diff options
author | Raphael Manfredi <Raphael_Manfredi@grenoble.hp.com> | 1996-10-03 18:38:08 +0200 |
---|---|---|
committer | Andy Dougherty <doughera@lafcol.lafayette.edu> | 1996-10-03 18:38:08 +0200 |
commit | 66730be00e20f21554ddafe7899e27bc47edc3cb (patch) | |
tree | d355c99949c0ead56aff011d46782afe15d607d7 | |
parent | 1e2e1ae8d60a2653b0297f8d75f9d4fe5abfc82b (diff) | |
download | perl-66730be00e20f21554ddafe7899e27bc47edc3cb.tar.gz |
perl 5.003_06: lib/Math/Complex.pm
Date: Thu, 03 Oct 96 18:38:08 +0200
From: Raphael Manfredi <Raphael_Manfredi@grenoble.hp.com>
# Complex numbers and associated mathematical functions
# -- Raphael Manfredi, Sept 1996
# New version. Should be backwards compatible, but please
# check it out if you use it.
-rw-r--r-- | lib/Math/Complex.pm | 1164 |
1 files changed, 1047 insertions, 117 deletions
diff --git a/lib/Math/Complex.pm b/lib/Math/Complex.pm index 2a571aa7e4..5ec4a5661e 100644 --- a/lib/Math/Complex.pm +++ b/lib/Math/Complex.pm @@ -1,123 +1,759 @@ -package Math::Complex; +# $RCSFile$ +# +# Complex numbers and associated mathematical functions +# -- Raphael Manfredi, Sept 1996 require Exporter; +package Math::Complex; @ISA = qw(Exporter); -@ISA = ('Exporter'); - -# just to make use happy +@EXPORT = qw( + pi i Re Im arg + log10 logn cbrt root + tan cotan asin acos atan acotan + sinh cosh tanh cotanh asinh acosh atanh acotanh + cplx cplxe +); use overload - '+' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - bless [ $x1+$x2, $y1+$y2]; - }, - - '-' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - bless [ $x1-$x2, $y1-$y2]; - }, - - '*' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - bless [ $x1*$x2-$y1*$y2,$x1*$y2+$x2*$y1]; - }, - - '/' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - my $q = $x2*$x2+$y2*$y2; - bless [($x1*$x2+$y1*$y2)/$q, ($y1*$x2-$y2*$x1)/$q]; - }, - - 'neg' => sub { my($x,$y) = @{$_[0]}; bless [ -$x, -$y]; - }, - - '~' => sub { my($x,$y) = @{$_[0]}; bless [ $x, -$y]; - }, - - 'abs' => sub { my($x,$y) = @{$_[0]}; sqrt $x*$x+$y*$y; - }, - - 'cos' => sub { my($x,$y) = @{$_[0]}; - my ($ab,$c,$s) = (exp $y, cos $x, sin $x); - my $abr = 1/(2*$ab); $ab /= 2; - bless [ ($abr+$ab)*$c, ($abr-$ab)*$s]; - }, - - 'sin' => sub { my($x,$y) = @{$_[0]}; - my ($ab,$c,$s) = (exp $y, cos $x, sin $x); - my $abr = 1/(2*$ab); $ab /= 2; - bless [ (-$abr-$ab)*$s, ($abr-$ab)*$c]; - }, - - 'exp' => sub { my($x,$y) = @{$_[0]}; - my ($ab,$c,$s) = (exp $x, cos $y, sin $y); - bless [ $ab*$c, $ab*$s ]; - }, - - 'sqrt' => sub { - my($zr,$zi) = @{$_[0]}; - my ($x, $y, $r, $w); - my $c = new Math::Complex (0,0); - if (($zr == 0) && ($zi == 0)) { - # nothing, $c already set + '+' => \&plus, + '-' => \&minus, + '*' => \&multiply, + '/' => \÷, + '**' => \&power, + '<=>' => \&spaceship, + 'neg' => \&negate, + '~' => \&conjugate, + 'abs' => \&abs, + 'sqrt' => \&sqrt, + 'exp' => \&exp, + 'log' => \&log, + 'sin' => \&sin, + 'cos' => \&cos, + 'atan2' => \&atan2, + qw("" stringify); + +# +# Package globals +# + +$package = 'Math::Complex'; # Package name +$display = 'cartesian'; # Default display format + +# +# Object attributes (internal): +# cartesian [real, imaginary] -- cartesian form +# polar [rho, theta] -- polar form +# c_dirty cartesian form not up-to-date +# p_dirty polar form not up-to-date +# display display format (package's global when not set) +# + +# +# ->make +# +# Create a new complex number (cartesian form) +# +sub make { + my $self = bless {}, shift; + my ($re, $im) = @_; + $self->{cartesian} = [$re, $im]; + $self->{c_dirty} = 0; + $self->{p_dirty} = 1; + return $self; +} + +# +# ->emake +# +# Create a new complex number (exponential