summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter John Acklam <pjacklam@online.no>2011-01-02 13:13:31 -0800
committerFather Chrysostomos <sprout@cpan.org>2011-01-02 14:31:23 -0800
commit487de07a0a3bad1b47206a54968c2b33bde81618 (patch)
treedf8b241f66864ec64a490dc0e14095db7515c252
parent4b24804c085ea7ddbc20fa745c8d326ab5e21f36 (diff)
downloadperl-487de07a0a3bad1b47206a54968c2b33bde81618.tar.gz
[perl #81400] Fix bmodinv() part of RT 63237
The following standard definition is used: z is the modular inverse of x (mod y) if and only if x*z (mod y) = 1 (mod y). - dist/Math-BigInt/lib/Math/BigInt.pm: Fix the code in bmodinv() so it can handle negative arguments. The code can be optimized further for speed, but correctnes first. - dist/Math-BigInt/t/bigintpm.inc: Fix the test case for modinv(-3, -5). The output should be -3, since -3 * -3 (mod -5) = -9 (mod -5) = -4, and 1 (mod -5) = -4. - dist/Math-BigRat/t/bigratpm.inc: Fix same test case as above. Math::BigRat::bmodinv() only handles integers, and is essentially just a front-end to Math::BigInt::bmodinv().
-rw-r--r--dist/Math-BigInt/lib/Math/BigInt.pm97
-rw-r--r--dist/Math-BigInt/t/bigintpm.inc2
-rw-r--r--dist/Math-BigRat/t/bigratpm.inc2
3 files changed, 74 insertions, 27 deletions
diff --git a/dist/Math-BigInt/lib/Math/BigInt.pm b/dist/Math-BigInt/lib/Math/BigInt.pm
index 3e9196a985..52acc7a682 100644
--- a/dist/Math-BigInt/lib/Math/BigInt.pm
+++ b/dist/Math-BigInt/lib/Math/BigInt.pm
@@ -1785,10 +1785,12 @@ sub bmod
sub bmodinv
{
- # Modular inverse. given a number which is (hopefully) relatively
- # prime to the modulus, calculate its inverse using Euclid's
- # algorithm. If the number is not relatively prime to the modulus
- # (i.e. their gcd is not one) then NaN is returned.
+ # Return modular multiplicative inverse: z is the modular inverse of x (mod
+ # y) if and only if x*z (mod y) = 1 (mod y). If the modulus y is larger than
+ # one, x and z are relative primes (i.e., their greatest common divisor is
+ # one).
+ #
+ # If no modular multiplicative inverse exists, NaN is returned.
# set up parameters
my ($self,$x,$y,@r) = (undef,@_);
@@ -1800,22 +1802,58 @@ sub bmodinv
return $x if $x->modify('bmodinv');
- return $x->bnan()
- if ($y->{sign} ne '+' # -, NaN, +inf, -inf
- || $x->is_zero() # or num == 0
- || $x->{sign} !~ /^[+-]$/ # or num NaN, inf, -inf
- );
-
- # put least residue into $x if $x was negative, and thus make it positive
- $x->bmod($y) if $x->{sign} eq '-';
-
- my $sign;
- ($x->{value},$sign) = $CALC->_modinv($x->{value},$y->{value});
- return $x->bnan() if !defined $x->{value}; # in case no GCD found
- return $x if !defined $sign; # already real result
- $x->{sign} = $sign; # flip/flop see below
- $x->bmod($y); # calc real result
- $x;
+ # Return NaN if one or both arguments is +inf, -inf, or nan.
+
+ return $x->bnan() if ($y->{sign} !~ /^[+-]$/ ||
+ $x->{sign} !~ /^[+-]$/);
+
+ # Return NaN if $y is zero; 1 % 0 makes no sense.
+
+ return $x->bnan() if $y->is_zero();
+
+ # Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite
+ # integers $x.
+
+ return $x->bzero() if ($y->is_one() ||
+ $y->is_one('-'));
+
+ # Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when
+ # $x = 0 is when $y = 1 or $y = -1, but that was covered above.
