1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
|
/*
libparted - a library for manipulating disk partitions
original version by Matt Domsch <Matt_Domsch@dell.com>
Disclaimed into the Public Domain
Portions Copyright (C) 2001-2003, 2005-2012 Free Software Foundation, Inc.
EFI GUID Partition Table handling
Per Intel EFI Specification v1.02
http://developer.intel.com/technology/efi/efi.htm
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <parted/parted.h>
#include <parted/debug.h>
#include <parted/endian.h>
#include <parted/crc32.h>
#include <inttypes.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <stdbool.h>
#include <errno.h>
#include <iconv.h>
#include <langinfo.h>
#include "xalloc.h"
#include "verify.h"
#include "pt-tools.h"
#if ENABLE_NLS
# include <libintl.h>
# define _(String) gettext (String)
#else
# define _(String) (String)
#endif /* ENABLE_NLS */
#define EFI_PMBR_OSTYPE_EFI 0xEE
#define MSDOS_MBR_SIGNATURE 0xaa55
#define GPT_HEADER_SIGNATURE 0x5452415020494645LL
/* NOTE: the document that describes revision 1.00 is labelled "version 1.02",
* so some implementors got confused...
*/
#define GPT_HEADER_REVISION_V1_02 0x00010200
#define GPT_HEADER_REVISION_V1_00 0x00010000
#define GPT_HEADER_REVISION_V0_99 0x00009900
typedef uint16_t efi_char16_t; /* UNICODE character */
typedef struct _GuidPartitionTableHeader_t GuidPartitionTableHeader_t;
typedef struct _GuidPartitionEntryAttributes_t GuidPartitionEntryAttributes_t;
typedef struct _GuidPartitionEntry_t GuidPartitionEntry_t;
typedef struct _PartitionRecord_t PartitionRecord_t;
typedef struct _LegacyMBR_t LegacyMBR_t;
typedef struct _GPTDiskData GPTDiskData;
typedef struct
{
uint32_t time_low;
uint16_t time_mid;
uint16_t time_hi_and_version;
uint8_t clock_seq_hi_and_reserved;
uint8_t clock_seq_low;
uint8_t node[6];
} /* __attribute__ ((packed)) */ efi_guid_t;
/* commented out "__attribute__ ((packed))" to work around gcc bug (fixed
* in gcc3.1): __attribute__ ((packed)) breaks addressing on initialized
* data. It turns out we don't need it in this case, so it doesn't break
* anything :)
*/
#define UNUSED_ENTRY_GUID \
((efi_guid_t) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, \
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})
#define PARTITION_SYSTEM_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xC12A7328), PED_CPU_TO_LE16 (0xF81F), \
PED_CPU_TO_LE16 (0x11d2), 0xBA, 0x4B, \
{ 0x00, 0xA0, 0xC9, 0x3E, 0xC9, 0x3B }})
#define PARTITION_BIOS_GRUB_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x21686148), PED_CPU_TO_LE16 (0x6449), \
PED_CPU_TO_LE16 (0x6E6f), 0x74, 0x4E, \
{ 0x65, 0x65, 0x64, 0x45, 0x46, 0x49 }})
#define LEGACY_MBR_PARTITION_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x024DEE41), PED_CPU_TO_LE16 (0x33E7), \
PED_CPU_TO_LE16 (0x11d3, 0x9D, 0x69, \
{ 0x00, 0x08, 0xC7, 0x81, 0xF3, 0x9F }})
#define PARTITION_MSFT_RESERVED_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xE3C9E316), PED_CPU_TO_LE16 (0x0B5C), \
PED_CPU_TO_LE16 (0x4DB8), 0x81, 0x7D, \
{ 0xF9, 0x2D, 0xF0, 0x02, 0x15, 0xAE }})
#define PARTITION_MSFT_RECOVERY \
((efi_guid_t) { PED_CPU_TO_LE32 (0xDE94BBA4), PED_CPU_TO_LE16 (0x06D1), \
PED_CPU_TO_LE16 (0x4D40), 0xA1, 0x6A, \
{ 0xBF, 0xD5, 0x01, 0x79, 0xD6, 0xAC }})
#define PARTITION_BASIC_DATA_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xEBD0A0A2), PED_CPU_TO_LE16 (0xB9E5), \
PED_CPU_TO_LE16 (0x4433), 0x87, 0xC0, \
{ 0x68, 0xB6, 0xB7, 0x26, 0x99, 0xC7 }})
#define PARTITION_RAID_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xa19d880f), PED_CPU_TO_LE16 (0x05fc), \
PED_CPU_TO_LE16 (0x4d3b), 0xa0, 0x06, \
{ 0x74, 0x3f, 0x0f, 0x84, 0x91, 0x1e }})
#define PARTITION_SWAP_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x0657fd6d), PED_CPU_TO_LE16 (0xa4ab), \
PED_CPU_TO_LE16 (0x43c4), 0x84, 0xe5, \
{ 0x09, 0x33, 0xc8, 0x4b, 0x4f, 0x4f }})
#define PARTITION_LINUX_DATA_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x0FC63DAF), PED_CPU_TO_LE16 (0x8483), \
PED_CPU_TO_LE16 (0x4772), 0x8E, 0x79, \
{ 0x3D, 0x69, 0xD8, 0x47, 0x7D, 0xE4 }})
#define PARTITION_LVM_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xe6d6d379), PED_CPU_TO_LE16 (0xf507), \
PED_CPU_TO_LE16 (0x44c2), 0xa2, 0x3c, \
{ 0x23, 0x8f, 0x2a, 0x3d, 0xf9, 0x28 }})
#define PARTITION_RESERVED_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x8da63339), PED_CPU_TO_LE16 (0x0007), \
PED_CPU_TO_LE16 (0x60c0), 0xc4, 0x36, \
{ 0x08, 0x3a, 0xc8, 0x23, 0x09, 0x08 }})
#define PARTITION_HPSERVICE_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xe2a1e728), PED_CPU_TO_LE16 (0x32e3), \
PED_CPU_TO_LE16 (0x11d6), 0xa6, 0x82, \
{ 0x7b, 0x03, 0xa0, 0x00, 0x00, 0x00 }})
#define PARTITION_APPLE_HFS_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x48465300), PED_CPU_TO_LE16 (0x0000), \
PED_CPU_TO_LE16 (0x11AA), 0xaa, 0x11, \
{ 0x00, 0x30, 0x65, 0x43, 0xEC, 0xAC }})
#define PARTITION_APPLE_TV_RECOVERY_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x5265636F), PED_CPU_TO_LE16 (0x7665), \
PED_CPU_TO_LE16 (0x11AA), 0xaa, 0x11, \
{ 0x00, 0x30, 0x65, 0x43, 0xEC, 0xAC }})
#define PARTITION_PREP_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x9e1a2d38), PED_CPU_TO_LE16 (0xc612), \
PED_CPU_TO_LE16 (0x4316), 0xaa, 0x26, \
{ 0x8b, 0x49, 0x52, 0x1e, 0x5a, 0x8b }})
#define PARTITION_IRST_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xD3BFE2DE), PED_CPU_TO_LE16 (0x3DAF), \
PED_CPU_TO_LE16 (0x11DF), 0xba, 0x40, \
{ 0xE3, 0xA5, 0x56, 0xD8, 0x95, 0x93 }})
#define PARTITION_CHROMEOS_KERNEL_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xfe3a2a5d), PED_CPU_TO_LE16 (0x4f32), \
PED_CPU_TO_LE16 (0x41a7), 0xb7, 0x25, \
{ 0xac, 0xcc, 0x32, 0x85, 0xa3, 0x09 }})
#define PARTITION_BLS_BOOT_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0xbc13c2ff), PED_CPU_TO_LE16 (0x59e6), \
PED_CPU_TO_LE16 (0x4262), 0xa3, 0x52, \
{ 0xb2, 0x75, 0xfd, 0x6f, 0x71, 0x72 }})
#define PARTITION_LINUX_HOME_GUID \
((efi_guid_t) { PED_CPU_TO_LE32 (0x933ac7e1), PED_CPU_TO_LE16 (0x2eb4), \
PED_CPU_TO_LE16 (0x4f13), 0xb8, 0x44, \
{ 0x0e, 0x14, 0xe2, 0xae, 0xf9, 0x15 }})
struct flag_uuid_mapping_t
{
enum _PedPartitionFlag flag;
efi_guid_t type_uuid;
};
static const struct flag_uuid_mapping_t flag_uuid_mapping[] =
{
{ PED_PARTITION_APPLE_TV_RECOVERY, PARTITION_APPLE_TV_RECOVERY_GUID },
{ PED_PARTITION_BIOS_GRUB, PARTITION_BIOS_GRUB_GUID },
{ PED_PARTITION_BLS_BOOT, PARTITION_BLS_BOOT_GUID },
{ PED_PARTITION_BOOT, PARTITION_SYSTEM_GUID },
{ PED_PARTITION_CHROMEOS_KERNEL, PARTITION_CHROMEOS_KERNEL_GUID },
