summaryrefslogtreecommitdiff
path: root/cpan/Text-Balanced
diff options
context:
space:
mode:
authorNicholas Clark <nick@ccl4.org>2009-10-02 16:29:35 +0100
committerNicholas Clark <nick@ccl4.org>2009-10-02 16:29:35 +0100
commite916ef552ee31bfadefeb6b7752fce6b84326b26 (patch)
treec3d5a309459eeee4c5f4d30d987633c1498e7553 /cpan/Text-Balanced
parente0ee75a6976f08f9bc3868227f1cd11ab6507895 (diff)
downloadperl-e916ef552ee31bfadefeb6b7752fce6b84326b26.tar.gz
Move Text::Balanced from ext/ to cpan/
Diffstat (limited to 'cpan/Text-Balanced')
-rw-r--r--cpan/Text-Balanced/Changes234
-rw-r--r--cpan/Text-Balanced/README1066
-rw-r--r--cpan/Text-Balanced/lib/Text/Balanced.pm2281
-rw-r--r--cpan/Text-Balanced/t/01_compile.t11
-rw-r--r--cpan/Text-Balanced/t/02_extbrk.t76
-rw-r--r--cpan/Text-Balanced/t/03_extcbk.t95
-rw-r--r--cpan/Text-Balanced/t/04_extdel.t90
-rw-r--r--cpan/Text-Balanced/t/05_extmul.t319
-rw-r--r--cpan/Text-Balanced/t/06_extqlk.t135
-rw-r--r--cpan/Text-Balanced/t/07_exttag.t113
-rw-r--r--cpan/Text-Balanced/t/08_extvar.t153
-rw-r--r--cpan/Text-Balanced/t/09_gentag.t102
12 files changed, 4675 insertions, 0 deletions
diff --git a/cpan/Text-Balanced/Changes b/cpan/Text-Balanced/Changes
new file mode 100644
index 0000000000..640686e79b
--- /dev/null
+++ b/cpan/Text-Balanced/Changes
@@ -0,0 +1,234 @@
+Revision history for Perl extension Text-Balanced.
+
+2.02 Thu 20 Jul 2009
+ - Fixed the mixed "Damian Conway <adamk@cpan.org>" AUTHOR setting.
+ For the record, I am NOT the author, I'm just the maintainer.
+ Unfortunately, Makefile.PL does not have a MAINTAINER setting and
+ this way all the emails about this module come to me.
+
+2.01 Tue 28 Jul 2009
+ - Taken over by Adam Kennedy to move it to a long-term maintenance mode
+ - Removing use warnings to restore 5.005 compatibility
+ - Removing Module::Build for higher back-compatibility
+ - Removing version.pm for higher back-compatibility
+ - use Exporter -> use Exporter () to avoid some pathalogical cases
+ - Upgraded the bundled author tests to be friendlier
+ - Changes order now a more normal reverse chronological
+
+2.0.0 Wed Dec 20 10:50:24 2006
+ - Added patches from bleadperl version (thanks Rafael!)
+ - Fixed bug in second bracketed delimiters (thanks David)
+
+1.99.1 Thu Nov 16 09:29:14 2006
+ - Included dependency on version.pm (thanks Andy)
+
+1.99.0 Thu Nov 16 07:32:06 2006
+ - Removed reliance on expensive $& variable (thanks John)
+ - Made Makefile.PL play nice with core versions (thanks Schwern!)
+
+1.98 Fri May 5 14:58:49 2006
+ - Reinstated full test suite (thanks Steve!)
+
+1.97 Mon May 1 21:58:04 2006
+ - Removed three-part version number and dependency on version.pm
+
+1.96.0 Mon May 1 21:52:37 2006
+ - Fixed major bug in extract_multiple handling of unknowns
+ - Fixed return value on failure (thanks Eric)
+ - Fixed bug differentiating heredocs and left-shift operators
+ (thanks Anthony)
+
+1.95 Mon Apr 28 00:22:04 2003
+ - Constrainted _match_quote to only match at word boundaries
+ (so "exemplum(hic)" doesn't match "m(hic)")
+ (thanks Craig)
+
+1.94 Sun Apr 13 02:18:41 2003
+ - rereleased in attempt to fix CPAN problems
+
+1.91 Fri Mar 28 23:19:17 2003
+ - Fixed error count on t/extract_variable.t
+ - Fixed bug in extract_codelike when non-standard delimiters used
+
+1.90 Tue Mar 25 11:14:38 2003
+ - Fixed subtle bug in gen_extract_tagged (thanks Martin)
+ - Doc fix: removed suggestion that extract_tagged defaults
+ to matching HTML tags
+ - Doc fix: clarified general matching behaviour
+ - Fixed bug in parsing /.../ after a (
+ - Doc fix: documented extract_variable
+ - Fixed extract_variable handling of $h{qr}, $h{tr}, etc.
+ (thanks, Briac)
+ - Fixed incorrect handling of $::var (thanks Tim)
+
+1.89 Sun Nov 18 22:49:50 2001
+ - Fixed extvar.t tests
+
+1.87 Thu Nov 15 21:25:35 2001
+ - Made extract_multiple aware of skipped prefixes returned
+ by subroutine extractors (such as extract_quotelike, etc.)
+ - Made extract_variable aware of punctuation variables
+ - Corified tests
+
+1.86 Mon Sep 3 06:57:08 2001
+ - Revised licence for inclusion in core distribution
+ - Consolidated POD in .pm file
+ - renamed tests to let DOS cope with them
+
+1.85 Sun Jun 3 07:47:18 2001
+ - Fixed bug in extract_variable recognizing method calls that
+ start with an underscore (thanks Jeff)
+
+1.82 Sun Jan 14 16:56:04 2001
+ - Fixed nit in extract_variable.t
+ (tested more cases than it promised to)
+ - Fixed bug extracting prefix in extract_quotelike (Thanks Michael)
+ - Added handling of Perl 4 package qualifier: $Package'var, etc.
+ - Added handling of here docs (see documentation for limitations)
+ - Added reporting of failure position via $@->{pos} (see documentation)
+
+1.84 Thu Apr 26 11:58:13 2001
+ - Fixed bug in certain extractions not matching strings
+ with embedded newlines (thanks Robin)
+
+1.83 Mon Jan 15 12:43:12 2001
+ - Fixed numerous bugs in here doc extraction (many thanks Tim)
+
+1.81 Wed Sep 13 11:58:49 2000
+ - Fixed test count in extract_codeblock.t
+ - Fixed improbable bug with trailing ->'s in extract_variable
+ - Fixed (HT|X)ML tag extraction in extract_tagged (thanks, Tim)
+ - Added explanatory note about prefix matching (thanks again, Tim)
+ - Added handling of globs and sub refs to extract_variable
+ - Pod tweak (thanks Abigail)
+ - Allowed right tags to be run-time evaluated, so
+ extract_tagged($text, '/([a-z]+)', '/end$1') works
+ as expected.
+ - Added optional blessing of matches via extract_multiple
+ - Fixed bug in autogeneration of closing tags in extract_tagged
+ (Thanks, Coke)
+ - Fixed bug in interaction between extract_multiple and
+ gen_extract_tagged (Thanks Anthony)
+
+1.77 Mon Nov 22 06:08:23 1999
+ - Fixed major bug in extract_codeblock (would not
+ terminate if there was trailing whitespace)
+ - Improved /.../ pattern parsing within codeblocks
+
+1.76 Fri Nov 19 06:51:54 1999
+ - IMPORTANT: Now requires 5.005 or better.
+ - IMPORTANT: Made extract methods sensitive to the pos()
+ value of the text they are parsing. In other words,
+ all extract subroutines now act like patterns of the form
+ /\G.../gc. See documentation for details.
+ - IMPORTANT: Changed semantics of extract_multiple, in line
+ with the above change, and to simplify the semantics to
+ something vaguely predictable. See documentation for details.
+ - Added ability to use qr/../'s and raw strings as extractors
+ in extract_multiple. See documentation.
+ - Added fourth argument to extract_codeblock to allow
+ outermost brackets to be separately specified. See
+ documentation for details.
+ - Reimplemented internals of all extraction subroutines
+ for significant speed-ups (between 100% and 2000%
+ improvement).
+ - Fixed nasty bug in extract_variable and extract_codeblock
+ (they were returning prefix as well in scalar context)
+ - Allowed read-only strings to be used as arguments in
+ scalar contexts.
+ - Renamed delimited_pat to gen-delimited pat (in line with
+ gen_extract_tagged). Old name still works, but is now deprecated.
+ - Tweaked all extraction subs so they correctly handle
+ zero-length prefix matches after another zero-length match.
+
+1.66 Fri Jul 2 13:29:22 1999
+ - Added ability to use quotelike operators in extract_bracketed
+ - Fixed bug under 5.003 ('foreach my $func' not understood)
+ - Added escape specification as fourth arg to &extract_delimited
+ - Fixed handling of &delimited_pat and &extract_delimited
+ when delimiter is same as escape
+ - Fixed handling of ->, =>, and >> in &extract_code
+ when delimiters are "<>"
+
+1.52 Thu Mar 4 12:43:38 1999
+ - Added CSV parsing example to documentation of extract_multiple.
+ - Fixed a bug with extract_codeblock in "RecDescent" mode
+ (it would accept "subrule(s?)" and "subrule(?)", but
+ not "subrule(s)"). Thanks, Jan.
+
+1.51 Sat Feb 13 10:31:55 1999
+ - Fixed bugs in prefix matching in extract_variable:
+ * incorrectly used default if '' specified
+ * now handles $#array correctly
+ - Fixed bugs in extract_codeblock:
+ * Now handles !~ properly
+ * Now handles embedded comments better.