form) +# +sub emake { + my $self = bless {}, shift; + my ($rho, $theta) = @_; + $theta += pi() if $rho < 0; + $self->{polar} = [abs($rho), $theta]; + $self->{p_dirty} = 0; + $self->{c_dirty} = 1; + return $self; +} + +sub new { &make } # For backward compatibility only. + +# +# cplx +# +# Creates a complex number from a (re, im) tuple. +# This avoids the burden of writing Math::Complex->make(re, im). +# +sub cplx { + my ($re, $im) = @_; + return $package->make($re, $im); +} + +# +# cplxe +# +# Creates a complex number from a (rho, theta) tuple. +# This avoids the burden of writing Math::Complex->emake(rho, theta). +# +sub cplxe { + my ($rho, $theta) = @_; + return $package->emake($rho, $theta); +} + +# +# pi +# +# The number defined as 2 * pi = 360 degrees +# +sub pi () { + $pi = 4 * atan2(1, 1) unless $pi; + return $pi; +} + +# +# i +# +# The number defined as i*i = -1; +# +sub i () { + $i = bless {} unless $i; # There can be only one i + $i->{cartesian} = [0, 1]; + $i->{polar} = [1, pi/2]; + $i->{c_dirty} = 0; + $i->{p_dirty} = 0; + return $i; +} + +# +# Attribute access/set routines +# + +sub cartesian {$_[0]->{c_dirty} ? $_[0]->update_cartesian : $_[0]->{cartesian}} +sub polar {$_[0]->{p_dirty} ? $_[0]->update_polar : $_[0]->{polar}} + +sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{cartesian} = $_[1] } +sub set_polar { $_[0]->{c_dirty}++; $_[0]->{polar} = $_[1] } + +# +# ->update_cartesian +# +# Recompute and return the cartesian form, given accurate polar form. +# +sub update_cartesian { + my $self = shift; + my ($r, $t) = @{$self->{polar}}; + $self->{c_dirty} = 0; + return $self->{cartesian} = [$r * cos $t, $r * sin $t]; +} + +# +# +# ->update_polar +# +# Recompute and return the polar form, given accurate cartesian form. +# +sub update_polar { + my $self = shift; + my ($x, $y) = @{$self->{cartesian}}; + $self->{p_dirty} = 0; + return $self->{polar} = [0, 0] if $x == 0 && $y == 0; + return $self->{polar} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; +} + +# +# (plus) +# +# Computes z1+z2. +# +sub plus { + my ($z1, $z2, $regular) = @_; + my ($re1, $im1) = @{$z1->cartesian}; + my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); + unless (defined $regular) { + $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); + return $z1; + } + return (ref $z1)->make($re1 + $re2, $im1 + $im2); +} + +# +# (minus) +# +# Computes z1-z2. +# +sub minus { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = @{$z1->cartesian}; + my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); + unless (defined $inverted) { + $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); + return $z1; + } + return $inverted ? + (ref $z1)->make($re2 - $re1, $im2 - $im1) : + (ref $z1)->make($re1 - $re2, $im1 - $im2); +} + +# +# (multiply) +# +# Computes z1*z2. +# +sub multiply { + my ($z1, $z2, $regular) = @_; + my ($r1, $t1) = @{$z1->polar}; + my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); + unless (defined $regular) { + $z1->set_polar([$r1 * $r2, $t1 + $t2]); + return $z1; + } + return (ref $z1)->emake($r1 * $r2, $t1 + $t2); +} + +# +# (divide) +# +# Computes z1/z2. +# +sub divide { + my ($z1, $z2, $inverted) = @_; + my ($r1, $t1) = @{$z1->polar}; + my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi); + unless (defined $inverted) { + $z1->set_polar([$r1 / $r2, $t1 - $t2]); + return $z1; + } + return $inverted ? + (ref $z1)->emake($r2 / $r1, $t2 - $t1) : + (ref $z1)->emake($r1 / $r2, $t1 - $t2); +} + +# +# (power) +# +# Computes z1**z2 = exp(z2 * log z1)). +# +sub power { + my ($z1, $z2, $inverted) = @_; + return exp($z1 * log $z2) if defined $inverted && $inverted; + return exp($z2 * log $z1); +} + +# +# (spaceship) +# +# Computes z1 <=> z2. +# Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. +# +sub spaceship { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = @{$z1->cartesian}; + my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); + my $sgn = $inverted ? -1 : 1; + return $sgn * ($re1 <=> $re2) if $re1 != $re2; + return $sgn * ($im1 <=> $im2); +} + +# +# (negate) +# +# Computes -z. +# +sub negate { + my ($z) = @_; + if ($z->{c_dirty}) { + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake($r, pi + $t); + } + my ($re, $im) = @{$z->cartesian}; + return (ref $z)->make(-$re, -$im); +} + +# +# (conjugate) +# +# Compute complex's conjugate. +# +sub conjugate { + my ($z) = @_; + if ($z->{c_dirty}) { + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake($r, -$t); + } + my ($re, $im) = @{$z->cartesian}; + return (ref $z)->make($re, -$im); +} + +# +# (abs) +# +# Compute complex's norm (rho). +# +sub abs { + my ($z) = @_; + my ($r, $t) = @{$z->polar}; + return abs($r); +} + +# +# arg +# +# Compute complex's argument (theta). +# +sub arg { + my ($z) = @_; + return 0 unless ref $z; + my ($r, $t) = @{$z->polar}; + return $t; +} + +# +# (sqrt) +# +# Compute sqrt(z) (positive only). +# +sub sqrt { + my ($z) = @_; + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake(sqrt($r), $t/2); +} + +# +# cbrt +# +# Compute cbrt(z) (cubic root, primary only). +# +sub cbrt { + my ($z) = @_; + return $z ** (1/3) unless ref $z; + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake($r**(1/3), $t/3); +} + +# +# root +# +# Computes all nth root for z, returning an array whose size is n. +# `n' must be a positive integer. +# +# The roots are given by (for k = 0..n-1): +# +# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) +# +sub root { + my ($z, $n) = @_; + $n = int($n + 0.5); + return undef unless $n > 0; + my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); + my @root; + my $k; + my $theta_inc = 2 * pi / $n; + my $rho = $r ** (1/$n); + my $theta; + my $complex = ref($z) || $package; + for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { + push(@root, $complex->emake($rho, $theta)); } - else { - $x = abs($zr); - $y = abs($zi); - if ($x >= $y) { - $r = $y/$x; - $w = sqrt(0.5 * $x * (1.0+sqrt(1.0+$r*$r))); - } - else { - $r = $x/$y; - $w = sqrt(0.5 * ($x + $y*sqrt(1.0+$r*$r))); - } - if ( $zr >= 0) { - @$c = ($w, $zi/(2 * $w) ); - } - else { - $c->[1] = ($zi >= 0) ? $w : -$w; - $c->[0] = $zi/(2.0* $c->[1]); - } - } - return $c; - }, - - qw("" stringify) -; - -sub new { - my $class = shift; - my @C = @_; - bless \@C, $class; + return @root; } +# +# Re +# +# Return Re(z). +# sub Re { - my($x,$y) = @{$_[0]}; - $x; + my ($z) = @_; + return $z unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return $re; } +# +# Im +# +# Return Im(z). +# sub Im { - my($x,$y) = @{$_[0]}; - $y; + my ($z) = @_; + return 0 unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return $im; } -sub arg { - my($x,$y) = @{$_[0]}; - atan2($y,$x); +# +# (exp) +# +# Computes exp(z). +# +sub exp { + my ($z) = @_; + my ($x, $y) = @{$z->cartesian}; + return (ref $z)->emake(exp($x), $y); +} + +# +# (log) +# +# Compute log(z). +# +sub log { + my ($z) = @_; + my ($r, $t) = @{$z->polar}; + return (ref $z)->make(log($r), $t); +} + +# +# log10 +# +# Compute log10(z). +# +sub log10 { + my ($z) = @_; + $log10 = log(10) unless defined $log10; + return log($z) / $log10 unless ref $z; + my ($r, $t) = @{$z->polar}; + return (ref $z)->make(log($r) / $log10, $t / $log10); +} + +# +# logn +# +# Compute logn(z,n) = log(z) / log(n) +# +sub logn { + my ($z, $n) = @_; + my $logn = $logn{$n}; + $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) + return log($z) / log($n); +} + +# +# (cos) +# +# Compute cos(z) = (exp(iz) + exp(-iz))/2. +# +sub cos { + my ($z) = @_; + my ($x, $y) = @{$z->cartesian}; + my $ey = exp($y); + my $ey_1 = 1 / $ey; + return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, sin($x) * ($ey_1 - $ey)/2); +} + +# +# (sin) +# +# Compute sin(z) = (exp(iz) - exp(-iz))/2. +# +sub sin { + my ($z) = @_; + my ($x, $y) = @{$z->cartesian}; + my $ey = exp($y); + my $ey_1 = 1 / $ey; + return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, cos($x) * ($ey - $ey_1)/2); +} + +# +# tan +# +# Compute tan(z) = sin(z) / cos(z). +# +sub tan { + my ($z) = @_; + return sin($z) / cos($z); +} + +# +# cotan +# +# Computes cotan(z) = 1 / tan(z). +# +sub cotan { + my ($z) = @_; + return cos($z) / sin($z); +} + +# +# acos +# +# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). +# +sub acos { + my ($z) = @_; + my $cz = $z*$z - 1; + $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 + return ~i * log($z + sqrt $cz); # ~i is -i +} + +# +# asin +# +# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). +# +sub asin { + my ($z) = @_; + my $cz = 1 - $z*$z; + $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 + return ~i * log(i * $z + sqrt $cz); # ~i is -i +} + +# +# atan +# +# Computes the arc tagent atan(z) = i/2 log((i+z) / (i-z)). +# +sub atan { + my ($z) = @_; + return i/2 * log((i + $z) / (i - $z)); } +# +# acotan +# +# Computes the arc cotangent acotan(z) = -i/2 log((i+z) / (z-i)) +# +sub acotan { + my ($z) = @_; + return i/-2 * log((i + $z) / ($z - i)); +} + +# +# cosh +# +# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. +# +sub cosh { + my ($z) = @_; + my ($x, $y) = ref $z ? @{$z->cartesian} : ($z); + my $ex = exp($x); + my $ex_1 = 1 / $ex; + return ($ex + $ex_1)/2 unless ref $z; + return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, sin($y) * ($ex - $ex_1)/2); +} + +# +# sinh +# +# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. +# +sub sinh { + my ($z) = @_; + my ($x, $y) = ref $z ? @{$z->cartesian} : ($z); + my $ex = exp($x); + my $ex_1 = 1 / $ex; + return ($ex - $ex_1)/2 unless ref $z; + return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, sin($y) * ($ex + $ex_1)/2); +} + +# +# tanh +# +# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). +# +sub tanh { + my ($z) = @_; + return sinh($z) / cosh($z); +} + +# +# cotanh +# +# Comptutes the hyperbolic cotangent cotanh(z) = cosh(z) / sinh(z). +# +sub cotanh { + my ($z) = @_; + return cosh($z) / sinh($z); +} + +# +# acosh +# +# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). +# +sub acosh { + my ($z) = @_; + my $cz = $z*$z - 1; + $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 + return log($z + sqrt $cz); +} + +# +# asinh +# +# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) +# +sub asinh { + my ($z) = @_; + my $cz = $z*$z + 1; # Already complex if <0 + return log($z + sqrt $cz); +} + +# +# atanh +# +# Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). +# +sub atanh { + my ($z) = @_; + my $cz = (1 + $z) / (1 - $z); + $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 + return log($cz) / 2; +} + +# +# acotanh +# +# Computes the arc hyperbolic cotangent acotanh(z) = 1/2 log((1+z) / (z-1)). +# +sub acotanh { + my ($z) = @_; + my $cz = (1 + $z) / ($z - 1); + $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0 + return log($cz) / 2; +} + +# +# (atan2) +# +# Compute atan(z1/z2). +# +sub atan2 { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = @{$z1->cartesian}; + my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2); + my $tan; + if (defined $inverted && $inverted) { # atan(z2/z1) + return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0; + $tan = $z2 / $z1; + } else { + return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0; + $tan = $z1 / $z2; + } + return atan($tan); +} + +# +# display_format +# ->display_format +# +# Set (fetch if no argument) display format for all complex numbers that +# don't happen to have overrriden it via ->display_format +# +# When called as a method, this actually sets the display format for +# the current object. +# +# Valid object formats are 'c' and 'p' for cartesian and polar. The first +# letter is used actually, so the type can be fully spelled out for clarity. +# +sub display_format { + my $self = shift; + my $format = undef; + + if (ref $self) { # Called as a method + $format = shift; + } else { # Regular procedure call + $format = $self; + undef $self; + } + + if (defined $self) { + return defined $self->{display} ? $self->{display} : $display + unless defined $format; + return $self->{display} = $format; + } + + return $display unless defined $format; + return $display = $format; +} + +# +# (stringify) +# +# Show nicely formatted complex number under its cartesian or polar form, +# depending on the current display format: +# +# . If a specific display format has been recorded for this object, use it. +# . Otherwise, use the generic current default for all complex numbers, +# which is a package global variable. +# sub stringify { - my($x,$y) = @{$_[0]}; - my($re,$im); + my ($z) = shift; + my $format; + + $format = $display; + $format = $z->{display} if defined $z->{display}; + + return $z->stringify_polar if $format =~ /^p/i; + return $z->stringify_cartesian; +} + +# +# ->stringify_cartesian +# +# Stringify as a cartesian representation 'a+bi'. +# +sub stringify_cartesian { + my $z = shift; + my ($x, $y) = @{$z->cartesian}; + my ($re, $im); + + $re = "$x" if abs($x) >= 1e-14; + if ($y == 1) { $im = 'i' } + elsif ($y == -1) { $im = '-i' } + elsif (abs($y) >= 1e-14) { $im = "${y}i" } + + my $str; + $str = $re if defined $re; + $str .= "+$im" if defined $im; + $str =~ s/\+-/-/; + $str =~ s/^\+//; + $str = '0' unless $str; + + return $str; +} + +# +# ->stringify_polar +# +# Stringify as a polar representation '[r,t]'. +# +sub stringify_polar { + my $z = shift; + my ($r, $t) = @{$z->polar}; + my $theta; + + return '[0,0]' if $r <= 1e-14; - $re = $x if ($x); - if ($y == 1) {$im = 'i';} - elsif ($y == -1){$im = '-i';} - elsif ($y) {$im = $y . 'i'; } + my $tpi = 2 * pi; + my $nt = $t / $tpi; + $nt = ($nt - int($nt)) * $tpi; + $nt += $tpi if $nt < 0; # Range [0, 2pi] - local $_ = $re.'+'.$im; - s/\+-/-/; - s/^\+//; - s/[\+-]$//; - $_ = 0 if ($_ eq ''); - return $_; + if (abs($nt) <= 1e-14) { $theta = 0 } + elsif (abs(pi-$nt) <= 1e-14) { $theta = 'pi' } + + return "\[$r,$theta\]" if defined $theta; + + # + # Okay, number is not a real. Try to identify pi/n and friends... + # + + $nt -= $tpi if $nt > pi; + my ($n, $k, $kpi); + + for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { + $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); + if (abs($kpi/$n - $nt) <= 1e-14) { + $theta = ($nt < 0 ? '-':'').($k == 1 ? 'pi':"${k}pi").'