summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJarkko Hietaniemi <jhi@iki.fi>1997-09-05 00:00:00 +0000
committerTim Bunce <Tim.Bunce@ig.co.uk>1997-09-05 00:00:00 +1200
commit8c03c583a5f470c68c67a27898643a5dafca2d66 (patch)
treefb0459770a78016ed548c88dd2d66e28fe6a8f28
parent687277c3db608708e6f760adc8a7c426df7f12e2 (diff)
downloadperl-8c03c583a5f470c68c67a27898643a5dafca2d66.tar.gz
5.004_02: Complex/Trig: update
The following patches do not fix actual grave errors but they do: - make the code more robust (more discontinuities catched) (e.g. atan(-i), atanh(-1)) - make the results agree on signs and/or conjugate forms with the results MATLAB gives: the results were already correct thanks to the periodicity of trig funcs but now they are also consistent. (e.g. acos(x) did have an unnecessary discontinuity at x = 0) - for some pure real arguments short-circuit the calculation to avoid rounding errors (which make epsilons appear where clear zeros should reign) Tested on NetBSD 1.2G i686, Linux 2.0.25 i686, Digital UNIX 4.0 EV56. p5p-msgid: 199708081842.VAA31214@alpha.hut.fi
-rw-r--r--lib/Math/Complex.pm127
-rw-r--r--lib/Math/Trig.pm19
-rwxr-xr-xt/lib/complex.t232
3 files changed, 345 insertions, 33 deletions
diff --git a/lib/Math/Complex.pm b/lib/Math/Complex.pm
index 7a4617c65a..33c60231aa 100644
--- a/lib/Math/Complex.pm
+++ b/lib/Math/Complex.pm
@@ -511,6 +511,27 @@ sub exp {
}
#
+# _logofzero
+#
+# Die on division by zero.
+#
+sub _logofzero {
+ my $mess = "$_[0]: Logarithm of zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the argument ";
+ $mess .= "$_[1] " unless ($_[1] eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
# (log)
#
# Compute log(z).
@@ -659,7 +680,19 @@ sub cotan { Math::Complex::cot(@_) }
sub acos {
my ($z) = @_;
$z = cplx($z, 0) unless ref $z;
- return ~i * log($z + (Re($z) * Im($z) > 0 ? 1 : -1) * sqrt($z*$z - 1));
+ my ($re, $im) = @{$z->cartesian};
+ return atan2(sqrt(1 - $re * $re), $re)
+ if ($im == 0 and abs($re) <= 1.0);
+ my $acos = ~i * log($z + sqrt($z*$z - 1));
+ if ($im == 0 ||
+ (abs($re) < 1 && abs($im) < 1) ||
+ (abs($re) > 1 && abs($im) > 1
+ && !($re > 1 && $im > 1)
+ && !($re < -1 && $im < -1))) {
+ # this rule really, REALLY, must be simpler
+ return -$acos;
+ }
+ return $acos;
}
#
@@ -670,6 +703,9 @@ sub acos {
sub asin {
my ($z) = @_;
$z = cplx($z, 0) unless ref $z;
+ my ($re, $im) = @{$z->cartesian};
+ return atan2($re, sqrt(1 - $re * $re))
+ if ($im == 0 and abs($re) <= 1.0);
return ~i * log(i * $z + sqrt(1 - $z*$z));
}
@@ -681,7 +717,8 @@ sub asin {
sub atan {
my ($z) = @_;
$z = cplx($z, 0) unless ref $z;
- _divbyzero "atan($z)", "i - $z" if ($z == i);
+ _divbyzero "atan(i)" if ( $z == i);
+ _divbyzero "atan(-i)" if (-$z == i);
return i/2*log((i + $z) / (i - $z));
}
@@ -693,18 +730,35 @@ sub atan {
sub asec {
my ($z) = @_;
_divbyzero "asec($z)", $z if ($z == 0);
- return acos(1 / $z);
+ $z = cplx($z, 0) unless ref $z;
+ my ($re, $im) = @{$z->cartesian};
+ if ($im == 0 && abs($re) >= 1.0) {
+ my $ire = 1 / $re;
+ return atan2(sqrt(1 - $ire * $ire), $ire);
+ }
+ my $asec = acos(1 / $z);
+ return ~$asec if $re < 0 && $re > -1 && $im == 0;
+ return -$asec if $im && !($re > 0 && $im > 0) && !($re < 0 && $im < 0);
+ return $asec;
}
#
# acsc
#
-# Computes the arc cosecant sec(z) = asin(1 / z).