{ PED_PARTITION_DIAG, PARTITION_MSFT_RECOVERY },
{ PED_PARTITION_ESP, PARTITION_SYSTEM_GUID },
{ PED_PARTITION_HPSERVICE, PARTITION_HPSERVICE_GUID },
{ PED_PARTITION_IRST, PARTITION_IRST_GUID },
{ PED_PARTITION_LINUX_HOME, PARTITION_LINUX_HOME_GUID },
{ PED_PARTITION_LVM, PARTITION_LVM_GUID },
{ PED_PARTITION_MSFT_DATA, PARTITION_BASIC_DATA_GUID },
{ PED_PARTITION_MSFT_RESERVED, PARTITION_MSFT_RESERVED_GUID },
{ PED_PARTITION_PREP, PARTITION_PREP_GUID },
{ PED_PARTITION_RAID, PARTITION_RAID_GUID },
{ PED_PARTITION_SWAP, PARTITION_SWAP_GUID },
};
static const struct flag_uuid_mapping_t* _GL_ATTRIBUTE_CONST
gpt_find_flag_uuid_mapping (PedPartitionFlag flag)
{
int n = sizeof(flag_uuid_mapping) / sizeof(flag_uuid_mapping[0]);
for (int i = 0; i < n; ++i)
if (flag_uuid_mapping[i].flag == flag)
return &flag_uuid_mapping[i];
return NULL;
}
struct __attribute__ ((packed)) _GuidPartitionTableHeader_t
{
uint64_t Signature;
uint32_t Revision;
uint32_t HeaderSize;
uint32_t HeaderCRC32;
uint32_t Reserved1;
uint64_t MyLBA;
uint64_t AlternateLBA;
uint64_t FirstUsableLBA;
uint64_t LastUsableLBA;
efi_guid_t DiskGUID;
uint64_t PartitionEntryLBA;
uint32_t NumberOfPartitionEntries;
uint32_t SizeOfPartitionEntry;
uint32_t PartitionEntryArrayCRC32;
uint8_t *Reserved2;
};
struct __attribute__ ((packed)) _GuidPartitionEntryAttributes_t
{
#ifdef __GNUC__ /* XXX narrow this down to !TinyCC */
uint64_t RequiredToFunction:1;
uint64_t NoBlockIOProtocol:1;
uint64_t LegacyBIOSBootable:1;
uint64_t Reserved:45;
uint64_t GuidSpecific:16;
#else
# warning "Using crippled partition entry type"
uint32_t RequiredToFunction:1;
uint32_t NoBlockIOProtocol:1;
uint32_t LegacyBIOSBootable:1;
uint32_t Reserved:30;
uint32_t LOST:5;
uint32_t GuidSpecific:16;
#endif
};
struct __attribute__ ((packed)) _GuidPartitionEntry_t
{
efi_guid_t PartitionTypeGuid;
efi_guid_t UniquePartitionGuid;
uint64_t StartingLBA;
uint64_t EndingLBA;
GuidPartitionEntryAttributes_t Attributes;
efi_char16_t PartitionName[36];
};
#define GPT_PMBR_LBA 0
#define GPT_PMBR_SECTORS 1
#define GPT_PRIMARY_HEADER_LBA 1
#define GPT_HEADER_SECTORS 1
#define GPT_PRIMARY_PART_TABLE_LBA 2
/*
These values are only defaults. The actual on-disk structures
may define different sizes, so use those unless creating a new GPT disk!
*/
#define GPT_DEFAULT_PARTITION_ENTRY_ARRAY_SIZE 16384
/* Number of actual partition entries should be calculated as: */
#define GPT_DEFAULT_PARTITION_ENTRIES \
(GPT_DEFAULT_PARTITION_ENTRY_ARRAY_SIZE / \
sizeof(GuidPartitionEntry_t))
struct __attribute__ ((packed)) _PartitionRecord_t
{
/* Not used by EFI firmware. Set to 0x80 to indicate that this
is the bootable legacy partition. */
uint8_t BootIndicator;
/* Start of partition in CHS address, not used by EFI firmware. */
uint8_t StartHead;
/* Start of partition in CHS address, not used by EFI firmware. */
uint8_t StartSector;
/* Start of partition in CHS address, not used by EFI firmware. */
uint8_t StartTrack;
/* OS type. A value of 0xEF defines an EFI system partition.
Other values are reserved for legacy operating systems, and
allocated independently of the EFI specification. */
uint8_t OSType;
/* End of partition in CHS address, not used by EFI firmware. */
uint8_t EndHead;
/* End of partition in CHS address, not used by EFI firmware. */
uint8_t EndSector;
/* End of partition in CHS address, not used by EFI firmware. */
uint8_t EndTrack;
/* Starting LBA address of the partition on the disk. Used by
EFI firmware to define the start of the partition. */
uint32_t StartingLBA;
/* Size of partition in LBA. Used by EFI firmware to determine
the size of the partition. */
uint32_t SizeInLBA;
};
/* Protected Master Boot Record & Legacy MBR share same structure */
/* Needs to be packed because the u16s force misalignment. */
struct __attribute__ ((packed)) _LegacyMBR_t
{
uint8_t BootCode[440];
uint32_t UniqueMBRSignature;
uint16_t Unknown;
PartitionRecord_t PartitionRecord[4];
uint16_t Signature;
};
/* uses libparted's disk_specific field in PedDisk, to store our info */
struct __attribute__ ((packed, aligned(8))) _GPTDiskData
{
PedGeometry data_area;
int entry_count;
efi_guid_t uuid;
int pmbr_boot;
PedSector AlternateLBA;
};
/* uses libparted's disk_specific field in PedPartition, to store our info */
typedef struct _GPTPartitionData
{
efi_guid_t type;
efi_guid_t uuid;
efi_char16_t name[37];
char *translated_name;
GuidPartitionEntryAttributes_t attributes;
} GPTPartitionData;
static PedDiskType gpt_disk_type;
static inline uint32_t
pth_get_size (const PedDevice *dev)
{
return GPT_HEADER_SECTORS * dev->sector_size;
}
static inline uint32_t
pth_get_size_static (const PedDevice *dev)
{
return sizeof (GuidPartitionTableHeader_t) - sizeof (uint8_t *);
}
static inline uint32_t
pth_get_size_rsv2 (const PedDevice *dev)
{
return pth_get_size (dev) - pth_get_size_static (dev);
}
static GuidPartitionTableHeader_t *
pth_new (const PedDevice *dev)
{
GuidPartitionTableHeader_t *pth =
ped_malloc (sizeof (GuidPartitionTableHeader_t) + sizeof (uint8_t));
pth->Reserved2 = ped_malloc (pth_get_size_rsv2 (dev));
return pth;
}
static GuidPartitionTableHeader_t *
pth_new_zeroed (const PedDevice *dev)
{
GuidPartitionTableHeader_t *pth = pth_new (dev);
memset (pth, 0, pth_get_size_static (dev));
memset (pth->Reserved2, 0, pth_get_size_rsv2 (dev));
return (pth);
}
static GuidPartitionTableHeader_t *
pth_new_from_raw (const PedDevice *dev, const uint8_t *pth_raw)
{
GuidPartitionTableHeader_t *pth = pth_new (dev);
PED_ASSERT (pth_raw != NULL);
memcpy (pth, pth_raw, pth_get_size_static (dev));
memcpy (pth->Reserved2, pth_raw + pth_get_size_static (dev),
pth_get_size_rsv2 (dev));
return pth;
}
static void
pth_free (GuidPartitionTableHeader_t *pth)
{
if (pth == NULL)
return;
PED_ASSERT (pth->Reserved2 != NULL);
free (pth->Reserved2);
free (pth);
}
static uint8_t *
pth_get_raw (const PedDevice *dev, const GuidPartitionTableHeader_t *pth)
{
PED_ASSERT (pth != NULL);
PED_ASSERT (pth->Reserved2 != NULL);
int size_static = pth_get_size_static (dev);
uint8_t *pth_raw = ped_malloc (pth_get_size (dev));
if (pth_raw == NULL)
return NULL;
memcpy (pth_raw, pth, size_static);
memcpy (pth_raw + size_static, pth->Reserved2, pth_get_size_rsv2 (dev));
return pth_raw;
}
/**
* swap_uuid_and_efi_guid() - converts between uuid formats
* @uuid - uuid_t in either format (converts it to the other)
*
* There are two different representations for Globally Unique Identifiers
* (GUIDs or UUIDs).