/'.abs($n); + last; + } + } + + $theta = $nt unless defined $theta; + + return "\[$r,$theta\]"; } 1; @@ -125,39 +761,333 @@ __END__ =head1 NAME -Math::Complex - complex numbers package +Math::Complex - complex numbers and associated mathematical functions =head1 SYNOPSIS - use Math::Complex; - $i = new Math::Complex; + use Math::Complex; + $z = Math::Complex->make(5, 6); + $t = 4 - 3*i + $z; + $j = cplxe(1, 2*pi/3); =head1 DESCRIPTION -Complex numbers declared as +This package lets you create and manipulate complex numbers. By default, +I<Perl> limits itself to real numbers, but an extra C<use> statement brings +full complex support, along with a full set of mathematical functions +typically associated with and/or extended to complex numbers. + +If you wonder what complex numbers are, they were invented to be able to solve +the following equation: + + x*x = -1 + +and by definition, the solution is noted I<i> (engineers use I<j> instead since +I<i> usually denotes an intensity, but the name does not matter). The number +I<i> is a pure I<imaginary> number. + +The arithmetics with pure imaginary numbers works just like you would expect +it with real numbers... you just have to remember that + + i*i = -1 + +so you have: + + 5i + 7i = i * (5 + 7) = 12i + 4i - 3i = i * (4 - 3) = i + 4i * 2i = -8 + 6i / 2i = 3 + 1 / i = -i + +Complex numbers are numbers that have both a real part and an imaginary +part, and are usually noted: + + a + bi + +where C<a> is the I<real> part and C<b> is the I<imaginary> part. The +arithmetic with complex numbers is straightforward. You have to +keep track of the real and the imaginary parts, but otherwise the +rules used for real numbers just apply: + + (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i + (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i + +A graphical representation of complex numbers is possible in a plane +(also called the I<complex plane>, but it's really a 2D plane). +The number + + z = a + bi + +is the point whose coordinates are (a, b). Actually, it would +be the vector originating from (0, 0) to (a, b). It follows that the addition +of two complex numbers is a vectorial addition. + +Since there is a bijection between a point in the 2D plane and a complex +number (i.e. the mapping is unique and reciprocal), a complex number +can also be uniquely identified with polar coordinates: + + [rho, theta] + +where C<rho> is the distance to the origin, and C<theta> the angle between +the vector and the I<x> axis. There is a notation for this using the +exponential form, which is: + + rho * exp(i * theta) + +where I<i> is the famous imaginary number introduced above. Conversion +between this form and the cartesian form C<a + bi> is immediate: + + a = rho * cos(theta) + b = rho * sin(theta) + +which is also expressed by this formula: + + z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) + +In other words, it's the projection of the vector onto the I<x> and I<y> +axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> +the I<argument> of the complex number. The I<norm> of C<z> will be +noted C<abs(z)>. + +The polar notation (also known as the trigonometric +representation) is much more handy for performing multiplications and +divisions of complex numbers, whilst the cartesian notation is better +suited for additions and substractions. Real numbers are on the I<x> +axis, and therefore I<theta> is zero. + +All the common operations that can be performed on a real number have +been defined to work on complex numbers as well, and are merely +I<extensions> of the operations defined on real numbers. This means +they keep their natural meaning when there is no imaginary part, provided +the number is within their definition set. + +For instance, the C<sqrt> routine which computes the square root of +its argument is only defined for positive real numbers and yields a +positive real number (it is an application from B<R+> to B<R+>). +If we allow it to return a complex number, then it can be extended to +negative real numbers to become an application from B<R> to B<C> (the +set of complex numbers): + + sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i + +It can also be extended to be an application from B<C> to B<C>, +whilst its restriction to B<R> behaves as defined above by using +the following definition: + + sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) + +Indeed, a negative real number can be noted C<[x,pi]> +(the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a +negative number) +and the above definition states that + + sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i + +which is exactly what we had defined for negative real numbers above. - $i = Math::Complex->new(1,1); +All the common mathematical functions defined on real numbers that +are extended to complex numbers share that same property of working +I<as usual> when the imaginary part is zero (otherwise, it would not +be called an extension, would it?). -can be manipulated with overloaded math operators. The operators +A I<new> operation possible on a complex number that is +the identity for real numbers is called the I<conjugate>, and is noted +with an horizontal bar above the number, or C<~z> here. - + - * / neg ~ abs cos sin exp sqrt + z = a + bi + ~z = a - bi -are supported as well as +Simple... Now look: - "" (stringify) + z * ~z = (a + bi) * (a - bi) = a*a + b*b -The methods +We saw that the norm of C<z> was noted C<abs(z)> and was defined as the +distance to the origin, also known as: - Re Im arg + rho = abs(z) = sqrt(a*a + b*b) -are also provided. +so + + z * ~z = abs(z) ** 2 + +If z is a pure real number (i.e. C<b == 0>), then the above yields: + + a * a = abs(a) ** 2 + +which is true (C<abs> has the regular meaning for real number, i.e. stands +for the absolute value). This example explains why the norm of C<z> is +noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet +is the regular C<abs> we know when the complex number actually has no +imaginary part... This justifies I<a posteriori> our use of the C<abs> +notation for the norm. + +=head1 OPERATIONS + +Given the following notations: + + z1 = a + bi = r1 * exp(i * t1) + z2 = c + di = r2 * exp(i * t2) + z = <any complex or real number> + +the following (overloaded) operations are supported on complex numbers: + + z1 + z2 = (a + c) + i(b + d) + z1 - z2 = (a - c) + i(b - d) + z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) + z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) + z1 ** z2 = exp(z2 * log z1) + ~z1 = a - bi + abs(z1) = r1 = sqrt(a*a + b*b) + sqrt(z1) = sqrt(r1) * exp(i * t1/2) + exp(z1) = exp(a) * exp(i * b) + log(z1) = log(r1) + i*t1 + sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) + cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) + abs(z1) = r1 + atan2(z1, z2) = atan(z1/z2) + +The following extra operations are supported on both real and complex +numbers: + + Re(z) = a + Im(z) = b + arg(z) = t + + cbrt(z) = z ** (1/3) + log10(z) = log(z) / log(10) + logn(z, n) = log(z) / log(n) + + tan(z) = sin(z) / cos(z) + cotan(z) = 1 / tan(z) + + asin(z) = -i * log(i*z + sqrt(1-z*z)) + acos(z) = -i * log(z + sqrt(z*z-1)) + atan(z) = i/2 * log((i+z) / (i-z)) + acotan(z) = -i/2 * log((i+z) / (z-i)) + + sinh(z) = 1/2 (exp(z) - exp(-z)) + cosh(z) = 1/2 (exp(z) + exp(-z)) + tanh(z) = sinh(z) / cosh(z) + cotanh(z) = 1 / tanh(z) + + asinh(z) = log(z + sqrt(z*z+1)) + acosh(z) = log(z + sqrt(z*z-1)) + atanh(z) = 1/2 * log((1+z) / (1-z)) + acotanh(z) = 1/2 * log((1+z) / (z-1)) + +The I<root> function is available to compute all the I<n>th +roots of some complex, where I<n> is a strictly positive integer. +There are exactly I<n> such roots, returned as a list. Getting the +number mathematicians call C<j> such that: + + 1 + j + j*j = 0; + +is a simple matter