/************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as possible to those of the Perl 5 language (but see below for why this module is different). Written by Philip Hazel Copyright (c) 1997-2011 University of Cambridge ----------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Cambridge nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------- */ /* This module contains the external function pcre_dfa_exec(), which is an alternative matching function that uses a sort of DFA algorithm (not a true FSM). This is NOT Perl- compatible, but it has advantages in certain applications. */ /* NOTE ABOUT PERFORMANCE: A user of this function sent some code that improved the performance of his patterns greatly. I could not use it as it stood, as it was not thread safe, and made assumptions about pattern sizes. Also, it caused test 7 to loop, and test 9 to crash with a segfault. The issue is the check for duplicate states, which is done by a simple linear search up the state list. (Grep for "duplicate" below to find the code.) For many patterns, there will never be many states active at one time, so a simple linear search is fine. In patterns that have many active states, it might be a bottleneck. The suggested code used an indexing scheme to remember which states had previously been used for each character, and avoided the linear search when it knew there was no chance of a duplicate. This was implemented when adding states to the state lists. I wrote some thread-safe, not-limited code to try something similar at the time of checking for duplicates (instead of when adding states), using index vectors on the stack. It did give a 13% improvement with one specially constructed pattern for certain subject strings, but on other strings and on many of the simpler patterns in the test suite it did worse. The major problem, I think, was the extra time to initialize the index. This had to be done for each call of internal_dfa_exec(). (The supplied patch used a static vector, initialized only once - I suspect this was the cause of the problems with the tests.) Overall, I concluded that the gains in some cases did not outweigh the losses in others, so I abandoned this code. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #define NLBLOCK md /* Block containing newline information */ #define PSSTART start_subject /* Field containing processed string start */ #define PSEND end_subject /* Field containing processed string end */ #include "pcre_internal.h" /* For use to indent debugging output */ #define SP " " /************************************************* * Code parameters and static tables * *************************************************/ /* These are offsets that are used to turn the OP_TYPESTAR and friends opcodes into others, under special conditions. A gap of 20 between the blocks should be enough. The resulting opcodes don't have to be less than 256 because they are never stored, so we push them well clear of the normal opcodes. */ #define OP_PROP_EXTRA 300 #define OP_EXTUNI_EXTRA 320 #define OP_ANYNL_EXTRA 340 #define OP_HSPACE_EXTRA 360 #define OP_VSPACE_EXTRA 380 /* This table identifies those opcodes that are followed immediately by a character that is to be tested in some way. This makes it possible to centralize the loading of these characters. In the case of Type * etc, the "character" is the opcode for \D, \d, \S, \s, \W, or \w, which will always be a small value. Non-zero values in the table are the offsets from the opcode where the character is to be found. ***NOTE*** If the start of this table is modified, the three tables that follow must also be modified. */ static const uschar coptable[] = { 0, /* End */ 0, 0, 0, 0, 0, /* \A, \G, \K, \B, \b */ 0, 0, 0, 0, 0, 0, /* \D, \d, \S, \s, \W, \w */ 0, 0, 0, /* Any, AllAny, Anybyte */ 0, 0, /* \P, \p */ 0, 0, 0, 0, 0, /* \R, \H, \h, \V, \v */ 0, /* \X */ 0, 0, 0, 0, 0, 0, /* \Z, \z, ^, ^M, $, $M */ 1, /* Char */ 1, /* Chari */ 1, /* not */ 1, /* noti */ /* Positive single-char repeats */ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */ 3, 3, 3, /* upto, minupto, exact */ 1, 1, 1, 3, /* *+, ++, ?+, upto+ */ 1, 1, 1, 1, 1, 1, /* *I, *?I, +I, +?I, ?I, ??I */ 3, 3, 3, /* upto I, minupto I, exact I */ 1, 1, 1, 3, /* *+I, ++I, ?+I, upto+I */ /* Negative single-char repeats - only for chars < 256 */ 1, 1, 1, 1, 1, 1, /* NOT *, *?, +, +?, ?, ?? */ 3, 3, 3, /* NOT upto, minupto, exact */ 1, 1, 1, 3, /* NOT *+, ++, ?+, upto+ */ 1, 1, 1, 1, 1, 1, /* NOT *I, *?I, +I, +?I, ?I, ??I */ 3, 3, 3, /* NOT upto I, minupto I, exact I */ 1, 1, 1, 3, /* NOT *+I, ++I, ?+I, upto+I */ /* Positive type repeats */ 1, 1, 1, 1, 1, 1, /* Type *, *?, +, +?, ?, ?? */ 3, 3, 3, /* Type upto, minupto, exact */ 1, 1, 1, 3, /* Type *+, ++, ?+, upto+ */ /* Character class & ref repeats */ 0, 0, 0, 0, 0, 0, /* *, *?, +, +?, ?, ?? */ 0, 0, /* CRRANGE, CRMINRANGE */ 0, /* CLASS */ 0, /* NCLASS */ 0, /* XCLASS - variable length */ 0, /* REF */ 0, /* REFI */ 0, /* RECURSE */ 0, /* CALLOUT */ 0, /* Alt */ 0, /* Ket */ 0, /* KetRmax */ 0, /* KetRmin */ 0, /* KetRpos */ 0, /* Assert */ 0, /* Assert not */ 0, /* Assert behind */ 0, /* Assert behind not */ 0, /* Reverse */ 0, 0, 0, 0, 0, 0, /* ONCE, BRA, BRAPOS, CBRA, CBRAPOS, COND */ 0, 0, 0, 0, 0, /* SBRA, SBRAPOS, SCBRA, SCBRAPOS, SCOND */ 0, 0, /* CREF, NCREF */ 0, 0, /* RREF, NRREF */ 0, /* DEF */ 0, 0, 0, /* BRAZERO, BRAMINZERO, BRAPOSZERO */ 0, 0, 0, /* MARK, PRUNE, PRUNE_ARG, */ 0, 0, 0, 0, /* SKIP, SKIP_ARG, THEN, THEN_ARG, */ 0, 0, 0, 0, 0 /* COMMIT, FAIL, ACCEPT, CLOSE, SKIPZERO */ }; /* This table identifies those opcodes that inspect a character. It is used to remember the fact that a character could have been inspected when the end of the subject is reached. ***NOTE*** If the start of this table is modified, the two tables that follow must also be modified. */ static const uschar poptable[] = { 0, /* End */ 0, 0, 0, 1, 1, /* \A, \G, \K, \B, \b */ 1, 1, 1, 1, 1, 1, /* \D, \d, \S, \s, \W, \w */ 1, 1, 1, /* Any, AllAny, Anybyte */ 1, 1, /* \P, \p */ 1, 1, 1, 1, 1, /* \R, \H, \h, \V, \v */ 1, /* \X */ 0, 0, 0, 0, 0, 0, /* \Z, \z, ^, ^M, $, $M */ 1, /* Char */ 1, /* Chari */ 1, /* not */ 1, /* noti */ /* Positive single-char repeats */ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */ 1, 1, 1, /* upto, minupto, exact */ 1, 1, 1, 1, /* *+, ++, ?+, upto+ */ 1, 1, 1, 1, 1, 1, /* *I, *?I, +I, +?I, ?I, ??I */ 1, 1, 1, /* upto I, minupto I, exact I */ 1, 1, 1, 1, /* *+I, ++I, ?+I, upto+I */ /* Negative single-char repeats - only for chars < 256 */ 1, 1, 1, 1, 1, 1, /* NOT *, *?, +, +?, ?, ?? */ 1, 1, 1, /* NOT upto, minupto, exact */ 1, 1, 1, 1, /* NOT *+, ++, ?+, upto+ */ 1, 1, 1, 1, 1, 1, /* NOT *I, *?I, +I, +?I, ?I, ??I */ 1, 1, 1, /* NOT upto I, minupto I, exact I */ 1, 1, 1, 1, /* NOT *+I, ++I, ?+I, upto+I */ /* Positive type repeats */ 1, 1, 1, 1, 1, 1, /* Type *, *?, +, +?, ?, ?? */ 1, 1, 1, /* Type upto, minupto, exact */ 1, 1, 1, 1, /* Type *+, ++, ?+, upto+ */ /* Character class & ref repeats */ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */ 1, 1, /* CRRANGE, CRMINRANGE */ 1, /* CLASS */ 1, /* NCLASS */ 1, /* XCLASS - variable length */ 0, /* REF */ 0, /* REFI */ 0, /* RECURSE */ 0, /* CALLOUT */ 0, /* Alt */ 0, /* Ket */ 0, /* KetRmax */ 0, /* KetRmin */ 0, /* KetRpos */ 0, /* Assert */ 0, /* Assert not */ 0, /* Assert behind */ 0, /* Assert behind not */ 0, /* Reverse */ 0, 0, 0, 0, 0, 0, /* ONCE, BRA, BRAPOS, CBRA, CBRAPOS, COND */ 0, 0, 0, 0, 0, /* SBRA, SBRAPOS, SCBRA, SCBRAPOS, SCOND */ 0, 0, /* CREF, NCREF */ 0, 0, /* RREF, NRREF */ 0, /* DEF */ 0, 0, 0, /* BRAZERO, BRAMINZERO, BRAPOSZERO */ 0, 0, 0, /* MARK, PRUNE, PRUNE_ARG, */ 0, 0, 0, 0, /* SKIP, SKIP_ARG, THEN, THEN_ARG, */ 0, 0, 0, 0, 0 /* COMMIT, FAIL, ACCEPT, CLOSE, SKIPZERO */ }; /* These 2 tables allow for compact code for testing for \D, \d, \S, \s, \W, and \w */ static const uschar toptable1[] = { 0, 0, 0, 0, 0, 0, ctype_digit, ctype_digit, ctype_space, ctype_space, ctype_word, ctype_word, 0, 0 /* OP_ANY, OP_ALLANY */ }; static const uschar toptable2[] = { 0, 0, 0, 0, 0, 0, ctype_digit, 0, ctype_space, 0, ctype_word, 0, 1, 1 /* OP_ANY, OP_ALLANY */ }; /* Structure for holding data about a particular state, which is in effect the current data for an active path through the match tree. It must consist entirely of ints because the working vector we are passed, and which we put these structures in, is a vector of ints. */ typedef struct stateblock { int offset; /* Offset to opcode */ int count; /* Count for repeats */ int data; /* Some use extra data */ } stateblock; #define INTS_PER_STATEBLOCK (sizeof(stateblock)/sizeof(int)) #ifdef PCRE_DEBUG /************************************************* * Print character string * *************************************************/ /* Character string printing function for debugging. Arguments: p points to string length number of bytes f where to print Returns: nothing */ static void pchars(unsigned char *p, int length, FILE *f) { int c; while (length-- > 0) { if (isprint(c = *(p++))) fprintf(f, "%c", c); else fprintf(f, "\\x%02x", c); } } #endif /************************************************* * Execute a Regular Expression - DFA engine * *************************************************/ /* This internal function applies a compiled pattern to a subject string, starting at a given point, using a DFA engine. This function is called from the external one, possibly multiple times if the pattern is not anchored. The function calls itself recursively for some kinds of subpattern. Arguments: md the match_data block with fixed information this_start_code the opening bracket of this subexpression's code current_subject where we currently are in the subject string start_offset start offset in the subject string offsets vector to contain the matching string offsets offsetcount size of same workspace vector of workspace wscount size of same rlevel function call recursion level recursing regex recursive call level Returns: > 0 => number of match offset pairs placed in offsets = 0 => offsets overflowed; longest matches are present -1 => failed to match < -1 => some kind of unexpected problem The following macros are used for adding states to the two state vectors (one for the current character, one for the following character). */ #define ADD_ACTIVE(x,y) \ if (active_count++ < wscount) \ { \ next_active_state->offset = (x); \ next_active_state->count = (y); \ next_active_state++; \ DPRINTF(("%.*sADD_ACTIVE(%d,%d)\n", rlevel*2-2, SP, (x), (y))); \ } \ else return PCRE_ERROR_DFA_WSSIZE #define ADD_ACTIVE_DATA(x,y,z) \ if (active_count++ < wscount) \ { \ next_active_state->offset = (x); \ next_active_state->count = (y); \ next_active_state->data = (z); \ next_active_state++; \ DPRINTF(("%.