/* * Stack-less Just-In-Time compiler * * Copyright 2009-2010 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name() { #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) return "arm-v7"; #elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) return "arm-v5"; #else #error "Internal error: Unknown ARM architecture" #endif } /* Last register + 1. */ #define TMP_REG1 (SLJIT_NO_REGISTERS + 1) #define TMP_REG2 (SLJIT_NO_REGISTERS + 2) #define TMP_REG3 (SLJIT_NO_REGISTERS + 3) #define TMP_PC (SLJIT_NO_REGISTERS + 4) #define TMP_FREG1 (SLJIT_FLOAT_REG4 + 1) #define TMP_FREG2 (SLJIT_FLOAT_REG4 + 2) /* In ARM instruction words. Cache lines are usually 32 byte aligned. */ #define CONST_POOL_ALIGNMENT 8 #define CONST_POOL_EMPTY 0xffffffff #define ALIGN_INSTRUCTION(ptr) \ (sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1)) #define MAX_DIFFERENCE(max_diff) \ (((max_diff) / (int)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1)) /* See sljit_emit_enter if you want to change them. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = { 0, 0, 1, 2, 10, 11, 4, 5, 6, 7, 8, 13, 3, 12, 14, 15 }; #define RM(rm) (reg_map[rm]) #define RD(rd) (reg_map[rd] << 12) #define RN(rn) (reg_map[rn] << 16) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ /* The instruction includes the AL condition. INST_NAME - CONDITIONAL remove this flag. */ #define COND_MASK 0xf0000000 #define CONDITIONAL 0xe0000000 #define PUSH_POOL 0xff000000 /* DP - Data Processing instruction (use with EMIT_DATA_PROCESS_INS). */ #define ADC_DP 0x5 #define ADD_DP 0x4 #define AND_DP 0x0 #define B 0xea000000 #define BIC_DP 0xe #define BL 0xeb000000 #define BLX 0xe12fff30 #define BX 0xe12fff10 #define CLZ 0xe16f0f10 #define CMP_DP 0xa #define DEBUGGER 0xe1200070 #define EOR_DP 0x1 #define MOV_DP 0xd #define MUL 0xe0000090 #define MVN_DP 0xf #define NOP 0xe1a00000 #define ORR_DP 0xc #define PUSH 0xe92d0000 #define POP 0xe8bd0000 #define RSB_DP 0x3 #define RSC_DP 0x7 #define SBC_DP 0x6 #define SMULL 0xe0c00090 #define SUB_DP 0x2 #define VABS_F64 0xeeb00bc0 #define VADD_F64 0xee300b00 #define VCMP_F64 0xeeb40b40 #define VDIV_F64 0xee800b00 #define VMOV_F64 0xeeb00b40 #define VMRS 0xeef1fa10 #define VMUL_F64 0xee200b00 #define VNEG_F64 0xeeb10b40 #define VSTR 0xed000b00 #define VSUB_F64 0xee300b40 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) /* Arm v7 specific instructions. */ #define MOVW 0xe3000000 #define MOVT 0xe3400000 #define SXTB 0xe6af0070 #define SXTH 0xe6bf0070 #define UXTB 0xe6ef0070 #define UXTH 0xe6ff0070 #endif #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) static int push_cpool(struct sljit_compiler *compiler) { /* Pushing the constant pool into the instruction stream. */ sljit_uw* inst; sljit_uw* cpool_ptr; sljit_uw* cpool_end; int i; /* The label could point the address after the constant pool. */ if (compiler->last_label && compiler->last_label->size == compiler->size) compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1; SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE); inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!inst); compiler->size++; *inst = 0xff000000 | compiler->cpool_fill; for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) { inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!inst); compiler->size++; *inst = 0; } cpool_ptr = compiler->cpool; cpool_end = cpool_ptr + compiler->cpool_fill; while (cpool_ptr < cpool_end) { inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!inst); compiler->size++; *inst = *cpool_ptr++; } compiler->cpool_diff = CONST_POOL_EMPTY; compiler->cpool_fill = 0; return SLJIT_SUCCESS; } static int push_inst(struct sljit_compiler *compiler, sljit_uw inst) { sljit_uw* ptr; if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092))) FAIL_IF(push_cpool(compiler)); ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst; return SLJIT_SUCCESS; } static int push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal) { sljit_uw* ptr; sljit_uw cpool_index = CPOOL_SIZE; sljit_uw* cpool_ptr; sljit_uw* cpool_end; sljit_ub* cpool_unique_ptr; if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092))) FAIL_IF(push_cpool(compiler)); else if (compiler->cpool_fill > 0) { cpool_ptr = compiler->cpool; cpool_end = cpool_ptr + compiler->cpool_fill; cpool_unique_ptr = compiler->cpool_unique; do { if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) { cpool_index = cpool_ptr - compiler->cpool; break; } cpool_ptr++; cpool_unique_ptr++; } while (cpool_ptr < cpool_end); } if (cpool_index == CPOOL_SIZE) { /* Must allocate a new entry in the literal pool. */ if (compiler->cpool_fill < CPOOL_SIZE) { cpool_index = compiler->cpool_fill; compiler->cpool_fill++; } else { FAIL_IF(push_cpool(compiler)); cpool_index = 0; compiler->cpool_fill = 1; } } SLJIT_ASSERT((inst & 0xfff) == 0); ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst | cpool_index; compiler->cpool[cpool_index] = literal; compiler->cpool_unique[cpool_index] = 0; if (compiler->cpool_diff == CONST_POOL_EMPTY) compiler->cpool_diff = compiler->size; return SLJIT_SUCCESS; } static int push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal) { sljit_uw* ptr; if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE)) FAIL_IF(push_cpool(compiler)); SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0); ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst | compiler->cpool_fill; compiler->cpool[compiler->cpool_fill] = literal; compiler->cpool_unique[compiler->cpool_fill] = 1; compiler->cpool_fill++; if (compiler->cpool_diff == CONST_POOL_EMPTY) compiler->cpool_diff = compiler->size; return SLJIT_SUCCESS; } static SLJIT_INLINE int prepare_blx(struct sljit_compiler *compiler) { /* Place for at least two instruction (doesn't matter whether the first has a literal). */ if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088))) return push_cpool(compiler); return SLJIT_SUCCESS; } static SLJIT_INLINE int emit_blx(struct sljit_compiler *compiler) { /* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */ SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092)); return push_inst(compiler, BLX | RM(TMP_REG1)); } static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size) { sljit_uw diff; sljit_uw ind; sljit_uw counter = 0; sljit_uw* clear_const_pool = const_pool; sljit_uw* clear_const_pool_end = const_pool + cpool_size; SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT); /* Set unused flag for all literals in the constant pool. I.e.: unused literals can belong to branches, which can be encoded as B or BL. We can "compress" the constant pool by discarding these literals. */ while (clear_const_pool < clear_const_pool_end) *clear_const_pool++ = (sljit_uw)(-1); while (last_pc_patch < code_ptr) { /* Data transfer instruction with Rn == r15. */ if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) { diff = const_pool - last_pc_patch; ind = (*last_pc_patch) & 0xfff; /* Must be a load instruction with immediate offset. */ SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20))); if ((int)const_pool[ind] < 0) { const_pool[ind] = counter; ind = counter; counter++; } else ind = const_pool[ind]; SLJIT_ASSERT(diff >= 1); if (diff >= 2 || ind > 0) { diff = (diff + ind - 2) << 2; SLJIT_ASSERT(diff <= 0xfff); *last_pc_patch = (*last_pc_patch & ~0xfff) | diff; } else *last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004; } last_pc_patch++; } return counter; } /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */ struct future_patch { struct future_patch* next; int index; int value; }; static SLJIT_INLINE int resolve_const_pool_index(struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr) { int value; struct future_patch *curr_patch, *prev_patch; /* Using the values generated by patch_pc_relative_loads. */ if (!