*
* The RFC specifies a UUID as a string of 16 bytes, essentially
* a big-endian array of char.
* Intel, in their EFI Specification, references the same RFC, but
* then defines a GUID as a structure of little-endian fields.
* Coincidentally, both structures have the same format when unparsed.
*
* When read from disk, EFI GUIDs are in struct of little endian format,
* and need to be converted to be treated as uuid_t in memory.
*
* When writing to disk, uuid_ts need to be converted into EFI GUIDs.
*
* Blame Intel.
*/
static void
swap_uuid_and_efi_guid (efi_guid_t *guid)
{
PED_ASSERT (guid != NULL);
guid->time_low = PED_SWAP32 (guid->time_low);
guid->time_mid = PED_SWAP16 (guid->time_mid);
guid->time_hi_and_version = PED_SWAP16 (guid->time_hi_and_version);
}
/* returns the EFI-style CRC32 value for buf
* This function uses the crc32 function by Gary S. Brown,
* but seeds the function with ~0, and xor's with ~0 at the end.
*/
static inline uint32_t
efi_crc32 (const void *buf, unsigned long len)
{
return (__efi_crc32 (buf, len, ~0L) ^ ~0L);
}
/* Compute the crc32 checksum of the partition table header
and store it in *CRC32. Return 0 upon success. Return 1
upon failure to allocate space. */
static int
pth_crc32 (const PedDevice *dev, const GuidPartitionTableHeader_t *pth,
uint32_t *crc32)
{
PED_ASSERT (dev != NULL);
PED_ASSERT (pth != NULL);
uint8_t *pth_raw = pth_get_raw (dev, pth);
if (pth_raw == NULL)
return 1;
*crc32 = efi_crc32 (pth_raw, PED_LE32_TO_CPU (pth->HeaderSize));
free (pth_raw);
return 0;
}
static inline int
guid_cmp (efi_guid_t left, efi_guid_t right)
{
return memcmp (&left, &right, sizeof (efi_guid_t));
}
/* checks if 'mbr' is a protective MBR partition table */
static inline int _GL_ATTRIBUTE_PURE
_pmbr_is_valid (const LegacyMBR_t *mbr)
{
int i;
PED_ASSERT (mbr != NULL);
if (mbr->Signature != PED_CPU_TO_LE16 (MSDOS_MBR_SIGNATURE))
return 0;
for (i = 0; i < 4; i++)
{
if (mbr->PartitionRecord[i].OSType == EFI_PMBR_OSTYPE_EFI)
return 1;
}
return 0;
}
static int
gpt_probe (const PedDevice *dev)
{
int gpt_sig_found = 0;
PED_ASSERT (dev != NULL);
if (dev->length <= 1)
return 0;
void *label;
if (!ptt_read_sector (dev, 0, &label))
return 0;
if (!_pmbr_is_valid (label))
{
free (label);
return 0;
}
free (label);
void *pth_raw = ped_malloc (pth_get_size (dev));
if (ped_device_read (dev, pth_raw, 1, GPT_HEADER_SECTORS)
|| ped_device_read (dev, pth_raw, dev->length - 1, GPT_HEADER_SECTORS))
{
GuidPartitionTableHeader_t *gpt = pth_new_from_raw (dev, pth_raw);
if (gpt->Signature == PED_CPU_TO_LE64 (GPT_HEADER_SIGNATURE))
gpt_sig_found = 1;
pth_free (gpt);
}
free (pth_raw);
return gpt_sig_found;
}
static PedDisk *
gpt_alloc (const PedDevice *dev)
{
PedDisk *disk;
GPTDiskData *gpt_disk_data;
PedSector data_start, data_end;
disk = _ped_disk_alloc ((PedDevice *) dev, &gpt_disk_type);
if (!disk)
goto error;
data_start = 2 + GPT_DEFAULT_PARTITION_ENTRY_ARRAY_SIZE / dev->sector_size;
data_end = dev->length - 2
- GPT_DEFAULT_PARTITION_ENTRY_ARRAY_SIZE / dev->sector_size;
/* If the device is too small to accommodate GPT headers and one data
sector, reject it. */
if (data_end < data_start)
{
ped_exception_throw (PED_EXCEPTION_ERROR,
PED_EXCEPTION_OK,
_("device is too small for GPT"));
goto error_free_disk;
}
disk->disk_specific = gpt_disk_data = ped_malloc (sizeof (GPTDiskData));
if (!disk->disk_specific)
goto error_free_disk;
gpt_disk_data->AlternateLBA = dev->length - 1;
ped_geometry_init (&gpt_disk_data->data_area, dev, data_start,
data_end - data_start + 1);
gpt_disk_data->entry_count = GPT_DEFAULT_PARTITION_ENTRIES;
uuid_generate ((unsigned char *) &gpt_disk_data->uuid);
swap_uuid_and_efi_guid (&gpt_disk_data->uuid);
gpt_disk_data->pmbr_boot = 0;
return disk;
error_free_disk:
free (disk);
error:
return NULL;
}
static PedDisk *
gpt_duplicate (const PedDisk *disk)
{
PedDisk *new_disk;
GPTDiskData *new_disk_data;
GPTDiskData *old_disk_data;
new_disk = ped_disk_new_fresh (disk->dev, &gpt_disk_type);
if (!new_disk)
return NULL;
old_disk_data = disk->disk_specific;
new_disk_data = new_disk->disk_specific;
ped_geometry_init (&new_disk_data->data_area, disk->dev,
old_disk_data->data_area.start,
old_disk_data->data_area.length);
new_disk_data->entry_count = old_disk_data->entry_count;
new_disk_data->uuid = old_disk_data->uuid;
new_disk_data->pmbr_boot = old_disk_data->pmbr_boot;
return new_disk;
}
static void
gpt_free (PedDisk *disk)
{
ped_disk_delete_all (disk);
free (disk->disk_specific);
_ped_disk_free (disk);
}
/* Given GUID Partition table header, GPT, read its partition array
entries from DISK into malloc'd storage. Set *PTES_BYTES to the
number of bytes required. Upon success, return a pointer to the
resulting buffer. Otherwise, set errno and return NULL. */
static void *
gpt_read_PE_array (PedDisk const *disk, GuidPartitionTableHeader_t const *gpt,
size_t *ptes_bytes)
{
uint32_t p_ent_size = PED_LE32_TO_CPU (gpt->SizeOfPartitionEntry);
*ptes_bytes = p_ent_size * PED_LE32_TO_CPU(gpt->NumberOfPartitionEntries);
size_t ptes_sectors = ped_div_round_up (*ptes_bytes,
disk->dev->sector_size);
if (xalloc_oversized (ptes_sectors, disk->dev->sector_size))
{
errno = ENOMEM;
return NULL;
}
void *ptes = ped_malloc (ptes_sectors * disk->dev->sector_size);
if (ptes == NULL)
return NULL;
if (!ped_device_read (disk->dev, ptes,
PED_LE64_TO_CPU (gpt->PartitionEntryLBA), ptes_sectors))
{
int saved_errno = errno;
free (ptes);
errno = saved_errno;
return NULL;
}
return ptes;
}
static int
check_PE_array_CRC (PedDisk const *disk,
GuidPartitionTableHeader_t const *gpt, bool *valid)
{
size_t ptes_bytes;
void *ptes = gpt_read_PE_array (disk, gpt, &ptes_bytes);
if (ptes == NULL)
return 1;
uint32_t ptes_crc = efi_crc32 (ptes, ptes_bytes);
*valid = (ptes_crc == PED_LE32_TO_CPU (gpt->PartitionEntryArrayCRC32));
free (ptes);
return 0;
}
static int
_header_is_valid (PedDisk const *disk, GuidPartitionTableHeader_t *gpt,
PedSector my_lba)
{
uint32_t crc, origcrc;
PedDevice const *dev = disk->dev;
if (PED_LE64_TO_CPU (gpt->Signature) != GPT_HEADER_SIGNATURE)
return 0;
/*
* "While the GUID Partition Table Header's size may increase
* in the future it cannot span more than one block on the
* device." EFI Specification, version 1.10, 11.2.2.1
*/
if (PED_LE32_TO_CPU (gpt->HeaderSize) < pth_get_size_static (dev)
|| PED_LE32_TO_CPU (gpt->HeaderSize) > dev->sector_size)
return 0;
/* The SizeOfPartitionEntry must be a multiple of 8 and
no smaller than the size of the PartitionEntry structure.