*sADD_ACTIVE_DATA(%d,%d,%d)\n", rlevel*2-2, SP, (x), (y), (z))); \ } \ else return PCRE_ERROR_DFA_WSSIZE #define ADD_NEW(x,y) \ if (new_count++ < wscount) \ { \ next_new_state->offset = (x); \ next_new_state->count = (y); \ next_new_state++; \ DPRINTF(("%.*sADD_NEW(%d,%d)\n", rlevel*2-2, SP, (x), (y))); \ } \ else return PCRE_ERROR_DFA_WSSIZE #define ADD_NEW_DATA(x,y,z) \ if (new_count++ < wscount) \ { \ next_new_state->offset = (x); \ next_new_state->count = (y); \ next_new_state->data = (z); \ next_new_state++; \ DPRINTF(("%.*sADD_NEW_DATA(%d,%d,%d)\n", rlevel*2-2, SP, (x), (y), (z))); \ } \ else return PCRE_ERROR_DFA_WSSIZE /* And now, here is the code */ static int internal_dfa_exec( dfa_match_data *md, const uschar *this_start_code, const uschar *current_subject, int start_offset, int *offsets, int offsetcount, int *workspace, int wscount, int rlevel, int recursing) { stateblock *active_states, *new_states, *temp_states; stateblock *next_active_state, *next_new_state; const uschar *ctypes, *lcc, *fcc; const uschar *ptr; const uschar *end_code, *first_op; int active_count, new_count, match_count; /* Some fields in the md block are frequently referenced, so we load them into independent variables in the hope that this will perform better. */ const uschar *start_subject = md->start_subject; const uschar *end_subject = md->end_subject; const uschar *start_code = md->start_code; #ifdef SUPPORT_UTF8 BOOL utf8 = (md->poptions & PCRE_UTF8) != 0; #else BOOL utf8 = FALSE; #endif rlevel++; offsetcount &= (-2); wscount -= 2; wscount = (wscount - (wscount % (INTS_PER_STATEBLOCK * 2))) / (2 * INTS_PER_STATEBLOCK); DPRINTF(("\n%.*s---------------------\n" "%.*sCall to internal_dfa_exec f=%d r=%d\n", rlevel*2-2, SP, rlevel*2-2, SP, rlevel, recursing)); ctypes = md->tables + ctypes_offset; lcc = md->tables + lcc_offset; fcc = md->tables + fcc_offset; match_count = PCRE_ERROR_NOMATCH; /* A negative number */ active_states = (stateblock *)(workspace + 2); next_new_state = new_states = active_states + wscount; new_count = 0; first_op = this_start_code + 1 + LINK_SIZE + ((*this_start_code == OP_CBRA || *this_start_code == OP_SCBRA || *this_start_code == OP_CBRAPOS || *this_start_code == OP_SCBRAPOS)? 2:0); /* The first thing in any (sub) pattern is a bracket of some sort. Push all the alternative states onto the list, and find out where the end is. This makes is possible to use this function recursively, when we want to stop at a matching internal ket rather than at the end. If the first opcode in the first alternative is OP_REVERSE, we are dealing with a backward assertion. In that case, we have to find out the maximum amount to move back, and set up each alternative appropriately. */ if (*first_op == OP_REVERSE) { int max_back = 0; int gone_back; end_code = this_start_code; do { int back = GET(end_code, 2+LINK_SIZE); if (back > max_back) max_back = back; end_code += GET(end_code, 1); } while (*end_code == OP_ALT); /* If we can't go back the amount required for the longest lookbehind pattern, go back as far as we can; some alternatives may still be viable. */ #ifdef SUPPORT_UTF8 /* In character mode we have to step back character by character */ if (utf8) { for (gone_back = 0; gone_back < max_back; gone_back++) { if (current_subject <= start_subject) break; current_subject--; while (current_subject > start_subject && (*current_subject & 0xc0) == 0x80) current_subject--; } } else #endif /* In byte-mode we can do this quickly. */ { gone_back = (current_subject - max_back < start_subject)? (int)(current_subject - start_subject) : max_back; current_subject -= gone_back; } /* Save the earliest consulted character */ if (current_subject < md->start_used_ptr) md->start_used_ptr = current_subject; /* Now we can process the individual branches. */ end_code = this_start_code; do { int back = GET(end_code, 2+LINK_SIZE); if (back <= gone_back) { int bstate = (int)(end_code - start_code + 2 + 2*LINK_SIZE); ADD_NEW_DATA(-bstate, 0, gone_back - back); } end_code += GET(end_code, 1); } while (*end_code == OP_ALT); } /* This is the code for a "normal" subpattern (not a backward assertion). The start of a whole pattern is always one of these. If we are at the top level, we may be asked to restart matching from the same point that we reached for a previous partial match. We still have to scan through the top-level branches to find the end state. */ else { end_code = this_start_code; /* Restarting */ if (rlevel == 1 && (md->moptions & PCRE_DFA_RESTART) != 0) { do { end_code += GET(end_code, 1); } while (*end_code == OP_ALT); new_count = workspace[1]; if (!workspace[0]) memcpy(new_states, active_states, new_count * sizeof(stateblock)); } /* Not restarting */ else { int length = 1 + LINK_SIZE + ((*this_start_code == OP_CBRA || *this_start_code == OP_SCBRA || *this_start_code == OP_CBRAPOS || *this_start_code == OP_SCBRAPOS)? 2:0); do { ADD_NEW((int)(end_code - start_code + length), 0); end_code += GET(end_code, 1); length = 1 + LINK_SIZE; } while (*end_code == OP_ALT); } } workspace[0] = 0; /* Bit indicating which vector is current */ DPRINTF(("%.*sEnd state = %d\n", rlevel*2-2, SP, end_code - start_code)); /* Loop for scanning the subject */ ptr = current_subject; for (;;) { int i, j; int clen, dlen; unsigned int c, d; int forced_fail = 0; BOOL could_continue = FALSE; /* Make the new state list into the active state list and empty the new state list. */ temp_states = active_states; active_states = new_states; new_states = temp_states; active_count = new_count; new_count = 0; workspace[0] ^= 1; /* Remember for the restarting feature */ workspace[1] = active_count; #ifdef PCRE_DEBUG printf("%.*sNext character: rest of subject = \"", rlevel*2-2, SP); pchars((uschar *)ptr, strlen((char *)ptr), stdout); printf("\"\n"); printf("%.*sActive states: ", rlevel*2-2, SP); for (i = 0; i < active_count; i++) printf("%d/%d ", active_states[i].offset, active_states[i].count); printf("\n"); #endif /* Set the pointers for adding new states */ next_active_state = active_states + active_count; next_new_state = new_states; /* Load the current character from the subject outside the loop, as many different states may want to look at it, and we assume that at least one will. */ if (ptr < end_subject) { clen = 1; /* Number of bytes in the character */ #ifdef SUPPORT_UTF8 if (utf8) { GETCHARLEN(c, ptr, clen); } else #endif /* SUPPORT_UTF8 */ c = *ptr; } else { clen = 0; /* This indicates the end of the subject */ c = NOTACHAR; /* This value should never actually be used */ } /* Scan up the active states and act on each one. The result of an action may be to add more states to the currently active list (e.g. on hitting a parenthesis) or it may be to put states on the new list, for considering when we move the character pointer on. */ for (i = 0; i < active_count; i++) { stateblock *current_state = active_states + i; BOOL caseless = FALSE; const uschar *code; int state_offset = current_state->offset; int count, codevalue, rrc; #ifdef PCRE_DEBUG printf ("%.*sProcessing state %d c=", rlevel*2-2, SP, state_offset); if (clen == 0) printf("EOL\n"); else if (c > 32 && c < 127) printf("'%c'\n", c); else printf("0x%02x\n", c); #endif /* A negative offset is a special case meaning "hold off going to this (negated) state until the number of characters in the data field have been skipped". */ if (state_offset < 0) { if (current_state->data > 0) { DPRINTF(("%.*sSkipping this character\n", rlevel*2-2, SP)); ADD_NEW_DATA(state_offset, current_state->count, current_state->data - 1); continue; } else { current_state->offset = state_offset = -state_offset; } } /* Check for a duplicate state with the same count, and skip if found. See the note at the head of this module about the possibility of improving performance here. */ for (j = 0; j < i; j++) { if (active_states[j].offset == state_offset && active_states[j].count == current_state->count) { DPRINTF(("%.*sDuplicate state: skipped\n", rlevel*2-2, SP)); goto NEXT_ACTIVE_STATE; } } /* The state offset is the offset to the opcode */ code = start_code + state_offset; codevalue = *code; /* If this opcode inspects a character, but we are at the end of the subject, remember the fact for use when testing for a partial match. */ if (clen == 0 && poptable[codevalue] != 0) could_continue = TRUE; /* If this opcode is followed by an inline character, load it. It is tempting to test for the presence of a subject character here, but that is wrong, because sometimes zero repetitions of the subject are permitted. We also use this mechanism for opcodes such as OP_TYPEPLUS that take an argument that is not a data character - but is always one byte long. We have to take special action to deal with \P, \p, \H, \h, \V, \v and \X in this case. To keep the other cases fast, convert these ones to new opcodes. */ if (coptable[codevalue] > 0) { dlen = 1; #ifdef SUPPORT_UTF8 if (utf8) { GETCHARLEN(d, (code + coptable[codevalue]), dlen); } else #endif /* SUPPORT_UTF8 */ d = code[coptable[codevalue]]; if (codevalue >= OP_TYPESTAR) { switch(d) { case OP_ANYBYTE: return PCRE_ERROR_DFA_UITEM; case OP_NOTPROP: case OP_PROP: codevalue += OP_PROP_EXTRA; break; case OP_ANYNL: codevalue += OP_ANYNL_EXTRA; break; case OP_EXTUNI: codevalue += OP_EXTUNI_EXTRA; break; case OP_NOT_HSPACE: case OP_HSPACE: codevalue += OP_HSPACE_EXTRA; break; case OP_NOT_VSPACE: case OP_VSPACE: codevalue += OP_VSPACE_EXTRA; break; default: break; } } } else { dlen = 0; /* Not strictly necessary, but compilers moan */ d = NOTACHAR; /* if these variables are not set. */ } /* Now process the individual opcodes */ switch (codevalue) { /* ========================================================================== */ /* These cases are never obeyed. This is a fudge that causes a compile- time error if the vectors coptable or poptable, which are indexed by opcode, are not the correct length. It seems to be the only way to do such a check at compile time, as the sizeof() operator does not work in the C preprocessor. */ case OP_TABLE_LENGTH: case OP_TABLE_LENGTH + ((sizeof(coptable) == OP_TABLE_LENGTH) && (sizeof(poptable) == OP_TABLE_LENGTH)): break; /* ========================================================================== */ /* Reached a closing bracket. If not at the end of the pattern, carry on with the next opcode. For repeating opcodes, also add the repeat state. Note that KETRPOS will always be encountered at the end of the subpattern, because the possessive subpattern repeats are always handled using recursive calls. Thus, it never adds any new states. At the end of the (sub)pattern, unless we have an empty string and PCRE_NOTEMPTY is set, or PCRE_NOTEMPTY_ATSTART is set and we are at the start of the subject, save the match data, shifting up all previous matches so we always have the longest first. */ case OP_KET: case OP_KETRMIN: case OP_KETRMAX: case OP_KETRPOS: if (code != end_code) { ADD_ACTIVE(state_offset + 1 + LINK_SIZE, 0); if (codevalue != OP_KET) { ADD_ACTIVE(state_offset - GET(code, 1), 0); } } else { if (ptr > current_subject || ((md->moptions & PCRE_NOTEMPTY) == 0 && ((md->moptions & PCRE_NOTEMPTY_ATSTART) == 0 || current_subject > start_subject + md->start_offset))) { if (match_count < 0) match_count = (offsetcount >= 2)? 