+# Computes the arc cosecant acsc(z) = asin(1 / z).
#
sub acsc {
my ($z) = @_;
_divbyzero "acsc($z)", $z if ($z == 0);
- return asin(1 / $z);
+ $z = cplx($z, 0) unless ref $z;
+ my ($re, $im) = @{$z->cartesian};
+ if ($im == 0 && abs($re) >= 1.0) {
+ my $ire = 1 / $re;
+ return atan2($ire, sqrt(1 - $ire * $ire));
+ }
+ my $acsc = asin(1 / $z);
+ return ~$acsc if $re < 0 && $re > -1 && $im == 0;
+ return $acsc;
}
#
@@ -717,13 +771,15 @@ sub acosec { Math::Complex::acsc(@_) }
#
# acot
#
-# Computes the arc cotangent acot(z) = -i/2 log((i+z) / (z-i))
+# Computes the arc cotangent acot(z) = atan(1 / z)
#
sub acot {
my ($z) = @_;
+ _divbyzero "acot($z)" if ($z == 0);
$z = cplx($z, 0) unless ref $z;
- _divbyzero "acot($z)", "$z - i" if ($z == i);
- return i/-2 * log((i + $z) / ($z - i));
+ _divbyzero "acot(i)", if ( $z == i);
+ _divbyzero "acot(-i)" if (-$z == i);
+ return atan(1 / $z);
}
#
@@ -838,11 +894,14 @@ sub cotanh { Math::Complex::coth(@_) }
#
# acosh
#
-# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
+# Computes the arc hyperbolic cosine acosh(z) = log(z +- sqrt(z*z-1)).
#
sub acosh {
my ($z) = @_;
$z = cplx($z, 0) unless ref $z;
+ my ($re, $im) = @{$z->cartesian};
+ return log($re + sqrt(cplx($re*$re - 1, 0)))
+ if ($im == 0 && $re < 0);
return log($z + sqrt($z*$z - 1));
}
@@ -864,10 +923,14 @@ sub asinh {
#
sub atanh {
my ($z) = @_;
- _divbyzero 'atanh(1)', "1 - $z" if ($z == 1);
+ _divbyzero 'atanh(1)', "1 - $z" if ($z == 1);
+ _logofzero 'atanh(-1)' if ($z == -1);
$z = cplx($z, 0) unless ref $z;
- my $cz = (1 + $z) / (1 - $z);
- return log($cz) / 2;
+ my ($re, $im) = @{$z->cartesian};
+ if ($im == 0 && $re > 1) {
+ return cplx(atanh(1 / $re), pi/2);
+ }
+ return log((1 + $z) / (1 - $z)) / 2;
}
#
@@ -878,6 +941,12 @@ sub atanh {
sub asech {
my ($z) = @_;
_divbyzero 'asech(0)', $z if ($z == 0);
+ $z = cplx($z, 0) unless ref $z;
+ my ($re, $im) = @{$z->cartesian};
+ if ($im == 0 && $re < 0) {
+ my $ire = 1 / $re;
+ return log($ire + sqrt(cplx($ire*$ire - 1, 0)));
+ }
return acosh(1 / $z);
}
@@ -906,10 +975,14 @@ sub acosech { Math::Complex::acsch(@_) }
#
sub acoth {
my ($z) = @_;
- _divbyzero 'acoth(1)', "$z - 1" if ($z == 1);
+ _divbyzero 'acoth(1)', "$z - 1" if ($z == 1);
+ _logofzero 'acoth(-1)' if ($z == -1);
$z = cplx($z, 0) unless ref $z;
- my $cz = (1 + $z) / ($z - 1);
- return log($cz) / 2;
+ my ($re, $im) = @{$z->cartesian};
+ if ($im == 0 and abs($re) < 1) {
+ return cplx(acoth(1/$re) , pi/2);
+ }
+ return log((1 + $z) / ($z - 1)) / 2;
}
#
@@ -1295,7 +1368,7 @@ numbers:
acsc(z) = asin(1 / z)
asec(z) = acos(1 / z)
- acot(z) = -i/2 * log((i+z) / (z-i))
+ acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
sinh(z) = 1/2 (exp(z) - exp(-z))
cosh(z) = 1/2 (exp(z) + exp(-z))
@@ -1437,18 +1510,26 @@ The division (/) and the following functions
acoth
cannot be computed for all arguments because that would mean dividing
-by zero. These situations cause fatal runtime errors looking like this
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...
