint) {
ped_constraint_done (constraint);
free (constraint);
}
}
/*
* Return the region within which the start must lie
* in order to satisfy a constriant. It takes into account
* constraint->start_range, constraint->min_size and constraint->max_size.
* All sectors in this range that also satisfy alignment requirements have
* an end, such that the (start, end) satisfy the constraint.
*/
static PedGeometry*
_constraint_get_canonical_start_range (const PedConstraint* constraint)
{
PedSector first_end_soln;
PedSector last_end_soln;
PedSector min_start;
PedSector max_start;
PedGeometry start_min_max_range;
if (constraint->min_size > constraint->max_size)
return NULL;
first_end_soln = ped_alignment_align_down (
constraint->end_align, constraint->end_range,
constraint->end_range->start);
last_end_soln = ped_alignment_align_up (
constraint->end_align, constraint->end_range,
constraint->end_range->end);
if (first_end_soln == -1 || last_end_soln == -1
|| first_end_soln > last_end_soln
|| last_end_soln < constraint->min_size)
return NULL;
min_start = first_end_soln - constraint->max_size + 1;
if (min_start < 0)
min_start = 0;
max_start = last_end_soln - constraint->min_size + 1;
if (max_start < 0)
return NULL;
ped_geometry_init (
&start_min_max_range, constraint->start_range->dev,
min_start, max_start - min_start + 1);
return ped_geometry_intersect (&start_min_max_range,
constraint->start_range);
}
/*
* Return the nearest start that will have at least one other end that
* together satisfy the constraint.
*/
static PedSector
_constraint_get_nearest_start_soln (const PedConstraint* constraint,
PedSector start)
{
PedGeometry* start_range;
PedSector result;
start_range = _constraint_get_canonical_start_range (constraint);
if (!start_range)
return -1;
result = ped_alignment_align_nearest (
constraint->start_align, start_range, start);
ped_geometry_destroy (start_range);
return result;
}
/*
* Given a constraint and a start ("half of the solution"), find the
* range of all possible ends, such that all (start, end) are solutions
* to constraint (subject to additional alignment requirements).
*/
static PedGeometry*
_constraint_get_end_range (const PedConstraint* constraint, PedSector start)
{
PedDevice* dev = constraint->end_range->dev;
PedSector first_min_max_end;
PedSector last_min_max_end;
PedGeometry end_min_max_range;
if (start + constraint->min_size - 1 > dev->length - 1)
return NULL;
first_min_max_end = start + constraint->min_size - 1;
last_min_max_end = start + constraint->max_size - 1;
if (last_min_max_end > dev->length - 1)
last_min_max_end = dev->length - 1;
ped_geometry_init (&end_min_max_range, dev,
first_min_max_end,
last_min_max_end - first_min_max_end + 1);
return ped_geometry_intersect (&end_min_max_range,
constraint->end_range);
}
/*
* Given "constraint" and "start", find the end that is nearest to
* "end", such that ("start", the end) together form a solution to
* "constraint".
*/
static PedSector
_constraint_get_nearest_end_soln (const PedConstraint* constraint,
PedSector start, PedSector end)
{
PedGeometry* end_range;
PedSector result;
end_range = _constraint_get_end_range (constraint, start);
if (!end_range)
return -1;
result = ped_alignment_align_nearest (constraint->end_align, end_range,
end);
ped_geometry_destroy (end_range);
return result;
}
/**
* Return the nearest region to \p geom that satisfy a \p constraint.
*
* Note that "nearest" is somewhat ambiguous. This function makes
* no guarantees about how this ambiguity is resovled.
*
* \return PedGeometry, or NULL when a \p constrain cannot be satisfied
*/
PedGeometry*
ped_constraint_solve_nearest (
const PedConstraint* constraint, const PedGeometry* geom)
{
PedSector start;
PedSector end;
PedGeometry* result;
if (constraint == NULL)
return NULL;
PED_ASSERT (geom != NULL);
PED_ASSERT (constraint->start_range->dev == geom->dev);
start = _constraint_get_nearest_start_soln (constraint, geom->start);
if (start == -1)
return NULL;
end = _constraint_get_nearest_end_soln (constraint, start, geom->end);
if (end == -1)
return NULL;
result = ped_geometry_new (geom->dev, start, end - start + 1);
if (!result)
return NULL;
PED_ASSERT (ped_constraint_is_solution (constraint, result));
return result;
}
/**
* Find the largest region that satisfies a constraint.
*
* There might be more than one solution. This function makes no
* guarantees about which solution it will choose in this case.
*/
PedGeometry*
ped_constraint_solve_max (const PedConstraint* constraint)
{
PedDevice* dev;
PedGeometry full_dev;
if (!constraint)
return NULL;
dev = constraint->start_range->dev;
ped_geometry_init (&full_dev, dev, 0, dev->length);
return ped_constraint_solve_nearest (constraint, &full_dev);
}
/**
* Check whether \p geom satisfies the given constraint.
*
* \return \c 1 if it does.
**/
int
ped_constraint_is_solution (const PedConstraint* constraint,
const PedGeometry* geom)
{
PED_ASSERT (constraint != NULL);
PED_ASSERT (geom != NULL);
if (!ped_alignment_is_aligned (constraint->start_align, NULL,
geom->start))
return 0;
if (!ped_alignment_is_aligned (constraint->end_align, NULL, geom->end))
return 0;
if (!ped_geometry_test_sector_inside (constraint->start_range,
geom->start))
return 0;
if (!ped_geometry_test_sector_inside (constraint->end_range, geom->end))
return 0;
if (geom->length < constraint->min_size)
return 0;
if (geom->length > constraint->max_size)
return 0;
return 1;
}
/**
* Return a constraint that any region on the given device will satisfy.
*/
PedConstraint*
ped_constraint_any (const PedDevice* dev)
{
PedGeometry full_dev;
if (!ped_geometry_init (&full_dev, dev, 0, dev->length))
return NULL;
return ped_constraint_new (
ped_alignment_any,
ped_alignment_any,
&full_dev,
&full_dev,
1,
dev->length);
}
/**
* Return a constraint that only the given region will satisfy.
*/
PedConstraint*
ped_constraint_exact (const PedGeometry* geom)
{
PedAlignment start_align;
PedAlignment end_align;
PedGeometry start_sector;
PedGeometry end_sector;
int ok;
/* With grain size of 0, it always succeeds. */
ok = ped_alignment_init (&start_align, geom->start, 0);
assert (ok);
ok = ped_alignment_init (&end_align, geom->end, 0);
assert (ok);
ok = ped_geometry_init (&start_sector, geom->dev, geom->start, 1);
if (!ok)
return NULL;
ok = ped_geometry_init (&end_sector, geom->dev, geom->end, 1);
if (!ok)
return NULL;
return ped_constraint_new (&start_align, &end_align,
&start_sector, &end_sector, 1,
geom->dev->length);
}
/**
* @}
*/
|