1 : 0; else if (match_count > 0 && ++match_count * 2 >= offsetcount) match_count = 0; count = ((match_count == 0)? offsetcount : match_count * 2) - 2; if (count > 0) memmove(offsets + 2, offsets, count * sizeof(int)); if (offsetcount >= 2) { offsets[0] = (int)(current_subject - start_subject); offsets[1] = (int)(ptr - start_subject); DPRINTF(("%.*sSet matched string = \"%.*s\"\n", rlevel*2-2, SP, offsets[1] - offsets[0], current_subject)); } if ((md->moptions & PCRE_DFA_SHORTEST) != 0) { DPRINTF(("%.*sEnd of internal_dfa_exec %d: returning %d\n" "%.*s---------------------\n\n", rlevel*2-2, SP, rlevel, match_count, rlevel*2-2, SP)); return match_count; } } } break; /* ========================================================================== */ /* These opcodes add to the current list of states without looking at the current character. */ /*-----------------------------------------------------------------*/ case OP_ALT: do { code += GET(code, 1); } while (*code == OP_ALT); ADD_ACTIVE((int)(code - start_code), 0); break; /*-----------------------------------------------------------------*/ case OP_BRA: case OP_SBRA: do { ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0); code += GET(code, 1); } while (*code == OP_ALT); break; /*-----------------------------------------------------------------*/ case OP_CBRA: case OP_SCBRA: ADD_ACTIVE((int)(code - start_code + 3 + LINK_SIZE), 0); code += GET(code, 1); while (*code == OP_ALT) { ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0); code += GET(code, 1); } break; /*-----------------------------------------------------------------*/ case OP_BRAZERO: case OP_BRAMINZERO: ADD_ACTIVE(state_offset + 1, 0); code += 1 + GET(code, 2); while (*code == OP_ALT) code += GET(code, 1); ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0); break; /*-----------------------------------------------------------------*/ case OP_SKIPZERO: code += 1 + GET(code, 2); while (*code == OP_ALT) code += GET(code, 1); ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0); break; /*-----------------------------------------------------------------*/ case OP_CIRC: if (ptr == start_subject && (md->moptions & PCRE_NOTBOL) == 0) { ADD_ACTIVE(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_CIRCM: if ((ptr == start_subject && (md->moptions & PCRE_NOTBOL) == 0) || (ptr != end_subject && WAS_NEWLINE(ptr))) { ADD_ACTIVE(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_EOD: if (ptr >= end_subject) { if ((md->moptions & PCRE_PARTIAL_HARD) != 0) could_continue = TRUE; else { ADD_ACTIVE(state_offset + 1, 0); } } break; /*-----------------------------------------------------------------*/ case OP_SOD: if (ptr == start_subject) { ADD_ACTIVE(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_SOM: if (ptr == start_subject + start_offset) { ADD_ACTIVE(state_offset + 1, 0); } break; /* ========================================================================== */ /* These opcodes inspect the next subject character, and sometimes the previous one as well, but do not have an argument. The variable clen contains the length of the current character and is zero if we are at the end of the subject. */ /*-----------------------------------------------------------------*/ case OP_ANY: if (clen > 0 && !IS_NEWLINE(ptr)) { ADD_NEW(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_ALLANY: if (clen > 0) { ADD_NEW(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_EODN: if (clen == 0 && (md->moptions & PCRE_PARTIAL_HARD) != 0) could_continue = TRUE; else if (clen == 0 || (IS_NEWLINE(ptr) && ptr == end_subject - md->nllen)) { ADD_ACTIVE(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_DOLL: if ((md->moptions & PCRE_NOTEOL) == 0) { if (clen == 0 && (md->moptions & PCRE_PARTIAL_HARD) != 0) could_continue = TRUE; else if (clen == 0 || ((md->poptions & PCRE_DOLLAR_ENDONLY) == 0 && IS_NEWLINE(ptr) && (ptr == end_subject - md->nllen) )) { ADD_ACTIVE(state_offset + 1, 0); } } break; /*-----------------------------------------------------------------*/ case OP_DOLLM: if ((md->moptions & PCRE_NOTEOL) == 0) { if (clen == 0 && (md->moptions & PCRE_PARTIAL_HARD) != 0) could_continue = TRUE; else if (clen == 0 || ((md->poptions & PCRE_DOLLAR_ENDONLY) == 0 && IS_NEWLINE(ptr))) { ADD_ACTIVE(state_offset + 1, 0); } } else if (IS_NEWLINE(ptr)) { ADD_ACTIVE(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_DIGIT: case OP_WHITESPACE: case OP_WORDCHAR: if (clen > 0 && c < 256 && ((ctypes[c] & toptable1[codevalue]) ^ toptable2[codevalue]) != 0) { ADD_NEW(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_NOT_DIGIT: case OP_NOT_WHITESPACE: case OP_NOT_WORDCHAR: if (clen > 0 && (c >= 256 || ((ctypes[c] & toptable1[codevalue]) ^ toptable2[codevalue]) != 0)) { ADD_NEW(state_offset + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_WORD_BOUNDARY: case OP_NOT_WORD_BOUNDARY: { int left_word, right_word; if (ptr > start_subject) { const uschar *temp = ptr - 1; if (temp < md->start_used_ptr) md->start_used_ptr = temp; #ifdef SUPPORT_UTF8 if (utf8) BACKCHAR(temp); #endif GETCHARTEST(d, temp); #ifdef SUPPORT_UCP if ((md->poptions & PCRE_UCP) != 0) { if (d == '_') left_word = TRUE; else { int cat = UCD_CATEGORY(d); left_word = (cat == ucp_L || cat == ucp_N); } } else #endif left_word = d < 256 && (ctypes[d] & ctype_word) != 0; } else left_word = FALSE; if (clen > 0) { #ifdef SUPPORT_UCP if ((md->poptions & PCRE_UCP) != 0) { if (c == '_') right_word = TRUE; else { int cat = UCD_CATEGORY(c); right_word = (cat == ucp_L || cat == ucp_N); } } else #endif right_word = c < 256 && (ctypes[c] & ctype_word) != 0; } else right_word = FALSE; if ((left_word == right_word) == (codevalue == OP_NOT_WORD_BOUNDARY)) { ADD_ACTIVE(state_offset + 1, 0); } } break; /*-----------------------------------------------------------------*/ /* Check the next character by Unicode property. We will get here only if the support is in the binary; otherwise a compile-time error occurs. */ #ifdef SUPPORT_UCP case OP_PROP: case OP_NOTPROP: if (clen > 0) { BOOL OK; const ucd_record * prop = GET_UCD(c); switch(code[1]) { case PT_ANY: OK = TRUE; break; case PT_LAMP: OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll || prop->chartype == ucp_Lt; break; case PT_GC: OK = _pcre_ucp_gentype[prop->chartype] == code[2]; break; case PT_PC: OK = prop->chartype == code[2]; break; case PT_SC: OK = prop->script == code[2]; break; /* These are specials for combination cases. */ case PT_ALNUM: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N; break; case PT_SPACE: /* Perl space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR; break; case PT_PXSPACE: /* POSIX space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || c == CHAR_FF || c == CHAR_CR; break; case PT_WORD: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N || c == CHAR_UNDERSCORE; break; /* Should never occur, but keep compilers from grumbling. */ default: OK = codevalue != OP_PROP; break; } if (OK == (codevalue == OP_PROP)) { ADD_NEW(state_offset + 3, 0); } } break; #endif /* ========================================================================== */ /* These opcodes likewise inspect the subject character, but have an argument that is not a data character. It is one of these opcodes: OP_ANY, OP_ALLANY, OP_DIGIT, OP_NOT_DIGIT, OP_WHITESPACE, OP_NOT_SPACE, OP_WORDCHAR, OP_NOT_WORDCHAR. The value is loaded into d. */ case OP_TYPEPLUS: case OP_TYPEMINPLUS: case OP_TYPEPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); } if (clen > 0) { if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) || (c < 256 && (d != OP_ANY || !IS_NEWLINE(ptr)) && ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0)) { if (count > 0 && codevalue == OP_TYPEPOSPLUS) { active_count--; /* Remove non-match possibility */ next_active_state--; } count++; ADD_NEW(state_offset, count); } } break; /*-----------------------------------------------------------------*/ case OP_TYPEQUERY: case OP_TYPEMINQUERY: case OP_TYPEPOSQUERY: ADD_ACTIVE(state_offset + 2, 0); if (clen > 0) { if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) || (c < 256 && (d != OP_ANY || !IS_NEWLINE(ptr)) && ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0)) { if (codevalue == OP_TYPEPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW(state_offset + 2, 0); } } break; /*-----------------------------------------------------------------*/ case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEPOSSTAR: ADD_ACTIVE(state_offset + 2, 0); if (clen > 0) { if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) || (c < 256 && (d != OP_ANY || !IS_NEWLINE(ptr)) && ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0)) { if (codevalue == OP_TYPEPOSSTAR) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW(state_offset, 0); } } break; /*-----------------------------------------------------------------*/ case OP_TYPEEXACT: count = current_state->count; /* Number already matched */ if (clen > 0) { if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) || (c < 256 && (d != OP_ANY || !IS_NEWLINE(ptr)) && ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0)) { if (++count >= GET2(code, 1)) { ADD_NEW(state_offset + 4, 0); } else { ADD_NEW(state_offset, count); } } } break; /*-----------------------------------------------------------------*/ case OP_TYPEUPTO: case OP_TYPEMINUPTO: case OP_TYPEPOSUPTO: ADD_ACTIVE(state_offset + 4, 0); count = current_state->count; /* Number already matched */ if (clen > 0) { if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) || (c < 256 && (d != OP_ANY || !IS_NEWLINE(ptr)) && ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0)) { if (codevalue == OP_TYPEPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } if (++count >= GET2(code, 1)) { ADD_NEW(state_offset + 4, 0); } else { ADD_NEW(state_offset, count); } } } break; /* ========================================================================== */ /* These are virtual opcodes that are used when something like OP_TYPEPLUS has OP_PROP, OP_NOTPROP, OP_ANYNL, or OP_EXTUNI as its argument. It keeps the code above fast for the other cases. The argument is in the d variable. */ #ifdef SUPPORT_UCP case OP_PROP_EXTRA + OP_TYPEPLUS: case OP_PROP_EXTRA + OP_TYPEMINPLUS: case OP_PROP_EXTRA + OP_TYPEPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + 4, 