-For the C<csc>, C<cot>, C<asec>, C<acsc>, C<csch>, C<coth>, C<asech>,
-C<acsch>, the argument cannot be C<0> (zero). For the C<atanh>,
-C<acoth>, the argument cannot be C<1> (one). For the C<atan>, C<acot>,
-the argument cannot be C<i> (the imaginary unit). For the C<tan>,
-C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * pi>, where
-I<k> is any integer.
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
+C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
+C<atan>, C<acot>, the argument cannot be C<i> (the imaginary unit).
+For the C<atan>, C<acoth>, the argument cannot be C<-i> (the negative
+imaginary unit). For the C<tan>, C<sec>, C<tanh>, C<sech>, the
+argument cannot be I<pi/2 + k * pi>, where I<k> is any integer.
=head1 BUGS
diff --git a/lib/Math/Trig.pm b/lib/Math/Trig.pm
index c9c045d15d..a1cbb07234 100644
--- a/lib/Math/Trig.pm
+++ b/lib/Math/Trig.pm
@@ -150,17 +150,24 @@ The following functions
acoth
cannot be computed for all arguments because that would mean dividing
-by zero. These situations cause fatal runtime errors looking like this
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...
-For the C<csc>, C<cot>, C<asec>, C<acsc>, C<csch>, C<coth>, C<asech>,
-C<acsch>, the argument cannot be C<0> (zero). For the C<atanh>,
-C<acoth>, the argument cannot be C<1> (one). For the C<tan>, C<sec>,
-C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * pi>, where I<k> is
-any integer.
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
+C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
+C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
+pi>, where I<k> is any integer.
=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
diff --git a/t/lib/complex.t b/t/lib/complex.t
index 80a56254ba..c05f40f2d3 100755
--- a/t/lib/complex.t
+++ b/t/lib/complex.t
@@ -62,6 +62,21 @@ sub test_dbz {
}
}
+# test the logofzeros
+
+sub test_loz {
+ for my $op (@_) {
+ $test++;
+
+# push(@script, qq(print "# '$op'\n";));
+ push(@script, qq(eval '$op';));
+ push(@script, qq(print 'not ' unless (\$@ =~ /Logarithm of zero/);));
+ push(@script, qq(print "ok $test\n";));
+ }
+}
+
+my $minusi = cplx(0, -1);
+
test_dbz(
'i/0',
# 'tan(pi/2)', # may succeed thanks to floating point inaccuracies
@@ -69,9 +84,11 @@ test_dbz(
'csc(0)',
'cot(0)',
'atan(i)',
+ 'atan($minusi)',
'asec(0)',
'acsc(0)',
'acot(i)',
+ 'acot($minusi)',
# 'tanh(pi/2)', # may succeed thanks to floating point inaccuracies
# 'sech(pi/2)', # may succeed thanks to floating point inaccuracies
'csch(0)',
@@ -79,7 +96,12 @@ test_dbz(
'atanh(1)',
'asech(0)',
'acsch(0)',
- 'acoth(1)'
+ 'acoth(1)',
+ );
+
+test_loz(
+ 'atanh(-1)',
+ 'acoth(-1)',
);
# test the 0**0
@@ -342,7 +364,7 @@ __END__
|'z - ~z':'2*i*Im(z)'