+ * Now handles "raw" pattern matches better.
+ - Added support for single strings or qr's as
+ 'reject' and 'ignore' args to extract_tagged()
+ - Added gen_extract_tagged() to "precompile"
+ a specific tag extractor for repeated use
+ (approximately 3 times faster!)
+
+1.50 Thu Aug 27 09:20:19 1998
+ - Improved the structure of the regex generated by
+ delimited_pat (and used in extract_delimited). It's
+ considerably more complex, but also more robust and
+ much faster in the worst case.
+ - Altered extract_variable to accept whitespace in variables,
+ e.g. '$ a -> {'b'} -> [2]'
+
+1.41 Mon Aug 10 14:51:50 1998
+ - Reinstated change to extract_codeblock from 1.36 which were
+ mysteriously lost in 1.40
+
+1.40 Tue Aug 4 13:54:52 1998
+ - Added (optional) handling of embedded quoted text to
+ extract_delimited (see revised entry in Balanced.pod)
+ - Added extract_tagged which extracts text between arbitrary,
+ optionally nested start and end tags (see new entry in
+ Balanced.pod).
+ - Added delimited_pat which builds a pattern which matches a
+ string delimited by any of the delimiters specified (see new
+ entry in Balanced.pod).
+ - Added test.pl
+
+1.36 Tue Jul 14 12:26:04 1998
+ - Reinstated POD file missing from previous distribution
+ - Added undocumented fourth parameter to extract_codeblock
+ so as to correctly handle (?) and (s?) modifiers in
+ RecDescent grammars.
+
+1.35 Wed Jun 24 09:53:31 1998
+ - fixed handling of :: quantifiers in extract_variable()
+ - numerous trivial lexical changes to make xemacs happy
+
+1.24
+ - changed behaviour in scalar contexts. Scalar contexts
+ now return the extracted string _and_ remove it from the
+ first argument (or $_).
+ - changed return values on failure (all contexts return undef
+ for invalid return fields)
+ - fixed some lurking bugs with trailing modifier handling
+ - added :ALL tag to simplify wholesale importing of functions
+ - fixed serious bug with embedded division operators ("/")
+ This now also allows the ?...? form of pattern matching!
+
+1.23 Fri Oct 17 10:26:38 EST 1997
+ - changed behaviour in scalar and void contexts. Scalar contexts
+ now return only the extracted string. Void contexts now remove
+ the extracted string from the first argument (or $_).
+
+1.21 Sat Oct 4 17:21:54 EST 1997
+ - synchronised with Parse::RecDescent distribution (version number
+ will now reflect that package)
+
+1.10 Tue Sep 30 17:23:23 EST 1997
+ - reworked extract_quotelike to correct handling of some obscure cases
+
+1.01 Mon Sep 8 18:09:18 EST 1997
+ - changed "quotemeta" to "quotemeta $_" to work
+ around bug in Perl 5.002 and 5.003
+
+1.00 Mon Aug 11 12:42:56 1997
+ - original version
diff --git a/cpan/Text-Balanced/README b/cpan/Text-Balanced/README
new file mode 100644
index 0000000000..f5f48edced
--- /dev/null
+++ b/cpan/Text-Balanced/README
@@ -0,0 +1,1066 @@
+NAME
+ Text::Balanced - Extract delimited text sequences from strings.
+
+SYNOPSIS
+ use Text::Balanced qw (
+ extract_delimited
+ extract_bracketed
+ extract_quotelike
+ extract_codeblock
+ extract_variable
+ extract_tagged
+ extract_multiple
+ gen_delimited_pat
+ gen_extract_tagged
+ );
+
+ # Extract the initial substring of $text that is delimited by
+ # two (unescaped) instances of the first character in $delim.
+
+ ($extracted, $remainder) = extract_delimited($text,$delim);
+
+
+ # Extract the initial substring of $text that is bracketed
+ # with a delimiter(s) specified by $delim (where the string
+ # in $delim contains one or more of '(){}[]<>').
+
+ ($extracted, $remainder) = extract_bracketed($text,$delim);
+
+
+ # Extract the initial substring of $text that is bounded by
+ # an XML tag.
+
+ ($extracted, $remainder) = extract_tagged($text);
+
+
+ # Extract the initial substring of $text that is bounded by
+ # a C<BEGIN>...C<END> pair. Don't allow nested C<BEGIN> tags
+
+ ($extracted, $remainder) =
+ extract_tagged($text,"BEGIN","END",undef,{bad=>["BEGIN"]});
+
+
+ # Extract the initial substring of $text that represents a
+ # Perl "quote or quote-like operation"
+
+ ($extracted, $remainder) = extract_quotelike($text);
+
+
+ # Extract the initial substring of $text that represents a block
+ # of Perl code, bracketed by any of character(s) specified by $delim
+ # (where the string $delim contains one or more of '(){}[]<>').
+
+ ($extracted, $remainder) = extract_codeblock($text,$delim);
+
+
+ # Extract the initial substrings of $text that would be extracted by
+ # one or more sequential applications of the specified functions
+ # or regular expressions
+
+ @extracted = extract_multiple($text,
+ [ \&extract_bracketed,
+ \&extract_quotelike,
+ \&some_other_extractor_sub,
+ qr/[xyz]*/,
+ 'literal',
+ ]);
+
+ # Create a string representing an optimized pattern (a la Friedl) # that
+ matches a substring delimited by any of the specified characters # (in
+ this case: any type of quote or a slash)
+
+ $patstring = gen_delimited_pat(q{'"`/});
+
+ # Generate a reference to an anonymous sub that is just like
+ extract_tagged # but pre-compiled and optimized for a specific pair of
+ tags, and consequently # much faster (i.e. 3 times faster). It uses qr//
+ for better performance on # repeated calls, so it only works under Perl
+ 5.005 or later.
+
+ $extract_head = gen_extract_tagged('<HEAD>','</HEAD>');
+
+ ($extracted, $remainder) = $extract_head->($text);
+
+DESCRIPTION
+ The various "extract_..." subroutines may be used to extract a delimited
+ substring, possibly after skipping a specified prefix string. By
+ default, that prefix is optional whitespace ("/\s*/"), but you can
+ change it to whatever you wish (see below).
+
+ The substring to be extracted must appear at the current "pos" location
+ of the string's variable (or at index zero, if no "pos" position is
+ defined). In other words, the "extract_..." subroutines *don't* extract
+ the first occurrence of a substring anywhere in a string (like an
+ unanchored regex would). Rather, they extract an occurrence of the
+ substring appearing immediately at the current matching position in the
+ string (like a "\G"-anchored regex would).
+
+ General behaviour in list contexts
+ In a list context, all the subroutines return a list, the first three
+ elements of which are always:
+
+ [0] The extracted string, including the specified delimiters. If the
+ extraction fails "undef" is returned.
+
+ [1] The remainder of the input string (i.e. the characters after the
+ extracted string). On failure, the entire string is returned.
+
+ [2] The skipped prefix (i.e. the characters before the extracted
+ string). On failure, "undef" is returned.
+
+ Note that in a list context, the contents of the original input text
+ (the first argument) are not modified in any way.
+
+ However, if the input text was passed in a variable, that variable's
+ "pos" value is updated to point at the first character after the
+ extracted text. That means that in a list context the various
+ subroutines can be used much like regular expressions. For example:
+
+ while ( $next = (extract_quotelike($text))[0] )
+ {
+ # process next quote-like (in $next)
+ }
+
+ General behaviour in scalar and void contexts
+ In a scalar context, the extracted string is returned, having first been
+ removed from the input text. Thus, the following code also processes
+ each quote-like operation, but actually removes them from $text:
+
+ while ( $next = extract_quotelike($text) )
+ {
+ # process next quote-like (in $next)
+ }
+
+ Note that if the input text is a read-only string (i.e. a literal), no
+ attempt is made to remove the extracted text.
+
+ In a void context the behaviour of the extraction subroutines is exactly
+ the same as in a scalar context, except (of course) that the extracted
+ substring is not returned.
+
+ A note about prefixes
+ Prefix patterns are matched without any trailing modifiers ("/gimsox"
+ etc.) This can bite you if you're expecting a prefix specification like
+ '.*?(?=<H1>)' to skip everything up to the first <H1> tag. Such a prefix
+ pattern will only succeed if the <H1> tag is on the current line, since
+ . normally doesn't match newlines.
+
+ To overcome this limitation, you need to turn on /s matching within the
+ prefix pattern, using the "(?s)" directive: '(?s).*?(?=<H1>)'
+
+ "extract_delimited"
+ The "extract_delimited" function formalizes the common idiom of
+ extracting a single-character-delimited substring from the start of a
+ string. For example, to extract a single-quote delimited string, the
+ following code is typically used:
+
+ ($remainder = $text) =~ s/\A('(\\.|[^'])*')//s;
+ $extracted = $1;
+
+ but with "extract_delimited" it can be simplified to:
+
+ ($extracted,$remainder) = extract_delimited($text, "'");
+
+ "extract_delimited" takes up to four scalars (the input text, the
+ delimiters, a prefix pattern to be skipped, and any escape characters)
+ and extracts the initial substring of the text that is appropriately
+ delimited. If the delimiter string has multiple characters, the first
+ one encountered in the text is taken to delimit the substring. The third
+ argument specifies a prefix pattern that is to be skipped (but must be
+ present!) before the substring is extracted. The final argument
+ specifies the escape character to be used for each delimiter.