of writing: + + $j = ((root(1, 3))[1]; + +The I<k>th root for C<z = [r,t]> is given by: + + (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) + +The I<spaceshift> operation is also defined. In order to ensure its +restriction to real numbers is conform to what you would expect, the +comparison is run on the real part of the complex number first, +and imaginary parts are compared only when the real parts match. + +=head1 CREATION + +To create a complex number, use either: + + $z = Math::Complex->make(3, 4); + $z = cplx(3, 4); + +if you know the cartesian form of the number, or + + $z = 3 + 4*i; + +if you like. To create a number using the trigonometric form, use either: + + $z = Math::Complex->emake(5, pi/3); + $x = cplxe(5, pi/3); + +instead. The first argument is the modulus, the second is the angle (in radians). +(Mnmemonic: C<e> is used as a notation for complex numbers in the trigonometric +form). + +It is possible to write: + + $x = cplxe(-3, pi/4); + +but that will be silently converted into C<[3,-3pi/4]>, since the modulus +must be positive (it represents the distance to the origin in the complex +plane). + +=head1 STRINGIFICATION + +When printed, a complex number is usually shown under its cartesian +form I<a+bi>, but there are legitimate cases where the polar format +I<[r,t]> is more appropriate. + +By calling the routine C<Math::Complex::display_format> and supplying either +C<"polar"> or C<"cartesian">, you override the default display format, +which is C<"cartesian">. Not supplying any argument returns the current +setting. + +This default can be overridden on a per-number basis by calling the +C<display_format> method instead. As before, not supplying any argument +returns the current display format for this number. Otherwise whatever you +specify will be the new display format for I<this> particular number. + +For instance: + + use Math::Complex; + + Math::Complex::display_format('polar'); + $j = ((root(1, 3))[1]; + print "j = $j\n"; # Prints "j = [1,2pi/3] + $j->display_format('cartesian'); + print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" + +The polar format attempts to emphasize arguments like I<k*pi/n> +(where I<n> is a positive integer and I<k> an integer within [-9,+9]). + +=head1 USAGE + +Thanks to overloading, the handling of arithmetics with complex numbers +is simple and almost transparent. + +Here are some examples: + + use Math::Complex; + + $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 + print "j = $j, j**3 = ", $j ** 3, "\n"; + print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; + + $z = -16 + 0*i; # Force it to be a complex + print "sqrt($z) = ", sqrt($z), "\n"; + + $k = exp(i * 2*pi/3); + print "$j - $k = ", $j - $k, "\n"; =head1 BUGS -sqrt() should return two roots, but only returns one. +Saying C<use Math::Complex;> exports many mathematical routines in the caller +environment. This is construed as a feature by the Author, actually... ;-) + +The code is not optimized for speed, although we try to use the cartesian +form for addition-like operators and the trigonometric form for all +multiplication-like operators. + +The arg() routine does not ensure the angle is within the range [-pi,+pi] +(a side effect caused by multiplication and division using the trigonometric +representation). -=head1 AUTHORS +All routines expect to be given real or complex numbers. Don't attempt to +use BigFloat, since Perl has currently no rule to disambiguate a '+' +operation (for instance) between two overloaded entities. -Dave Nadler, Tom Christiansen, Tim Bunce, Larry Wall. +=head1 AUTHOR -=cut +Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> |