We also require that it be no larger than 1/16th of UINT32_MAX,
as an additional sanity check. */
uint32_t pe_size = PED_LE32_TO_CPU (gpt->SizeOfPartitionEntry);
if (pe_size % 8 != 0
|| ! (sizeof (GuidPartitionEntry_t) <= pe_size
&& pe_size <= (UINT32_MAX >> 4)))
return 0;
if (PED_LE64_TO_CPU (gpt->MyLBA) != my_lba)
return 0;
PedSector alt_lba = PED_LE64_TO_CPU (gpt->AlternateLBA);
/* The backup table's AlternateLBA must be 1. */
if (my_lba != 1 && alt_lba != 1)
return 0;
/* The alt_lba must never be the same as my_lba. */
if (alt_lba == my_lba)
return 0;
bool crc_match;
if (check_PE_array_CRC (disk, gpt, &crc_match) != 0 || !crc_match)
return 0;
PedSector first_usable = PED_LE64_TO_CPU (gpt->FirstUsableLBA);
if (first_usable < 3)
return 0;
PedSector last_usable = PED_LE64_TO_CPU (gpt->LastUsableLBA);
if (last_usable < first_usable)
return 0;
origcrc = gpt->HeaderCRC32;
gpt->HeaderCRC32 = 0;
if (pth_crc32 (dev, gpt, &crc) != 0)
return 0;
gpt->HeaderCRC32 = origcrc;
return crc == PED_LE32_TO_CPU (origcrc);
}
/* Return the number of sectors that should be used by the
* partition entry table.
*/
static PedSector
_ptes_sectors(PedDisk const *disk, GuidPartitionTableHeader_t const *gpt)
{
size_t ptes_bytes = PED_LE32_TO_CPU (gpt->SizeOfPartitionEntry) *
PED_LE32_TO_CPU (gpt->NumberOfPartitionEntries);
/* Minimum amount of space reserved is 128 128 byte entries */
if (ptes_bytes < 128*128)
ptes_bytes = 128*128;
return ped_div_round_up (ptes_bytes, disk->dev->sector_size);
}
/* Return the header's idea of the last sector of the disk
* based on LastUsableLBA and the Partition Entry table.
*/
static PedSector
_hdr_disk_end(PedDisk const *disk, GuidPartitionTableHeader_t const *gpt)
{
return PED_LE64_TO_CPU (gpt->LastUsableLBA) + 1 + _ptes_sectors(disk, gpt);
}
static int
_parse_header (PedDisk *disk, const GuidPartitionTableHeader_t *gpt,
int *update_needed)
{
GPTDiskData *gpt_disk_data = disk->disk_specific;
PedSector first_usable;
PedSector last_usable;
PedSector last_usable_if_grown;
#ifndef DISCOVER_ONLY
if (PED_LE32_TO_CPU (gpt->Revision) > GPT_HEADER_REVISION_V1_02)
{
if (ped_exception_throw
(PED_EXCEPTION_WARNING,
PED_EXCEPTION_IGNORE_CANCEL,
_("The format of the GPT partition table is version "
"%x, which is newer than what Parted can "
"recognise. Please report this!"),
PED_LE32_TO_CPU (gpt->Revision)) != PED_EXCEPTION_IGNORE)
return 0;
}
#endif
first_usable = PED_LE64_TO_CPU (gpt->FirstUsableLBA);
last_usable = PED_LE64_TO_CPU (gpt->LastUsableLBA);
/* Need to check whether the volume has grown, the LastUsableLBA is
normally set to disk->dev->length - 2 - ptes_size (at least for parted
created volumes), where ptes_size is the number of entries *
size of each entry / sector size or 16k / sector size, whatever the greater.
If the volume has grown, offer the user the chance to use the new
space or continue with the current usable area. Only ask once per
parted invocation. */
last_usable_if_grown = disk->dev->length - 2 - _ptes_sectors(disk, gpt);
if (last_usable <= first_usable
|| disk->dev->length < last_usable)
return 0;
if (last_usable_if_grown <= first_usable
|| disk->dev->length < last_usable_if_grown)
return 0;
if (last_usable < last_usable_if_grown)
{
PedExceptionOption q;
q = ped_exception_throw
(PED_EXCEPTION_WARNING,
PED_EXCEPTION_FIX | PED_EXCEPTION_IGNORE,
_("Not all of the space available to %s appears "
"to be used, you can fix the GPT to use all of the "
"space (an extra %llu blocks) or continue with the "
"current setting? "), disk->dev->path,
(uint64_t) (last_usable_if_grown - last_usable));
if (q == PED_EXCEPTION_FIX)
{
last_usable = last_usable_if_grown;
/* clear the old backup gpt header */
ptt_clear_sectors (disk->dev,
gpt_disk_data->AlternateLBA, 1);
gpt_disk_data->AlternateLBA = disk->dev->length - 1;
*update_needed = 1;
}
}
ped_geometry_init (&gpt_disk_data->data_area, disk->dev,
first_usable, last_usable - first_usable + 1);
gpt_disk_data->entry_count
= PED_LE32_TO_CPU (gpt->NumberOfPartitionEntries);
PED_ASSERT (gpt_disk_data->entry_count > 0);
PED_ASSERT (gpt_disk_data->entry_count <= 8192);
gpt_disk_data->uuid = gpt->DiskGUID;
return 1;
}
static PedPartition *
_parse_part_entry (PedDisk *disk, GuidPartitionEntry_t *pte)
{
PedPartition *part;
GPTPartitionData *gpt_part_data;
unsigned int i;
part = ped_partition_new (disk, PED_PARTITION_NORMAL, NULL,
PED_LE64_TO_CPU (pte->StartingLBA),
PED_LE64_TO_CPU (pte->EndingLBA));
if (!part)
return NULL;
gpt_part_data = part->disk_specific;
gpt_part_data->type = pte->PartitionTypeGuid;
gpt_part_data->uuid = pte->UniquePartitionGuid;
for (i = 0; i < 36; i++)
gpt_part_data->name[i] = (efi_char16_t) pte->PartitionName[i];
gpt_part_data->name[i] = 0;
gpt_part_data->translated_name = 0;
gpt_part_data->attributes = pte->Attributes;
return part;
}
/* Read the primary GPT at sector 1 of DEV.