+
+ All arguments are optional. If the escape characters are not specified,
+ every delimiter is escaped with a backslash ("\"). If the prefix is not
+ specified, the pattern '\s*' - optional whitespace - is used. If the
+ delimiter set is also not specified, the set "/["'`]/" is used. If the
+ text to be processed is not specified either, $_ is used.
+
+ In list context, "extract_delimited" returns a array of three elements,
+ the extracted substring (*including the surrounding delimiters*), the
+ remainder of the text, and the skipped prefix (if any). If a suitable
+ delimited substring is not found, the first element of the array is the
+ empty string, the second is the complete original text, and the prefix
+ returned in the third element is an empty string.
+
+ In a scalar context, just the extracted substring is returned. In a void
+ context, the extracted substring (and any prefix) are simply removed
+ from the beginning of the first argument.
+
+ Examples:
+
+ # Remove a single-quoted substring from the very beginning of $text:
+
+ $substring = extract_delimited($text, "'", '');
+
+ # Remove a single-quoted Pascalish substring (i.e. one in which
+ # doubling the quote character escapes it) from the very
+ # beginning of $text:
+
+ $substring = extract_delimited($text, "'", '', "'");
+
+ # Extract a single- or double- quoted substring from the
+ # beginning of $text, optionally after some whitespace
+ # (note the list context to protect $text from modification):
+
+ ($substring) = extract_delimited $text, q{"'};
+
+ # Delete the substring delimited by the first '/' in $text:
+
+ $text = join '', (extract_delimited($text,'/','[^/]*')[2,1];
+
+ Note that this last example is *not* the same as deleting the first
+ quote-like pattern. For instance, if $text contained the string:
+
+ "if ('./cmd' =~ m/$UNIXCMD/s) { $cmd = $1; }"
+
+ then after the deletion it would contain:
+
+ "if ('.$UNIXCMD/s) { $cmd = $1; }"
+
+ not:
+
+ "if ('./cmd' =~ ms) { $cmd = $1; }"
+
+ See "extract_quotelike" for a (partial) solution to this problem.
+
+ "extract_bracketed"
+ Like "extract_delimited", the "extract_bracketed" function takes up to
+ three optional scalar arguments: a string to extract from, a delimiter
+ specifier, and a prefix pattern. As before, a missing prefix defaults to
+ optional whitespace and a missing text defaults to $_. However, a
+ missing delimiter specifier defaults to '{}()[]<>' (see below).
+
+ "extract_bracketed" extracts a balanced-bracket-delimited substring
+ (using any one (or more) of the user-specified delimiter brackets:
+ '(..)', '{..}', '[..]', or '<..>'). Optionally it will also respect
+ quoted unbalanced brackets (see below).
+
+ A "delimiter bracket" is a bracket in list of delimiters passed as
+ "extract_bracketed"'s second argument. Delimiter brackets are specified
+ by giving either the left or right (or both!) versions of the required
+ bracket(s). Note that the order in which two or more delimiter brackets
+ are specified is not significant.
+
+ A "balanced-bracket-delimited substring" is a substring bounded by
+ matched brackets, such that any other (left or right) delimiter bracket
+ *within* the substring is also matched by an opposite (right or left)
+ delimiter bracket *at the same level of nesting*. Any type of bracket
+ not in the delimiter list is treated as an ordinary character.
+
+ In other words, each type of bracket specified as a delimiter must be
+ balanced and correctly nested within the substring, and any other kind
+ of ("non-delimiter") bracket in the substring is ignored.
+
+ For example, given the string:
+
+ $text = "{ an '[irregularly :-(] {} parenthesized >:-)' string }";
+
+ then a call to "extract_bracketed" in a list context:
+
+ @result = extract_bracketed( $text, '{}' );
+
+ would return:
+
+ ( "{ an '[irregularly :-(] {} parenthesized >:-)' string }" , "" , "" )
+
+ since both sets of '{..}' brackets are properly nested and evenly
+ balanced. (In a scalar context just the first element of the array would
+ be returned. In a void context, $text would be replaced by an empty
+ string.)
+
+ Likewise the call in:
+
+ @result = extract_bracketed( $text, '{[' );
+
+ would return the same result, since all sets of both types of specified
+ delimiter brackets are correctly nested and balanced.
+
+ However, the call in:
+
+ @result = extract_bracketed( $text, '{([<' );
+
+ would fail, returning:
+
+ ( undef , "{ an '[irregularly :-(] {} parenthesized >:-)' string }" );
+
+ because the embedded pairs of '(..)'s and '[..]'s are "cross-nested" and
+ the embedded '>' is unbalanced. (In a scalar context, this call would
+ return an empty string. In a void context, $text would be unchanged.)
+
+ Note that the embedded single-quotes in the string don't help in this
+ case, since they have not been specified as acceptable delimiters and
+ are therefore treated as non-delimiter characters (and ignored).
+
+ However, if a particular species of quote character is included in the
+ delimiter specification, then that type of quote will be correctly
+ handled. for example, if $text is:
+
+ $text = '<A HREF=">>>>">link</A>';
+
+ then
+
+ @result = extract_bracketed( $text, '<">' );
+
+ returns:
+
+ ( '<A HREF=">>>>">', 'link</A>', "" )
+
+ as expected. Without the specification of """ as an embedded quoter:
+
+ @result = extract_bracketed( $text, '<>' );
+
+ the result would be:
+
+ ( '<A HREF=">', '>>>">link</A>', "" )
+
+ In addition to the quote delimiters "'", """, and "`", full Perl
+ quote-like quoting (i.e. q{string}, qq{string}, etc) can be specified by
+ including the letter 'q' as a delimiter. Hence:
+
+ @result = extract_bracketed( $text, '<q>' );
+
+ would correctly match something like this:
+
+ $text = '<leftop: conj /and/ conj>';
+
+ See also: "extract_quotelike" and "extract_codeblock".
+
+ "extract_variable"
+ "extract_variable" extracts any valid Perl variable or variable-involved
+ expression, including scalars, arrays, hashes, array accesses, hash
+ look-ups, method calls through objects, subroutine calls through
+ subroutine references, etc.
+
+ The subroutine takes up to two optional arguments:
+
+ 1. A string to be processed ($_ if the string is omitted or "undef")
+
+ 2. A string specifying a pattern to be matched as a prefix (which is to
+ be skipped). If omitted, optional whitespace is skipped.
+
+ On success in a list context, an array of 3 elements is returned. The
+ elements are:
+
+ [0] the extracted variable, or variablish expression
+
+ [1] the remainder of the input text,
+
+ [2] the prefix substring (if any),
+
+ On failure, all of these values (except the remaining text) are "undef".
+
+ In a scalar context, "extract_variable" returns just the complete
+ substring that matched a variablish expression. "undef" is returned on
+ failure. In addition, the original input text has the returned substring
+ (and any prefix) removed from it.
+
+ In a void context, the input text just has the matched substring (and
+ any specified prefix) removed.
+
+ "extract_tagged"
+ "extract_tagged" extracts and segments text between (balanced) specified
+ tags.
+
+ The subroutine takes up to five optional arguments:
+
+ 1. A string to be processed ($_ if the string is omitted or "undef")
+
+ 2. A string specifying a pattern to be matched as the opening tag. If
+ the pattern string is omitted (or "undef") then a pattern that
+ matches any standard XML tag is used.
+
+ 3. A string specifying a pattern to be matched at the closing tag. If
+ the pattern string is omitted (or "undef") then the closing tag is
+ constructed by inserting a "/" after any leading bracket characters
+ in the actual opening tag that was matched (*not* the pattern that
+ matched the tag). For example, if the opening tag pattern is
+ specified as '{{\w+}}' and actually matched the opening tag
+ "{{DATA}}", then the constructed closing tag would be "{{/DATA}}".
+
+ 4. A string specifying a pattern to be matched as a prefix (which is to
+ be skipped). If omitted, optional whitespace is skipped.
+
+ 5. A hash reference containing various parsing options (see below)
+
+ The various options that can be specified are:
+
+ "reject => $listref"
+ The list reference contains one or more strings specifying patterns
+ that must *not* appear within the tagged text.
+
+ For example, to extract an HTML link (which should not contain
+ nested links) use:
+
+ extract_tagged($text, '<A>', '</A>', undef, {reject => ['<A>']} );
+
+ "ignore => $listref"
+ The list reference contains one or more strings specifying patterns
+ that are *not* be be treated as nested tags within the tagged text
+ (even if they would match the start tag pattern).
+
+ For example, to extract an arbitrary XML tag, but ignore "empty"
+ elements:
+
+ extract_tagged($text, undef, undef, undef, {ignore => ['<[^>]*/>']} );
+
+ (also see "gen_delimited_pat" below).
+
+ "fail => $str"
+ The "fail" option indicates the action to be taken if a matching end
+ tag is not encountered (i.e. before the end of the string or some
+ "reject" pattern matches). By default, a failure to match a closing
+ tag causes "extract_tagged" to immediately fail.
+
+ However, if the string value associated with <reject> is "MAX", then
+ "extract_tagged" returns the complete text up to the point of
+ failure. If the string is "PARA", "extract_tagged" returns only the
+ first paragraph after the tag (up to the first line that is either
+ empty or contains only whitespace characters). If the string is "",
+ the the default behaviour (i.e. failure) is reinstated.
+
+ For example, suppose the start tag "/para" introduces a paragraph,
+ which then continues until the next "/endpara" tag or until another
+ "/para" tag is encountered:
+
+ $text = "/para line 1\n\nline 3\n/para line 4";
+
+ extract_tagged($text, '/para', '/endpara', undef,
+ {reject => '/para', fail => MAX );
+
+ # EXTRACTED: "/para line 1\n\nline 3\n"
+
+ Suppose instead, that if no matching "/endpara" tag is found, the
+ "/para" tag refers only to the immediately following paragraph:
+
+ $text = "/para line 1\n\nline 3\n/para line 4";
+
+ extract_tagged($text, '/para', '/endpara', undef,
+ {reject => '/para', fail => MAX );
+
+ # EXTRACTED: "/para line 1\n"
+
+ Note that the specified "fail" behaviour applies to nested tags as
+ well.