|'z * ~z':'abs(z) * abs(z)'
-{ (2,3); [3,2]; (-3,2); (0,2); 3; 1.2; (-3, 0); (-2, -1); [2,1] }
+{ (0.5, 0); (-0.5, 0); (2,3); [3,2]; (-3,2); (0,2); 3; 1.2; (-3, 0); (-2, -1); [2,1] }
|'(root(z, 4))[1] ** 4':'z'
|'(root(z, 5))[3] ** 5':'z'
@@ -350,8 +372,8 @@ __END__
|'abs(z)':'r'
|'acot(z)':'acotan(z)'
|'acsc(z)':'acosec(z)'
-|'acsc(z)':'asin(1 / z)'
-|'asec(z)':'acos(1 / z)'
+|'abs(acsc(z))':'abs(asin(1 / z))'
+|'abs(asec(z))':'abs(acos(1 / z))'
|'cbrt(z)':'cbrt(r) * exp(i * t/3)'
|'cos(acos(z))':'z'
|'cos(z) ** 2 + sin(z) ** 2':1
@@ -409,144 +431,346 @@ __END__
|'atanh(tanh(z))':'z'
&sin
+(-2.0,0):( -0.90929742682568, 0 )
+(-1.0,0):( -0.84147098480790, 0 )
+(-0.5,0):( -0.47942553860420, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.47942553860420, 0 )
+( 1.0,0):( 0.84147098480790, 0 )
+( 2.0,0):( 0.90929742682568, 0 )
+
+&sin
( 2, 3):( 9.15449914691143, -4.16890695996656)
(-2, 3):( -9.15449914691143, -4.16890695996656)
(-2,-3):( -9.15449914691143, 4.16890695996656)
( 2,-3):( 9.15449914691143, 4.16890695996656)
&cos
+(-2.0,0):( -0.41614683654714, 0 )
+(-1.0,0):( 0.54030230586814, 0 )
+(-0.5,0):( 0.87758256189037, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 0.87758256189037, 0 )
+( 1.0,0):( 0.54030230586814, 0 )
+( 2.0,0):( -0.41614683654714, 0 )
+
+&cos
( 2, 3):( -4.18962569096881, -9.10922789375534)
(-2, 3):( -4.18962569096881, 9.10922789375534)
(-2,-3):( -4.18962569096881, -9.10922789375534)
( 2,-3):( -4.18962569096881, 9.10922789375534)
&tan
+(-2.0,0):( 2.18503986326152, 0 )
+(-1.0,0):( -1.55740772465490, 0 )
+(-0.5,0):( -0.54630248984379, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.54630248984379, 0 )
+( 1.0,0):( 1.55740772465490, 0 )
+( 2.0,0):( -2.18503986326152, 0 )
+
+&tan
( 2, 3):( -0.00376402564150, 1.00323862735361)
(-2, 3):( 0.00376402564150, 1.00323862735361)
(-2,-3):( 0.00376402564150, -1.00323862735361)
( 2,-3):( -0.00376402564150, -1.00323862735361)
&sec
+(-2.0,0):( -2.40299796172238, 0 )
+(-1.0,0):( 1.85081571768093, 0 )
+(-0.5,0):( 1.13949392732455, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 1.13949392732455, 0 )
+( 1.0,0):( 1.85081571768093, 0 )
+( 2.0,0):( -2.40299796172238, 0 )
+
+&sec
( 2, 3):( -0.04167496441114, 0.09061113719624)
(-2, 3):( -0.04167496441114, -0.09061113719624)
(-2,-3):( -0.04167496441114, 0.09061113719624)
( 2,-3):( -0.04167496441114, -0.09061113719624)
&csc
+(-2.0,0):( -1.09975017029462, 0 )
+(-1.0,0):( -1.18839510577812, 0 )
+(-0.5,0):( -2.08582964293349, 0 )
+( 0.5,0):( 2.08582964293349, 0 )
+( 1.0,0):( 1.18839510577812, 0 )
+( 2.0,0):( 1.09975017029462, 0 )
+
+&csc
( 2, 3):( 0.09047320975321, 0.04120098628857)
(-2, 3):( -0.09047320975321, 0.04120098628857)
(-2,-3):( -0.09047320975321, -0.04120098628857)