*first_patch) value = (int)cpool_start_address[cpool_current_index]; else { curr_patch = *first_patch; prev_patch = 0; while (1) { if (!curr_patch) { value = (int)cpool_start_address[cpool_current_index]; break; } if ((sljit_uw)curr_patch->index == cpool_current_index) { value = curr_patch->value; if (prev_patch) prev_patch->next = curr_patch->next; else *first_patch = curr_patch->next; SLJIT_FREE(curr_patch); break; } prev_patch = curr_patch; curr_patch = curr_patch->next; } } if (value >= 0) { if ((sljit_uw)value > cpool_current_index) { curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch)); if (!curr_patch) { while (*first_patch) { curr_patch = *first_patch; *first_patch = (*first_patch)->next; SLJIT_FREE(curr_patch); } return SLJIT_ERR_ALLOC_FAILED; } curr_patch->next = *first_patch; curr_patch->index = value; curr_patch->value = cpool_start_address[value]; *first_patch = curr_patch; } cpool_start_address[value] = *buf_ptr; } return SLJIT_SUCCESS; } #else static int push_inst(struct sljit_compiler *compiler, sljit_uw inst) { sljit_uw* ptr; ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst; return SLJIT_SUCCESS; } static SLJIT_INLINE int emit_imm(struct sljit_compiler *compiler, int reg, sljit_w imm) { FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff))); return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff)); } #endif static SLJIT_INLINE int detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code) { sljit_w diff; if (jump->flags & SLJIT_REWRITABLE_JUMP) return 0; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (jump->flags & IS_BL) code_ptr--; if (jump->flags & JUMP_ADDR) diff = ((sljit_w)jump->u.target - (sljit_w)(code_ptr + 2)); else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)(code_ptr + 2)); } /* Branch to Thumb code has not been optimized yet. */ if (diff & 0x3) return 0; diff >>= 2; if (jump->flags & IS_BL) { if (diff <= 0x01ffffff && diff >= -0x02000000) { *code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK); jump->flags |= PATCH_B; return 1; } } else { if (diff <= 0x01ffffff && diff >= -0x02000000) { *code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK); jump->flags |= PATCH_B; } } #else if (jump->flags & JUMP_ADDR) diff = ((sljit_w)jump->u.target - (sljit_w)code_ptr); else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)code_ptr); } /* Branch to Thumb code has not been optimized yet. */ if (diff & 0x3) return 0; diff >>= 2; if (diff <= 0x01ffffff && diff >= -0x02000000) { code_ptr -= 2; *code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK); jump->flags |= PATCH_B; return 1; } #endif return 0; } static SLJIT_INLINE void inline_set_jump_addr(sljit_uw addr, sljit_uw new_addr, int flush) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) sljit_uw *ptr = (sljit_uw*)addr; sljit_uw *inst = (sljit_uw*)ptr[0]; sljit_uw mov_pc = ptr[1]; int bl = (mov_pc & 0x0000f000) != RD(TMP_PC); sljit_w diff = (sljit_w)(((sljit_w)new_addr - (sljit_w)(inst + 2)) >> 2); if (diff <= 0x7fffff && diff >= -0x800000) { /* Turn to branch. */ if (!bl) { inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff); if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 1); } } else { inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff); inst[1] = NOP; if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 2); } } } else { /* Get the position of the constant. */ if (mov_pc & (1 << 23)) ptr = inst + ((mov_pc & 0xfff) >> 2) + 2; else ptr = inst + 1; if (*inst != mov_pc) { inst[0] = mov_pc; if (!bl) { if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 1); } } else { inst[1] = BLX | RM(TMP_REG1); if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 2); } } } *ptr = new_addr; } #else sljit_uw *inst = (sljit_uw*)addr; SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT); inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff); inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff); if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 2); } #endif } static sljit_uw get_immediate(sljit_uw imm); static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_w new_constant, int flush) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) sljit_uw *ptr = (sljit_uw*)addr; sljit_uw *inst = (sljit_uw*)ptr[0]; sljit_uw ldr_literal = ptr[1]; sljit_uw src2; src2 = get_immediate(new_constant); if (src2) { *inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2; if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 1); } return; } src2 = get_immediate(~new_constant); if (src2) { *inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2; if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 1); } return; } if (ldr_literal & (1 << 23)) ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2; else ptr = inst + 1; if (*inst != ldr_literal) { *inst = ldr_literal; if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 1); } } *ptr = new_constant; #else sljit_uw *inst = (sljit_uw*)addr; SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT); inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff); inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff); if (flush) { SLJIT_CACHE_FLUSH(inst, inst + 2); } #endif } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_uw *code; sljit_uw *code_ptr; sljit_uw *buf_ptr; sljit_uw *buf_end; sljit_uw size; sljit_uw word_count; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) sljit_uw cpool_size; sljit_uw cpool_skip_alignment; sljit_uw cpool_current_index; sljit_uw *cpool_start_address; sljit_uw *last_pc_patch; struct future_patch *first_patch; #endif struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); check_sljit_generate_code(compiler); reverse_buf(compiler); /* Second code generation pass. */ #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) size = compiler->size + (compiler->patches << 1); if (compiler->cpool_fill > 0) size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1; #else size = compiler->size; #endif code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw)); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) cpool_size = 0; cpool_skip_alignment = 0; cpool_current_index = 0; cpool_start_address = NULL; first_patch = NULL; last_pc_patch = code; #endif code_ptr = code; word_count = 0; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; if (label && label->size == 0) { label->addr = (sljit_uw)code; label->size = 0; label = label->next; } do { buf_ptr = (sljit_uw*)buf->memory; buf_end = buf_ptr + (buf->used_size >> 2); do { word_count++; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (cpool_size > 0) { if (cpool_skip_alignment > 0) { buf_ptr++; cpool_skip_alignment--; } else { if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) { SLJIT_FREE_EXEC(code); compiler->error = SLJIT_ERR_ALLOC_FAILED; return NULL; } buf_ptr++; if (++cpool_current_index >= cpool_size) { SLJIT_ASSERT(!first_patch); cpool_size = 0; if (label && label->size == word_count) { /* Points after the current instruction. */ label->addr = (sljit_uw)code_ptr; label->size = code_ptr - code; label = label->next; } } } } else if ((*buf_ptr & 0xff000000) != PUSH_POOL) { #endif *code_ptr = *buf_ptr++; /* These structures are ordered by their address. */ SLJIT_ASSERT(!label || label->size >= word_count); SLJIT_ASSERT(!jump || jump->addr >= word_count); SLJIT_ASSERT(!const_ || const_->addr >= word_count); if (jump && jump->addr == word_count) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (detect_jump_type(jump, code_ptr, code)) code_ptr--; jump->addr = (sljit_uw)code_ptr; #else jump->addr = (sljit_uw)(code_ptr - 2); if (detect_jump_type(jump, code_ptr, code)) code_ptr -= 2; #endif jump = jump->next; } if (label && label->size == word_count) { /* code_ptr can be affected above. */ label->addr = (sljit_uw)(code_ptr + 1); label->size = (code_ptr + 1) - code; label = label->next; } if (const_ && const_->addr == word_count) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) const_->addr = (sljit_uw)code_ptr; #else const_->addr = (sljit_uw)(code_ptr - 1); #endif const_ = const_->next; } code_ptr++; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) } else { /* Fortunately, no need to shift. */ cpool_size = *buf_ptr++ & ~PUSH_POOL; SLJIT_ASSERT(cpool_size > 0); cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1); cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size); if (cpool_current_index > 0) { /* Unconditional branch. */ *code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL); code_ptr = cpool_start_address + cpool_current_index; } cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1; cpool_current_index = 0; last_pc_patch = code_ptr; } #endif } while (buf_ptr < buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) SLJIT_ASSERT(cpool_size == 0); if (compiler->cpool_fill > 0) { cpool_start_address = ALIGN_INSTRUCTION(code_ptr); cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill); if (cpool_current_index > 0) code_ptr = cpool_start_address + cpool_current_index; buf_ptr = compiler->cpool; buf_end = buf_ptr + compiler->cpool_fill; cpool_current_index = 0; while (buf_ptr < buf_end) { if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) { SLJIT_FREE_EXEC(code); compiler->error = SLJIT_ERR_ALLOC_FAILED; return NULL; } buf_ptr++; cpool_current_index++; } SLJIT_ASSERT(!first_patch); } #endif jump = compiler->jumps; while (jump) { buf_ptr = (sljit_uw*)jump->addr; if (jump->flags & PATCH_B) { if (!(jump->flags & JUMP_ADDR)) { SLJIT_ASSERT(jump->flags & JUMP_LABEL); SLJIT_ASSERT(((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >= -0x02000000); *buf_ptr |= (((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff; } else { SLJIT_ASSERT(((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >= -0x02000000); *buf_ptr |= (((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff; } } else if (jump->flags & SLJIT_REWRITABLE_JUMP) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) jump->addr = (sljit_uw)code_ptr; code_ptr[0] = (sljit_uw)buf_ptr; code_ptr[1] = *buf_ptr; inline_set_jump_addr((sljit_uw)code_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); code_ptr += 2; #else inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); #endif } else { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (jump->flags & IS_BL) buf_ptr--; if (*buf_ptr & (1 << 23)) buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2; else buf_ptr += 1; *buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target; #else inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); #endif } jump = jump->next; } #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) const_ = compiler->consts; while (const_) { buf_ptr = (sljit_uw*)const_->addr; const_->addr = (sljit_uw)code_ptr; code_ptr[0] = (sljit_uw)buf_ptr; code_ptr[1] = *buf_ptr; if (*buf_ptr & (1 << 23)) buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2; else buf_ptr += 1; /* Set the value again (can be a simple constant). */ inline_set_const((sljit_uw)code_ptr, *buf_ptr, 0); code_ptr += 2; const_ = const_->next; } #endif SLJIT_ASSERT(code_ptr - code <= (int)size); SLJIT_CACHE_FLUSH(code, code_ptr); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = size * sizeof(sljit_uw); return code; } /* emit_op inp_flags. WRITE_BACK must be the first, since it is a flag. */ #define WRITE_BACK 0x01 #define ALLOW_IMM 0x02 #define ALLOW_INV_IMM 0x04 #define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM) #define ARG_TEST 0x08 /* Creates an index in data_transfer_insts array. */ #define WORD_DATA 0x00 #define BYTE_DATA 0x10 #define HALF_DATA 0x20 #define SIGNED_DATA 0x40 #define LOAD_DATA 0x80 #define EMIT_INSTRUCTION(inst) \ FAIL_IF(push_inst(compiler, (inst))) /* Condition: AL. */ #define EMIT_DATA_PROCESS_INS(opcode, set_flags, dst, src1, src2) \ (0xe0000000 | ((opcode) << 21) | (set_flags) | RD(dst) | RN(src1) | (src2)) static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w); SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size) { int size; sljit_uw push; CHECK_ERROR(); check_sljit_emit_enter(compiler, args, temporaries, generals, local_size); compiler->temporaries = temporaries; compiler->generals = generals; /* Push general registers, temporary registers stmdb sp!, {..., lr} */ push = PUSH | (1 << 14); if (temporaries >= 5) push |= 1 << 11; if (temporaries >= 4) push |= 1 << 10; if (generals >= 5) push |= 1 << 8; if (generals >= 4) push |= 1 << 7; if (generals >= 3) push |= 1 << 6; if (generals >= 2) push |= 1 << 5; if (generals >= 1) push |= 1 << 4; EMIT_INSTRUCTION(push); /* Stack must be aligned to 8 bytes: */ size = (1 + generals) * sizeof(sljit_uw); if (temporaries >= 4) size += (temporaries - 3) * sizeof(sljit_uw); local_size += size; local_size = (local_size + 7) & ~7; local_size -= size; compiler->local_size = local_size; if (local_size > 0) FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, local_size)); if (args >= 1) EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG1))); if (args >= 2) EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG2, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2))); if (args >= 3) EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG3, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG3))); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE void sljit_fake_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size) { int size; CHECK_ERROR_VOID(); check_sljit_fake_enter(compiler, args, temporaries, generals, local_size); compiler->temporaries = temporaries; compiler->generals = generals; size = (1 + generals) * sizeof(sljit_uw); if (temporaries >= 4) size += (temporaries - 3) * sizeof(sljit_uw); local_size += size; local_size = (local_size + 7) & ~7; local_size -= size; compiler->local_size = local_size; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int src, sljit_w srcw) { sljit_uw pop; CHECK_ERROR(); check_sljit_emit_return(compiler, src, srcw); if (src != SLJIT_UNUSED && src != SLJIT_RETURN_REG) FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, SLJIT_RETURN_REG, 0, TMP_REG1, 0, src, srcw)); if (compiler->local_size > 0) FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, compiler->local_size)); pop = POP | (1 << 15); /* Push general registers, temporary registers ldmia sp!, {..., pc} */ if (compiler->temporaries >= 5) pop |= 1 << 11; if (compiler->temporaries >= 4) pop |= 1 << 10; if (compiler->generals >= 5) pop |= 1 << 8; if (compiler->generals >= 4) pop |= 1 << 7; if (compiler->generals >= 3) pop |= 1 << 6; if (compiler->generals >= 2) pop |= 1 << 5; if (compiler->generals >= 1) pop |= 1 << 4; return push_inst(compiler, pop); } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ /* s/l - store/load (1 bit) u/s - signed/unsigned (1 bit) w/b/h/N - word/byte/half/NOT allowed (2 bit) It contans 16 items, but not all are different. */ static sljit_w data_transfer_insts[16] = { /* s u w */ 0xe5000000 /* str */, /* s u b */ 0xe5400000 /* strb */, /* s u h */ 0xe10000b0 /* strh */, /* s u N */ 0x00000000 /* not allowed */, /* s s w */ 0xe5000000 /* str */, /* s s b */ 0xe5400000 /* strb */, /* s s h */ 0xe10000b0 /* strh */, /* s s N */ 0x00000000 /* not allowed */, /* l u w */ 0xe5100000 /* ldr */, /* l u b */ 0xe5500000 /* ldrb */, /* l u h */ 0xe11000b0 /* ldrh */, /* l u N */ 0x00000000 /* not allowed */, /* l s w */ 0xe5100000 /* ldr */, /* l s b */ 0xe11000d0 /* ldrsb */, /* l s h */ 0xe11000f0 /* ldrsh */, /* l s N */ 0x00000000 /* not allowed */, }; #define EMIT_DATA_TRANSFER(type, add, wb, target, base1, base2) \ (data_transfer_insts[(type) >> 4] | ((add) << 23) | ((wb) << 21) | (reg_map[target] << 12) | (reg_map[base1] << 16) | (base2)) /* Normal ldr/str instruction. Type2: ldrsb, ldrh, ldrsh */ #define IS_TYPE1_TRANSFER(type) \ (data_transfer_insts[(type) >> 4] & 0x04000000) #define TYPE2_TRANSFER_IMM(imm) \ (((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22)) /* flags: */ /* Arguments are swapped. */ #define ARGS_SWAPPED 0x01 /* Inverted immediate. */ #define INV_IMM 0x02 /* Source and destination is register. */ #define REG_DEST 0x04 #define REG_SOURCE 0x08 /* One instruction is enough. */ #define FAST_DEST 0x10 /* Multiple instructions are required. */ #define SLOW_DEST 0x20 /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */ #define SET_FLAGS (1 << 20) /* dst: reg src1: reg src2: reg or imm (if allowed) SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */ #define SRC2_IMM (1 << 25) #define EMIT_DATA_PROCESS_INS_AND_RETURN(opcode) \ return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, (src2 & SRC2_IMM) ? src2 : RM(src2))) #define EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(opcode, dst, src1, src2) \ return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, src2)) #define EMIT_SHIFT_INS_AND_RETURN(opcode) \ SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \ if (compiler->shift_imm != 0x20) { \ SLJIT_ASSERT(src1 == TMP_REG1); \ SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \ return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (compiler->shift_imm << 7) | (opcode << 5) | reg_map[src2])); \ } \ return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | ((flags & ARGS_SWAPPED) ? reg_map[src2] : reg_map[src1]))); static SLJIT_INLINE int emit_single_op(struct sljit_compiler *compiler, int op, int flags, int dst, int src1, int src2) { sljit_w mul_inst; switch (GET_OPCODE(op)) { case SLJIT_ADD: SLJIT_ASSERT(!(flags & INV_IMM)); EMIT_DATA_PROCESS_INS_AND_RETURN(ADD_DP); case SLJIT_ADDC: SLJIT_ASSERT(!(flags & INV_IMM)); EMIT_DATA_PROCESS_INS_AND_RETURN(ADC_DP); case SLJIT_SUB: SLJIT_ASSERT(!(flags & INV_IMM)); if (!(flags & ARGS_SWAPPED)) EMIT_DATA_PROCESS_INS_AND_RETURN(SUB_DP); EMIT_DATA_PROCESS_INS_AND_RETURN(RSB_DP); case SLJIT_SUBC: SLJIT_ASSERT(!(flags & INV_IMM)); if (!(flags & ARGS_SWAPPED)) EMIT_DATA_PROCESS_INS_AND_RETURN(SBC_DP); EMIT_DATA_PROCESS_INS_AND_RETURN(RSC_DP); case SLJIT_MUL: SLJIT_ASSERT(!(flags & INV_IMM)); SLJIT_ASSERT(!(src2 & SRC2_IMM)); if (SLJIT_UNLIKELY(op & SLJIT_SET_O)) mul_inst = SMULL | (reg_map[TMP_REG3] << 16) | (reg_map[dst] << 12); else mul_inst = MUL | (reg_map[dst] << 16); if (dst != src2) FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src1] << 8) | reg_map[src2])); else if (dst != src1) FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[src1])); else { /* Rm and Rd must not be the same register. */ SLJIT_ASSERT(dst != TMP_REG1); FAIL_IF(push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, reg_map[src2]))); FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[TMP_REG1])); } if (!(op & SLJIT_SET_O)) return SLJIT_SUCCESS; /* We need to use TMP_REG3. */ compiler->cache_arg = 0; compiler->cache_argw = 0; /* cmp TMP_REG2, dst asr #31. */ return push_inst(compiler, EMIT_DATA_PROCESS_INS(CMP_DP, SET_FLAGS, SLJIT_UNUSED, TMP_REG3, RM(dst) | 0xfc0)); case SLJIT_AND: if (!(flags & INV_IMM)) EMIT_DATA_PROCESS_INS_AND_RETURN(AND_DP); EMIT_DATA_PROCESS_INS_AND_RETURN(BIC_DP); case SLJIT_OR: SLJIT_ASSERT(!(flags & INV_IMM)); EMIT_DATA_PROCESS_INS_AND_RETURN(ORR_DP); case SLJIT_XOR: SLJIT_ASSERT(!(flags & INV_IMM)); EMIT_DATA_PROCESS_INS_AND_RETURN(EOR_DP); case SLJIT_SHL: EMIT_SHIFT_INS_AND_RETURN(0); case SLJIT_LSHR: EMIT_SHIFT_INS_AND_RETURN(1); case SLJIT_ASHR: EMIT_SHIFT_INS_AND_RETURN(2); case SLJIT_MOV: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (dst != src2) { if (src2 & SRC2_IMM) { if (flags & INV_IMM) EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2); EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2); } EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, reg_map[src2]); } return SLJIT_SUCCESS; case SLJIT_MOV_UB: case SLJIT_MOV_SB: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (op == SLJIT_MOV_UB) return push_inst(compiler, EMIT_DATA_PROCESS_INS(AND_DP, 0, dst, src2, SRC2_IMM | 0xff)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | reg_map[src2])); return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | (op == SLJIT_MOV_UB ? 