+
+ On success in a list context, an array of 6 elements is returned. The
+ elements are:
+
+ [0] the extracted tagged substring (including the outermost tags),
+
+ [1] the remainder of the input text,
+
+ [2] the prefix substring (if any),
+
+ [3] the opening tag
+
+ [4] the text between the opening and closing tags
+
+ [5] the closing tag (or "" if no closing tag was found)
+
+ On failure, all of these values (except the remaining text) are "undef".
+
+ In a scalar context, "extract_tagged" returns just the complete
+ substring that matched a tagged text (including the start and end tags).
+ "undef" is returned on failure. In addition, the original input text has
+ the returned substring (and any prefix) removed from it.
+
+ In a void context, the input text just has the matched substring (and
+ any specified prefix) removed.
+
+ "gen_extract_tagged"
+ (Note: This subroutine is only available under Perl5.005)
+
+ "gen_extract_tagged" generates a new anonymous subroutine which extracts
+ text between (balanced) specified tags. In other words, it generates a
+ function identical in function to "extract_tagged".
+
+ The difference between "extract_tagged" and the anonymous subroutines
+ generated by "gen_extract_tagged", is that those generated subroutines:
+
+ * do not have to reparse tag specification or parsing options every
+ time they are called (whereas "extract_tagged" has to effectively
+ rebuild its tag parser on every call);
+
+ * make use of the new qr// construct to pre-compile the regexes they
+ use (whereas "extract_tagged" uses standard string variable
+ interpolation to create tag-matching patterns).
+
+ The subroutine takes up to four optional arguments (the same set as
+ "extract_tagged" except for the string to be processed). It returns a
+ reference to a subroutine which in turn takes a single argument (the
+ text to be extracted from).
+
+ In other words, the implementation of "extract_tagged" is exactly
+ equivalent to:
+
+ sub extract_tagged
+ {
+ my $text = shift;
+ $extractor = gen_extract_tagged(@_);
+ return $extractor->($text);
+ }
+
+ (although "extract_tagged" is not currently implemented that way, in
+ order to preserve pre-5.005 compatibility).
+
+ Using "gen_extract_tagged" to create extraction functions for specific
+ tags is a good idea if those functions are going to be called more than
+ once, since their performance is typically twice as good as the more
+ general-purpose "extract_tagged".
+
+ "extract_quotelike"
+ "extract_quotelike" attempts to recognize, extract, and segment any one
+ of the various Perl quotes and quotelike operators (see perlop(3))
+ Nested backslashed delimiters, embedded balanced bracket delimiters (for
+ the quotelike operators), and trailing modifiers are all caught. For
+ example, in:
+
+ extract_quotelike 'q # an octothorpe: \# (not the end of the q!) #'
+
+ extract_quotelike ' "You said, \"Use sed\"." '
+
+ extract_quotelike ' s{([A-Z]{1,8}\.[A-Z]{3})} /\L$1\E/; '
+
+ extract_quotelike ' tr/\\\/\\\\/\\\//ds; '
+
+ the full Perl quotelike operations are all extracted correctly.
+
+ Note too that, when using the /x modifier on a regex, any comment
+ containing the current pattern delimiter will cause the regex to be
+ immediately terminated. In other words:
+
+ 'm /
+ (?i) # CASE INSENSITIVE
+ [a-z_] # LEADING ALPHABETIC/UNDERSCORE
+ [a-z0-9]* # FOLLOWED BY ANY NUMBER OF ALPHANUMERICS
+ /x'
+
+ will be extracted as if it were:
+
+ 'm /
+ (?i) # CASE INSENSITIVE
+ [a-z_] # LEADING ALPHABETIC/'
+
+ This behaviour is identical to that of the actual compiler.
+
+ "extract_quotelike" takes two arguments: the text to be processed and a
+ prefix to be matched at the very beginning of the text. If no prefix is
+ specified, optional whitespace is the default. If no text is given, $_
+ is used.
+
+ In a list context, an array of 11 elements is returned. The elements
+ are:
+
+ [0] the extracted quotelike substring (including trailing modifiers),
+
+ [1] the remainder of the input text,
+
+ [2] the prefix substring (if any),
+
+ [3] the name of the quotelike operator (if any),
+
+ [4] the left delimiter of the first block of the operation,
+
+ [5] the text of the first block of the operation (that is, the contents
+ of a quote, the regex of a match or substitution or the target list
+ of a translation),
+
+ [6] the right delimiter of the first block of the operation,
+
+ [7] the left delimiter of the second block of the operation (that is, if
+ it is a "s", "tr", or "y"),
+
+ [8] the text of the second block of the operation (that is, the
+ replacement of a substitution or the translation list of a
+ translation),
+
+ [9] the right delimiter of the second block of the operation (if any),
+
+ [10]
+ the trailing modifiers on the operation (if any).
+
+ For each of the fields marked "(if any)" the default value on success is
+ an empty string. On failure, all of these values (except the remaining
+ text) are "undef".
+
+ In a scalar context, "extract_quotelike" returns just the complete
+ substring that matched a quotelike operation (or "undef" on failure). In
+ a scalar or void context, the input text has the same substring (and any
+ specified prefix) removed.
+
+ Examples:
+
+ # Remove the first quotelike literal that appears in text
+
+ $quotelike = extract_quotelike($text,'.*?');
+
+ # Replace one or more leading whitespace-separated quotelike
+ # literals in $_ with "<QLL>"
+
+ do { $_ = join '<QLL>', (extract_quotelike)[2,1] } until $@;
+
+
+ # Isolate the search pattern in a quotelike operation from $text
+
+ ($op,$pat) = (extract_quotelike $text)[3,5];
+ if ($op =~ /[ms]/)
+ {
+ print "search pattern: $pat\n";
+ }
+ else
+ {
+ print "$op is not a pattern matching operation\n";
+ }
+
+ "extract_quotelike" and "here documents"
+ "extract_quotelike" can successfully extract "here documents" from an
+ input string, but with an important caveat in list contexts.
+
+ Unlike other types of quote-like literals, a here document is rarely a
+ contiguous substring. For example, a typical piece of code using here
+ document might look like this:
+
+ <<'EOMSG' || die;
+ This is the message.
+ EOMSG
+ exit;
+
+ Given this as an input string in a scalar context, "extract_quotelike"
+ would correctly return the string "<<'EOMSG'\nThis is the
+ message.\nEOMSG", leaving the string " || die;\nexit;" in the original
+ variable. In other words, the two separate pieces of the here document
+ are successfully extracted and concatenated.
+
+ In a list context, "extract_quotelike" would return the list
+
+ [0] "<<'EOMSG'\nThis is the message.\nEOMSG\n" (i.e. the full extracted
+ here document, including fore and aft delimiters),
+
+ [1] " || die;\nexit;" (i.e. the remainder of the input text,
+ concatenated),
+
+ [2] "" (i.e. the prefix substring -- trivial in this case),
+
+ [3] "<<" (i.e. the "name" of the quotelike operator)
+
+ [4] "'EOMSG'" (i.e. the left delimiter of the here document, including
+ any quotes),
+
+ [5] "This is the message.\n" (i.e. the text of the here document),
+
+ [6] "EOMSG" (i.e. the right delimiter of the here document),
+
+ [7..10]
+ "" (a here document has no second left delimiter, second text,
+ second right delimiter, or trailing modifiers).
+
+ However, the matching position of the input variable would be set to
+ "exit;" (i.e. *after* the closing delimiter of the here document), which
+ would cause the earlier " || die;\nexit;" to be skipped in any sequence
+ of code fragment extractions.
+
+ To avoid this problem, when it encounters a here document whilst
+ extracting from a modifiable string, "extract_quotelike" silently
+ rearranges the string to an equivalent piece of Perl:
+
+ <<'EOMSG'
+ This is the message.
+ EOMSG
+ || die;
+ exit;
+
+ in which the here document *is* contiguous. It still leaves the matching
+ position after the here document, but now the rest of the line on which
+ the here document starts is not skipped.
+
+ To prevent <extract_quotelike> from mucking about with the input in this
+ way (this is the only case where a list-context "extract_quotelike" does
+ so), you can pass the input variable as an interpolated literal:
+
+ $quotelike = extract_quotelike("$var");
+
+ "extract_codeblock"
+ "extract_codeblock" attempts to recognize and extract a balanced bracket
+ delimited substring that may contain unbalanced brackets inside Perl
+ quotes or quotelike operations. That is, "extract_codeblock" is like a
+ combination of "extract_bracketed" and "extract_quotelike".
+
+ "extract_codeblock" takes the same initial three parameters as
+ "extract_bracketed": a text to process, a set of delimiter brackets to
+ look for, and a prefix to match first. It also takes an optional fourth
+ parameter, which allows the outermost delimiter brackets to be specified
+ separately (see below).
+
+ Omitting the first argument (input text) means process $_ instead.
+ Omitting the second argument (delimiter brackets) indicates that only
+ '{' is to be used. Omitting the third argument (prefix argument) implies
+ optional whitespace at the start. Omitting the fourth argument
+ (outermost delimiter brackets) indicates that the value of the second
+ argument is to be used for the outermost delimiters.