Verify its CRC and that of its partition entry array.
If they are valid, read the backup GPT specified by AlternateLBA.
If not, read the backup GPT in the last sector of the disk.
Return 1 if any read fails.
Upon successful verification of the primary GPT, set *PRIMARY_GPT, else NULL.
Upon successful verification of the backup GPT, set *BACKUP_GPT, else NULL.
If we've set *BACKUP_GPT to non-NULL, set *BACKUP_SECTOR_NUM_P to the sector
number in which it was found. */
static int
gpt_read_headers (PedDisk const *disk,
GuidPartitionTableHeader_t **primary_gpt,
GuidPartitionTableHeader_t **backup_gpt,
PedSector *backup_sector_num_p)
{
*primary_gpt = NULL;
*backup_gpt = NULL;
PedDevice const *dev = disk->dev;
GPTDiskData *gpt_disk_data = disk->disk_specific;
LegacyMBR_t *mbr;
if (!ptt_read_sector (dev, 0, (void *)&mbr))
return 1;
if (mbr->PartitionRecord[0].BootIndicator == 0x80)
gpt_disk_data->pmbr_boot = 1;
free (mbr);
void *s1;
if (!ptt_read_sector (dev, 1, &s1))
return 1;
GuidPartitionTableHeader_t *t = pth_new_from_raw (dev, s1);
free (s1);
if (t == NULL)
return 1;
GuidPartitionTableHeader_t *pri = t;
bool valid_primary = _header_is_valid (disk, pri, 1);
if (valid_primary)
*primary_gpt = pri;
else
pth_free (pri);
gpt_disk_data->AlternateLBA =
(valid_primary
? PED_LE64_TO_CPU (pri->AlternateLBA)
: dev->length - 1);
void *s_bak;
if (!ptt_read_sector (dev, gpt_disk_data->AlternateLBA ,&s_bak))
return 1;
t = pth_new_from_raw (dev, s_bak);
free (s_bak);
if (t == NULL)
return 1;
GuidPartitionTableHeader_t *bak = t;
if (_header_is_valid (disk, bak, gpt_disk_data->AlternateLBA))
{
*backup_gpt = bak;
*backup_sector_num_p = gpt_disk_data->AlternateLBA;
}
else
pth_free (bak);
return 0;
}
/************************************************************
* Intel is changing the EFI Spec. (after v1.02) to say that a
* disk is considered to have a GPT label only if the GPT
* structures are correct, and the MBR is actually a Protective
* MBR (has one 0xEE type partition).
* Problem occurs when a GPT-partitioned disk is then
* edited with a legacy (non-GPT-aware) application, such as
* fdisk (which doesn't generally erase the PGPT or AGPT).
* How should such a disk get handled? As a GPT disk (throwing
* away the fdisk changes), or as an MSDOS disk (throwing away
* the GPT information). Previously, I've taken the GPT-is-right,
* MBR is wrong, approach, to stay consistent with the EFI Spec.
* Intel disagrees, saying the disk should then be treated
* as having a msdos label, not a GPT label. If this is true,
* then what's the point of having an AGPT, since if the PGPT
* is screwed up, likely the PMBR is too, and the PMBR becomes
* a single point of failure.
* So, in the Linux kernel, I'm going to test for PMBR, and
* warn if it's not there, and treat the disk as MSDOS, with a note
* for users to use Parted to "fix up" their disk if they
* really want it to be considered GPT.
************************************************************/
static int
gpt_read (PedDisk *disk)
{
GPTDiskData *gpt_disk_data = disk->disk_specific;
int i;
#ifndef DISCOVER_ONLY
int write_back = 0;
#endif
ped_disk_delete_all (disk);
/* motivation: let the user decide about the pmbr... during
ped_disk_probe(), they probably didn't get a choice... */
if (!gpt_probe (disk->dev))
goto error;
GuidPartitionTableHeader_t *gpt = NULL;
GuidPartitionTableHeader_t *primary_gpt;
GuidPartitionTableHeader_t *backup_gpt;
PedSector backup_sector_num;
int read_failure = gpt_read_headers (disk, &primary_gpt, &backup_gpt,
&backup_sector_num);
if (read_failure)
{
/* This includes the case in which there used to be a GPT partition
table here, with an alternate LBA that extended beyond the current
end-of-device. It's treated as a non-match. */
/* Another possibility:
The primary header is ok, but backup is corrupt.
In the UEFI spec, this means the primary GUID table
is officially invalid. */
pth_free (backup_gpt);
pth_free (primary_gpt);
return 0;
}
if (primary_gpt && backup_gpt)
{
/* Both are valid. */
#ifndef DISCOVER_ONLY
/* The backup header must be at the end of the disk, or at what the primary
* header thinks is the end of the disk.
*/
gpt_disk_data->AlternateLBA = PED_LE64_TO_CPU (primary_gpt->AlternateLBA);
PedSector pri_disk_end = _hdr_disk_end(disk, primary_gpt);
if (gpt_disk_data->AlternateLBA != disk->dev->length -1 &&
gpt_disk_data->AlternateLBA != pri_disk_end)
{
if (ped_exception_throw
(PED_EXCEPTION_ERROR,
(PED_EXCEPTION_FIX | PED_EXCEPTION_IGNORE),
_("The backup GPT table is not at the end of the disk, as it "
"should be. Fix, by moving the backup to the end "
"(and removing the old backup)?")) == PED_EXCEPTION_FIX)
{
ptt_clear_sectors (disk->dev,
PED_LE64_TO_CPU (primary_gpt->AlternateLBA), 1);
gpt_disk_data->AlternateLBA = disk->dev->length -1;
write_back = 1;
}
}
#endif /* !DISCOVER_ONLY */
pth_free (backup_gpt);
gpt = primary_gpt;
}
else if (!primary_gpt && !backup_gpt)
{
/* Both are corrupt. */
ped_exception_throw (PED_EXCEPTION_ERROR, PED_EXCEPTION_CANCEL,
_("Both the primary and backup GPT tables "
"are corrupt. Try making a fresh table, "
"and using Parted's rescue feature to "
"recover partitions."));
goto error;
}
else if (primary_gpt && !backup_gpt)
{
/* The primary header is ok, but backup is corrupt. */
if (ped_exception_throw
(PED_EXCEPTION_ERROR, PED_EXCEPTION_OK_CANCEL,
_("The backup GPT table is corrupt, but the "
"primary appears OK, so that will be used."))
== PED_EXCEPTION_CANCEL)
goto error_free_gpt;
gpt = primary_gpt;
}
else /* !primary_gpt && backup_gpt */
{
/* primary GPT corrupt, backup is ok. */
if (ped_exception_throw
(PED_EXCEPTION_ERROR, PED_EXCEPTION_OK_CANCEL,
_("The primary GPT table is corrupt, but the "
"backup appears OK, so that will be used."))