0x20 : 0x40) | reg_map[dst])); #else return push_inst(compiler, (op == SLJIT_MOV_UB ? UXTB : SXTB) | RD(dst) | RM(src2)); #endif } else if (dst != src2) { SLJIT_ASSERT(src2 & SRC2_IMM); if (flags & INV_IMM) EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2); EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2); } return SLJIT_SUCCESS; case SLJIT_MOV_UH: case SLJIT_MOV_SH: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | reg_map[src2])); return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | (op == SLJIT_MOV_UH ? 0x20 : 0x40) | reg_map[dst])); #else return push_inst(compiler, (op == SLJIT_MOV_UH ? UXTH : SXTH) | RD(dst) | RM(src2)); #endif } else if (dst != src2) { SLJIT_ASSERT(src2 & SRC2_IMM); if (flags & INV_IMM) EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2); EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2); } return SLJIT_SUCCESS; case SLJIT_NOT: if (src2 & SRC2_IMM) { if (flags & INV_IMM) EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2); EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2); } EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, RM(src2)); case SLJIT_CLZ: SLJIT_ASSERT(!(flags & INV_IMM)); SLJIT_ASSERT(!(src2 & SRC2_IMM)); FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2))); if (flags & SET_FLAGS) EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(CMP_DP, SLJIT_UNUSED, dst, SRC2_IMM); return SLJIT_SUCCESS; } SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; } #undef EMIT_DATA_PROCESS_INS_AND_RETURN #undef EMIT_FULL_DATA_PROCESS_INS_AND_RETURN #undef EMIT_SHIFT_INS_AND_RETURN /* Tests whether the immediate can be stored in the 12 bit imm field. Returns with 0 if not possible. */ static sljit_uw get_immediate(sljit_uw imm) { int rol; if (imm <= 0xff) return SRC2_IMM | imm; if (!(imm & 0xff000000)) { imm <<= 8; rol = 8; } else { imm = (imm << 24) | (imm >> 8); rol = 0; } if (!(imm & 0xff000000)) { imm <<= 8; rol += 4; } if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) return SRC2_IMM | (imm >> 24) | (rol << 8); else return 0; } #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) static int generate_int(struct sljit_compiler *compiler, int reg, sljit_uw imm, int positive) { sljit_uw mask; sljit_uw imm1; sljit_uw imm2; int rol; /* Step1: Search a zero byte (8 continous zero bit). */ mask = 0xff000000; rol = 8; while(1) { if (!(imm & mask)) { /* Rol imm by rol. */ imm = (imm << rol) | (imm >> (32 - rol)); /* Calculate arm rol. */ rol = 4 + (rol >> 1); break; } rol += 2; mask >>= 2; if (mask & 0x3) { /* rol by 8. */ imm = (imm << 8) | (imm >> 24); mask = 0xff00; rol = 24; while (1) { if (!(imm & mask)) { /* Rol imm by rol. */ imm = (imm << rol) | (imm >> (32 - rol)); /* Calculate arm rol. */ rol = (rol >> 1) - 8; break; } rol += 2; mask >>= 2; if (mask & 0x3) return 0; } break; } } /* The low 8 bit must be zero. */ SLJIT_ASSERT(!(imm & 0xff)); if (!(imm & 0xff000000)) { imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8); imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8); } else if (imm & 0xc0000000) { imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8); imm <<= 8; rol += 4; if (!(imm & 0xff000000)) { imm <<= 8; rol += 4; } if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8); else return 0; } else { if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8); imm <<= 8; rol += 4; if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8); else return 0; } EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? MOV_DP : MVN_DP, 0, reg, SLJIT_UNUSED, imm1)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? ORR_DP : BIC_DP, 0, reg, reg, imm2)); return 1; } #endif static int load_immediate(struct sljit_compiler *compiler, int reg, sljit_uw imm) { sljit_uw tmp; #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) if (!(imm & ~0xffff)) return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)); #endif /* Create imm by 1 inst. */ tmp = get_immediate(imm); if (tmp) { EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, tmp)); return SLJIT_SUCCESS; } tmp = get_immediate(~imm); if (tmp) { EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, tmp)); return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) /* Create imm by 2 inst. */ FAIL_IF(generate_int(compiler, reg, imm, 1)); FAIL_IF(generate_int(compiler, reg, ~imm, 0)); /* Load integer. */ return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), imm); #else return emit_imm(compiler, reg, imm); #endif } /* Can perform an operation using at most 1 instruction. */ static int getput_arg_fast(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw) { sljit_uw imm; if (arg & SLJIT_IMM) { imm = get_immediate(argw); if (imm) { if (inp_flags & ARG_TEST) return 1; EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, imm)); return -1; } imm = get_immediate(~argw); if (imm) { if (inp_flags & ARG_TEST) return 1; EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, imm)); return -1; } return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0; } SLJIT_ASSERT(arg & SLJIT_MEM); /* Fast loads/stores. */ if (arg & 0xf) { if (!(arg & 0xf0)) { if (IS_TYPE1_TRANSFER(inp_flags)) { if (argw >= 0 && argw <= 0xfff) { if (inp_flags & ARG_TEST) return 1; EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, argw)); return -1; } if (argw < 0 && argw >= -0xfff) { if (inp_flags & ARG_TEST) return 1; EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, -argw)); return -1; } } else { if (argw >= 0 && argw <= 0xff) { if (inp_flags & ARG_TEST) return 1; EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw))); return -1; } if (argw < 0 && argw >= -0xff) { if (inp_flags & ARG_TEST) return 1; argw = -argw; EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw))); return -1; } } } else if ((argw & 0x3) == 0 || IS_TYPE1_TRANSFER(inp_flags)) { if (inp_flags & ARG_TEST) return 1; EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM((arg >> 4) & 0xf) | (IS_TYPE1_TRANSFER(inp_flags) ? SRC2_IMM : 0) | ((argw & 0x3) << 7))); return -1; } } return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0; } /* See getput_arg below. Note: can_cache is called only for binary operators. Those operators always uses word arguments without write back. */ static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw) { /* Immediate caching is not supported as it would be an operation on constant arguments. */ if (arg & SLJIT_IMM) return 0; /* Always a simple operation. */ if (arg & 0xf0) return 0; if (!(arg & 0xf)) { /* Immediate access. */ if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff)) return 1; return 0; } if (argw <= 0xfffff && argw >= -0xfffff) return 0; if (argw == next_argw && (next_arg & SLJIT_MEM)) return 1; if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff)) return 1; return 0; } #define GETPUT_ARG_DATA_TRANSFER(add, wb, target, base, imm) \ if (max_delta & 0xf00) \ FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, imm))); \ else \ FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, TYPE2_TRANSFER_IMM(imm)))); #define TEST_WRITE_BACK() \ if (inp_flags & WRITE_BACK) { \ tmp_r = arg & 0xf; \ if (reg == tmp_r) { \ /* This can only happen for stores */ \ /* since ldr reg, [reg, ...]! has no meaning */ \ SLJIT_ASSERT(!