+
+ Once the prefix an dthe outermost opening delimiter bracket have been
+ recognized, code blocks are extracted by stepping through the input text
+ and trying the following alternatives in sequence:
+
+ 1. Try and match a closing delimiter bracket. If the bracket was the
+ same species as the last opening bracket, return the substring to
+ that point. If the bracket was mismatched, return an error.
+
+ 2. Try to match a quote or quotelike operator. If found, call
+ "extract_quotelike" to eat it. If "extract_quotelike" fails, return
+ the error it returned. Otherwise go back to step 1.
+
+ 3. Try to match an opening delimiter bracket. If found, call
+ "extract_codeblock" recursively to eat the embedded block. If the
+ recursive call fails, return an error. Otherwise, go back to step 1.
+
+ 4. Unconditionally match a bareword or any other single character, and
+ then go back to step 1.
+
+ Examples:
+
+ # Find a while loop in the text
+
+ if ($text =~ s/.*?while\s*\{/{/)
+ {
+ $loop = "while " . extract_codeblock($text);
+ }
+
+ # Remove the first round-bracketed list (which may include
+ # round- or curly-bracketed code blocks or quotelike operators)
+
+ extract_codeblock $text, "(){}", '[^(]*';
+
+ The ability to specify a different outermost delimiter bracket is useful
+ in some circumstances. For example, in the Parse::RecDescent module,
+ parser actions which are to be performed only on a successful parse are
+ specified using a "<defer:...>" directive. For example:
+
+ sentence: subject verb object
+ <defer: {$::theVerb = $item{verb}} >
+
+ Parse::RecDescent uses "extract_codeblock($text, '{}<>')" to extract the
+ code within the "<defer:...>" directive, but there's a problem.
+
+ A deferred action like this:
+
+ <defer: {if ($count>10) {$count--}} >
+
+ will be incorrectly parsed as:
+
+ <defer: {if ($count>
+
+ because the "less than" operator is interpreted as a closing delimiter.
+
+ But, by extracting the directive using
+ "extract_codeblock($text, '{}', undef, '<>')" the '>' character is only
+ treated as a delimited at the outermost level of the code block, so the
+ directive is parsed correctly.
+
+ "extract_multiple"
+ The "extract_multiple" subroutine takes a string to be processed and a
+ list of extractors (subroutines or regular expressions) to apply to that
+ string.
+
+ In an array context "extract_multiple" returns an array of substrings of
+ the original string, as extracted by the specified extractors. In a
+ scalar context, "extract_multiple" returns the first substring
+ successfully extracted from the original string. In both scalar and void
+ contexts the original string has the first successfully extracted
+ substring removed from it. In all contexts "extract_multiple" starts at
+ the current "pos" of the string, and sets that "pos" appropriately after
+ it matches.
+
+ Hence, the aim of of a call to "extract_multiple" in a list context is
+ to split the processed string into as many non-overlapping fields as
+ possible, by repeatedly applying each of the specified extractors to the
+ remainder of the string. Thus "extract_multiple" is a generalized form
+ of Perl's "split" subroutine.
+
+ The subroutine takes up to four optional arguments:
+
+ 1. A string to be processed ($_ if the string is omitted or "undef")
+
+ 2. A reference to a list of subroutine references and/or qr// objects
+ and/or literal strings and/or hash references, specifying the
+ extractors to be used to split the string. If this argument is
+ omitted (or "undef") the list:
+
+ [
+ sub { extract_variable($_[0], '') },
+ sub { extract_quotelike($_[0],'') },
+ sub { extract_codeblock($_[0],'{}','') },
+ ]
+
+ is used.
+
+ 3. An number specifying the maximum number of fields to return. If this
+ argument is omitted (or "undef"), split continues as long as
+ possible.
+
+ If the third argument is *N*, then extraction continues until *N*
+ fields have been successfully extracted, or until the string has
+ been completely processed.
+
+ Note that in scalar and void contexts the value of this argument is
+ automatically reset to 1 (under "-w", a warning is issued if the
+ argument has to be reset).
+
+ 4. A value indicating whether unmatched substrings (see below) within
+ the text should be skipped or returned as fields. If the value is
+ true, such substrings are skipped. Otherwise, they are returned.
+
+ The extraction process works by applying each extractor in sequence to
+ the text string.
+
+ If the extractor is a subroutine it is called in a list context and is
+ expected to return a list of a single element, namely the extracted
+ text. It may optionally also return two further arguments: a string
+ representing the text left after extraction (like $' for a pattern
+ match), and a string representing any prefix skipped before the
+ extraction (like $` in a pattern match). Note that this is designed to
+ facilitate the use of other Text::Balanced subroutines with
+ "extract_multiple". Note too that the value returned by an extractor
+ subroutine need not bear any relationship to the corresponding substring
+ of the original text (see examples below).
+
+ If the extractor is a precompiled regular expression or a string, it is
+ matched against the text in a scalar context with a leading '\G' and the
+ gc modifiers enabled. The extracted value is either $1 if that variable
+ is defined after the match, or else the complete match (i.e. $&).
+
+ If the extractor is a hash reference, it must contain exactly one
+ element. The value of that element is one of the above extractor types
+ (subroutine reference, regular expression, or string). The key of that
+ element is the name of a class into which the successful return value of
+ the extractor will be blessed.
+
+ If an extractor returns a defined value, that value is immediately
+ treated as the next extracted field and pushed onto the list of fields.
+ If the extractor was specified in a hash reference, the field is also
+ blessed into the appropriate class,
+
+ If the extractor fails to match (in the case of a regex extractor), or
+ returns an empty list or an undefined value (in the case of a subroutine
+ extractor), it is assumed to have failed to extract. If none of the
+ extractor subroutines succeeds, then one character is extracted from the
+ start of the text and the extraction subroutines reapplied. Characters
+ which are thus removed are accumulated and eventually become the next
+ field (unless the fourth argument is true, in which case they are
+ discarded).
+
+ For example, the following extracts substrings that are valid Perl
+ variables:
+
+ @fields = extract_multiple($text,
+ [ sub { extract_variable($_[0]) } ],
+ undef, 1);
+
+ This example separates a text into fields which are quote delimited,
+ curly bracketed, and anything else. The delimited and bracketed parts
+ are also blessed to identify them (the "anything else" is unblessed):
+
+ @fields = extract_multiple($text,
+ [
+ { Delim => sub { extract_delimited($_[0],q{'"}) } },
+ { Brack => sub { extract_bracketed($_[0],'{}') } },
+ ]);
+
+ This call extracts the next single substring that is a valid Perl
+ quotelike operator (and removes it from $text):
+
+ $quotelike = extract_multiple($text,
+ [
+ sub { extract_quotelike($_[0]) },
+ ], undef, 1);
+
+ Finally, here is yet another way to do comma-separated value parsing:
+
+ @fields = extract_multiple($csv_text,
+ [
+ sub { extract_delimited($_[0],q{'"}) },
+ qr/([^,]+)(.*)/,
+ ],
+ undef,1);
+
+ The list in the second argument means: *"Try and extract a ' or "
+ delimited string, otherwise extract anything up to a comma..."*. The
+ undef third argument means: *"...as many times as possible..."*, and the
+ true value in the fourth argument means *"...discarding anything else
+ that appears (i.e. the commas)"*.
+
+ If you wanted the commas preserved as separate fields (i.e. like split
+ does if your split pattern has capturing parentheses), you would just
+ make the last parameter undefined (or remove it).
+
+ "gen_delimited_pat"
+ The "gen_delimited_pat" subroutine takes a single (string) argument and
+ > builds a Friedl-style optimized regex that matches a string delimited
+ by any one of the characters in the single argument. For example:
+
+ gen_delimited_pat(q{'"})
+
+ returns the regex:
+
+ (?:\"(?:\\\"|(?!\").)*\"|\'(?:\\\'|(?!\').)*\')
+
+ Note that the specified delimiters are automatically quotemeta'd.
+
+ A typical use of "gen_delimited_pat" would be to build special purpose
+ tags for "extract_tagged". For example, to properly ignore "empty" XML
+ elements (which might contain quoted strings):
+
+ my $empty_tag = '<(' . gen_delimited_pat(q{'"}) . '|.)+/>';
+
+ extract_tagged($text, undef, undef, undef, {ignore => [$empty_tag]} );
+
+ "gen_delimited_pat" may also be called with an optional second argument,
+ which specifies the "escape" character(s) to be used for each delimiter.
+ For example to match a Pascal-style string (where ' is the delimiter and
+ '' is a literal ' within the string):
+
+ gen_delimited_pat(q{'},q{'});
+
+ Different escape characters can be specified for different delimiters.
+ For example, to specify that '/' is the escape for single quotes and '%'
+ is the escape for double quotes:
+
+ gen_delimited_pat(q{'"},q{/%});
+
+ If more delimiters than escape chars are specified, the last escape char
+ is used for the remaining delimiters. If no escape char is specified for
+ a given specified delimiter, '\' is used.
+
+ "delimited_pat"
+ Note that "gen_delimited_pat" was previously called "delimited_pat".
+ That name may still be used, but is now deprecated.
+
+DIAGNOSTICS
+ In a list context, all the functions return "(undef,$original_text)" on
+ failure. In a scalar context, failure is indicated by returning "undef"
+ (in this case the input text is not modified in any way).
+
+ In addition, on failure in *any* context, the $@ variable is set.
+ Accessing "$@->{error}" returns one of the error diagnostics listed
+ below. Accessing "$@->{pos}" returns the offset into the original string
+ at which the error was detected (although not necessarily where it
+ occurred!) Printing $@ directly produces the error message, with the
+ offset appended. On success, the $@ variable is guaranteed to be
+ "undef".