( 2,-3):( 0.09047320975321, -0.04120098628857)
&cot
+(-2.0,0):( 0.45765755436029, 0 )
+(-1.0,0):( -0.64209261593433, 0 )
+(-0.5,0):( -1.83048772171245, 0 )
+( 0.5,0):( 1.83048772171245, 0 )
+( 1.0,0):( 0.64209261593433, 0 )
+( 2.0,0):( -0.45765755436029, 0 )
+
+&cot
( 2, 3):( -0.00373971037634, -0.99675779656936)
(-2, 3):( 0.00373971037634, -0.99675779656936)
(-2,-3):( 0.00373971037634, 0.99675779656936)
( 2,-3):( -0.00373971037634, 0.99675779656936)
&asin
+(-2.0,0):( -1.57079632679490, 1.31695789692482)
+(-1.0,0):( -1.57079632679490, 0 )
+(-0.5,0):( -0.52359877559830, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.52359877559830, 0 )
+( 1.0,0):( 1.57079632679490, 0 )
+( 2.0,0):( 1.57079632679490, -1.31695789692482)
+
+&asin
( 2, 3):( 0.57065278432110, 1.98338702991654)
(-2, 3):( -0.57065278432110, 1.98338702991654)
(-2,-3):( -0.57065278432110, -1.98338702991654)
( 2,-3):( 0.57065278432110, -1.98338702991654)
&acos
+(-2.0,0):( 3.14159265358979, -1.31695789692482)
+(-1.0,0):( 3.14159265358979, 0 )
+(-0.5,0):( 2.09439510239320, 0 )
+( 0.0,0):( 1.57079632679490, 0 )
+( 0.5,0):( 1.04719755119660, 0 )
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 0 , 1.31695789692482)
+
+&acos
( 2, 3):( 1.00014354247380, -1.98338702991654)
(-2, 3):( 2.14144911111600, -1.98338702991654)
(-2,-3):( 2.14144911111600, 1.98338702991654)
( 2,-3):( 1.00014354247380, 1.98338702991654)
&atan
+(-2.0,0):( -1.10714871779409, 0 )
+(-1.0,0):( -0.78539816339745, 0 )
+(-0.5,0):( -0.46364760900081, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.46364760900081, 0 )
+( 1.0,0):( 0.78539816339745, 0 )
+( 2.0,0):( 1.10714871779409, 0 )
+
+&atan
( 2, 3):( 1.40992104959658, 0.22907268296854)
(-2, 3):( -1.40992104959658, 0.22907268296854)
(-2,-3):( -1.40992104959658, -0.22907268296854)
( 2,-3):( 1.40992104959658, -0.22907268296854)
&asec
+(-2.0,0):( 2.09439510239320, 0 )
+(-1.0,0):( 3.14159265358979, 0 )
+(-0.5,0):( 3.14159265358979, -1.31695789692482)
+( 0.5,0):( 0 , 1.31695789692482)
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 1.04719755119660, 0 )
+
+&asec
( 2, 3):( 1.42041072246703, 0.23133469857397)
(-2, 3):( 1.72118193112276, 0.23133469857397)
(-2,-3):( 1.72118193112276, -0.23133469857397)
( 2,-3):( 1.42041072246703, -0.23133469857397)
&acsc
+(-2.0,0):( -0.52359877559830, 0 )
+(-1.0,0):( -1.57079632679490, 0 )
+(-0.5,0):( -1.57079632679490, 1.31695789692482)
+( 0.5,0):( 1.57079632679490, -1.31695789692482)
+( 1.0,0):( 1.57079632679490, 0 )
+( 2.0,0):( 0.52359877559830, 0 )
+
+&acsc
( 2, 3):( 0.15038560432786, -0.23133469857397)
(-2, 3):( -0.15038560432786, -0.23133469857397)
(-2,-3):( -0.15038560432786, 0.23133469857397)
( 2,-3):( 0.15038560432786, 0.23133469857397)
&acot
+(-2.0,0):( -0.46364760900081, 0 )