0); } if (clen > 0) { BOOL OK; const ucd_record * prop = GET_UCD(c); switch(code[2]) { case PT_ANY: OK = TRUE; break; case PT_LAMP: OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll || prop->chartype == ucp_Lt; break; case PT_GC: OK = _pcre_ucp_gentype[prop->chartype] == code[3]; break; case PT_PC: OK = prop->chartype == code[3]; break; case PT_SC: OK = prop->script == code[3]; break; /* These are specials for combination cases. */ case PT_ALNUM: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N; break; case PT_SPACE: /* Perl space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR; break; case PT_PXSPACE: /* POSIX space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || c == CHAR_FF || c == CHAR_CR; break; case PT_WORD: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N || c == CHAR_UNDERSCORE; break; /* Should never occur, but keep compilers from grumbling. */ default: OK = codevalue != OP_PROP; break; } if (OK == (d == OP_PROP)) { if (count > 0 && codevalue == OP_PROP_EXTRA + OP_TYPEPOSPLUS) { active_count--; /* Remove non-match possibility */ next_active_state--; } count++; ADD_NEW(state_offset, count); } } break; /*-----------------------------------------------------------------*/ case OP_EXTUNI_EXTRA + OP_TYPEPLUS: case OP_EXTUNI_EXTRA + OP_TYPEMINPLUS: case OP_EXTUNI_EXTRA + OP_TYPEPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); } if (clen > 0 && UCD_CATEGORY(c) != ucp_M) { const uschar *nptr = ptr + clen; int ncount = 0; if (count > 0 && codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSPLUS) { active_count--; /* Remove non-match possibility */ next_active_state--; } while (nptr < end_subject) { int nd; int ndlen = 1; GETCHARLEN(nd, nptr, ndlen); if (UCD_CATEGORY(nd) != ucp_M) break; ncount++; nptr += ndlen; } count++; ADD_NEW_DATA(-state_offset, count, ncount); } break; #endif /*-----------------------------------------------------------------*/ case OP_ANYNL_EXTRA + OP_TYPEPLUS: case OP_ANYNL_EXTRA + OP_TYPEMINPLUS: case OP_ANYNL_EXTRA + OP_TYPEPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); } if (clen > 0) { int ncount = 0; switch (c) { case 0x000b: case 0x000c: case 0x0085: case 0x2028: case 0x2029: if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break; goto ANYNL01; case 0x000d: if (ptr + 1 < end_subject && ptr[1] == 0x0a) ncount = 1; /* Fall through */ ANYNL01: case 0x000a: if (count > 0 && codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSPLUS) { active_count--; /* Remove non-match possibility */ next_active_state--; } count++; ADD_NEW_DATA(-state_offset, count, ncount); break; default: break; } } break; /*-----------------------------------------------------------------*/ case OP_VSPACE_EXTRA + OP_TYPEPLUS: case OP_VSPACE_EXTRA + OP_TYPEMINPLUS: case OP_VSPACE_EXTRA + OP_TYPEPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); } if (clen > 0) { BOOL OK; switch (c) { case 0x000a: case 0x000b: case 0x000c: case 0x000d: case 0x0085: case 0x2028: case 0x2029: OK = TRUE; break; default: OK = FALSE; break; } if (OK == (d == OP_VSPACE)) { if (count > 0 && codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSPLUS) { active_count--; /* Remove non-match possibility */ next_active_state--; } count++; ADD_NEW_DATA(-state_offset, count, 0); } } break; /*-----------------------------------------------------------------*/ case OP_HSPACE_EXTRA + OP_TYPEPLUS: case OP_HSPACE_EXTRA + OP_TYPEMINPLUS: case OP_HSPACE_EXTRA + OP_TYPEPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); } if (clen > 0) { BOOL OK; switch (c) { case 0x09: /* HT */ case 0x20: /* SPACE */ case 0xa0: /* NBSP */ case 0x1680: /* OGHAM SPACE MARK */ case 0x180e: /* MONGOLIAN VOWEL SEPARATOR */ case 0x2000: /* EN QUAD */ case 0x2001: /* EM QUAD */ case 0x2002: /* EN SPACE */ case 0x2003: /* EM SPACE */ case 0x2004: /* THREE-PER-EM SPACE */ case 0x2005: /* FOUR-PER-EM SPACE */ case 0x2006: /* SIX-PER-EM SPACE */ case 0x2007: /* FIGURE SPACE */ case 0x2008: /* PUNCTUATION SPACE */ case 0x2009: /* THIN SPACE */ case 0x200A: /* HAIR SPACE */ case 0x202f: /* NARROW NO-BREAK SPACE */ case 0x205f: /* MEDIUM MATHEMATICAL SPACE */ case 0x3000: /* IDEOGRAPHIC SPACE */ OK = TRUE; break; default: OK = FALSE; break; } if (OK == (d == OP_HSPACE)) { if (count > 0 && codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSPLUS) { active_count--; /* Remove non-match possibility */ next_active_state--; } count++; ADD_NEW_DATA(-state_offset, count, 0); } } break; /*-----------------------------------------------------------------*/ #ifdef SUPPORT_UCP case OP_PROP_EXTRA + OP_TYPEQUERY: case OP_PROP_EXTRA + OP_TYPEMINQUERY: case OP_PROP_EXTRA + OP_TYPEPOSQUERY: count = 4; goto QS1; case OP_PROP_EXTRA + OP_TYPESTAR: case OP_PROP_EXTRA + OP_TYPEMINSTAR: case OP_PROP_EXTRA + OP_TYPEPOSSTAR: count = 0; QS1: ADD_ACTIVE(state_offset + 4, 0); if (clen > 0) { BOOL OK; const ucd_record * prop = GET_UCD(c); switch(code[2]) { case PT_ANY: OK = TRUE; break; case PT_LAMP: OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll || prop->chartype == ucp_Lt; break; case PT_GC: OK = _pcre_ucp_gentype[prop->chartype] == code[3]; break; case PT_PC: OK = prop->chartype == code[3]; break; case PT_SC: OK = prop->script == code[3]; break; /* These are specials for combination cases. */ case PT_ALNUM: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N; break; case PT_SPACE: /* Perl space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR; break; case PT_PXSPACE: /* POSIX space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || c == CHAR_FF || c == CHAR_CR; break; case PT_WORD: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N || c == CHAR_UNDERSCORE; break; /* Should never occur, but keep compilers from grumbling. */ default: OK = codevalue != OP_PROP; break; } if (OK == (d == OP_PROP)) { if (codevalue == OP_PROP_EXTRA + OP_TYPEPOSSTAR || codevalue == OP_PROP_EXTRA + OP_TYPEPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW(state_offset + count, 0); } } break; /*-----------------------------------------------------------------*/ case OP_EXTUNI_EXTRA + OP_TYPEQUERY: case OP_EXTUNI_EXTRA + OP_TYPEMINQUERY: case OP_EXTUNI_EXTRA + OP_TYPEPOSQUERY: count = 2; goto QS2; case OP_EXTUNI_EXTRA + OP_TYPESTAR: case OP_EXTUNI_EXTRA + OP_TYPEMINSTAR: case OP_EXTUNI_EXTRA + OP_TYPEPOSSTAR: count = 0; QS2: ADD_ACTIVE(state_offset + 2, 0); if (clen > 0 && UCD_CATEGORY(c) != ucp_M) { const uschar *nptr = ptr + clen; int ncount = 0; if (codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSSTAR || codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } while (nptr < end_subject) { int nd; int ndlen = 1; GETCHARLEN(nd, nptr, ndlen); if (UCD_CATEGORY(nd) != ucp_M) break; ncount++; nptr += ndlen; } ADD_NEW_DATA(-(state_offset + count), 0, ncount); } break; #endif /*-----------------------------------------------------------------*/ case OP_ANYNL_EXTRA + OP_TYPEQUERY: case OP_ANYNL_EXTRA + OP_TYPEMINQUERY: case OP_ANYNL_EXTRA + OP_TYPEPOSQUERY: count = 2; goto QS3; case OP_ANYNL_EXTRA + OP_TYPESTAR: case OP_ANYNL_EXTRA + OP_TYPEMINSTAR: case OP_ANYNL_EXTRA + OP_TYPEPOSSTAR: count = 0; QS3: ADD_ACTIVE(state_offset + 2, 0); if (clen > 0) { int ncount = 0; switch (c) { case 0x000b: case 0x000c: case 0x0085: case 0x2028: case 0x2029: if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break; goto ANYNL02; case 0x000d: if (ptr + 1 < end_subject && ptr[1] == 0x0a) ncount = 1; /* Fall through */ ANYNL02: case 0x000a: if (codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSSTAR || codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW_DATA(-(state_offset + count), 0, ncount); break; default: break; } } break; /*-----------------------------------------------------------------*/ case OP_VSPACE_EXTRA + OP_TYPEQUERY: case OP_VSPACE_EXTRA + OP_TYPEMINQUERY: case OP_VSPACE_EXTRA + OP_TYPEPOSQUERY: count = 2; goto QS4; case OP_VSPACE_EXTRA + OP_TYPESTAR: case OP_VSPACE_EXTRA + OP_TYPEMINSTAR: case OP_VSPACE_EXTRA + OP_TYPEPOSSTAR: count = 0; QS4: ADD_ACTIVE(state_offset + 2, 0); if (clen > 0) { BOOL OK; switch (c) { case 0x000a: case 0x000b: case 0x000c: case 0x000d: case 0x0085: case 0x2028: case 0x2029: OK = TRUE; break; default: OK = FALSE; break; } if (OK == (d == OP_VSPACE)) { if (codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSSTAR || codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW_DATA(-(state_offset + count), 0, 0); } } break; /*-----------------------------------------------------------------*/ case OP_HSPACE_EXTRA + OP_TYPEQUERY: case OP_HSPACE_EXTRA + OP_TYPEMINQUERY: case OP_HSPACE_EXTRA + OP_TYPEPOSQUERY: count = 2; goto QS5; case OP_HSPACE_EXTRA + OP_TYPESTAR: case OP_HSPACE_EXTRA + OP_TYPEMINSTAR: case OP_HSPACE_EXTRA + OP_TYPEPOSSTAR: count = 0; QS5: ADD_ACTIVE(state_offset + 2, 0); if (clen > 0) { BOOL OK; switch (c) { case 0x09: /* HT */ case 0x20: /* SPACE */ case 0xa0: /* NBSP */ case 0x1680: /* OGHAM SPACE MARK */ case 0x180e: /* MONGOLIAN VOWEL SEPARATOR */ case 0x2000: /* EN QUAD */ case 0x2001: /* EM QUAD */ case 0x2002: /* EN SPACE */ case 0x2003: /* EM SPACE */ case 0x2004: /* THREE-PER-EM SPACE */ case 0x2005: /* FOUR-PER-EM SPACE */ case 0x2006: /* SIX-PER-EM SPACE */ case 0x2007: /* FIGURE SPACE */ case 0x2008: /* PUNCTUATION SPACE */ case 0x2009: /* THIN SPACE */ case 0x200A: /* HAIR SPACE */ case 0x202f: /* NARROW NO-BREAK SPACE */ case 0x205f: /* MEDIUM MATHEMATICAL SPACE */ case 0x3000: /* IDEOGRAPHIC SPACE */ OK = TRUE; break; default: OK = FALSE; break; } if (OK == (d == OP_HSPACE)) { if (codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSSTAR || codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW_DATA(-(state_offset + count), 0, 0); } } break; /*-----------------------------------------------------------------*/ #ifdef SUPPORT_UCP case OP_PROP_EXTRA + OP_TYPEEXACT: case OP_PROP_EXTRA + OP_TYPEUPTO: case OP_PROP_EXTRA + OP_TYPEMINUPTO: case OP_PROP_EXTRA + OP_TYPEPOSUPTO: if (codevalue != OP_PROP_EXTRA + OP_TYPEEXACT) { ADD_ACTIVE(state_offset + 6, 0); } count = current_state->count; /* Number already matched */ if (clen > 0) { BOOL OK; const ucd_record * prop = GET_UCD(c); switch(code[4]) { case PT_ANY: OK = TRUE; break; case PT_LAMP: OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll || prop->chartype == ucp_Lt; break; case PT_GC: OK = _pcre_ucp_gentype[prop->chartype] == code[5]; break; case PT_PC: OK = prop->chartype == code[5]; break; case PT_SC: OK = prop->script == code[5]; break; /* These are specials for combination cases. */ case PT_ALNUM: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N; break; case PT_SPACE: /* Perl space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR; break; case PT_PXSPACE: /* POSIX space */ OK = _pcre_ucp_gentype[prop->chartype] == ucp_Z || c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || c == CHAR_FF || c == CHAR_CR; break; case PT_WORD: OK = _pcre_ucp_gentype[prop->chartype] == ucp_L || _pcre_ucp_gentype[prop->chartype] == ucp_N || c == CHAR_UNDERSCORE; break; /* Should never occur, but keep compilers from grumbling. */ default: OK = codevalue != OP_PROP; break; } if (OK == (d == OP_PROP)) { if (codevalue == OP_PROP_EXTRA + OP_TYPEPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } if (++count >= GET2(code, 1)) { ADD_NEW(state_offset + 6, 0); } else { ADD_NEW(state_offset, count); } } } break; /*-----------------------------------------------------------------*/ case OP_EXTUNI_EXTRA + OP_TYPEEXACT: case OP_EXTUNI_EXTRA + OP_TYPEUPTO: case OP_EXTUNI_EXTRA + OP_TYPEMINUPTO: case OP_EXTUNI_EXTRA + OP_TYPEPOSUPTO: if (codevalue != OP_EXTUNI_EXTRA + OP_TYPEEXACT) { ADD_ACTIVE(state_offset + 4, 0); } count = current_state->count; /* Number already matched */ if (clen > 0 && UCD_CATEGORY(c) != ucp_M) { const uschar *nptr = ptr + clen; int ncount = 0; if (codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } while (nptr < end_subject) { int nd; int ndlen = 1; GETCHARLEN(nd, nptr, ndlen); if (UCD_CATEGORY(nd) != ucp_M) break; ncount++; nptr += ndlen; } if (++count >= GET2(code, 1)) { ADD_NEW_DATA(-(state_offset + 4), 0, ncount); } else { ADD_NEW_DATA(-state_offset, count, ncount); } } break; #endif /*-----------------------------------------------------------------*/ case OP_ANYNL_EXTRA + OP_TYPEEXACT: case OP_ANYNL_EXTRA + OP_TYPEUPTO: case OP_ANYNL_EXTRA + OP_TYPEMINUPTO: case OP_ANYNL_EXTRA + OP_TYPEPOSUPTO: if (codevalue != OP_ANYNL_EXTRA + OP_TYPEEXACT) { ADD_ACTIVE(state_offset + 4, 0); } count = current_state->count; /* Number already matched */ if (clen > 0) { int ncount = 0; switch (c) { case 0x000b: case 0x000c: case 0x0085: case 0x2028: case 0x2029: if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break; goto ANYNL03; case 0x000d: if (ptr + 1 < end_subject && ptr[1] == 0x0a) ncount = 1; /* Fall through */ ANYNL03: case 0x000a: if (codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } if (++count >= GET2(code, 1)) { ADD_NEW_DATA(-(state_offset + 4), 0, ncount); } else { ADD_NEW_DATA(-state_offset, count, ncount); } break; default: break; } } break; /*-----------------------------------------------------------------*/ case OP_VSPACE_EXTRA + OP_TYPEEXACT: case OP_VSPACE_EXTRA + OP_TYPEUPTO: case OP_VSPACE_EXTRA + OP_TYPEMINUPTO: case OP_VSPACE_EXTRA + OP_TYPEPOSUPTO: if (codevalue != OP_VSPACE_EXTRA + OP_TYPEEXACT) { ADD_ACTIVE(state_offset + 4, 0); } count = current_state->count; /* Number already matched */ if (clen > 0) { BOOL OK; switch (c) { case 0x000a: case 0x000b: case 0x000c: case 0x000d: case 0x0085: case 0x2028: case 0x2029: OK = TRUE; break; default: OK = FALSE; } if (OK == (d == OP_VSPACE)) { if (codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } if (++count >= GET2(code, 1)) { ADD_NEW_DATA(-(state_offset + 4), 0, 0); } else { ADD_NEW_DATA(-state_offset, count, 0); } } } break; /*-----------------------------------------------------------------*/ case OP_HSPACE_EXTRA + OP_TYPEEXACT: case OP_HSPACE_EXTRA + OP_TYPEUPTO: case OP_HSPACE_EXTRA + OP_TYPEMINUPTO: case OP_HSPACE_EXTRA + OP_TYPEPOSUPTO: if (codevalue != OP_HSPACE_EXTRA + OP_TYPEEXACT) { ADD_ACTIVE(state_offset + 4, 0); } count = current_state->count; /* Number already matched */ if (clen > 0) { BOOL OK; switch (c) { case 0x09: /* HT */ case 0x20: /* SPACE */ case 0xa0: /* NBSP */ case 0x1680: /* OGHAM SPACE MARK */ case 0x180e: /* MONGOLIAN VOWEL SEPARATOR */ case 0x2000: /* EN QUAD */ case 0x2001: /* EM QUAD */ case 0x2002: /* EN SPACE */ case 0x2003: /* EM SPACE */ case 0x2004: /* THREE-PER-EM SPACE */ case 0x2005: /* FOUR-PER-EM SPACE */ case 0x2006: /* SIX-PER-EM SPACE */ case 0x2007: /* FIGURE SPACE */ case 0x2008: /* PUNCTUATION SPACE */ case 0x2009: /* THIN SPACE */ case 0x200A: /* HAIR SPACE */ case 0x202f: /* NARROW NO-BREAK SPACE */ case 0x205f: /* MEDIUM MATHEMATICAL SPACE */ case 0x3000: /* IDEOGRAPHIC SPACE */ OK = TRUE; break; default: OK = FALSE; break; } if (OK == (d == OP_HSPACE)) { if (codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } if (++count >= GET2(code, 1)) { ADD_NEW_DATA(-(state_offset + 4), 0, 0); } else { ADD_NEW_DATA(-state_offset, count, 0); } } } break; /* ========================================================================== */ /* These opcodes are followed by a character that is usually compared to the current subject character; it is loaded into d. We still get here even if there is no subject character, because in some cases zero repetitions are permitted. */ /*-----------------------------------------------------------------*/ case OP_CHAR: if (clen > 0 && c == d) { ADD_NEW(state_offset + dlen + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_CHARI: if (clen == 0) break; #ifdef SUPPORT_UTF8 if (utf8) { if (c == d) { ADD_NEW(state_offset + dlen + 1, 0); } else { unsigned int othercase; if (c < 128) othercase = fcc[c]; else /* If we have Unicode property support, we can use it to test the other case of the character. */ #ifdef SUPPORT_UCP othercase = UCD_OTHERCASE(c); #else othercase = NOTACHAR; #endif if (d == othercase) { ADD_NEW(state_offset + dlen + 1, 0); } } } else #endif /* SUPPORT_UTF8 */ /* Non-UTF-8 mode */ { if (lcc[c] == lcc[d]) { ADD_NEW(state_offset + 2, 0); } } break; #ifdef SUPPORT_UCP /*-----------------------------------------------------------------*/ /* This is a tricky one because it can match more than one character. Find out how many characters to skip, and then set up a negative state to wait for them to pass before continuing. */ case OP_EXTUNI: if (clen > 0 && UCD_CATEGORY(c) != ucp_M) { const uschar *nptr = ptr + clen; int ncount = 0; while (nptr < end_subject) { int nclen = 1; GETCHARLEN(c, nptr, nclen); if (UCD_CATEGORY(c) != ucp_M) break; ncount++; nptr += nclen; } ADD_NEW_DATA(-(state_offset + 1), 0, ncount); } break; #endif /*-----------------------------------------------------------------*/ /* This is a tricky like EXTUNI because it too can match more than one character (when CR is followed by LF). In this case, set up a negative state to wait for one character to pass before continuing. */ case OP_ANYNL: if (clen > 0) switch(c) { case 0x000b: case 0x000c: case 0x0085: case 0x2028: case 0x2029: if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break; case 0x000a: ADD_NEW(state_offset + 1, 0); break; case 0x000d: if (ptr + 1 < end_subject && ptr[1] == 0x0a) { ADD_NEW_DATA(-(state_offset + 1), 0, 1); } else { ADD_NEW(state_offset + 1, 0); } break; } break; /*-----------------------------------------------------------------*/ case OP_NOT_VSPACE: if (clen > 0) switch(c) { case 0x000a: case 0x000b: case 0x000c: case 0x000d: case 0x0085: case 0x2028: case 0x2029: break; default: ADD_NEW(state_offset + 1, 0); break; } break; /*-----------------------------------------------------------------*/ case OP_VSPACE: if (clen > 0) switch(c) { case 0x000a: case 0x000b: case 0x000c: case 0x000d: case 0x0085: case 0x2028: case 0x2029: ADD_NEW(state_offset + 1, 0); break; default: break; } break; /*-----------------------------------------------------------------*/ case OP_NOT_HSPACE: if (clen > 0) switch(c) { case 0x09: /* HT */ case 0x20: /* SPACE */ case 0xa0: /* NBSP */ case 0x1680: /* OGHAM SPACE MARK */ case 0x180e: /* MONGOLIAN VOWEL SEPARATOR */ case 0x2000: /* EN QUAD */ case 0x2001: /* EM QUAD */ case 0x2002: /* EN SPACE */ case 0x2003: /* EM SPACE */ case 0x2004: /* THREE-PER-EM SPACE */ case 0x2005: /* FOUR-PER-EM SPACE */ case 0x2006: /* SIX-PER-EM SPACE */ case 0x2007: /* FIGURE SPACE */ case 0x2008: /* PUNCTUATION SPACE */ case 0x2009: /* THIN SPACE */ case 0x200A: /* HAIR SPACE */ case 0x202f: /* NARROW NO-BREAK SPACE */ case 0x205f: /* MEDIUM MATHEMATICAL SPACE */ case 0x3000: /* IDEOGRAPHIC SPACE */ break; default: ADD_NEW(state_offset + 1, 0); break; } break; /*-----------------------------------------------------------------*/ case OP_HSPACE: if (clen > 0) switch(c) { case 0x09: /* HT */ case 0x20: /* SPACE */ case 0xa0: /* NBSP */ case 0x1680: /* OGHAM SPACE MARK */ case 0x180e: /* MONGOLIAN VOWEL SEPARATOR */ case 0x2000: /* EN QUAD */ case 0x2001: /* EM QUAD */ case 0x2002: /* EN SPACE */ case 0x2003: /* EM SPACE */ case 0x2004: /* THREE-PER-EM SPACE */ case 0x2005: /* FOUR-PER-EM SPACE */ case 0x2006: /* SIX-PER-EM SPACE */ case 0x2007: /* FIGURE SPACE */ case 0x2008: /* PUNCTUATION SPACE */ case 0x2009: /* THIN SPACE */ case 0x200A: /* HAIR SPACE */ case 0x202f: /* NARROW NO-BREAK SPACE */ case 0x205f: /* MEDIUM MATHEMATICAL SPACE */ case 0x3000: /* IDEOGRAPHIC SPACE */ ADD_NEW(state_offset + 1, 0); break; } break; /*-----------------------------------------------------------------*/ /* Match a negated single character casefully. This is only used for one-byte characters, that is, we know that d < 256. The character we are checking (c) can be multibyte. */ case OP_NOT: if (clen > 0 && c != d) { ADD_NEW(state_offset + dlen + 1, 0); } break; /*-----------------------------------------------------------------*/ /* Match a negated single character caselessly. This is only used for one-byte characters, that is, we know that d < 256. The character we are checking (c) can be multibyte. */ case OP_NOTI: if (clen > 0 && c != d && c != fcc[d]) { ADD_NEW(state_offset + dlen + 1, 0); } break; /*-----------------------------------------------------------------*/ case OP_PLUSI: case OP_MINPLUSI: case OP_POSPLUSI: case OP_NOTPLUSI: case OP_NOTMINPLUSI: case OP_NOTPOSPLUSI: caseless = TRUE; codevalue -= OP_STARI - OP_STAR; /* Fall through */ case OP_PLUS: case OP_MINPLUS: case OP_POSPLUS: case OP_NOTPLUS: case OP_NOTMINPLUS: case OP_NOTPOSPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(state_offset + dlen + 1, 0); } if (clen > 0) { unsigned int otherd = NOTACHAR; if (caseless) { #ifdef SUPPORT_UTF8 if (utf8 && d >= 128) { #ifdef SUPPORT_UCP otherd = UCD_OTHERCASE(d); #endif /* SUPPORT_UCP */ } else #endif /* SUPPORT_UTF8 */ otherd = fcc[d]; } if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR)) { if (count > 0 && (codevalue == OP_POSPLUS || codevalue == OP_NOTPOSPLUS)) { active_count--; /* Remove non-match possibility */ next_active_state--; } count++; ADD_NEW(state_offset, count); } } break; /*-----------------------------------------------------------------*/ case OP_QUERYI: case OP_MINQUERYI: case OP_POSQUERYI: case OP_NOTQUERYI: case OP_NOTMINQUERYI: case OP_NOTPOSQUERYI: caseless = TRUE; codevalue -= OP_STARI - OP_STAR; /* Fall through */ case OP_QUERY: case OP_MINQUERY: case OP_POSQUERY: case OP_NOTQUERY: case OP_NOTMINQUERY: case OP_NOTPOSQUERY: ADD_ACTIVE(state_offset + dlen + 1, 0); if (clen > 0) { unsigned int otherd = NOTACHAR; if (caseless) { #ifdef