# Copyright 2012 OpenStack Foundation # Copyright 2012-2013 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Utilities for consuming the version from pkg_resources. """ import itertools import operator import pkg_resources def _is_int(string): try: int(string) return True except ValueError: return False class SemanticVersion(object): """A pure semantic version independent of serialisation. See the pbr doc 'semver' for details on the semantics. """ def __init__( self, major, minor=0, patch=0, prerelease_type=None, prerelease=None, dev_count=None): """Create a SemanticVersion. :param major: Major component of the version. :param minor: Minor component of the version. Defaults to 0. :param patch: Patch level component. Defaults to 0. :param prerelease_type: What sort of prerelease version this is - one of a(alpha), b(beta) or rc(release candidate). :param prerelease: For prerelease versions, what number prerelease. Defaults to 0. :param dev_count: How many commits since the last release. :raises: ValueError if both a prerelease version and dev_count is supplied. This is because semver (see the pbr semver documentation) does not permit both a prerelease version and a dev marker at the same time. """ self._major = major self._minor = minor self._patch = patch self._prerelease_type = prerelease_type self._prerelease = prerelease if self._prerelease_type and not self._prerelease: self._prerelease = 0 self._dev_count = dev_count if prerelease_type is not None and dev_count is not None: raise ValueError( "invalid version: cannot have prerelease and dev strings %s %s" % (prerelease_type, dev_count)) def __eq__(self, other): if not isinstance(other, SemanticVersion): return False return self.__dict__ == other.__dict__ def __hash__(self): return sum(map(hash, self.__dict__.values())) def __lt__(self, other): """Compare self and other, another Semantic Version.""" # NB(lifeless) this could perhaps be rewritten as # lt (tuple_of_one, tuple_of_other) with a single check for # the typeerror corner cases - that would likely be faster # if this ever becomes performance sensitive. if not isinstance(other, SemanticVersion): raise TypeError("ordering to non-SemanticVersion is undefined") this_tuple = (self._major, self._minor, self._patch) other_tuple = (other._major, other._minor, other._patch) if this_tuple < other_tuple: return True elif this_tuple > other_tuple: return False if self._prerelease_type: if other._prerelease_type: # Use the a < b < rc cheat this_tuple = (self._prerelease_type, self._prerelease) other_tuple = (other._prerelease_type, other._prerelease) return this_tuple < other_tuple elif other._dev_count: raise TypeError( "ordering pre-release with dev builds is undefined") else: return True elif self._dev_count: if other._dev_count: if self._dev_count < other._dev_count: return True else: return False elif other._prerelease_type: raise TypeError( "ordering pre-release with dev builds is undefined") else: return True else: # This is not pre-release. # If the other is pre-release or dev, we are greater, which is ! < # If the other is not pre-release, we are equal, which is ! < return False def __le__(self, other): return self == other or self < other def __ge__(self, other): return not self < other def __gt__(self, other): return not self <= other def __ne__(self, other): return not self == other def __repr__(self): return "pbr.version.SemanticVersion(%s)" % self.release_string() @classmethod def from_pip_string(klass, version_string): """Create a SemanticVersion from a pip version string. This method will parse a version like 1.3.0 into a SemanticVersion. This method is responsible for accepting any version string that any older version of pbr ever created. Therefore: versions like 1.3.0a1 versions are handled, parsed into a canonical form and then output - resulting in 1.3.0.0a1. Pre pbr-semver dev versions like 0.10.1.3.g83bef74 will be parsed but output as 0.10.1.dev3.g83bef74. :raises ValueError: Never tagged versions sdisted by old pbr result in just the git hash, e.g. '1234567' which poses a substantial problem since they collide with the semver versions when all the digits are numerals. Such versions will result in a ValueError being thrown if any non-numeric digits are present. They are an exception to the general case of accepting anything we ever output, since they were never intended and would permanently mess up versions on PyPI if ever released - we're treating that as a critical bug that we ever made them and have stopped doing that. """ input_components = version_string.split('.') # decimals first (keep pre-release and