+ #
+ # Note that computing $x modulo $y here affects the value we'll feed to
+ # $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x =
+ # 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and
+ # $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7.
+ # The value if $x is affected only when $x and $y have opposite signs.
+
+ $x->bmod($y);
+ return $x->bnan() if $x->is_zero();
+
+ # Compute the modular multiplicative inverse of the absolute values. We'll
+ # correct for the signs of $x and $y later. Return NaN if no GCD is found.
+
+ ($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value});
+ return $x->bnan() if !defined $x->{value};
+
+ # When one or both arguments are negative, we have the following
+ # relations. If x and y are positive:
+ #
+ # modinv(-x, -y) = -modinv(x, y)
+ # modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y)
+ # modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y)
+
+ # We must swap the sign of the result if the original $x is negative.
+ # However, we must compensate for ignoring the signs when computing the
+ # inverse modulo. The net effect is that we must swap the sign of the
+ # result if $y is negative.
+
+ $x -> bneg() if $y->{sign} eq '-';
+
+ # Compute $x modulo $y again after correcting the sign.
+
+ $x -> bmod($y) if $x->{sign} ne $y->{sign};
+
+ return $x;
}
sub bmodpow
@@ -3175,7 +3213,7 @@ Math::BigInt - Arbitrary size integer/float math package
$x->bmod($y); # modulus (x % y)
$x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
- $x->bmodinv($mod); # the inverse of $x in the given modulus $mod
+ $x->bmodinv($mod); # the multiplicative inverse of $x modulo $mod
$x->bpow($y); # power of arguments (x ** y)
$x->blsft($y); # left shift in base 2
@@ -3694,11 +3732,20 @@ This method was added in v1.87 of Math::BigInt (June 2007).
=head2 bmodinv()
- num->bmodinv($mod); # modular inverse
+ $x->bmodinv($mod); # modular multiplicative inverse
+
+Returns the multiplicative inverse of C<$x> modulo C<$mod>. If
+
+ $y = $x -> copy() -> bmodinv($mod)
+
+then C<$y> is the number closest to zero, and with the same sign as C<$mod>,
+satisfying
+
+ ($x * $y) % $mod = 1 % $mod
-Returns the inverse of C<$num> in the given modulus C<$mod>. 'C<NaN>' is
-returned unless C<$num> is relatively prime to C<$mod>, i.e. unless
-C<bgcd($num, $mod)==1>.
+If C<$x> and C<$y> are non-zero, they must be relative primes, i.e.,
+C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative
+inverse exists.
=head2 bmodpow()
diff --git a/dist/Math-BigInt/t/bigintpm.inc b/dist/Math-BigInt/t/bigintpm.inc
index e8460041a6..822b44610e 100644
--- a/dist/Math-BigInt/t/bigintpm.inc
+++ b/dist/Math-BigInt/t/bigintpm.inc
@@ -1704,13 +1704,13 @@ abc:5:NaN
# bmodinv Expected Results from normal use
1:5:1
3:5:2
+3:-5:-3
-2:5:2
8:5033:4404
1234567891:13:6
-1234567891:13:7
324958749843759385732954874325984357439658735983745:2348249874968739:1741662881064902
## bmodinv Error cases / useless use of function
-3:-5:NaN
inf:5:NaN
5:inf:NaN
-inf:5:NaN
diff --git a/dist/Math-BigRat/t/bigratpm.inc b/dist/Math-BigRat/t/bigratpm.inc
index 13ec6240d8..de5e9e1687 100644
--- a/dist/Math-BigRat/t/bigratpm.inc
+++ b/dist/Math-BigRat/t/bigratpm.inc
@@ -185,13 +185,13 @@ abc:5:NaN
# bmodinv Expected Results from normal use
1:5:1
3:5:2
+3:-5:-3
-2:5:2
8:5033:4404
1234567891:13:6
-1234567891:13:7
324958749843759385732954874325984357439658735983745:2348249874968739:1741662881064902
## bmodinv Error cases / useless use of function
-3:-5:NaN
inf:5:NaN
5:inf:NaN
-inf:5:NaN