/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* x86 64-bit arch dependent functions. */ static sljit_si emit_load_imm64(struct sljit_compiler *compiler, sljit_si reg, sljit_sw imm) { sljit_ub *inst; inst = (sljit_ub*)ensure_buf(compiler, 1 + 2 + sizeof(sljit_sw)); FAIL_IF(!inst); INC_SIZE(2 + sizeof(sljit_sw)); *inst++ = REX_W | ((reg_map[reg] <= 7) ? 0 : REX_B); *inst++ = MOV_r_i32 + (reg_map[reg] & 0x7); *(sljit_sw*)inst = imm; return SLJIT_SUCCESS; } static sljit_ub* generate_far_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, sljit_si type) { if (type < SLJIT_JUMP) { /* Invert type. */ *code_ptr++ = get_jump_code(type ^ 0x1) - 0x10; *code_ptr++ = 10 + 3; } SLJIT_COMPILE_ASSERT(reg_map[TMP_REG3] == 9, tmp3_is_9_first); *code_ptr++ = REX_W | REX_B; *code_ptr++ = MOV_r_i32 + 1; jump->addr = (sljit_uw)code_ptr; if (jump->flags & JUMP_LABEL) jump->flags |= PATCH_MD; else *(sljit_sw*)code_ptr = jump->u.target; code_ptr += sizeof(sljit_sw); *code_ptr++ = REX_B; *code_ptr++ = GROUP_FF; *code_ptr++ = (type >= SLJIT_FAST_CALL) ? (MOD_REG | CALL_rm | 1) : (MOD_REG | JMP_rm | 1); return code_ptr; } static sljit_ub* generate_fixed_jump(sljit_ub *code_ptr, sljit_sw addr, sljit_si type) { sljit_sw delta = addr - ((sljit_sw)code_ptr + 1 + sizeof(sljit_si)); if (delta <= HALFWORD_MAX && delta >= HALFWORD_MIN) { *code_ptr++ = (type == 2) ? CALL_i32 : JMP_i32; *(sljit_sw*)code_ptr = delta; } else { SLJIT_COMPILE_ASSERT(reg_map[TMP_REG3] == 9, tmp3_is_9_second); *code_ptr++ = REX_W | REX_B; *code_ptr++ = MOV_r_i32 + 1; *(sljit_sw*)code_ptr = addr; code_ptr += sizeof(sljit_sw); *code_ptr++ = REX_B; *code_ptr++ = GROUP_FF; *code_ptr++ = (type == 2) ? (MOD_REG | CALL_rm | 1) : (MOD_REG | JMP_rm | 1); } return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si fscratches, sljit_si fsaveds, sljit_si local_size) { sljit_si i, tmp, size, saved_register_size; sljit_ub *inst; CHECK_ERROR(); check_sljit_emit_enter(compiler, args, scratches, saveds, fscratches, fsaveds, local_size); compiler->scratches = scratches; compiler->saveds = saveds; compiler->fscratches = fscratches; compiler->fsaveds = fsaveds; compiler->flags_saved = 0; #if (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->logical_local_size = local_size; #endif /* Including the return address saved by the call instruction. */ saved_register_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; PUSH_REG(reg_lmap[i]); } for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; PUSH_REG(reg_lmap[i]); } if (args > 0) { size = args * 3; inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); #ifndef _WIN64 if (args > 0) { *inst++ = REX_W; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_S0] << 3) | 0x7 /* rdi */; } if (args > 1) { *inst++ = REX_W | REX_R; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_lmap[SLJIT_S1] << 3) | 0x6 /* rsi */; } if (args > 2) { *inst++ = REX_W | REX_R; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_lmap[SLJIT_S2] << 3) | 0x2 /* rdx */; } #else if (args > 0) { *inst++ = REX_W; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_S0] << 3) | 0x1 /* rcx */; } if (args > 1) { *inst++ = REX_W; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_S1] << 3) | 0x2 /* rdx */; } if (args > 2) { *inst++ = REX_W | REX_B; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (reg_map[SLJIT_S2] << 3) | 