dev/hashes to the right) components = [c for c in input_components if c.isdigit()] digit_len = len(components) if digit_len == 0: raise ValueError("Invalid version %r" % version_string) elif digit_len < 3: if (digit_len < len(input_components) and input_components[digit_len][0].isdigit()): # Handle X.YaZ - Y is a digit not a leadin to pre-release. mixed_component = input_components[digit_len] last_component = ''.join(itertools.takewhile( lambda x: x.isdigit(), mixed_component)) components.append(last_component) input_components[digit_len:digit_len + 1] = [ last_component, mixed_component[len(last_component):]] digit_len += 1 components.extend([0] * (3 - digit_len)) components.extend(input_components[digit_len:]) major = int(components[0]) minor = int(components[1]) dev_count = None prerelease_type = None prerelease = None def _parse_type(segment): # Discard leading digits (the 0 in 0a1) isdigit = operator.methodcaller('isdigit') segment = ''.join(itertools.dropwhile(isdigit, segment)) isalpha = operator.methodcaller('isalpha') prerelease_type = ''.join(itertools.takewhile(isalpha, segment)) prerelease = segment[len(prerelease_type)::] return prerelease_type, int(prerelease) if _is_int(components[2]): patch = int(components[2]) else: # legacy version e.g. 1.2.0a1 (canonical is 1.2.0.0a1) # or 1.2.dev4.g1234 or 1.2.b4 patch = 0 components[2:2] = [0] remainder = components[3:] remainder_starts_with_int = False try: if remainder and int(remainder[0]): remainder_starts_with_int = True except ValueError: pass if remainder_starts_with_int: # old dev format - 0.1.2.3.g1234 dev_count = int(remainder[0]) else: if remainder and (remainder[0][0] == '0' or remainder[0][0] in ('a', 'b', 'r')): # Current RC/beta layout prerelease_type, prerelease = _parse_type(remainder[0]) remainder = remainder[1:] if remainder: component = remainder[0] if component.startswith('dev'): dev_count = int(component[3:]) else: raise ValueError( 'Unknown remainder %r in %r' % (remainder, version_string)) return SemanticVersion( major, minor, patch, prerelease_type=prerelease_type, prerelease=prerelease, dev_count=dev_count) def brief_string(self): """Return the short version minus any alpha/beta tags.""" return "%s.%s.%s" % (self._major, self._minor, self._patch) def debian_string(self): """Return the version number to use when building a debian package. This translates the PEP440/semver precedence rules into Debian version sorting operators. """ return self._long_version("~") def decrement(self, minor=False, major=False): """Return a decremented SemanticVersion. Decrementing versions doesn't make a lot of sense - this method only exists to support rendering of pre-release versions strings into serialisations (such as rpm) with no sort-before operator. The 9999 magic version component is from the spec on this - pbr-semver. :return: A new SemanticVersion object. """ if self._patch: new_patch = self._patch - 1 new_minor = self._minor new_major = self._major else: new_patch = 9999 if self._minor: new_minor = self._minor - 1 new_major = self._major else: new_minor = 9999 if self._major: new_major = self._major - 1 else: new_major = 0 return SemanticVersion( new_major, new_minor, new_patch) def increment(self, minor=False, major=False): """Return an incremented SemanticVersion. The default behaviour is to perform a patch level increment. When incrementing a prerelease version, the patch level is not changed - the prerelease serial is changed (e.g. beta 0 -> beta 1). Incrementing non-pre-release versions will not introduce pre-release versions - except when doing a patch incremental to a pre-release version the new version will only consist of major/minor/patch. :param minor: Increment the minor version. :param major: Increment the major version. :return: A new SemanticVersion object. """ if self._prerelease_type: new_prerelease_type = self._prerelease_type new_prerelease = self._prerelease + 1 new_patch = self._patch else: new_prerelease_type = None new_prerelease = None new_patch = self._patch + 1 if minor: new_minor = self._minor + 1 new_patch = 0 new_prerelease_type = None new_prerelease = None else: new_minor = self._minor if major: new_major = self._major + 1 new_minor = 0 new_patch = 0 new_prerelease_type = None new_prerelease = None else: new_major = self._major return SemanticVersion( new_major, new_minor, new_patch, new_prerelease_type, new_prerelease) def _long_version(self, pre_separator, rc_marker=""): """Construct a long string version of this semver. :param pre_separator: What separator to use between components that sort before rather than after. If None, use . and lower