+(-1.0,0):( -0.78539816339745, 0 )
+(-0.5,0):( -1.10714871779409, 0 )
+( 0.5,0):( 1.10714871779409, 0 )
+( 1.0,0):( 0.78539816339745, 0 )
+( 2.0,0):( 0.46364760900081, 0 )
+
+&acot
( 2, 3):( 0.16087527719832, -0.22907268296854)
(-2, 3):( -0.16087527719832, -0.22907268296854)
(-2,-3):( -0.16087527719832, 0.22907268296854)
( 2,-3):( 0.16087527719832, 0.22907268296854)
&sinh
+(-2.0,0):( -3.62686040784702, 0 )
+(-1.0,0):( -1.17520119364380, 0 )
+(-0.5,0):( -0.52109530549375, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.52109530549375, 0 )
+( 1.0,0):( 1.17520119364380, 0 )
+( 2.0,0):( 3.62686040784702, 0 )
+
+&sinh
( 2, 3):( -3.59056458998578, 0.53092108624852)
(-2, 3):( 3.59056458998578, 0.53092108624852)
(-2,-3):( 3.59056458998578, -0.53092108624852)
( 2,-3):( -3.59056458998578, -0.53092108624852)
&cosh
+(-2.0,0):( 3.76219569108363, 0 )
+(-1.0,0):( 1.54308063481524, 0 )
+(-0.5,0):( 1.12762596520638, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 1.12762596520638, 0 )
+( 1.0,0):( 1.54308063481524, 0 )
+( 2.0,0):( 3.76219569108363, 0 )
+
+&cosh
( 2, 3):( -3.72454550491532, 0.51182256998738)
(-2, 3):( -3.72454550491532, -0.51182256998738)
(-2,-3):( -3.72454550491532, 0.51182256998738)
( 2,-3):( -3.72454550491532, -0.51182256998738)
&tanh
+(-2.0,0):( -0.96402758007582, 0 )
+(-1.0,0):( -0.76159415595576, 0 )
+(-0.5,0):( -0.46211715726001, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.46211715726001, 0 )
+( 1.0,0):( 0.76159415595576, 0 )
+( 2.0,0):( 0.96402758007582, 0 )
+
+&tanh
( 2, 3):( 0.96538587902213, -0.00988437503832)
(-2, 3):( -0.96538587902213, -0.00988437503832)
(-2,-3):( -0.96538587902213, 0.00988437503832)
( 2,-3):( 0.96538587902213, 0.00988437503832)
&sech
+(-2.0,0):( 0.26580222883408, 0 )
+(-1.0,0):( 0.64805427366389, 0 )
+(-0.5,0):( 0.88681888397007, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 0.88681888397007, 0 )
+( 1.0,0):( 0.64805427366389, 0 )
+( 2.0,0):( 0.26580222883408, 0 )
+
+&sech
( 2, 3):( -0.26351297515839, -0.03621163655877)
(-2, 3):( -0.26351297515839, 0.03621163655877)
(-2,-3):( -0.26351297515839, -0.03621163655877)
( 2,-3):( -0.26351297515839, 0.03621163655877)
&csch
+(-2.0,0):( -0.27572056477178, 0 )
+(-1.0,0):( -0.85091812823932, 0 )
+(-0.5,0):( -1.91903475133494, 0 )
+( 0.5,0):( 1.91903475133494, 0 )
+( 1.0,0):( 0.85091812823932, 0 )
+( 2.0,0):( 0.27572056477178, 0 )
+
+&csch
( 2, 3):( -0.27254866146294, -0.04030057885689)
(-2, 3):( 0.27254866146294, -0.04030057885689)
(-2,-3):( 0.27254866146294, 0.04030057885689)
( 2,-3):( -0.27254866146294, 0.04030057885689)
&coth
+(-2.0,0):( -1.03731472072755, 0 )
+(-1.0,0):( -1.31303528549933, 0 )
+(-0.5,0):( -2.16395341373865, 0 )
+( 0.5,0):( 2.16395341373865, 0 )