== PED_EXCEPTION_CANCEL)
goto error_free_gpt;
gpt = backup_gpt;
}
backup_gpt = NULL;
primary_gpt = NULL;
if (!_parse_header (disk, gpt, &write_back))
goto error_free_gpt;
size_t ptes_bytes;
void *ptes = gpt_read_PE_array (disk, gpt, &ptes_bytes);
if (ptes == NULL)
goto error_free_gpt;
uint32_t ptes_crc = efi_crc32 (ptes, ptes_bytes);
if (ptes_crc != PED_LE32_TO_CPU (gpt->PartitionEntryArrayCRC32))
{
ped_exception_throw
(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("primary partition table array CRC mismatch"));
goto error_free_ptes;
}
uint32_t p_ent_size = PED_LE32_TO_CPU (gpt->SizeOfPartitionEntry);
for (i = 0; i < gpt_disk_data->entry_count; i++)
{
GuidPartitionEntry_t *pte
= (GuidPartitionEntry_t *) ((char *) ptes + i * p_ent_size);
PedPartition *part;
if (!guid_cmp (pte->PartitionTypeGuid, UNUSED_ENTRY_GUID))
continue;
part = _parse_part_entry (disk, pte);
if (!part)
goto error_delete_all;
part->fs_type = ped_file_system_probe (&part->geom);
part->num = i + 1;
PedConstraint *constraint_exact = ped_constraint_exact (&part->geom);
if (!ped_disk_add_partition (disk, part, constraint_exact))
{
ped_constraint_destroy (constraint_exact);
ped_partition_destroy (part);
goto error_delete_all;
}
ped_constraint_destroy (constraint_exact);
}
free (ptes);
#ifndef DISCOVER_ONLY
if (write_back)
ped_disk_commit_to_dev (disk);
#endif
pth_free (gpt);
return 1;
error_delete_all:
ped_disk_delete_all (disk);
error_free_ptes:
free (ptes);
error_free_gpt:
pth_free (primary_gpt);
pth_free (backup_gpt);
pth_free (gpt);
error:
return 0;
}
#ifndef DISCOVER_ONLY
/* Write the protective MBR (to keep DOS happy) */
static int
_write_pmbr (PedDevice *dev, bool pmbr_boot)
{
/* The UEFI spec is not clear about what to do with the following
elements of the Protective MBR (pmbr): BootCode (0-440B),
UniqueMBRSignature (440B-444B) and Unknown (444B-446B).
With this in mind, we try not to modify these elements. */
void *s0;
if (!ptt_read_sector (dev, 0, &s0))
return 0;
LegacyMBR_t *pmbr = s0;
/* Zero out the legacy partitions. */
memset (pmbr->PartitionRecord, 0, sizeof pmbr->PartitionRecord);
pmbr->Signature = PED_CPU_TO_LE16 (MSDOS_MBR_SIGNATURE);
pmbr->PartitionRecord[0].OSType = EFI_PMBR_OSTYPE_EFI;
pmbr->PartitionRecord[0].StartSector = 2;
pmbr->PartitionRecord[0].EndHead = 0xFF;
pmbr->PartitionRecord[0].EndSector = 0xFF;
pmbr->PartitionRecord[0].EndTrack = 0xFF;
pmbr->PartitionRecord[0].StartingLBA = PED_CPU_TO_LE32 (1);
if ((dev->length - 1ULL) > 0xFFFFFFFFULL)
pmbr->PartitionRecord[0].SizeInLBA = PED_CPU_TO_LE32 (0xFFFFFFFF);
else
pmbr->PartitionRecord[0].SizeInLBA = PED_CPU_TO_LE32 (dev->length - 1UL);
if (pmbr_boot)
pmbr->PartitionRecord[0].BootIndicator = 0x80;
int write_ok = ped_device_write (dev, pmbr, GPT_PMBR_LBA,
GPT_PMBR_SECTORS);
free (s0);
return write_ok;
}
static int
_generate_header (const PedDisk *disk, int alternate, uint32_t ptes_crc,
GuidPartitionTableHeader_t **gpt_p)
{
GPTDiskData *gpt_disk_data = disk->disk_specific;
GuidPartitionTableHeader_t *gpt;
*gpt_p = pth_new_zeroed (disk->dev);
gpt = *gpt_p;
gpt->Signature = PED_CPU_TO_LE64 (GPT_HEADER_SIGNATURE);
gpt->Revision = PED_CPU_TO_LE32 (GPT_HEADER_REVISION_V1_00);
/* per 1.00 spec */
gpt->HeaderSize = PED_CPU_TO_LE32 (pth_get_size_static (disk->dev));
gpt->HeaderCRC32 = 0;
gpt->Reserved1 = 0;
if (alternate)
{
size_t ss = disk->dev->sector_size;
PedSector ptes_bytes = (gpt_disk_data->entry_count
* sizeof (GuidPartitionEntry_t));
PedSector ptes_sectors = (ptes_bytes + ss - 1) / ss;
gpt->MyLBA = PED_CPU_TO_LE64 (gpt_disk_data->AlternateLBA);
gpt->AlternateLBA = PED_CPU_TO_LE64 (1);
gpt->PartitionEntryLBA
= PED_CPU_TO_LE64 (gpt_disk_data->AlternateLBA - ptes_sectors);
}
else
{
gpt->MyLBA = PED_CPU_TO_LE64 (1);
gpt->AlternateLBA = PED_CPU_TO_LE64 (gpt_disk_data->AlternateLBA);
gpt->PartitionEntryLBA = PED_CPU_TO_LE64 (2);
}
gpt->FirstUsableLBA = PED_CPU_TO_LE64 (gpt_disk_data->data_area.start);
gpt->LastUsableLBA = PED_CPU_TO_LE64 (gpt_disk_data->data_area.end);
gpt->DiskGUID = gpt_disk_data->uuid;
gpt->NumberOfPartitionEntries
= PED_CPU_TO_LE32 (gpt_disk_data->entry_count);
gpt->SizeOfPartitionEntry = PED_CPU_TO_LE32 (sizeof (GuidPartitionEntry_t));
gpt->PartitionEntryArrayCRC32 = PED_CPU_TO_LE32 (ptes_crc);
uint32_t crc;
if (pth_crc32 (disk->dev, gpt, &crc) != 0)
return 1;
gpt->HeaderCRC32 = PED_CPU_TO_LE32 (crc);
return 0;
}
static void
_partition_generate_part_entry (PedPartition *part, GuidPartitionEntry_t *pte)
{
GPTPartitionData *gpt_part_data = part->disk_specific;
unsigned int i;
PED_ASSERT (gpt_part_data != NULL);
pte->PartitionTypeGuid = gpt_part_data->type;
pte->UniquePartitionGuid = gpt_part_data->uuid;
pte->StartingLBA = PED_CPU_TO_LE64 (part->geom.start);
pte->EndingLBA = PED_CPU_TO_LE64 (part->geom.end);
pte->Attributes = gpt_part_data->attributes;
for (i = 0; i < 36; i++)
pte->PartitionName[i] = gpt_part_data->name[i];
}
static int
gpt_write (const PedDisk *disk)
{
GPTDiskData *gpt_disk_data;
uint32_t ptes_crc;
uint8_t *pth_raw;
GuidPartitionTableHeader_t *gpt;
PedPartition *part;
PED_ASSERT (disk != NULL);
PED_ASSERT (disk->dev != NULL);
PED_ASSERT (disk->disk_specific != NULL);
gpt_disk_data = disk->disk_specific;
size_t ptes_bytes = (gpt_disk_data->entry_count
* sizeof (GuidPartitionEntry_t));
size_t ss = disk->dev->sector_size;
PedSector ptes_sectors = (ptes_bytes + ss - 1) / ss;
/* Note that we allocate a little more than ptes_bytes,
when that number is not a multiple of sector size. */
GuidPartitionEntry_t *ptes = calloc (ptes_sectors, ss);
if (!ptes)
goto error;
for (part = ped_disk_next_partition (disk, NULL); part;
part = ped_disk_next_partition (disk, part))
{
if (part->type != 0)
continue;
_partition_generate_part_entry (part, &ptes[part->num - 1]);
}
ptes_crc = efi_crc32 (ptes, ptes_bytes);
/* Write protective MBR */
if (!_write_pmbr (disk->dev, gpt_disk_data->pmbr_boot))
goto error_free_ptes;
/* Write PTH and PTEs */
/* FIXME: Caution: this code is nearly identical to what's just below. */
if (_generate_header (disk, 0, ptes_crc, &gpt) != 0) {
pth_free(gpt);
goto error_free_ptes;
}
pth_raw = pth_get_raw (disk->dev, gpt);
pth_free (gpt);
if (pth_raw == NULL)
goto error_free_ptes;
int write_ok = ped_device_write (disk->dev, pth_raw, 1, 1);