SUPPORT_UTF8 if (utf8 && d >= 128) { #ifdef SUPPORT_UCP otherd = UCD_OTHERCASE(d); #endif /* SUPPORT_UCP */ } else #endif /* SUPPORT_UTF8 */ otherd = fcc[d]; } if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR)) { if (codevalue == OP_POSQUERY || codevalue == OP_NOTPOSQUERY) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW(state_offset + dlen + 1, 0); } } break; /*-----------------------------------------------------------------*/ case OP_STARI: case OP_MINSTARI: case OP_POSSTARI: case OP_NOTSTARI: case OP_NOTMINSTARI: case OP_NOTPOSSTARI: caseless = TRUE; codevalue -= OP_STARI - OP_STAR; /* Fall through */ case OP_STAR: case OP_MINSTAR: case OP_POSSTAR: case OP_NOTSTAR: case OP_NOTMINSTAR: case OP_NOTPOSSTAR: ADD_ACTIVE(state_offset + dlen + 1, 0); if (clen > 0) { unsigned int otherd = NOTACHAR; if (caseless) { #ifdef SUPPORT_UTF8 if (utf8 && d >= 128) { #ifdef SUPPORT_UCP otherd = UCD_OTHERCASE(d); #endif /* SUPPORT_UCP */ } else #endif /* SUPPORT_UTF8 */ otherd = fcc[d]; } if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR)) { if (codevalue == OP_POSSTAR || codevalue == OP_NOTPOSSTAR) { active_count--; /* Remove non-match possibility */ next_active_state--; } ADD_NEW(state_offset, 0); } } break; /*-----------------------------------------------------------------*/ case OP_EXACTI: case OP_NOTEXACTI: caseless = TRUE; codevalue -= OP_STARI - OP_STAR; /* Fall through */ case OP_EXACT: case OP_NOTEXACT: count = current_state->count; /* Number already matched */ if (clen > 0) { unsigned int otherd = NOTACHAR; if (caseless) { #ifdef SUPPORT_UTF8 if (utf8 && d >= 128) { #ifdef SUPPORT_UCP otherd = UCD_OTHERCASE(d); #endif /* SUPPORT_UCP */ } else #endif /* SUPPORT_UTF8 */ otherd = fcc[d]; } if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR)) { if (++count >= GET2(code, 1)) { ADD_NEW(state_offset + dlen + 3, 0); } else { ADD_NEW(state_offset, count); } } } break; /*-----------------------------------------------------------------*/ case OP_UPTOI: case OP_MINUPTOI: case OP_POSUPTOI: case OP_NOTUPTOI: case OP_NOTMINUPTOI: case OP_NOTPOSUPTOI: caseless = TRUE; codevalue -= OP_STARI - OP_STAR; /* Fall through */ case OP_UPTO: case OP_MINUPTO: case OP_POSUPTO: case OP_NOTUPTO: case OP_NOTMINUPTO: case OP_NOTPOSUPTO: ADD_ACTIVE(state_offset + dlen + 3, 0); count = current_state->count; /* Number already matched */ if (clen > 0) { unsigned int otherd = NOTACHAR; if (caseless) { #ifdef SUPPORT_UTF8 if (utf8 && d >= 128) { #ifdef SUPPORT_UCP otherd = UCD_OTHERCASE(d); #endif /* SUPPORT_UCP */ } else #endif /* SUPPORT_UTF8 */ otherd = fcc[d]; } if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR)) { if (codevalue == OP_POSUPTO || codevalue == OP_NOTPOSUPTO) { active_count--; /* Remove non-match possibility */ next_active_state--; } if (++count >= GET2(code, 1)) { ADD_NEW(state_offset + dlen + 3, 0); } else { ADD_NEW(state_offset, count); } } } break; /* ========================================================================== */ /* These are the class-handling opcodes */ case OP_CLASS: case OP_NCLASS: case OP_XCLASS: { BOOL isinclass = FALSE; int next_state_offset; const uschar *ecode; /* For a simple class, there is always just a 32-byte table, and we can set isinclass from it. */ if (codevalue != OP_XCLASS) { ecode = code + 33; if (clen > 0) { isinclass = (c > 255)? (codevalue == OP_NCLASS) : ((code[1 + c/8] & (1 << (c&7))) != 0); } } /* An extended class may have a table or a list of single characters, ranges, or both, and it may be positive or negative. There's a function that sorts all this out. */ else { ecode = code + GET(code, 1); if (clen > 0) isinclass = _pcre_xclass(c, code + 1 + LINK_SIZE); } /* At this point, isinclass is set for all kinds of class, and ecode points to the byte after the end of the class. If there is a quantifier, this is where it will be. */ next_state_offset = (int)(ecode - start_code); switch (*ecode) { case OP_CRSTAR: case OP_CRMINSTAR: ADD_ACTIVE(next_state_offset + 1, 0); if (isinclass) { ADD_NEW(state_offset, 0); } break; case OP_CRPLUS: case OP_CRMINPLUS: count = current_state->count; /* Already matched */ if (count > 0) { ADD_ACTIVE(next_state_offset + 1, 0); } if (isinclass) { count++; ADD_NEW(state_offset, count); } break; case OP_CRQUERY: case OP_CRMINQUERY: ADD_ACTIVE(next_state_offset + 1, 0); if (isinclass) { ADD_NEW(next_state_offset + 1, 0); } break; case OP_CRRANGE: case OP_CRMINRANGE: count = current_state->count; /* Already matched */ if (count >= GET2(ecode, 1)) { ADD_ACTIVE(next_state_offset + 5, 0); } if (isinclass) { int max = GET2(ecode, 3); if (++count >= max && max != 0) /* Max 0 => no limit */ { ADD_NEW(next_state_offset + 5, 0); } else { ADD_NEW(state_offset, count); } } break; default: if (isinclass) { ADD_NEW(next_state_offset, 0); } break; } } break; /* ========================================================================== */ /* These are the opcodes for fancy brackets of various kinds. We have to use recursion in order to handle them. The "always failing" assertion (?!) is optimised to OP_FAIL when compiling, so we have to support that, though the other "backtracking verbs" are not supported. */ case OP_FAIL: forced_fail++; /* Count FAILs for multiple states */ break; case OP_ASSERT: case OP_ASSERT_NOT: case OP_ASSERTBACK: case OP_ASSERTBACK_NOT: { int rc; int local_offsets[2]; int local_workspace[1000]; const uschar *endasscode = code + GET(code, 1); while (*endasscode == OP_ALT) endasscode += GET(endasscode, 1); rc = internal_dfa_exec( md, /* static match data */ code, /* this subexpression's code */ ptr, /* where we currently are */ (int)(ptr - start_subject), /* start offset */ local_offsets, /* offset vector */ sizeof(local_offsets)/sizeof(int), /* size of same */ local_workspace, /* workspace vector */ sizeof(local_workspace)/sizeof(int), /* size of same */ rlevel, /* function recursion level */ recursing); /* pass on regex recursion */ if (rc == PCRE_ERROR_DFA_UITEM) return rc; if ((rc >= 0) == (codevalue == OP_ASSERT || codevalue == OP_ASSERTBACK)) { ADD_ACTIVE((int)(endasscode + LINK_SIZE + 1 - start_code), 0); } } break; /*-----------------------------------------------------------------*/ case OP_COND: case OP_SCOND: { int local_offsets[1000]; int local_workspace[1000]; int codelink = GET(code, 1); int condcode; /* Because of the way auto-callout works during compile, a callout item is inserted between OP_COND and an assertion condition. This does not happen for the other conditions. */ if (code[LINK_SIZE+1] == OP_CALLOUT) { rrc = 0; if (pcre_callout != NULL) { pcre_callout_block cb; cb.version = 1; /* Version 1 of the callout block */ cb.callout_number = code[LINK_SIZE+2]; cb.offset_vector = offsets; cb.subject = (PCRE_SPTR)start_subject; cb.subject_length = (int)(end_subject - start_subject); cb.start_match = (int)(current_subject - start_subject); cb.current_position = (int)(ptr - start_subject); cb.pattern_position = GET(code, LINK_SIZE + 3); cb.next_item_length = GET(code, 3 + 2*LINK_SIZE); cb.capture_top = 1; cb.capture_last = -1; cb.callout_data = md->callout_data; if ((rrc = (*pcre_callout)(&cb)) < 0) return rrc; /* Abandon */ } if (rrc > 0) break; /* Fail this thread */ code += _pcre_OP_lengths[OP_CALLOUT]; /* Skip callout data */ } condcode = code[LINK_SIZE+1]; /* Back reference conditions are not supported */ if (condcode == OP_CREF || condcode == OP_NCREF) return PCRE_ERROR_DFA_UCOND; /* The DEFINE condition is always false */ if (condcode == OP_DEF) { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); } /* The only supported version of OP_RREF is for the value RREF_ANY, which means "test if in any recursion". We can't test for specifically recursed groups. */ else if (condcode == OP_RREF || condcode == OP_NRREF) { int value = GET2(code, LINK_SIZE+2); if (value != RREF_ANY) return PCRE_ERROR_DFA_UCOND; if (recursing > 0) { ADD_ACTIVE(state_offset + LINK_SIZE + 4, 0); } else { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); } } /* Otherwise, the condition is an assertion */ else { int rc; const uschar *asscode = code + LINK_SIZE + 1; const uschar *endasscode = asscode + GET(asscode, 1); while (*endasscode == OP_ALT) endasscode += GET(endasscode, 1); rc = internal_dfa_exec( md, /* fixed match data */ asscode, /* this subexpression's code */ ptr, /* where we currently are */ (int)(ptr - start_subject), /* start offset */ local_offsets, /* offset vector */ sizeof(local_offsets)/sizeof(int), /* size of same */ local_workspace, /* workspace vector */ sizeof(local_workspace)/sizeof(int), /* size of same */ rlevel, /* function recursion level */ recursing); /* pass on regex recursion */ if (rc == PCRE_ERROR_DFA_UITEM) return rc; if ((rc >= 0) == (condcode == OP_ASSERT || condcode == OP_ASSERTBACK)) { ADD_ACTIVE((int)(endasscode + LINK_SIZE + 1 - start_code), 0); } else { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); } } } break; /*-----------------------------------------------------------------*/ case OP_RECURSE: { int local_offsets[1000]; int local_workspace[1000]; int rc; DPRINTF(("%.*sStarting regex recursion %d\n", rlevel*2-2, SP, recursing + 1)); rc = internal_dfa_exec( md, /* fixed match data */ start_code + GET(code, 1), /* this subexpression's code */ ptr, /* where we currently are */ (int)(ptr - start_subject), /* start offset */ local_offsets, /* offset vector */ sizeof(local_offsets)/sizeof(int), /* size of same */ local_workspace, /* workspace vector */ sizeof(local_workspace)/sizeof(int), /* size of same */ rlevel, /* function recursion level */ recursing + 1); /* regex recurse level */ DPRINTF(("%.