+
+ The available diagnostics are:
+
+ "Did not find a suitable bracket: "%s""
+ The delimiter provided to "extract_bracketed" was not one of
+ '()[]<>{}'.
+
+ "Did not find prefix: /%s/"
+ A non-optional prefix was specified but wasn't found at the start of
+ the text.
+
+ "Did not find opening bracket after prefix: "%s""
+ "extract_bracketed" or "extract_codeblock" was expecting a
+ particular kind of bracket at the start of the text, and didn't find
+ it.
+
+ "No quotelike operator found after prefix: "%s""
+ "extract_quotelike" didn't find one of the quotelike operators "q",
+ "qq", "qw", "qx", "s", "tr" or "y" at the start of the substring it
+ was extracting.
+
+ "Unmatched closing bracket: "%c""
+ "extract_bracketed", "extract_quotelike" or "extract_codeblock"
+ encountered a closing bracket where none was expected.
+
+ "Unmatched opening bracket(s): "%s""
+ "extract_bracketed", "extract_quotelike" or "extract_codeblock" ran
+ out of characters in the text before closing one or more levels of
+ nested brackets.
+
+ "Unmatched embedded quote (%s)"
+ "extract_bracketed" attempted to match an embedded quoted substring,
+ but failed to find a closing quote to match it.
+
+ "Did not find closing delimiter to match '%s'"
+ "extract_quotelike" was unable to find a closing delimiter to match
+ the one that opened the quote-like operation.
+
+ "Mismatched closing bracket: expected "%c" but found "%s""
+ "extract_bracketed", "extract_quotelike" or "extract_codeblock"
+ found a valid bracket delimiter, but it was the wrong species. This
+ usually indicates a nesting error, but may indicate incorrect
+ quoting or escaping.
+
+ "No block delimiter found after quotelike "%s""
+ "extract_quotelike" or "extract_codeblock" found one of the
+ quotelike operators "q", "qq", "qw", "qx", "s", "tr" or "y" without
+ a suitable block after it.
+
+ "Did not find leading dereferencer"
+ "extract_variable" was expecting one of '$', '@', or '%' at the
+ start of a variable, but didn't find any of them.
+
+ "Bad identifier after dereferencer"
+ "extract_variable" found a '$', '@', or '%' indicating a variable,
+ but that character was not followed by a legal Perl identifier.
+
+ "Did not find expected opening bracket at %s"
+ "extract_codeblock" failed to find any of the outermost opening
+ brackets that were specified.
+
+ "Improperly nested codeblock at %s"
+ A nested code block was found that started with a delimiter that was
+ specified as being only to be used as an outermost bracket.
+
+ "Missing second block for quotelike "%s""
+ "extract_codeblock" or "extract_quotelike" found one of the
+ quotelike operators "s", "tr" or "y" followed by only one block.
+
+ "No match found for opening bracket"
+ "extract_codeblock" failed to find a closing bracket to match the
+ outermost opening bracket.
+
+ "Did not find opening tag: /%s/"
+ "extract_tagged" did not find a suitable opening tag (after any
+ specified prefix was removed).
+
+ "Unable to construct closing tag to match: /%s/"
+ "extract_tagged" matched the specified opening tag and tried to
+ modify the matched text to produce a matching closing tag (because
+ none was specified). It failed to generate the closing tag, almost
+ certainly because the opening tag did not start with a bracket of
+ some kind.
+
+ "Found invalid nested tag: %s"
+ "extract_tagged" found a nested tag that appeared in the "reject"
+ list (and the failure mode was not "MAX" or "PARA").
+
+ "Found unbalanced nested tag: %s"
+ "extract_tagged" found a nested opening tag that was not matched by
+ a corresponding nested closing tag (and the failure mode was not
+ "MAX" or "PARA").
+
+ "Did not find closing tag"
+ "extract_tagged" reached the end of the text without finding a
+ closing tag to match the original opening tag (and the failure mode
+ was not "MAX" or "PARA").
+
+AUTHOR
+ Damian Conway (damian@conway.org)
+
+BUGS AND IRRITATIONS
+ There are undoubtedly serious bugs lurking somewhere in this code, if
+ only because parts of it give the impression of understanding a great
+ deal more about Perl than they really do.
+
+ Bug reports and other feedback are most welcome.
+
+COPYRIGHT
+ Copyright 1997 - 2001 Damian Conway. All Rights Reserved.
+
+ Some (minor) parts copyright 2009 Adam Kennedy.
+
+ This module is free software. It may be used, redistributed and/or
+ modified under the same terms as Perl itself.
+
diff --git a/cpan/Text-Balanced/lib/Text/Balanced.pm b/cpan/Text-Balanced/lib/Text/Balanced.pm
new file mode 100644
index 0000000000..07d956735c
--- /dev/null
+++ b/cpan/Text-Balanced/lib/Text/Balanced.pm
@@ -0,0 +1,2281 @@
+package Text::Balanced;
+
+# EXTRACT VARIOUSLY DELIMITED TEXT SEQUENCES FROM STRINGS.
+# FOR FULL DOCUMENTATION SEE Balanced.pod
+
+use 5.005;
+use strict;
+use Exporter ();
+use SelfLoader;
+
+use vars qw { $VERSION @ISA %EXPORT_TAGS };
+BEGIN {
+ $VERSION = '2.02';
+ @ISA = 'Exporter';
+ %EXPORT_TAGS = (
+ ALL => [ qw{
+ &extract_delimited
+ &extract_bracketed
+ &extract_quotelike
+ &extract_codeblock
+ &extract_variable
+ &extract_tagged
+ &extract_multiple
+ &gen_delimited_pat
+ &gen_extract_tagged
+ &delimited_pat
+ } ],
+ );
+}
+
+Exporter::export_ok_tags('ALL');
+
+# PROTOTYPES
+
+sub _match_bracketed($$$$$$);
+sub _match_variable($$);
+sub _match_codeblock($$$$$$$);
+sub _match_quotelike($$$$);
+
+# HANDLE RETURN VALUES IN VARIOUS CONTEXTS
+
+sub _failmsg {
+ my ($message, $pos) = @_;
+ $@ = bless {
+ error => $message,
+ pos => $pos,
+ }, 'Text::Balanced::ErrorMsg';
+}
+
+sub _fail {
+ my ($wantarray, $textref, $message, $pos) = @_;
+ _failmsg $message, $pos if $message;
+ return (undef, $$textref, undef) if $wantarray;
+ return undef;
+}
+
+sub _succeed {
+ $@ = undef;
+ my ($wantarray,$textref) = splice @_, 0, 2;
+ my ($extrapos, $extralen) = @_ > 18
+ ? splice(@_, -2, 2)
+ : (0, 0);
+ my ($startlen, $oppos) = @_[5,6];
+ my $remainderpos = $_[2];
+ if ( $wantarray ) {
+ my @res;
+ while (my ($from, $len) = splice @_, 0, 2) {
+ push @res, substr($$textref, $from, $len);
+ }
+ if ( $extralen ) { # CORRECT FILLET
+ my $extra = substr($res[0], $extrapos-$oppos, $extralen, "\n");
+ $res[1] = "$extra$res[1]";
+ eval { substr($$textref,$remainderpos,0) = $extra;
+ substr($$textref,$extrapos,$extralen,"\n")} ;
+ #REARRANGE HERE DOC AND FILLET IF POSSIBLE
+ pos($$textref) = $remainderpos-$extralen+1; # RESET \G
+ } else {
+ pos($$textref) = $remainderpos; # RESET \G
+ }
+ return @res;
+ } else {
+ my $match = substr($$textref,$_[0],$_[1]);
+ substr($match,$extrapos-$_[0]-$startlen,$extralen,"") if $extralen;
+ my $extra = $extralen
+ ? substr($$textref, $extrapos, $extralen)."\n" : "";
+ eval {substr($$textref,$_[4],$_[1]+$_[5])=$extra} ; #CHOP OUT PREFIX & MATCH, IF POSSIBLE
+ pos($$textref) = $_[4]; # RESET \G
+ return $match;
+ }
+}
+
+# BUILD A PATTERN MATCHING A SIMPLE DELIMITED STRING
+
+sub gen_delimited_pat($;$) # ($delimiters;$escapes)
+{
+ my ($dels, $escs) = @_;
+ return "" unless $dels =~ /\S/;
+ $escs = '\\' unless $escs;