free (pth_raw);
if (!write_ok)
goto error_free_ptes;
if (!ped_device_write (disk->dev, ptes, 2, ptes_sectors))
goto error_free_ptes;
/* Write Alternate PTH & PTEs */
/* FIXME: Caution: this code is nearly identical to what's just above. */
if (_generate_header (disk, 1, ptes_crc, &gpt) != 0) {
pth_free(gpt);
goto error_free_ptes;
}
pth_raw = pth_get_raw (disk->dev, gpt);
pth_free (gpt);
if (pth_raw == NULL)
goto error_free_ptes;
write_ok = ped_device_write (disk->dev, pth_raw, gpt_disk_data->AlternateLBA, 1);
free (pth_raw);
if (!write_ok)
goto error_free_ptes;
if (!ped_device_write (disk->dev, ptes,
gpt_disk_data->AlternateLBA - ptes_sectors, ptes_sectors))
goto error_free_ptes;
free (ptes);
return ped_device_sync (disk->dev);
error_free_ptes:
free (ptes);
error:
return 0;
}
#endif /* !DISCOVER_ONLY */
static int
add_metadata_part (PedDisk *disk, PedSector start, PedSector length)
{
PedPartition *part;
PedConstraint *constraint_exact;
PED_ASSERT (disk != NULL);
part = ped_partition_new (disk, PED_PARTITION_METADATA, NULL,
start, start + length - 1);
if (!part)
goto error;
constraint_exact = ped_constraint_exact (&part->geom);
if (!ped_disk_add_partition (disk, part, constraint_exact))
goto error_destroy_constraint;
ped_constraint_destroy (constraint_exact);
return 1;
error_destroy_constraint:
ped_constraint_destroy (constraint_exact);
ped_partition_destroy (part);
error:
return 0;
}
static PedPartition *
gpt_partition_new (const PedDisk *disk,
PedPartitionType part_type,
const PedFileSystemType *fs_type, PedSector start,
PedSector end)
{
PedPartition *part;
GPTPartitionData *gpt_part_data;
part = _ped_partition_alloc (disk, part_type, fs_type, start, end);
if (!part)
goto error;
if (part_type != 0)
return part;
gpt_part_data = part->disk_specific =
ped_malloc (sizeof (GPTPartitionData));
if (!gpt_part_data)
goto error_free_part;
gpt_part_data->type = PARTITION_LINUX_DATA_GUID;
gpt_part_data->translated_name = 0;
uuid_generate ((unsigned char *) &gpt_part_data->uuid);
swap_uuid_and_efi_guid (&gpt_part_data->uuid);
memset (gpt_part_data->name, 0, sizeof gpt_part_data->name);
memset (&gpt_part_data->attributes, 0, sizeof gpt_part_data->attributes);
return part;
error_free_part:
_ped_partition_free (part);
error:
return NULL;
}
static PedPartition *
gpt_partition_duplicate (const PedPartition *part)
{
PedPartition *result;
GPTPartitionData *part_data = part->disk_specific;
GPTPartitionData *result_data;
result = _ped_partition_alloc (part->disk, part->type, part->fs_type,
part->geom.start, part->geom.end);
if (!result)
goto error;
result->num = part->num;
if (result->type != 0)
return result;
result_data = result->disk_specific =
ped_malloc (sizeof (GPTPartitionData));
if (!result_data)
goto error_free_part;
*result_data = *part_data;
if (part_data->translated_name) {
result_data->translated_name = xstrdup (part_data->translated_name);
} else {
result_data->translated_name = 0;
}
return result;
error_free_part:
_ped_partition_free (result);
error:
return NULL;
}
static void
gpt_partition_destroy (PedPartition *part)
{
if (part->type == 0)
{
PED_ASSERT (part->disk_specific != NULL);
GPTPartitionData *gpt_part_data = part->disk_specific;
free (gpt_part_data->translated_name);
free (part->disk_specific);
}
_ped_partition_free (part);
}
static int
gpt_partition_set_system (PedPartition *part,
const PedFileSystemType *fs_type)
{
GPTPartitionData *gpt_part_data = part->disk_specific;
PED_ASSERT (gpt_part_data != NULL);
part->fs_type = fs_type;
if (fs_type)
{
if (strncmp (fs_type->name, "fat", 3) == 0
|| strcmp (fs_type->name, "udf") == 0
|| strcmp (fs_type->name, "ntfs") == 0)
{
gpt_part_data->type = PARTITION_BASIC_DATA_GUID;
return 1;
}
if (strncmp (fs_type->name, "hfs", 3) == 0)
{
gpt_part_data->type = PARTITION_APPLE_HFS_GUID;
return 1;
}
if (strstr (fs_type->name, "swap"))
{
gpt_part_data->type = PARTITION_SWAP_GUID;
return 1;
}
}
gpt_part_data->type = PARTITION_LINUX_DATA_GUID;
return 1;
}
/* Allocate metadata partitions for the GPTH and PTES */
static int
gpt_alloc_metadata (PedDisk *disk)
{
PedSector gptlength, pteslength = 0;
GPTDiskData *gpt_disk_data;
PED_ASSERT (disk != NULL);
PED_ASSERT (disk->dev != NULL);
PED_ASSERT (disk->disk_specific != NULL);
gpt_disk_data = disk->disk_specific;
gptlength = ped_div_round_up (sizeof (GuidPartitionTableHeader_t),
disk->dev->sector_size);
pteslength = ped_div_round_up (gpt_disk_data->entry_count
* sizeof (GuidPartitionEntry_t),
disk->dev->sector_size);
/* metadata at the start of the disk includes the MBR */
if (!add_metadata_part (disk, GPT_PMBR_LBA,
GPT_PMBR_SECTORS + gptlength + pteslength))
return 0;
/* metadata at the end of the disk */
if (!add_metadata_part (disk, disk->dev->length - gptlength - pteslength,
gptlength + pteslength))
return 0;
return 1;
}
/* Does nothing, as the read/new/destroy functions maintain part->num */
static int
gpt_partition_enumerate (PedPartition *part)
{
GPTDiskData *gpt_disk_data = part->disk->disk_specific;
int i;
/* never change the partition numbers */
if (part->num != -1)
return 1;
for (i = 1; i <= gpt_disk_data->entry_count; i++)
{
if (!ped_disk_get_partition (part->disk, i))
{
part->num = i;
return 1;
}
}
PED_ASSERT (0);
return 0; /* used if debug is disabled */
}
static int
gpt_disk_set_flag (PedDisk *disk, PedDiskFlag flag, int state)
{
GPTDiskData *gpt_disk_data = disk->disk_specific;
switch (flag)
{
case PED_DISK_GPT_PMBR_BOOT:
gpt_disk_data->pmbr_boot = state;
return 1;
default:
return 0;
}
}
static int
gpt_disk_is_flag_available(const PedDisk *disk, PedDiskFlag flag)
{
switch (flag)
{
case PED_DISK_GPT_PMBR_BOOT:
return 1;
default:
return 0;
}
}
static int
gpt_disk_get_flag (const PedDisk *disk, PedDiskFlag flag)
{
GPTDiskData *gpt_disk_data = disk->disk_specific;
switch (flag)
{
case PED_DISK_GPT_PMBR_BOOT:
return gpt_disk_data->pmbr_boot;
break;
default:
return 0;
}
}
static int
gpt_partition_set_flag (PedPartition *part, PedPartitionFlag flag, int state)
{
GPTPartitionData *gpt_part_data;
PED_ASSERT (part != NULL);
PED_ASSERT (part->disk_specific != NULL);
gpt_part_data = part->disk_specific;
const struct flag_uuid_mapping_t* p = gpt_find_flag_uuid_mapping (flag);
if (p)
{
if (state)
gpt_part_data->type = p->type_uuid;