+( 1.0,0):( 1.31303528549933, 0 )
+( 2.0,0):( 1.03731472072755, 0 )
+
+&coth
( 2, 3):( 1.03574663776500, 0.01060478347034)
(-2, 3):( -1.03574663776500, 0.01060478347034)
(-2,-3):( -1.03574663776500, -0.01060478347034)
( 2,-3):( 1.03574663776500, -0.01060478347034)
&asinh
+(-2.0,0):( -1.44363547517881, 0 )
+(-1.0,0):( -0.88137358701954, 0 )
+(-0.5,0):( -0.48121182505960, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.48121182505960, 0 )
+( 1.0,0):( 0.88137358701954, 0 )
+( 2.0,0):( 1.44363547517881, 0 )
+
+&asinh
( 2, 3):( 1.96863792579310, 0.96465850440760)
(-2, 3):( -1.96863792579310, 0.96465850440761)
(-2,-3):( -1.96863792579310, -0.96465850440761)
( 2,-3):( 1.96863792579310, -0.96465850440760)
&acosh
+(-2.0,0):( -1.31695789692482, 3.14159265358979)
+(-1.0,0):( 0, 3.14159265358979)
+(-0.5,0):( 0, 2.09439510239320)
+( 0.0,0):( 0, 1.57079632679490)
+( 0.5,0):( 0, 1.04719755119660)
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 1.31695789692482, 0 )
+
+&acosh
( 2, 3):( 1.98338702991654, 1.00014354247380)
(-2, 3):( -1.98338702991653, -2.14144911111600)
(-2,-3):( -1.98338702991653, 2.14144911111600)
( 2,-3):( 1.98338702991654, -1.00014354247380)
&atanh
+(-2.0,0):( -0.54930614433405, 1.57079632679490)
+(-0.5,0):( -0.54930614433405, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.54930614433405, 0 )
+( 2.0,0):( 0.54930614433405, 1.57079632679490)
+
+&atanh
( 2, 3):( 0.14694666622553, 1.33897252229449)
(-2, 3):( -0.14694666622553, 1.33897252229449)
(-2,-3):( -0.14694666622553, -1.33897252229449)
( 2,-3):( 0.14694666622553, -1.33897252229449)
&asech
+(-2.0,0):( 0 , 2.09439510239320)
+(-1.0,0):( 0 , 3.14159265358979)
+(-0.5,0):( -1.31695789692482, 3.14159265358979)
+( 0.5,0):( 1.31695789692482, 0 )
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 0 , 1.04719755119660)
+
+&asech
( 2, 3):( 0.23133469857397, -1.42041072246703)
(-2, 3):( -0.23133469857397, 1.72118193112276)
(-2,-3):( -0.23133469857397, -1.72118193112276)
( 2,-3):( 0.23133469857397, 1.42041072246703)
&acsch
+(-2.0,0):( -0.48121182505960, 0 )
+(-1.0,0):( -0.88137358701954, 0 )
+(-0.5,0):( -1.44363547517881, 0 )
+( 0.5,0):( 1.44363547517881, 0 )
+( 1.0,0):( 0.88137358701954, 0 )
+( 2.0,0):( 0.48121182505960, 0 )
+
+&acsch
( 2, 3):( 0.15735549884499, -0.22996290237721)
(-2, 3):( -0.15735549884499, -0.22996290237721)
(-2,-3):( -0.15735549884499, 0.22996290237721)
( 2,-3):( 0.15735549884499, 0.22996290237721)
&acoth
+(-2.0,0):( -0.54930614433405, 0 )
+(-0.5,0):( -0.54930614433405, 1.57079632679490)
+( 0.5,0):( 0.54930614433405, 1.57079632679490)
+( 2.0,0):( 0.54930614433405, 0 )
+
+&acoth
( 2, 3):( 0.14694666622553, -0.23182380450040)
(-2, 3):( -0.14694666622553, -0.23182380450040)
(-2,-3):( -0.14694666622553, 0.23182380450040)