+ $escs .= substr($escs,-1) x (length($dels)-length($escs));
+ my @pat = ();
+ my $i;
+ for ($i=0; $i<length $dels; $i++)
+ {
+ my $del = quotemeta substr($dels,$i,1);
+ my $esc = quotemeta substr($escs,$i,1);
+ if ($del eq $esc)
+ {
+ push @pat, "$del(?:[^$del]*(?:(?:$del$del)[^$del]*)*)$del";
+ }
+ else
+ {
+ push @pat, "$del(?:[^$esc$del]*(?:$esc.[^$esc$del]*)*)$del";
+ }
+ }
+ my $pat = join '|', @pat;
+ return "(?:$pat)";
+}
+
+*delimited_pat = \&gen_delimited_pat;
+
+# THE EXTRACTION FUNCTIONS
+
+sub extract_delimited (;$$$$)
+{
+ my $textref = defined $_[0] ? \$_[0] : \$_;
+ my $wantarray = wantarray;
+ my $del = defined $_[1] ? $_[1] : qq{\'\"\`};
+ my $pre = defined $_[2] ? $_[2] : '\s*';
+ my $esc = defined $_[3] ? $_[3] : qq{\\};
+ my $pat = gen_delimited_pat($del, $esc);
+ my $startpos = pos $$textref || 0;
+ return _fail($wantarray, $textref, "Not a delimited pattern", 0)
+ unless $$textref =~ m/\G($pre)($pat)/gc;
+ my $prelen = length($1);
+ my $matchpos = $startpos+$prelen;
+ my $endpos = pos $$textref;
+ return _succeed $wantarray, $textref,
+ $matchpos, $endpos-$matchpos, # MATCH
+ $endpos, length($$textref)-$endpos, # REMAINDER
+ $startpos, $prelen; # PREFIX
+}
+
+sub extract_bracketed (;$$$)
+{
+ my $textref = defined $_[0] ? \$_[0] : \$_;
+ my $ldel = defined $_[1] ? $_[1] : '{([<';
+ my $pre = defined $_[2] ? $_[2] : '\s*';
+ my $wantarray = wantarray;
+ my $qdel = "";
+ my $quotelike;
+ $ldel =~ s/'//g and $qdel .= q{'};
+ $ldel =~ s/"//g and $qdel .= q{"};
+ $ldel =~ s/`//g and $qdel .= q{`};
+ $ldel =~ s/q//g and $quotelike = 1;
+ $ldel =~ tr/[](){}<>\0-\377/[[(({{<</ds;
+ my $rdel = $ldel;
+ unless ($rdel =~ tr/[({</])}>/)
+ {
+ return _fail $wantarray, $textref,
+ "Did not find a suitable bracket in delimiter: \"$_[1]\"",
+ 0;
+ }
+ my $posbug = pos;
+ $ldel = join('|', map { quotemeta $_ } split('', $ldel));
+ $rdel = join('|', map { quotemeta $_ } split('', $rdel));
+ pos = $posbug;
+
+ my $startpos = pos $$textref || 0;
+ my @match = _match_bracketed($textref,$pre, $ldel, $qdel, $quotelike, $rdel);
+
+ return _fail ($wantarray, $textref) unless @match;
+
+ return _succeed ( $wantarray, $textref,
+ $match[2], $match[5]+2, # MATCH
+ @match[8,9], # REMAINDER
+ @match[0,1], # PREFIX
+ );
+}
+
+sub _match_bracketed($$$$$$) # $textref, $pre, $ldel, $qdel, $quotelike, $rdel
+{
+ my ($textref, $pre, $ldel, $qdel, $quotelike, $rdel) = @_;
+ my ($startpos, $ldelpos, $endpos) = (pos $$textref = pos $$textref||0);
+ unless ($$textref =~ m/\G$pre/gc)
+ {
+ _failmsg "Did not find prefix: /$pre/", $startpos;
+ return;
+ }
+
+ $ldelpos = pos $$textref;
+
+ unless ($$textref =~ m/\G($ldel)/gc)
+ {
+ _failmsg "Did not find opening bracket after prefix: \"$pre\"",
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+
+ my @nesting = ( $1 );
+ my $textlen = length $$textref;
+ while (pos $$textref < $textlen)
+ {
+ next if $$textref =~ m/\G\\./gcs;
+
+ if ($$textref =~ m/\G($ldel)/gc)
+ {
+ push @nesting, $1;
+ }
+ elsif ($$textref =~ m/\G($rdel)/gc)
+ {
+ my ($found, $brackettype) = ($1, $1);
+ if ($#nesting < 0)
+ {
+ _failmsg "Unmatched closing bracket: \"$found\"",
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ my $expected = pop(@nesting);
+ $expected =~ tr/({[</)}]>/;
+ if ($expected ne $brackettype)
+ {
+ _failmsg qq{Mismatched closing bracket: expected "$expected" but found "$found"},
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ last if $#nesting < 0;
+ }
+ elsif ($qdel && $$textref =~ m/\G([$qdel])/gc)
+ {
+ $$textref =~ m/\G[^\\$1]*(?:\\.[^\\$1]*)*(\Q$1\E)/gsc and next;
+ _failmsg "Unmatched embedded quote ($1)",
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ elsif ($quotelike && _match_quotelike($textref,"",1,0))
+ {
+ next;
+ }
+
+ else { $$textref =~ m/\G(?:[a-zA-Z0-9]+|.)/gcs }
+ }
+ if ($#nesting>=0)
+ {
+ _failmsg "Unmatched opening bracket(s): "
+ . join("..",@nesting)."..",
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+
+ $endpos = pos $$textref;
+
+ return (
+ $startpos, $ldelpos-$startpos, # PREFIX
+ $ldelpos, 1, # OPENING BRACKET
+ $ldelpos+1, $endpos-$ldelpos-2, # CONTENTS
+ $endpos-1, 1, # CLOSING BRACKET
+ $endpos, length($$textref)-$endpos, # REMAINDER
+ );
+}
+
+sub _revbracket($)
+{
+ my $brack = reverse $_[0];
+ $brack =~ tr/[({</])}>/;
+ return $brack;
+}
+
+my $XMLNAME = q{[a-zA-Z_:][a-zA-Z0-9_:.-]*};
+
+sub extract_tagged (;$$$$$) # ($text, $opentag, $closetag, $pre, \%options)
+{
+ my $textref = defined $_[0] ? \$_[0] : \$_;
+ my $ldel = $_[1];
+ my $rdel = $_[2];
+ my $pre = defined $_[3] ? $_[3] : '\s*';
+ my %options = defined $_[4] ? %{$_[4]} : ();
+ my $omode = defined $options{fail} ? $options{fail} : '';
+ my $bad = ref($options{reject}) eq 'ARRAY' ? join('|', @{$options{reject}})
+ : defined($options{reject}) ? $options{reject}
+ : ''
+ ;
+ my $ignore = ref($options{ignore}) eq 'ARRAY' ? join('|', @{$options{ignore}})
+ : defined($options{ignore}) ? $options{ignore}
+ : ''
+ ;
+
+ if (!defined $ldel) { $ldel = '<\w+(?:' . gen_delimited_pat(q{'"}) . '|[^>])*>'; }
+ $@ = undef;
+
+ my @match = _match_tagged($textref, $pre, $ldel, $rdel, $omode, $bad, $ignore);
+
+ return _fail(wantarray, $textref) unless @match;
+ return _succeed wantarray, $textref,
+ $match[2], $match[3]+$match[5]+$match[7], # MATCH
+ @match[8..9,0..1,2..7]; # REM, PRE, BITS
+}
+
+sub _match_tagged # ($$$$$$$)
+{
+ my ($textref, $pre, $ldel, $rdel, $omode, $bad, $ignore) = @_;
+ my $rdelspec;
+
+ my ($startpos, $opentagpos, $textpos, $parapos, $closetagpos, $endpos) = ( pos($$textref) = pos($$textref)||0 );
+
+ unless ($$textref =~ m/\G($pre)/gc)
+ {
+ _failmsg "Did not find prefix: /$pre/", pos $$textref;
+ goto failed;
+ }
+
+ $opentagpos = pos($$textref);
+
+ unless ($$textref =~ m/\G$ldel/gc)
+ {
+ _failmsg "Did not find opening tag: /$ldel/", pos $$textref;
+ goto failed;
+ }
+
+ $textpos = pos($$textref);
+
+ if (!defined $rdel)
+ {
+ $rdelspec = substr($$textref, $-[0], $+[0] - $-[0]);
+ unless ($rdelspec =~ s/\A([[(<{]+)($XMLNAME).*/ quotemeta "$1\/$2". _revbracket($1) /oes)
+ {
+ _failmsg "Unable to construct closing tag to match: $rdel",
+ pos $$textref;
+ goto failed;
+ }
+ }
+ else
+ {
+ $rdelspec = eval "qq{$rdel}" || do {
+ my $del;
+ for (qw,~ ! ^ & * ) _ + - = } ] : " ; ' > . ? / | ',)
+ { next if $rdel =~ /\Q$_/; $del = $_; last }
+ unless ($del) {
+ use Carp;
+ croak "Can't interpolate right delimiter $rdel"
+ }
+ eval "qq$del$rdel$del";
+ };
+ }
+
+ while (pos($$textref) < length($$textref))
+ {
+ next if $$textref =~ m/\G\\./gc;
+
+ if ($$textref =~ m/\G(\n[ \t]*\n)/gc )
+ {
+ $parapos = pos($$textref) - length($1)
+ unless defined $parapos;
+ }
+ elsif ($$textref =~ m/\G($rdelspec)/gc )
+ {
+ $closetagpos = pos($$textref)-length($1);
+ goto matched;
+ }
+ elsif ($ignore && $$textref =~ m/\G(?:$ignore)/gc)
+ {
+ next;
+ }
+ elsif ($bad && $$textref =~ m/\G($bad)/gcs)
+ {
+ pos($$textref) -= length($1); # CUT OFF WHATEVER CAUSED THE SHORTNESS
+ goto short if ($omode eq 'PARA' || $omode eq 'MAX');
+ _failmsg "Found invalid nested tag: $1", pos $$textref;