0x0 /* r8 */; } #endif } local_size = ((local_size + FIXED_LOCALS_OFFSET + saved_register_size + 16 - 1) & ~(16 - 1)) - saved_register_size; compiler->local_size = local_size; #ifdef _WIN64 if (local_size > 1024) { /* Allocate stack for the callback, which grows the stack. */ inst = (sljit_ub*)ensure_buf(compiler, 1 + 4 + (3 + sizeof(sljit_si))); FAIL_IF(!inst); INC_SIZE(4 + (3 + sizeof(sljit_si))); *inst++ = REX_W; *inst++ = GROUP_BINARY_83; *inst++ = MOD_REG | SUB | 4; /* Allocated size for registers must be divisible by 8. */ SLJIT_ASSERT(!(saved_register_size & 0x7)); /* Aligned to 16 byte. */ if (saved_register_size & 0x8) { *inst++ = 5 * sizeof(sljit_sw); local_size -= 5 * sizeof(sljit_sw); } else { *inst++ = 4 * sizeof(sljit_sw); local_size -= 4 * sizeof(sljit_sw); } /* Second instruction */ SLJIT_COMPILE_ASSERT(reg_map[SLJIT_R0] < 8, temporary_reg1_is_loreg); *inst++ = REX_W; *inst++ = MOV_rm_i32; *inst++ = MOD_REG | reg_lmap[SLJIT_R0]; *(sljit_si*)inst = local_size; #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif FAIL_IF(sljit_emit_ijump(compiler, SLJIT_CALL1, SLJIT_IMM, SLJIT_FUNC_OFFSET(sljit_grow_stack))); } #endif SLJIT_ASSERT(local_size > 0); if (local_size <= 127) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *inst++ = REX_W; *inst++ = GROUP_BINARY_83; *inst++ = MOD_REG | SUB | 4; *inst++ = local_size; } else { inst = (sljit_ub*)ensure_buf(compiler, 1 + 7); FAIL_IF(!inst); INC_SIZE(7); *inst++ = REX_W; *inst++ = GROUP_BINARY_81; *inst++ = MOD_REG | SUB | 4; *(sljit_si*)inst = local_size; inst += sizeof(sljit_si); } #ifdef _WIN64 /* Save xmm6 register: movaps [rsp + 0x20], xmm6 */ if (fscratches >= 6 || fsaveds >= 1) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!inst); INC_SIZE(5); *inst++ = GROUP_0F; *(sljit_si*)inst = 0x20247429; } #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si fscratches, sljit_si fsaveds, sljit_si local_size) { sljit_si saved_register_size; CHECK_ERROR_VOID(); check_sljit_set_context(compiler, args, scratches, saveds, fscratches, fsaveds, local_size); compiler->scratches = scratches; compiler->saveds = saveds; compiler->fscratches = fscratches; compiler->fsaveds = fsaveds; #if (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->logical_local_size = local_size; #endif /* Including the return address saved by the call instruction. */ saved_register_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); compiler->local_size = ((local_size + FIXED_LOCALS_OFFSET + saved_register_size + 16 - 1) & ~(16 - 1)) - saved_register_size; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw) { sljit_si i, tmp, size; sljit_ub *inst; CHECK_ERROR(); check_sljit_emit_return(compiler, op, src, srcw); compiler->flags_saved = 0; FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); #ifdef _WIN64 /* Restore xmm6 register: movaps xmm6, [rsp + 0x20] */ if (compiler->fscratches >= 6 || compiler->fsaveds >= 1) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!inst); INC_SIZE(5); *inst++ = GROUP_0F; *(sljit_si*)inst = 0x20247428; } #endif SLJIT_ASSERT(compiler->local_size > 0); if (compiler->local_size <= 127) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *inst++ = REX_W; *inst++ = GROUP_BINARY_83; *inst++ = MOD_REG | ADD | 4; *inst = compiler->local_size; } else { inst = (sljit_ub*)ensure_buf(compiler, 1 + 7); FAIL_IF(!inst); INC_SIZE(7); *inst++ = REX_W; *inst++ = GROUP_BINARY_81; *inst++ = MOD_REG | ADD | 4; *(sljit_si*)inst = compiler->local_size; } tmp = compiler->scratches; for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; POP_REG(reg_lmap[i]); } tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; for (i = tmp; i <= SLJIT_S0; i++) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; POP_REG(reg_lmap[i]); } inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); RET(); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static sljit_si emit_do_imm32(struct sljit_compiler *compiler, sljit_ub rex, sljit_ub opcode, sljit_sw imm) { sljit_ub *inst; sljit_si length = 1 + (rex ? 1 : 0) + sizeof(sljit_si); inst = (sljit_ub*)ensure_buf(compiler, 1 + length); FAIL_IF(!inst); INC_SIZE(length); if (rex) *inst++ = rex; *inst++ = opcode; *(sljit_si*)inst = imm; return SLJIT_SUCCESS; } static sljit_ub* emit_x86_instruction(struct sljit_compiler *compiler, sljit_si size, /* The register or immediate operand. */ sljit_si a, sljit_sw imma, /* The general operand (not immediate). */ sljit_si b, sljit_sw immb) { sljit_ub *inst; sljit_ub *buf_ptr; sljit_ub rex = 0; sljit_si flags = size & ~0xf; sljit_si inst_size; /* The immediate operand must be 32 bit. */ SLJIT_ASSERT(!(a & SLJIT_IMM) || compiler->mode32 || IS_HALFWORD(imma)); /* Both cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BIN_INS | EX86_SHIFT_INS)) != (EX86_BIN_INS | EX86_SHIFT_INS)); /* Size flags not allowed for typed instructions. */ SLJIT_ASSERT(!(flags & (EX86_BIN_INS | EX86_SHIFT_INS)) || (flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) == 0); /* Both size flags cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) != (EX86_BYTE_ARG | EX86_HALF_ARG)); /* SSE2 and immediate is not possible. */ SLJIT_ASSERT(!(a & SLJIT_IMM) || !(flags & EX86_SSE2)); SLJIT_ASSERT((flags & (EX86_PREF_F2 | EX86_PREF_F3)) != (EX86_PREF_F2 | EX86_PREF_F3) && (flags & (EX86_PREF_F2 | EX86_PREF_66)) != (EX86_PREF_F2 | EX86_PREF_66) && (flags & (EX86_PREF_F3 | EX86_PREF_66)) != (EX86_PREF_F3 | EX86_PREF_66)); size &= 0xf; inst_size = size; if (!compiler->mode32 && !(flags & EX86_NO_REXW)) rex |= REX_W; else if (flags & EX86_REX) rex |= REX; if (flags & (EX86_PREF_F2 | EX86_PREF_F3)) inst_size++; if (flags & EX86_PREF_66) inst_size++; /* Calculate size of b. */ inst_size += 1; /* mod r/m byte. */ if (b & SLJIT_MEM) { if (!(b & OFFS_REG_MASK)) { if (NOT_HALFWORD(immb)) { if (emit_load_imm64(compiler, TMP_REG3, immb)) return NULL; immb = 0; if (b & REG_MASK) b |= TO_OFFS_REG(TMP_REG3); else b |= TMP_REG3; } else if (reg_lmap[b & REG_MASK] == 4) b |= TO_OFFS_REG(SLJIT_SP); } if ((b & REG_MASK) == SLJIT_UNUSED) inst_size += 1 + sizeof(sljit_si); /* SIB byte required to avoid RIP based addressing. */ else { if (reg_map[b & REG_MASK] >= 8) rex |= REX_B; if (immb != 0 && (!(b & OFFS_REG_MASK) || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP))) { /* Immediate operand. */ if (immb <= 127 && immb >= -128) inst_size += sizeof(sljit_sb); else inst_size += sizeof(sljit_si); } else if (reg_lmap[b & REG_MASK] == 5) inst_size += sizeof(sljit_sb); if ((b & OFFS_REG_MASK) != SLJIT_UNUSED) { inst_size += 1; /* SIB byte. */ if (reg_map[OFFS_REG(b)] >= 8) rex |= REX_X; } } } else if (!