else if (guid_cmp (gpt_part_data->type, p->type_uuid) == 0)
return gpt_partition_set_system (part, part->fs_type);
return 1;
}
switch (flag)
{
case PED_PARTITION_HIDDEN:
gpt_part_data->attributes.RequiredToFunction = state;
return 1;
case PED_PARTITION_LEGACY_BOOT:
gpt_part_data->attributes.LegacyBIOSBootable = state;
return 1;
case PED_PARTITION_ROOT:
case PED_PARTITION_LBA:
default:
return 0;
}
return 1;
}
static int _GL_ATTRIBUTE_PURE
gpt_partition_get_flag (const PedPartition *part, PedPartitionFlag flag)
{
GPTPartitionData *gpt_part_data;
PED_ASSERT (part->disk_specific != NULL);
gpt_part_data = part->disk_specific;
const struct flag_uuid_mapping_t* p = gpt_find_flag_uuid_mapping (flag);
if (p)
return guid_cmp (gpt_part_data->type, p->type_uuid) == 0;
switch (flag)
{
case PED_PARTITION_HIDDEN:
return gpt_part_data->attributes.RequiredToFunction;
case PED_PARTITION_LEGACY_BOOT:
return gpt_part_data->attributes.LegacyBIOSBootable;
case PED_PARTITION_LBA:
case PED_PARTITION_ROOT:
default:
return 0;
}
return 0;
}
static int
gpt_partition_is_flag_available (const PedPartition *part,
PedPartitionFlag flag)
{
if (gpt_find_flag_uuid_mapping (flag))
return 1;
switch (flag)
{
case PED_PARTITION_HIDDEN:
case PED_PARTITION_LEGACY_BOOT:
return 1;
case PED_PARTITION_ROOT:
case PED_PARTITION_LBA:
default:
return 0;
}
return 0;
}
static void
gpt_partition_set_name (PedPartition *part, const char *name)
{
GPTPartitionData *gpt_part_data = part->disk_specific;
free(gpt_part_data->translated_name);
gpt_part_data->translated_name = xstrdup(name);
iconv_t conv = iconv_open ("UCS-2LE", nl_langinfo (CODESET));
if (conv == (iconv_t)-1)
goto err;
char *inbuff = gpt_part_data->translated_name;
char *outbuff = (char *)&gpt_part_data->name;
size_t inbuffsize = strlen (inbuff) + 1;
size_t outbuffsize = 72;
if (iconv (conv, &inbuff, &inbuffsize, &outbuff, &outbuffsize) == -1)
goto err;
iconv_close (conv);
return;
err:
ped_exception_throw (PED_EXCEPTION_WARNING,
PED_EXCEPTION_IGNORE,
_("failed to translate partition name"));
iconv_close (conv);
}
static const char *
gpt_partition_get_name (const PedPartition *part)
{
GPTPartitionData *gpt_part_data = part->disk_specific;
if (gpt_part_data->translated_name == NULL)
{
char buffer[200];
iconv_t conv = iconv_open (nl_langinfo (CODESET), "UCS-2LE");
if (conv == (iconv_t)-1)
goto err;
char *inbuff = (char *)&gpt_part_data->name;
char *outbuff = buffer;
size_t inbuffsize = 72;
size_t outbuffsize = sizeof(buffer);
if (iconv (conv, &inbuff, &inbuffsize, &outbuff, &outbuffsize) == -1)
goto err;
iconv_close (conv);
*outbuff = 0;
gpt_part_data->translated_name = xstrdup (buffer);
return gpt_part_data->translated_name;
err:
ped_exception_throw (PED_EXCEPTION_WARNING,
PED_EXCEPTION_IGNORE,
_("failed to translate partition name"));
iconv_close (conv);
return "";
}
return gpt_part_data->translated_name;
}
static int
gpt_get_max_primary_partition_count (const PedDisk *disk)
{
const GPTDiskData *gpt_disk_data = disk->disk_specific;
return gpt_disk_data->entry_count;
}
/*
* From (http://developer.apple.com/technotes/tn2006/tn2166.html Chapter 5).
* According to the specs the first LBA (LBA0) is not relevant (it exists
* to maintain compatibility). on the second LBA(LBA1) gpt places the
* header. The header is as big as the block size. After the header we
* find the Entry array. Each element of said array, describes each
* partition. One can have as much elements as can fit between the end of
* the second LBA (where the header ends) and the FirstUsableLBA.
* FirstUsableLBA is the first logical block that is used for contents
* and is defined in header.
*
* /---------------------------------------------------\
* | BLOCK0 | HEADER | Entry Array | First Usable LBA |
* | | BLOCK1 | | |
* \---------------------------------------------------/
* / \
* /----------/ \----------\
* /-----------------------------------------\
* | E1 | E2 | E3 |...............| EN |
* \-----------------------------------------/
*
* The number of possible partitions or supported partitions is:
* SP = FirstUsableLBA*Blocksize - 2*Blocksize / SizeOfPartitionEntry
* SP = Blocksize(FirstusableLBA - 2) / SizeOfPartitoinEntry
*/
static bool
gpt_get_max_supported_partition_count (const PedDisk *disk, int *max_n)
{
GuidPartitionTableHeader_t *pth = NULL;
uint8_t *pth_raw = ped_malloc (pth_get_size (disk->dev));
if (ped_device_read (disk->dev, pth_raw, 1, GPT_HEADER_SECTORS)
|| ped_device_read (disk->dev, pth_raw,
disk->dev->length, GPT_HEADER_SECTORS))
pth = pth_new_from_raw (disk->dev, pth_raw);
free (pth_raw);
if (pth == NULL)
return false;
if (!_header_is_valid (disk, pth, 1))
{
pth->FirstUsableLBA = PED_CPU_TO_LE64 (34);
pth->SizeOfPartitionEntry
= PED_CPU_TO_LE32 (sizeof (GuidPartitionEntry_t));
}
*max_n = (disk->dev->sector_size * (PED_LE64_TO_CPU (pth->FirstUsableLBA) - 2)
/ PED_LE32_TO_CPU (pth->SizeOfPartitionEntry));
pth_free (pth);
return true;
}
static PedConstraint *
_non_metadata_constraint (const PedDisk *disk)
{
GPTDiskData *gpt_disk_data = disk->disk_specific;
return ped_constraint_new_from_max (&gpt_disk_data->data_area);
}
static int
gpt_partition_align (PedPartition *part, const PedConstraint *constraint)
{
PED_ASSERT (part != NULL);
if (_ped_partition_attempt_align (part, constraint,
_non_metadata_constraint (part->disk)))
return 1;
#ifndef DISCOVER_ONLY
ped_exception_throw (PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("Unable to satisfy all constraints on the partition."));
#endif
return 0;
}
#include "pt-common.h"
PT_define_limit_functions (gpt)
static PedDiskOps gpt_disk_ops =
{
clobber: NULL,
write: NULL_IF_DISCOVER_ONLY (gpt_write),
partition_set_name: gpt_partition_set_name,
partition_get_name: gpt_partition_get_name,
disk_set_flag: gpt_disk_set_flag,
disk_get_flag: gpt_disk_get_flag,
disk_is_flag_available: gpt_disk_is_flag_available,
PT_op_function_initializers (gpt)
};
static PedDiskType gpt_disk_type =
{
next: NULL,
name: "gpt",
ops: &gpt_disk_ops,
features: PED_DISK_TYPE_PARTITION_NAME
};
void
ped_disk_gpt_init ()
{
ped_disk_type_register (&gpt_disk_type);
}
void
ped_disk_gpt_done ()
{
ped_disk_type_unregister (&gpt_disk_type);
}
verify (sizeof (GuidPartitionEntryAttributes_t) == 8);
verify (sizeof (GuidPartitionEntry_t) == 128);
|