the version number of the component to preserve sorting. (Used for rpm support) """ if ((self._prerelease_type or self._dev_count) and pre_separator is None): segments = [self.decrement().brief_string()] pre_separator = "." else: segments = [self.brief_string()] if self._prerelease_type: segments.append( "%s%s%s%s" % (pre_separator, rc_marker, self._prerelease_type, self._prerelease)) if self._dev_count: segments.append(pre_separator) segments.append('dev') segments.append(self._dev_count) return "".join(str(s) for s in segments) def release_string(self): """Return the full version of the package. This including suffixes indicating VCS status. """ return self._long_version(".", "0") def rpm_string(self): """Return the version number to use when building an RPM package. This translates the PEP440/semver precedence rules into RPM version sorting operators. Because RPM has no sort-before operator (such as the ~ operator in dpkg), we show all prerelease versions as being versions of the release before. """ return self._long_version(None) def to_dev(self, dev_count): """Return a development version of this semver. :param dev_count: The number of commits since the last release. """ return SemanticVersion( self._major, self._minor, self._patch, dev_count=dev_count) def to_release(self): """Discard any pre-release or dev metadata. :return: A new SemanticVersion with major/minor/patch the same as this one. """ return SemanticVersion(self._major, self._minor, self._patch) def version_tuple(self): """Present the version as a version_info tuple. For documentation on version_info tuples see the Python documentation for sys.version_info. Since semver and PEP-440 represent overlapping but not subsets of versions, we have to have some heuristic / mapping rules: - a/b/rc take precedence. - if there is no pre-release version the dev version is used. - serial is taken from the dev/a/b/c component. - final non-dev versions never get serials. """ segments = [self._major, self._minor, self._patch] if self._prerelease_type: type_map = {'a': 'alpha', 'b': 'beta', 'rc': 'candidate', } segments.append(type_map[self._prerelease_type]) segments.append(self._prerelease) elif self._dev_count: segments.append('dev') segments.append(self._dev_count - 1) else: segments.append('final') segments.append(0) return tuple(segments) class VersionInfo(object): def __init__(self, package): """Object that understands versioning for a package :param package: name of the python package, such as glance, or python-glanceclient """ self.package = package self.version = None self._cached_version = None self._semantic = None def __str__(self): """Make the VersionInfo object behave like a string.""" return self.version_string() def __repr__(self): """Include the name.""" return "pbr.version.VersionInfo(%s:%s)" % ( self.package, self.version_string()) def _get_version_from_pkg_resources(self): """Obtain a version from pkg_resources or setup-time logic if missing. This will try to get the version of the package from the pkg_resources record associated with the package, and if there is no such record falls back to the logic sdist would use. """ try: requirement = pkg_resources.Requirement.parse(self.package) provider = pkg_resources.get_provider(requirement) result_string = provider.version except pkg_resources.DistributionNotFound: # The most likely cause for this is running tests in a tree # produced from a tarball where the package itself has not been # installed into anything. Revert to setup-time logic. from pbr import packaging result_string = packaging.get_version(self.package) return SemanticVersion.from_pip_string(result_string) def release_string(self): """Return the full version of the package. This including suffixes indicating VCS status. """ return self.semantic_version().release_string() def semantic_version(self): """Return the SemanticVersion object for this version.""" if self._semantic is None: self._semantic = self._get_version_from_pkg_resources() return self._semantic def version_string(self): """Return the short version minus any alpha/beta tags.""" return self.semantic_version().brief_string() # Compatibility functions canonical_version_string = version_string version_string_with_vcs = release_string def cached_version_string(self, prefix=""): """Return a cached version string. This will return a cached version string if one is already cached, irrespective of prefix. If none is cached, one will be created with prefix and then cached and returned. """ if not self._cached_version: self._cached_version = "%s%s" % (prefix, self.version_string()) return self._cached_version