(flags & EX86_SSE2_OP2) && reg_map[b] >= 8) rex |= REX_B; if (a & SLJIT_IMM) { if (flags & EX86_BIN_INS) { if (imma <= 127 && imma >= -128) { inst_size += 1; flags |= EX86_BYTE_ARG; } else inst_size += 4; } else if (flags & EX86_SHIFT_INS) { imma &= compiler->mode32 ? 0x1f : 0x3f; if (imma != 1) { inst_size ++; flags |= EX86_BYTE_ARG; } } else if (flags & EX86_BYTE_ARG) inst_size++; else if (flags & EX86_HALF_ARG) inst_size += sizeof(short); else inst_size += sizeof(sljit_si); } else { SLJIT_ASSERT(!(flags & EX86_SHIFT_INS) || a == SLJIT_PREF_SHIFT_REG); /* reg_map[SLJIT_PREF_SHIFT_REG] is less than 8. */ if (!(flags & EX86_SSE2_OP1) && reg_map[a] >= 8) rex |= REX_R; } if (rex) inst_size++; inst = (sljit_ub*)ensure_buf(compiler, 1 + inst_size); PTR_FAIL_IF(!inst); /* Encoding the byte. */ INC_SIZE(inst_size); if (flags & EX86_PREF_F2) *inst++ = 0xf2; if (flags & EX86_PREF_F3) *inst++ = 0xf3; if (flags & EX86_PREF_66) *inst++ = 0x66; if (rex) *inst++ = rex; buf_ptr = inst + size; /* Encode mod/rm byte. */ if (!(flags & EX86_SHIFT_INS)) { if ((flags & EX86_BIN_INS) && (a & SLJIT_IMM)) *inst = (flags & EX86_BYTE_ARG) ? GROUP_BINARY_83 : GROUP_BINARY_81; if ((a & SLJIT_IMM) || (a == 0)) *buf_ptr = 0; else if (!(flags & EX86_SSE2_OP1)) *buf_ptr = reg_lmap[a] << 3; else *buf_ptr = a << 3; } else { if (a & SLJIT_IMM) { if (imma == 1) *inst = GROUP_SHIFT_1; else *inst = GROUP_SHIFT_N; } else *inst = GROUP_SHIFT_CL; *buf_ptr = 0; } if (!(b & SLJIT_MEM)) *buf_ptr++ |= MOD_REG + ((!(flags & EX86_SSE2_OP2)) ? reg_lmap[b] : b); else if ((b & REG_MASK) != SLJIT_UNUSED) { if ((b & OFFS_REG_MASK) == SLJIT_UNUSED || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP)) { if (immb != 0 || reg_lmap[b & REG_MASK] == 5) { if (immb <= 127 && immb >= -128) *buf_ptr |= 0x40; else *buf_ptr |= 0x80; } if ((b & OFFS_REG_MASK) == SLJIT_UNUSED) *buf_ptr++ |= reg_lmap[b & REG_MASK]; else { *buf_ptr++ |= 0x04; *buf_ptr++ = reg_lmap[b & REG_MASK] | (reg_lmap[OFFS_REG(b)] << 3); } if (immb != 0 || reg_lmap[b & REG_MASK] == 5) { if (immb <= 127 && immb >= -128) *buf_ptr++ = immb; /* 8 bit displacement. */ else { *(sljit_si*)buf_ptr = immb; /* 32 bit displacement. */ buf_ptr += sizeof(sljit_si); } } } else { if (reg_lmap[b & REG_MASK] == 5) *buf_ptr |= 0x40; *buf_ptr++ |= 0x04; *buf_ptr++ = reg_lmap[b & REG_MASK] | (reg_lmap[OFFS_REG(b)] << 3) | (immb << 6); if (reg_lmap[b & REG_MASK] == 5) *buf_ptr++ = 0; } } else { *buf_ptr++ |= 0x04; *buf_ptr++ = 0x25; *(sljit_si*)buf_ptr = immb; /* 32 bit displacement. */ buf_ptr += sizeof(sljit_si); } if (a & SLJIT_IMM) { if (flags & EX86_BYTE_ARG) *buf_ptr = imma; else if (flags & EX86_HALF_ARG) *(short*)buf_ptr = imma; else if (!(flags & EX86_SHIFT_INS)) *(sljit_si*)buf_ptr = imma; } return !(flags & EX86_SHIFT_INS) ? inst : (inst + 1); } /* --------------------------------------------------------------------- */ /* Call / return instructions */ /* --------------------------------------------------------------------- */ static SLJIT_INLINE sljit_si call_with_args(struct sljit_compiler *compiler, sljit_si type) { sljit_ub *inst; #ifndef _WIN64 SLJIT_COMPILE_ASSERT(reg_map[SLJIT_R1] == 6 && reg_map[SLJIT_R0] < 8 && reg_map[SLJIT_R2] < 8, args_registers); inst = (sljit_ub*)ensure_buf(compiler, 1 + ((type < SLJIT_CALL3) ? 3 : 6)); FAIL_IF(!inst); INC_SIZE((type < SLJIT_CALL3) ? 