*sReturn from regex recursion %d: rc=%d\n", rlevel*2-2, SP, recursing + 1, rc)); /* Ran out of internal offsets */ if (rc == 0) return PCRE_ERROR_DFA_RECURSE; /* For each successful matched substring, set up the next state with a count of characters to skip before trying it. Note that the count is in characters, not bytes. */ if (rc > 0) { for (rc = rc*2 - 2; rc >= 0; rc -= 2) { const uschar *p = start_subject + local_offsets[rc]; const uschar *pp = start_subject + local_offsets[rc+1]; int charcount = local_offsets[rc+1] - local_offsets[rc]; while (p < pp) if ((*p++ & 0xc0) == 0x80) charcount--; if (charcount > 0) { ADD_NEW_DATA(-(state_offset + LINK_SIZE + 1), 0, (charcount - 1)); } else { ADD_ACTIVE(state_offset + LINK_SIZE + 1, 0); } } } else if (rc != PCRE_ERROR_NOMATCH) return rc; } break; /*-----------------------------------------------------------------*/ case OP_BRAPOS: case OP_SBRAPOS: case OP_CBRAPOS: case OP_SCBRAPOS: case OP_BRAPOSZERO: { int charcount, matched_count; const uschar *local_ptr = ptr; BOOL allow_zero; if (codevalue == OP_BRAPOSZERO) { allow_zero = TRUE; codevalue = *(++code); /* Codevalue will be one of above BRAs */ } else allow_zero = FALSE; /* Loop to match the subpattern as many times as possible as if it were a complete pattern. */ for (matched_count = 0;; matched_count++) { int local_offsets[2]; int local_workspace[1000]; int rc = internal_dfa_exec( md, /* fixed match data */ code, /* this subexpression's code */ local_ptr, /* where we currently are */ (int)(ptr - start_subject), /* start offset */ local_offsets, /* offset vector */ sizeof(local_offsets)/sizeof(int), /* size of same */ local_workspace, /* workspace vector */ sizeof(local_workspace)/sizeof(int), /* size of same */ rlevel, /* function recursion level */ recursing); /* pass on regex recursion */ /* Failed to match */ if (rc < 0) { if (rc != PCRE_ERROR_NOMATCH) return rc; break; } /* Matched: break the loop if zero characters matched. */ charcount = local_offsets[1] - local_offsets[0]; if (charcount == 0) break; local_ptr += charcount; /* Advance temporary position ptr */ } /* At this point we have matched the subpattern matched_count times, and local_ptr is pointing to the character after the end of the last match. */ if (matched_count > 0 || allow_zero) { const uschar *end_subpattern = code; int next_state_offset; do { end_subpattern += GET(end_subpattern, 1); } while (*end_subpattern == OP_ALT); next_state_offset = (int)(end_subpattern - start_code + LINK_SIZE + 1); /* Optimization: if there are no more active states, and there are no new states yet set up, then skip over the subject string right here, to save looping. Otherwise, set up the new state to swing into action when the end of the matched substring is reached. */ if (i + 1 >= active_count && new_count == 0) { ptr = local_ptr; clen = 0; ADD_NEW(next_state_offset, 0); } else { const uschar *p = ptr; const uschar *pp = local_ptr; charcount = pp - p; while (p < pp) if ((*p++ & 0xc0) == 0x80) charcount--; ADD_NEW_DATA(-next_state_offset, 0, (charcount - 1)); } } } break; /*-----------------------------------------------------------------*/ case OP_ONCE: { int local_offsets[2]; int local_workspace[1000]; int rc = internal_dfa_exec( md, /* fixed match data */ code, /* this subexpression's code */ ptr, /* where we currently are */ (int)(ptr - start_subject), /* start offset */ local_offsets, /* offset vector */ sizeof(local_offsets)/sizeof(int), /* size of same */ local_workspace, /* workspace vector */ sizeof(local_workspace)/sizeof(int), /* size of same */ rlevel, /* function recursion level */ recursing); /* pass on regex recursion */ if (rc >= 0) { const uschar *end_subpattern = code; int charcount = local_offsets[1] - local_offsets[0]; int next_state_offset, repeat_state_offset; do { end_subpattern += GET(end_subpattern, 1); } while (*end_subpattern == OP_ALT); next_state_offset = (int)(end_subpattern - start_code + LINK_SIZE + 1); /* If the end of this subpattern is KETRMAX or KETRMIN, we must arrange for the repeat state also to be added to the relevant list. Calculate the offset, or set -1 for no repeat. */ repeat_state_offset = (*end_subpattern == OP_KETRMAX || *end_subpattern == OP_KETRMIN)? (int)(end_subpattern - start_code - GET(end_subpattern, 1)) : -1; /* If we have matched an empty string, add the next state at the current character pointer. This is important so that the duplicate checking kicks in, which is what breaks infinite loops that match an empty string. */ if (charcount == 0) { ADD_ACTIVE(next_state_offset, 0); } /* Optimization: if there are no more active states, and there are no new states yet set up, then skip over the subject string right here, to save looping. Otherwise, set up the new state to swing into action when the end of the matched substring is reached. */ else if (i + 1 >= active_count && new_count == 0) { ptr += charcount; clen = 0; ADD_NEW(next_state_offset, 0); /* If we are adding a repeat state at the new character position, we must fudge things so that it is the only current state. Otherwise, it might be a duplicate of one we processed before, and that would cause it to be skipped. */ if (repeat_state_offset >= 0) { next_active_state = active_states; active_count = 0; i = -1; ADD_ACTIVE(repeat_state_offset, 0); } } else { const uschar *p = start_subject + local_offsets[0]; const uschar *pp = start_subject + local_offsets[1]; while (p < pp) if ((*p++ & 0xc0) == 0x80) charcount--; ADD_NEW_DATA(-next_state_offset, 0, (charcount - 1)); if (repeat_state_offset >= 0) { ADD_NEW_DATA(-repeat_state_offset, 0, (charcount - 1)); } } } else if (rc != PCRE_ERROR_NOMATCH) return rc; } break; /* ========================================================================== */ /* Handle callouts */ case OP_CALLOUT: rrc = 0; if (pcre_callout != NULL) { pcre_callout_block cb; cb.version = 1; /* Version 1 of the callout block */ cb.callout_number = code[1]; cb.offset_vector = offsets; cb.subject = (PCRE_SPTR)start_subject; cb.subject_length = (int)(end_subject - start_subject); cb.start_match = (int)(current_subject - start_subject); cb.current_position = (int)(ptr - start_subject); cb.pattern_position = GET(code, 2); cb.next_item_length = GET(code, 2 + LINK_SIZE); cb.capture_top = 1; cb.capture_last = -1; cb.callout_data = md->callout_data; if ((rrc = (*pcre_callout)(&cb)) < 0) return rrc; /* Abandon */ } if (rrc == 0) { ADD_ACTIVE(state_offset + _pcre_OP_lengths[OP_CALLOUT], 0); } break; /* ========================================================================== */ default: /* Unsupported opcode */ return PCRE_ERROR_DFA_UITEM; } NEXT_ACTIVE_STATE: continue; } /* End of loop scanning active states */ /* We have finished the processing at the current subject character. If no new states have been set for the next character, we have found all the matches that we are going to find. If we are at the top level and partial matching has been requested, check for appropriate conditions. The "forced_ fail" variable counts the number of (*F) encountered for the character. If it is equal to the original active_count (saved in workspace[1]) it means that (*F) was found on every active state. In this case we don't want to give a partial match. The "could_continue" variable is true if a state could have continued but for the fact that the end of the subject was reached. */ if (new_count <= 0) { if (rlevel == 1 && /* Top level, and */ could_continue && /* Some could go on */ forced_fail != workspace[1] && /* Not all forced fail & */ ( /* either... */ (md->moptions & PCRE_PARTIAL_HARD) != 0 /* Hard partial */ || /* or... */ ((md->moptions & PCRE_PARTIAL_SOFT) != 0 && /* Soft partial and */ match_count < 0) /* no matches */ ) && /* And... */ ptr >= end_subject && /* Reached end of subject */ ptr > md->start_used_ptr) /* Inspected non-empty string */ { if (offsetcount >= 2) { offsets[0] = (int)(md->start_used_ptr - start_subject); offsets[1] = (int)(end_subject - start_subject); } match_count = PCRE_ERROR_PARTIAL; } DPRINTF(("%.*sEnd of internal_dfa_exec %d: returning %d\n" "%.*s---------------------\n\n", rlevel*2-2, SP, rlevel, match_count, rlevel*2-2, SP)); break; /* In effect, "return", but see the comment below */ } /* One or more states are active for the next character. */ ptr += clen; /* Advance to next subject character */ } /* Loop to move along the subject string */ /* Control gets here from "break" a few lines above. We do it this way because if we use "return" above, we have compiler trouble. Some compilers warn if there's nothing here because they think the function doesn't return a value. On the other hand, if we put a dummy statement here, some more clever compilers complain that it can't be reached. Sigh. */ return match_count; } /************************************************* * Execute a Regular Expression - DFA engine * *************************************************/ /* This external function applies a compiled re to a subject string using a DFA engine. This function calls the internal function multiple times if the pattern is not anchored. Arguments: argument_re points to the compiled expression extra_data points to extra data or is NULL subject points to the subject string length length of subject string (may contain binary zeros) start_offset where to start in the subject string options option bits offsets vector of match offsets offsetcount size of same workspace workspace vector wscount size of same Returns: > 0 => number of match offset pairs placed in offsets = 0 => offsets overflowed; longest matches are present -1 => failed to match < -1 => some kind of unexpected problem */ PCRE_EXP_DEFN int PCRE_CALL_CONVENTION pcre_dfa_exec(const pcre *argument_re, const pcre_extra *extra_data, const char *subject, int length, int start_offset, int options, int *offsets, int offsetcount, int *workspace, int wscount) { real_pcre *re = (real_pcre *)argument_re; dfa_match_data match_block; dfa_match_data *md = &match_block; BOOL utf8, anchored, startline, firstline; const uschar *current_subject, *end_subject, *lcc; pcre_study_data internal_study; const pcre_study_data *study = NULL; real_pcre internal_re; const uschar *req_byte_ptr; const uschar *start_bits = NULL; BOOL first_byte_caseless = FALSE; BOOL req_byte_caseless = FALSE; int first_byte = -1; int req_byte = -1; int req_byte2 = -1; int newline; /* Plausibility checks */ if ((options & ~PUBLIC_DFA_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION; if (re == NULL || subject == NULL || workspace == NULL || (offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL; if (offsetcount < 0) return PCRE_ERROR_BADCOUNT; if (wscount < 20) return PCRE_ERROR_DFA_WSSIZE; if (start_offset < 0 || start_offset > length) return PCRE_ERROR_BADOFFSET; /* We need to find the pointer to any study data before we test for byte flipping, so we scan the extra_data block first. This may set two fields in the match block, so we must initialize them beforehand. However, the other fields in the match block must not be set until after the byte flipping. */ md->tables = re->tables; md->callout_data = NULL; if (extra_data != NULL) { unsigned int flags = extra_data->flags; if ((flags & PCRE_EXTRA_STUDY_DATA) != 0) study = (const pcre_study_data *)extra_data->study_data; if ((flags & PCRE_EXTRA_MATCH_LIMIT) != 0) return PCRE_ERROR_DFA_UMLIMIT; if ((flags & PCRE_EXTRA_MATCH_LIMIT_RECURSION) != 0) return PCRE_ERROR_DFA_UMLIMIT; if ((flags & PCRE_EXTRA_CALLOUT_DATA) != 0) md->callout_data = extra_data->callout_data; if ((flags & PCRE_EXTRA_TABLES) != 0) md->tables = extra_data->tables; } /* Check that the first field in the block is the magic number. If it is not, test for a regex that was compiled on a host of opposite endianness. If this is the case, flipped values are put in internal_re and internal_study if there was study data too. */ if (re->magic_number != MAGIC_NUMBER) { re = _pcre_try_flipped(re, &internal_re, study, &internal_study); if (re == NULL) return PCRE_ERROR_BADMAGIC; if (study != NULL) study = &internal_study; } /* Set some local values */ current_subject = (const unsigned char *)subject + start_offset; end_subject = (const unsigned char *)subject + length; req_byte_ptr = current_subject - 1; #ifdef SUPPORT_UTF8 utf8 = (re->options & PCRE_UTF8) != 0; #else utf8 = FALSE; #endif anchored = (options & (PCRE_ANCHORED|PCRE_DFA_RESTART)) != 0 || (re->options & PCRE_ANCHORED) != 0; /* The remaining fixed data for passing around. */ md->start_code = (const uschar *)argument_re + re->name_table_offset + re->name_count * re->name_entry_size; md->start_subject = (const unsigned char *)subject; md->end_subject = end_subject; md->start_offset = start_offset; md->moptions = options; md->poptions = re->options; /* If the BSR option is not set at match time, copy what was set at compile time. */ if ((md->moptions & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) == 0) { if ((re->options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) != 0) md->moptions |= re->options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE); #ifdef BSR_ANYCRLF else md->moptions |= PCRE_BSR_ANYCRLF; #endif } /* Handle different types of newline. The three bits give eight cases. If nothing is set at run time, whatever was used at compile time applies. */ switch ((((options & PCRE_NEWLINE_BITS) == 0)? re->options : (pcre_uint32)options) & PCRE_NEWLINE_BITS) { case 0: newline = NEWLINE; break; /* Compile-time default */ case PCRE_NEWLINE_CR: newline = CHAR_CR; break; case PCRE_NEWLINE_LF: newline = CHAR_NL; break; case PCRE_NEWLINE_CR+ PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break; case PCRE_NEWLINE_ANY: newline = -1; break; case PCRE_NEWLINE_ANYCRLF: newline = -2; break; default: return PCRE_ERROR_BADNEWLINE; } if (newline == -2) { md->nltype = NLTYPE_ANYCRLF; } else if (newline < 0) { md->nltype = NLTYPE_ANY; } else { md->nltype = NLTYPE_FIXED; if (newline > 255) { md->nllen = 2; md->nl[0] = (newline >> 8) & 255; md->nl[1] = newline & 255; } else { md->nllen = 1; md->nl[0] = newline; } } /* Check a UTF-8 string if required. Unfortunately there's no way of passing back the character offset. */ #ifdef SUPPORT_UTF8 if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0) { int erroroffset; int errorcode = _pcre_valid_utf8((uschar *)subject, length, &erroroffset); if (errorcode != 0) { if (offsetcount >= 2) { offsets[0] = erroroffset; offsets[1] = errorcode; } return (errorcode <= PCRE_UTF8_ERR5 && (options & PCRE_PARTIAL_HARD) != 0)? PCRE_ERROR_SHORTUTF8 : PCRE_ERROR_BADUTF8; } if (start_offset > 0 && start_offset < length && (((USPTR)subject)[start_offset] & 0xc0) == 0x80) return PCRE_ERROR_BADUTF8_OFFSET; } #endif /* If the exec call supplied NULL for tables, use the inbuilt ones. This is a feature that makes it possible to save compiled regex and re-use them in other programs later. */ if (md->tables == NULL) md->tables = _pcre_default_tables; /* The lower casing table and the "must be at the start of a line" flag are used in a loop when finding where to start. */ lcc = md->tables + lcc_offset; startline = (re->flags & PCRE_STARTLINE) != 0; firstline = (re->options & PCRE_FIRSTLINE) != 0; /* Set up the first character to match, if available. The first_byte value is never set for an anchored regular expression, but the anchoring may be forced at run time, so we have to test for anchoring. The first char may be unset for an unanchored pattern, of course. If there's no first char and the pattern was studied, there may be a bitmap of possible first characters. */ if (!anchored) { if ((re->flags & PCRE_FIRSTSET) != 0) { first_byte = re->first_byte & 255; if ((first_byte_caseless = ((re->first_byte & REQ_CASELESS) != 0)) == TRUE) first_byte = lcc[first_byte]; } else { if (!startline && study != NULL && (study->flags & PCRE_STUDY_MAPPED) != 0) start_bits = study->start_bits; } } /* For anchored or unanchored matches, there may be a "last known required character" set. */ if ((re->flags & PCRE_REQCHSET) != 0) { req_byte = re->req_byte & 255; req_byte_caseless = (re->req_byte & REQ_CASELESS) != 0; req_byte2 = (md->tables + fcc_offset)[req_byte]; /* case flipped */ } /* Call the main matching function, looping for a non-anchored regex after a failed match. If not restarting, perform certain optimizations at the start of a match. */ for (;;) { int rc; if ((options & PCRE_DFA_RESTART) == 0) { const uschar *save_end_subject = end_subject; /* If firstline is TRUE, the start of the match is constrained to the first line of a multiline string. Implement this by temporarily adjusting end_subject so that we stop scanning at a newline. If the match fails at the newline, later code breaks this loop. */ if (firstline) { USPTR t = current_subject; #ifdef SUPPORT_UTF8 if (utf8) { while (t < md->end_subject && !IS_NEWLINE(t)) { t++; while (t < end_subject && (*t & 0xc0) == 0x80) t++; } } else #endif while (t < md->end_subject && !IS_NEWLINE(t)) t++; end_subject = t; } /* There are some optimizations that avoid running the match if a known starting point is not found. However, there is an option that disables these, for testing and for ensuring that all callouts do actually occur. The option can be set in the regex by (*NO_START_OPT) or passed in match-time options. */ if (((options | re->options) & PCRE_NO_START_OPTIMIZE) == 0) { /* Advance to a known first byte. */ if (first_byte >= 0) { if (first_byte_caseless) while (current_subject < end_subject && lcc[*current_subject] != first_byte) current_subject++; else while (current_subject < end_subject && *current_subject != first_byte) current_subject++; } /* Or to just after a linebreak for a multiline match if possible */ else if (startline) { if (current_subject > md->start_subject + start_offset) { #ifdef SUPPORT_UTF8 if (utf8) { while (current_subject < end_subject && !WAS_NEWLINE(current_subject)) { current_subject++; while(current_subject < end_subject && (*current_subject & 0xc0) == 0x80) current_subject++; } } else #endif while (current_subject < end_subject && !WAS_NEWLINE(current_subject)) current_subject++; /* If we have just passed a CR and the newline option is ANY or ANYCRLF, and we are now at a LF, advance the match position by one more character. */ if (current_subject[-1] == CHAR_CR && (md->nltype == NLTYPE_ANY || md->nltype == NLTYPE_ANYCRLF) && current_subject < end_subject && *current_subject == CHAR_NL) current_subject++; } } /* Or to a non-unique first char after study */ else if (start_bits != NULL) { while (current_subject < end_subject) { register unsigned int c = *current_subject; if ((start_bits[c/8] & (1 << (c&7))) == 0) { current_subject++; #ifdef SUPPORT_UTF8 if (utf8) while(current_subject < end_subject && (*current_subject & 0xc0) == 0x80) current_subject++; #endif } else break; } } } /* Restore fudged end_subject */ end_subject = save_end_subject; /* The following two optimizations are disabled for partial matching or if disabling is explicitly requested (and of course, by the test above, this code is not obeyed when restarting after a partial match). */ if ((options & PCRE_NO_START_OPTIMIZE) == 0 && (options & (PCRE_PARTIAL_HARD|PCRE_PARTIAL_SOFT)) == 0) { /* If the pattern was studied, a minimum subject length may be set. This is a lower bound; no actual string of that length may actually match the pattern. Although the value is, strictly, in characters, we treat it as bytes to avoid spending too much time in this optimization. */ if (study != NULL && (study->flags & PCRE_STUDY_MINLEN) != 0 && (pcre_uint32)(end_subject - current_subject) < study->minlength) return PCRE_ERROR_NOMATCH; /* If req_byte is set, we know that that character must appear in the subject for the match to succeed. If the first character is set, req_byte must be later in the subject; otherwise the test starts at the match point. This optimization can save a huge amount of work in patterns with nested unlimited repeats that aren't going to match. Writing separate code for cased/caseless versions makes it go faster, as does using an autoincrement and backing off on a match. HOWEVER: when the subject string is very, very long, searching to its end can take a long time, and give bad performance on quite ordinary patterns. This showed up when somebody was matching /^C/ on a 32-megabyte string... so we don't do this when the string is sufficiently long. */ if (req_byte >= 0 && end_subject - current_subject < REQ_BYTE_MAX) { register const uschar *p = current_subject + ((first_byte >= 0)? 1 : 0); /* We don't need to repeat the search if we haven't yet reached the place we found it at last time. */ if (p > req_byte_ptr) { if (req_byte_caseless) { while (p < end_subject) { register int pp = *p++; if (pp == req_byte || pp == req_byte2) { p--; break; } } } else { while (p < end_subject) { if (*p++ == req_byte) { p--; break; } } } /* If we can't find the required character, break the matching loop, which will cause a return or PCRE_ERROR_NOMATCH. */ if (p >= end_subject) break; /* If we have found the required character, save the point where we found it, so that we don't search again next time round the loop if the start hasn't passed this character yet. */ req_byte_ptr = p; } } } } /* End of optimizations that are done when not restarting */ /* OK, now we can do the business */ md->start_used_ptr = current_subject; rc = internal_dfa_exec( md, /* fixed match data */ md->start_code, /* this subexpression's code */ current_subject, /* where we currently are */ start_offset, /* start offset in subject */ offsets, /* offset vector */ offsetcount, /* size of same */ workspace, /* workspace vector */ wscount, /* size of same */ 0, /* function recurse level */ 0); /* regex recurse level */ /* Anything other than "no match" means we are done, always; otherwise, carry on only if not anchored. */ if (rc != PCRE_ERROR_NOMATCH || anchored) return rc; /* Advance to the next subject character unless we are at the end of a line and firstline is set. */ if (firstline && IS_NEWLINE(current_subject)) break; current_subject++; if (utf8) { while (current_subject < end_subject && (*current_subject & 0xc0) == 0x80) current_subject++; } if (current_subject > end_subject) break; /* If we have just passed a CR and we are now at a LF, and the pattern does not contain any explicit matches for \r or \n, and the newline option is CRLF or ANY or ANYCRLF, advance the match position by one more character. */ if (current_subject[-1] == CHAR_CR && current_subject < end_subject && *current_subject == CHAR_NL && (re->flags & PCRE_HASCRORLF) == 0 && (md->nltype == NLTYPE_ANY || md->nltype == NLTYPE_ANYCRLF || md->nllen == 2)) current_subject++; } /* "Bumpalong" loop */ return PCRE_ERROR_NOMATCH; } /* End of pcre_dfa_exec.c */