(inp_flags & LOAD_DATA)); \ EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(reg))); \ reg = TMP_REG3; \ } \ } /* Emit the necessary instructions. See can_cache above. */ static int getput_arg(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw, int next_arg, sljit_w next_argw) { int tmp_r; sljit_w max_delta; sljit_w sign; if (arg & SLJIT_IMM) { SLJIT_ASSERT(inp_flags & LOAD_DATA); return load_immediate(compiler, reg, argw); } SLJIT_ASSERT(arg & SLJIT_MEM); tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3; max_delta = IS_TYPE1_TRANSFER(inp_flags) ? 0xfff : 0xff; if ((arg & 0xf) == SLJIT_UNUSED) { /* Write back is not used. */ if ((compiler->cache_arg & SLJIT_IMM) && (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta || ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta)) { if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) { sign = 1; argw = argw - compiler->cache_argw; } else { sign = 0; argw = compiler->cache_argw - argw; } if (max_delta & 0xf00) { EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, argw)); } else { EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, TYPE2_TRANSFER_IMM(argw))); } return SLJIT_SUCCESS; } /* With write back, we can create some sophisticated loads, but it is hard to decide whether we should convert downward (0s) or upward (1s). */ if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) { SLJIT_ASSERT(inp_flags & LOAD_DATA); compiler->cache_arg = SLJIT_IMM; compiler->cache_argw = argw; tmp_r = TMP_REG3; } FAIL_IF(load_immediate(compiler, tmp_r, argw)); GETPUT_ARG_DATA_TRANSFER(1, 0, reg, tmp_r, 0); return SLJIT_SUCCESS; } /* Extended imm addressing for [reg+imm] format. */ sign = (max_delta << 8) | 0xff; if (!(arg & 0xf0) && argw <= sign && argw >= -sign) { TEST_WRITE_BACK(); if (argw >= 0) { sign = 1; } else { sign = 0; argw = -argw; } /* Optimization: add is 0x4, sub is 0x2. Sign is 1 for add and 0 for sub. */ if (max_delta & 0xf00) EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 12) | 0xa00)); else EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 8) | 0xc00)); argw &= max_delta; GETPUT_ARG_DATA_TRANSFER(sign, inp_flags & WRITE_BACK, reg, tmp_r, argw); return SLJIT_SUCCESS; } if (arg & 0xf0) { SLJIT_ASSERT((argw & 0x3) && !(max_delta & 0xf00)); if (inp_flags & WRITE_BACK) tmp_r = arg & 0xf; EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7))); EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, 0, reg, tmp_r, TYPE2_TRANSFER_IMM(0))); return SLJIT_SUCCESS; } if (compiler->cache_arg == arg && ((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) { SLJIT_ASSERT(!(inp_flags & WRITE_BACK)); argw = argw - compiler->cache_argw; GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, argw); return SLJIT_SUCCESS; } if (compiler->cache_arg == arg && ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta) { SLJIT_ASSERT(!(inp_flags & WRITE_BACK)); argw = compiler->cache_argw - argw; GETPUT_ARG_DATA_TRANSFER(0, 0, reg, TMP_REG3, argw); return SLJIT_SUCCESS; } if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) { TEST_WRITE_BACK(); EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0))); return SLJIT_SUCCESS; } if (argw == next_argw && (next_arg & SLJIT_MEM)) { SLJIT_ASSERT(inp_flags & LOAD_DATA); FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); compiler->cache_arg = SLJIT_IMM; compiler->cache_argw = argw; TEST_WRITE_BACK(); EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0))); return SLJIT_SUCCESS; } if (arg == next_arg && !(inp_flags & WRITE_BACK) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) { SLJIT_ASSERT(inp_flags & LOAD_DATA); FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, TMP_REG3, reg_map[arg & 0xf])); compiler->cache_arg = arg; compiler->cache_argw = argw; GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, 0); return SLJIT_SUCCESS; } if ((arg & 0xf) == tmp_r) { compiler->cache_arg = SLJIT_IMM; compiler->cache_argw = argw; tmp_r = TMP_REG3; } FAIL_IF(load_immediate(compiler, tmp_r, argw)); EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, reg_map[tmp_r] | (max_delta & 0xf00 ? SRC2_IMM : 0))); return SLJIT_SUCCESS; } static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { /* arg1 goes to TMP_REG1 or src reg arg2 goes to TMP_REG2, imm or src reg TMP_REG3 can be used for caching result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */ /* We prefers register and simple consts. */ int dst_r; int src1_r; int src2_r = 0; int sugg_src2_r = TMP_REG2; int flags = GET_FLAGS(op) ? SET_FLAGS : 0; compiler->cache_arg = 0; compiler->cache_argw = 0; /* Destination check. */ if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REG3) { dst_r = dst; flags |= REG_DEST; if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) sugg_src2_r = dst_r; } else if (dst == SLJIT_UNUSED) { if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM)) return SLJIT_SUCCESS; dst_r = TMP_REG2; } else { SLJIT_ASSERT(dst & SLJIT_MEM); if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) { flags |= FAST_DEST; dst_r = TMP_REG2; } else { flags |= SLOW_DEST; dst_r = 0; } } /* Source 1. */ if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= TMP_REG3) src1_r = src1; else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) { flags |= ARGS_SWAPPED; src1_r = src2; src2 = src1; src2w = src1w; } else { if ((inp_flags & ALLOW_ANY_IMM) && (src1 & SLJIT_IMM)) { /* The second check will generate a hit. */ src2_r = get_immediate(src1w); if (src2_r) { flags |= ARGS_SWAPPED; src1 = src2; src1w = src2w; } if (inp_flags & ALLOW_INV_IMM) { src2_r = get_immediate(~src1w); if (src2_r) { flags |= ARGS_SWAPPED | INV_IMM; src1 = src2; src1w = src2w; } } } src1_r = 0; if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) { FAIL_IF(compiler->error); src1_r = TMP_REG1; } } /* Source 2. */ if (src2_r == 0) { if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) { src2_r = src2; flags |= REG_SOURCE; if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) dst_r = src2_r; } else do { /* do { } while(0) is used because of breaks. */ if ((inp_flags & ALLOW_ANY_IMM) && (src2 & SLJIT_IMM)) { src2_r = get_immediate(src2w); if (src2_r) break; if (inp_flags & ALLOW_INV_IMM) { src2_r = get_immediate(~src2w); if (src2_r) { flags |= INV_IMM; break; } } } /* src2_r is 0. */ if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) { FAIL_IF(compiler->error); src2_r = sugg_src2_r; } } while (0); } /* src1_r, src2_r and dst_r can be zero (=unprocessed) or non-zero. If they are zero, they must not be registers. */ if (src1_r == 0 && src2_r == 0 && dst_r == 0) { if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); flags |= ARGS_SWAPPED; FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src2, src2w, src1, src1w)); FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src1, src1w, dst, dstw)); } else { FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w)); FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw)); } src1_r = TMP_REG1; src2_r = TMP_REG2; } else if (src1_r == 0 && src2_r == 0) { FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w)); src1_r = TMP_REG1; } else if (src1_r == 0 && dst_r == 0) { FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw)); src1_r = TMP_REG1; } else if (src2_r == 0 && dst_r == 0) { FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw)); src2_r = sugg_src2_r; } if (dst_r == 0) dst_r = TMP_REG2; if (src1_r == 0) { FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0)); src1_r = TMP_REG1; } if (src2_r == 0) { FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0)); src2_r = sugg_src2_r; } FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r)); if (flags & (FAST_DEST | SLOW_DEST)) { if (flags & FAST_DEST) FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw)); else FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0)); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op) { CHECK_ERROR(); check_sljit_emit_op0(compiler, op); op = GET_OPCODE(op); switch (op) { case SLJIT_BREAKPOINT: EMIT_INSTRUCTION(DEBUGGER); break; case SLJIT_NOP: EMIT_INSTRUCTION(NOP); break; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { CHECK_ERROR(); check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw); switch (GET_OPCODE(op)) { case SLJIT_MOV: case SLJIT_MOV_UI: case SLJIT_MOV_SI: return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOV_UB: return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw); case SLJIT_MOV_SB: return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw); case SLJIT_MOV_UH: return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw); case SLJIT_MOV_SH: return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw); case SLJIT_MOVU: case SLJIT_MOVU_UI: case SLJIT_MOVU_SI: return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOVU_UB: return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw); case SLJIT_MOVU_SB: return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw); case SLJIT_MOVU_UH: return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw); case SLJIT_MOVU_SH: return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw); case SLJIT_NOT: return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_NEG: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, SLJIT_SUB | GET_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw); case SLJIT_CLZ: return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { CHECK_ERROR(); check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w); switch (GET_OPCODE(op)) { case SLJIT_ADD: case SLJIT_ADDC: case SLJIT_SUB: case SLJIT_SUBC: case SLJIT_OR: case SLJIT_XOR: return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: case SLJIT_LSHR: case SLJIT_ASHR: if (src2 & SLJIT_IMM) { compiler->shift_imm = src2w & 0x1f; return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w); } else { compiler->shift_imm = 0x20; return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w); } } return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) /* 0 - no fpu 1 - vfp */ static int arm_fpu_type = -1; static void init_compiler() { if (arm_fpu_type != -1) return; /* TODO: Only the OS can help to determine the correct fpu type. */ arm_fpu_type = 1; } SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void) { if (arm_fpu_type == -1) init_compiler(); return arm_fpu_type; } #else #define arm_fpu_type 1 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void) { /* Always available. */ return 1; } #endif #define EMIT_FPU_DATA_TRANSFER(add, load, base, freg, offs) \ (VSTR | ((add) << 23) | ((load) << 20) | (reg_map[base] << 16) | (freg << 12) | (offs)) #define EMIT_FPU_OPERATION(opcode, dst, src1, src2) \ ((opcode) | ((dst) << 12) | (src1) | ((src2) << 16)) static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw) { SLJIT_ASSERT(arg & SLJIT_MEM); /* Fast loads and stores. */ if ((arg & 0xf) && !(arg & 0xf0) && (argw & 0x3) == 0) { if (argw >= 0 && argw <= 0x3ff) { EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, arg & 0xf, fpu_reg, argw >> 2)); return SLJIT_SUCCESS; } if (argw < 0 && argw >= -0x3ff) { EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, arg & 0xf, fpu_reg, (-argw) >> 2)); return SLJIT_SUCCESS; } if (argw >= 0 && argw <= 0x3ffff) { SLJIT_ASSERT(get_immediate(argw & 0x3fc00)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00))); argw &= 0x3ff; EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, argw >> 2)); return SLJIT_SUCCESS; } if (argw < 0 && argw >= -0x3ffff) { argw = -argw; SLJIT_ASSERT(get_immediate(argw & 0x3fc00)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00))); argw &= 0x3ff; EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG1, fpu_reg, argw >> 2)); return SLJIT_SUCCESS; } } if (arg & 0xf0) { EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7))); EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, 0)); return SLJIT_SUCCESS; } if (compiler->cache_arg == arg && ((argw - compiler->cache_argw) & 0x3) == 0) { if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= 0x3ff) { EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, (argw - compiler->cache_argw) >> 2)); return SLJIT_SUCCESS; } if (((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= 0x3ff) { EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG3, fpu_reg, (compiler->cache_argw - argw) >> 2)); return SLJIT_SUCCESS; } } compiler->cache_arg = arg; compiler->cache_argw = argw; if (arg & 0xf) { FAIL_IF(load_immediate(compiler, TMP_REG1, argw)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, arg & 0xf, reg_map[TMP_REG1])); } else FAIL_IF(load_immediate(compiler, TMP_REG3, argw)); EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, 0)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { int dst_freg; CHECK_ERROR(); check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw); compiler->cache_arg = 0; compiler->cache_argw = 0; if (GET_OPCODE(op) == SLJIT_FCMP) { if (dst > SLJIT_FLOAT_REG4) { FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw)); dst = TMP_FREG1; } if (src > SLJIT_FLOAT_REG4) { FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw)); src = TMP_FREG2; } EMIT_INSTRUCTION(VCMP_F64 | (dst << 12) | src); EMIT_INSTRUCTION(VMRS); return SLJIT_SUCCESS; } dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst; if (src > SLJIT_FLOAT_REG4) { FAIL_IF(emit_fpu_data_transfer(compiler, dst_freg, 1, src, srcw)); src = dst_freg; } switch (op) { case SLJIT_FMOV: if (src != dst_freg && dst_freg != TMP_FREG1) EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMOV_F64, dst_freg, src, 0)); break; case SLJIT_FNEG: EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VNEG_F64, dst_freg, src, 0)); break; case SLJIT_FABS: EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VABS_F64, dst_freg, src, 0)); break; } if (dst_freg == TMP_FREG1) FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { int dst_freg; CHECK_ERROR(); check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); compiler->cache_arg = 0; compiler->cache_argw = 0; dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst; if (src2 > SLJIT_FLOAT_REG4) { FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w)); src2 = TMP_FREG2; } if (src1 > SLJIT_FLOAT_REG4) { FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w)); src1 = TMP_FREG1; } switch (op) { case SLJIT_FADD: EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VADD_F64, dst_freg, src2, src1)); break; case SLJIT_FSUB: EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VSUB_F64, dst_freg, src2, src1)); break; case SLJIT_FMUL: EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMUL_F64, dst_freg, src2, src1)); break; case SLJIT_FDIV: EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VDIV_F64, dst_freg, src2, src1)); break; } if (dst_freg == TMP_FREG1) FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw)); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Other instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int generals, int local_size) { int size; CHECK_ERROR(); check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, generals, local_size); compiler->temporaries = temporaries; compiler->generals = generals; size = (1 + generals) * sizeof(sljit_uw); if (temporaries >= 4) size += (temporaries - 3) * sizeof(sljit_uw); local_size += size; local_size = (local_size + 7) & ~7; local_size -= size; compiler->local_size = local_size; if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, RM(TMP_REG3))); else if (dst & SLJIT_MEM) { if (getput_arg_fast(compiler, WORD_DATA, TMP_REG3, dst, dstw)) return compiler->error; EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG2, SLJIT_UNUSED, RM(TMP_REG3))); compiler->cache_arg = 0; compiler->cache_argw = 0; return getput_arg(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw) { CHECK_ERROR(); check_sljit_emit_fast_return(compiler, src, srcw); if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS) EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(src))); else if (src & SLJIT_MEM) { if (getput_arg_fast(compiler, WORD_DATA | LOAD_DATA, TMP_REG3, src, srcw)) FAIL_IF(compiler->error); else { compiler->cache_arg = 0; compiler->cache_argw = 0; FAIL_IF(getput_arg(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw, 0, 0)); EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(TMP_REG2))); } } else if (src & SLJIT_IMM) FAIL_IF(load_immediate(compiler, TMP_REG3, srcw)); return push_inst(compiler, BLX | RM(TMP_REG3)); } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ static sljit_uw get_cc(int type) { switch (type) { case SLJIT_C_EQUAL: case SLJIT_C_MUL_NOT_OVERFLOW: case SLJIT_C_FLOAT_EQUAL: return 0x00000000; case SLJIT_C_NOT_EQUAL: case SLJIT_C_MUL_OVERFLOW: case SLJIT_C_FLOAT_NOT_EQUAL: return 0x10000000; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: return 0x30000000; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: return 0x20000000; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: return 0x80000000; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: return 0x90000000; case SLJIT_C_SIG_LESS: return 0xb0000000; case SLJIT_C_SIG_GREATER_EQUAL: return 0xa0000000; case SLJIT_C_SIG_GREATER: return 0xc0000000; case SLJIT_C_SIG_LESS_EQUAL: return 0xd0000000; case SLJIT_C_OVERFLOW: case SLJIT_C_FLOAT_NAN: return 0x60000000; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_FLOAT_NOT_NAN: return 0x70000000; default: /* SLJIT_JUMP */ return 0xe0000000; } } SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; CHECK_ERROR_PTR(); check_sljit_emit_label(compiler); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type) { struct sljit_jump *jump; CHECK_ERROR_PTR(); check_sljit_emit_jump(compiler, type); jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; /* In ARM, we don't need to touch the arguments. */ #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (type >= SLJIT_FAST_CALL) PTR_FAIL_IF(prepare_blx(compiler)); PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0)); if (jump->flags & SLJIT_REWRITABLE_JUMP) { jump->addr = compiler->size; compiler->patches++; } if (type >= SLJIT_FAST_CALL) { jump->flags |= IS_BL; PTR_FAIL_IF(emit_blx(compiler)); } if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) jump->addr = compiler->size; #else if (type >= SLJIT_FAST_CALL) jump->flags |= IS_BL; PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0)); PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type))); jump->addr = compiler->size; #endif return jump; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw) { struct sljit_jump *jump; CHECK_ERROR(); check_sljit_emit_ijump(compiler, type, src, srcw); /* In ARM, we don't need to touch the arguments. */ if (src & SLJIT_IMM) { jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0)); jump->u.target = srcw; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (type >= SLJIT_FAST_CALL) FAIL_IF(prepare_blx(compiler)); FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0)); if (type >= SLJIT_FAST_CALL) FAIL_IF(emit_blx(compiler)); #else FAIL_IF(emit_imm(compiler, TMP_REG1, 0)); FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1))); #endif jump->addr = compiler->size; } else { if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS) return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src)); SLJIT_ASSERT(src & SLJIT_MEM); FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, TMP_REG2, 0, TMP_REG1, 0, src, srcw)); return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG2)); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type) { int reg; sljit_uw cc; CHECK_ERROR(); check_sljit_emit_cond_value(compiler, op, dst, dstw, type); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; cc = get_cc(type); if (GET_OPCODE(op) == SLJIT_OR) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ORR_DP, 0, dst, dst, SRC2_IMM | 1) & ~COND_MASK) | cc); if (op & SLJIT_SET_E) return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst))); return SLJIT_SUCCESS; } EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 0)); EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return emit_op(compiler, op, ALLOW_IMM, dst, dstw, TMP_REG1, 0, dst, dstw); } reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2; EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 0)); EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc); if (reg == TMP_REG2) return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value) { struct sljit_const *const_; int reg; CHECK_ERROR_PTR(); check_sljit_emit_const(compiler, dst, dstw, init_value); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), init_value)); compiler->patches++; #else PTR_FAIL_IF(emit_imm(compiler, reg, init_value)); #endif set_const(const_, compiler); if (reg == TMP_REG2 && dst != SLJIT_UNUSED) if (emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0)) return NULL; return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { inline_set_jump_addr(addr, new_addr, 1); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant) { inline_set_const(addr, new_constant, 1); }