3 : 6); if (type >= SLJIT_CALL3) { *inst++ = REX_W; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (0x2 /* rdx */ << 3) | reg_lmap[SLJIT_R2]; } *inst++ = REX_W; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (0x7 /* rdi */ << 3) | reg_lmap[SLJIT_R0]; #else SLJIT_COMPILE_ASSERT(reg_map[SLJIT_R1] == 2 && reg_map[SLJIT_R0] < 8 && reg_map[SLJIT_R2] < 8, args_registers); inst = (sljit_ub*)ensure_buf(compiler, 1 + ((type < SLJIT_CALL3) ? 3 : 6)); FAIL_IF(!inst); INC_SIZE((type < SLJIT_CALL3) ? 3 : 6); if (type >= SLJIT_CALL3) { *inst++ = REX_W | REX_R; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (0x0 /* r8 */ << 3) | reg_lmap[SLJIT_R2]; } *inst++ = REX_W; *inst++ = MOV_r_rm; *inst++ = MOD_REG | (0x1 /* rcx */ << 3) | reg_lmap[SLJIT_R0]; #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw) { sljit_ub *inst; CHECK_ERROR(); check_sljit_emit_fast_enter(compiler, dst, dstw); ADJUST_LOCAL_OFFSET(dst, dstw); /* For UNUSED dst. Uncommon, but possible. */ if (dst == SLJIT_UNUSED) dst = TMP_REG1; if (FAST_IS_REG(dst)) { if (reg_map[dst] < 8) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); POP_REG(reg_lmap[dst]); return SLJIT_SUCCESS; } inst = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = REX_B; POP_REG(reg_lmap[dst]); return SLJIT_SUCCESS; } /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = POP_rm; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw) { sljit_ub *inst; CHECK_ERROR(); check_sljit_emit_fast_return(compiler, src, srcw); ADJUST_LOCAL_OFFSET(src, srcw); if ((src & SLJIT_IMM) && NOT_HALFWORD(srcw)) { FAIL_IF(emit_load_imm64(compiler, TMP_REG1, srcw)); src = TMP_REG1; } if (FAST_IS_REG(src)) { if (reg_map[src] < 8) { inst = (sljit_ub*)ensure_buf(compiler, 1 + 1 + 1); FAIL_IF(!inst); INC_SIZE(1 + 1); PUSH_REG(reg_lmap[src]); } else { inst = (sljit_ub*)ensure_buf(compiler, 1 + 2 + 1); FAIL_IF(!inst); INC_SIZE(2 + 1); *inst++ = REX_B; PUSH_REG(reg_lmap[src]); } } else if (src & SLJIT_MEM) { /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_FF; *inst |= PUSH_rm; inst = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); } else { SLJIT_ASSERT(IS_HALFWORD(srcw)); /* SLJIT_IMM. */ inst = (sljit_ub*)ensure_buf(compiler, 1 + 5 + 1); FAIL_IF(!inst); INC_SIZE(5 + 1); *inst++ = PUSH_i32; *(sljit_si*)inst = srcw; inst += sizeof(sljit_si); } RET(); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Extend input */ /* --------------------------------------------------------------------- */ static sljit_si emit_mov_int(struct sljit_compiler *compiler, sljit_si sign, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw) { sljit_ub* inst; sljit_si dst_r; compiler->mode32 = 0; if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { if (sign || ((sljit_uw)srcw <= 0x7fffffff)) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_si)srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } return emit_load_imm64(compiler, dst, srcw); } compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_si)srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; compiler->mode32 = 0; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) dst_r = src; else { if (sign) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = MOVSXD_r_rm; } else { compiler->mode32 = 1; FAIL_IF(emit_mov(compiler, dst_r, 0, src, srcw)); compiler->mode32 = 0; } } if (dst & SLJIT_MEM) { compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; compiler->mode32 = 0; } return SLJIT_SUCCESS; }