+ goto failed;
+ }
+ elsif ($$textref =~ m/\G($ldel)/gc)
+ {
+ my $tag = $1;
+ pos($$textref) -= length($tag); # REWIND TO NESTED TAG
+ unless (_match_tagged(@_)) # MATCH NESTED TAG
+ {
+ goto short if $omode eq 'PARA' || $omode eq 'MAX';
+ _failmsg "Found unbalanced nested tag: $tag",
+ pos $$textref;
+ goto failed;
+ }
+ }
+ else { $$textref =~ m/./gcs }
+ }
+
+short:
+ $closetagpos = pos($$textref);
+ goto matched if $omode eq 'MAX';
+ goto failed unless $omode eq 'PARA';
+
+ if (defined $parapos) { pos($$textref) = $parapos }
+ else { $parapos = pos($$textref) }
+
+ return (
+ $startpos, $opentagpos-$startpos, # PREFIX
+ $opentagpos, $textpos-$opentagpos, # OPENING TAG
+ $textpos, $parapos-$textpos, # TEXT
+ $parapos, 0, # NO CLOSING TAG
+ $parapos, length($$textref)-$parapos, # REMAINDER
+ );
+
+matched:
+ $endpos = pos($$textref);
+ return (
+ $startpos, $opentagpos-$startpos, # PREFIX
+ $opentagpos, $textpos-$opentagpos, # OPENING TAG
+ $textpos, $closetagpos-$textpos, # TEXT
+ $closetagpos, $endpos-$closetagpos, # CLOSING TAG
+ $endpos, length($$textref)-$endpos, # REMAINDER
+ );
+
+failed:
+ _failmsg "Did not find closing tag", pos $$textref unless $@;
+ pos($$textref) = $startpos;
+ return;
+}
+
+sub extract_variable (;$$)
+{
+ my $textref = defined $_[0] ? \$_[0] : \$_;
+ return ("","","") unless defined $$textref;
+ my $pre = defined $_[1] ? $_[1] : '\s*';
+
+ my @match = _match_variable($textref,$pre);
+
+ return _fail wantarray, $textref unless @match;
+
+ return _succeed wantarray, $textref,
+ @match[2..3,4..5,0..1]; # MATCH, REMAINDER, PREFIX
+}
+
+sub _match_variable($$)
+{
+# $#
+# $^
+# $$
+ my ($textref, $pre) = @_;
+ my $startpos = pos($$textref) = pos($$textref)||0;
+ unless ($$textref =~ m/\G($pre)/gc)
+ {
+ _failmsg "Did not find prefix: /$pre/", pos $$textref;
+ return;
+ }
+ my $varpos = pos($$textref);
+ unless ($$textref =~ m{\G\$\s*(?!::)(\d+|[][&`'+*./|,";%=~:?!\@<>()-]|\^[a-z]?)}gci)
+ {
+ unless ($$textref =~ m/\G((\$#?|[*\@\%]|\\&)+)/gc)
+ {
+ _failmsg "Did not find leading dereferencer", pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ my $deref = $1;
+
+ unless ($$textref =~ m/\G\s*(?:::|')?(?:[_a-z]\w*(?:::|'))*[_a-z]\w*/gci
+ or _match_codeblock($textref, "", '\{', '\}', '\{', '\}', 0)
+ or $deref eq '$#' or $deref eq '$$' )
+ {
+ _failmsg "Bad identifier after dereferencer", pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ }
+
+ while (1)
+ {
+ next if $$textref =~ m/\G\s*(?:->)?\s*[{]\w+[}]/gc;
+ next if _match_codeblock($textref,
+ qr/\s*->\s*(?:[_a-zA-Z]\w+\s*)?/,
+ qr/[({[]/, qr/[)}\]]/,
+ qr/[({[]/, qr/[)}\]]/, 0);
+ next if _match_codeblock($textref,
+ qr/\s*/, qr/[{[]/, qr/[}\]]/,
+ qr/[{[]/, qr/[}\]]/, 0);
+ next if _match_variable($textref,'\s*->\s*');
+ next if $$textref =~ m/\G\s*->\s*\w+(?![{([])/gc;
+ last;
+ }
+
+ my $endpos = pos($$textref);
+ return ($startpos, $varpos-$startpos,
+ $varpos, $endpos-$varpos,
+ $endpos, length($$textref)-$endpos
+ );
+}
+
+sub extract_codeblock (;$$$$$)
+{
+ my $textref = defined $_[0] ? \$_[0] : \$_;
+ my $wantarray = wantarray;
+ my $ldel_inner = defined $_[1] ? $_[1] : '{';
+ my $pre = defined $_[2] ? $_[2] : '\s*';
+ my $ldel_outer = defined $_[3] ? $_[3] : $ldel_inner;
+ my $rd = $_[4];
+ my $rdel_inner = $ldel_inner;
+ my $rdel_outer = $ldel_outer;
+ my $posbug = pos;
+ for ($ldel_inner, $ldel_outer) { tr/[]()<>{}\0-\377/[[((<<{{/ds }
+ for ($rdel_inner, $rdel_outer) { tr/[]()<>{}\0-\377/]]))>>}}/ds }
+ for ($ldel_inner, $ldel_outer, $rdel_inner, $rdel_outer)
+ {
+ $_ = '('.join('|',map { quotemeta $_ } split('',$_)).')'
+ }
+ pos = $posbug;
+
+ my @match = _match_codeblock($textref, $pre,
+ $ldel_outer, $rdel_outer,
+ $ldel_inner, $rdel_inner,
+ $rd);
+ return _fail($wantarray, $textref) unless @match;
+ return _succeed($wantarray, $textref,
+ @match[2..3,4..5,0..1] # MATCH, REMAINDER, PREFIX
+ );
+
+}
+
+sub _match_codeblock($$$$$$$)
+{
+ my ($textref, $pre, $ldel_outer, $rdel_outer, $ldel_inner, $rdel_inner, $rd) = @_;
+ my $startpos = pos($$textref) = pos($$textref) || 0;
+ unless ($$textref =~ m/\G($pre)/gc)
+ {
+ _failmsg qq{Did not match prefix /$pre/ at"} .
+ substr($$textref,pos($$textref),20) .
+ q{..."},
+ pos $$textref;
+ return;
+ }
+ my $codepos = pos($$textref);
+ unless ($$textref =~ m/\G($ldel_outer)/gc) # OUTERMOST DELIMITER
+ {
+ _failmsg qq{Did not find expected opening bracket at "} .
+ substr($$textref,pos($$textref),20) .
+ q{..."},
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ my $closing = $1;
+ $closing =~ tr/([<{/)]>}/;
+ my $matched;
+ my $patvalid = 1;
+ while (pos($$textref) < length($$textref))
+ {
+ $matched = '';
+ if ($rd && $$textref =~ m#\G(\Q(?)\E|\Q(s?)\E|\Q(s)\E)#gc)
+ {
+ $patvalid = 0;
+ next;
+ }
+
+ if ($$textref =~ m/\G\s*#.*/gc)
+ {
+ next;
+ }
+
+ if ($$textref =~ m/\G\s*($rdel_outer)/gc)
+ {
+ unless ($matched = ($closing && $1 eq $closing) )
+ {
+ next if $1 eq '>'; # MIGHT BE A "LESS THAN"
+ _failmsg q{Mismatched closing bracket at "} .
+ substr($$textref,pos($$textref),20) .
+ qq{...". Expected '$closing'},
+ pos $$textref;
+ }
+ last;
+ }
+
+ if (_match_variable($textref,'\s*') ||
+ _match_quotelike($textref,'\s*',$patvalid,$patvalid) )
+ {
+ $patvalid = 0;
+ next;
+ }
+
+
+ # NEED TO COVER MANY MORE CASES HERE!!!
+ if ($$textref =~ m#\G\s*(?!$ldel_inner)
+ ( [-+*x/%^&|.]=?
+ | [!=]~
+ | =(?!>)
+ | (\*\*|&&|\|\||<<|>>)=?
+ | split|grep|map|return
+ | [([]
+ )#gcx)
+ {
+ $patvalid = 1;
+ next;
+ }
+
+ if ( _match_codeblock($textref, '\s*', $ldel_inner, $rdel_inner, $ldel_inner, $rdel_inner, $rd) )
+ {
+ $patvalid = 1;
+ next;
+ }
+
+ if ($$textref =~ m/\G\s*$ldel_outer/gc)
+ {
+ _failmsg q{Improperly nested codeblock at "} .
+ substr($$textref,pos($$textref),20) .
+ q{..."},
+ pos $$textref;
+ last;
+ }
+
+ $patvalid = 0;
+ $$textref =~ m/\G\s*(\w+|[-=>]>|.|\Z)/gc;
+ }
+ continue { $@ = undef }
+
+ unless ($matched)
+ {
+ _failmsg 'No match found for opening bracket', pos $$textref
+ unless $@;
+ return;
+ }
+
+ my $endpos = pos($$textref);
+ return ( $startpos, $codepos-$startpos,
+ $codepos, $endpos-$codepos,
+ $endpos, length($$textref)-$endpos,
+ );
+}
+
+
+my %mods = (
+ 'none' => '[cgimsox]*',
+ 'm' => '[cgimsox]*',
+ 's' => '[cegimsox]*',
+ 'tr' => '[cds]*',
+ 'y' => '[cds]*',
+ 'qq' => '',
+ 'qx' => '',
+ 'qw' => '',
+ 'qr' => '[imsx]*',
+ 'q' => '',
+ );
+
+sub extract_quotelike (;$$)
+{
+ my $textref = $_[0] ? \$_[0] : \$_;
+ my $wantarray = wantarray;
+ my $pre = defined $_[1] ? $_[1] : '\s*';
+
+ my @match = _match_quotelike($textref,$pre,1,0);
+ return _fail($wantarray, $textref) unless @match;
+ return _succeed($wantarray, $textref,
+ $match[2], $match[18]-$match[2], # MATCH
+ @match[18,19], # REMAINDER
+ @match[0,1], # PREFIX
+ @match[2..17], # THE BITS
+ @match[20,21], # ANY FILLET?
+ );
+};
+
+sub _match_quotelike($$$$) # ($textref, $prepat, $allow_raw_match)
+{
+ my ($textref, $pre, $rawmatch, $qmark) = @_;
+
+ my ($textlen,$startpos,
+ $oppos,
+ $preld1pos,$ld1pos,$str1pos,$rd1pos,
+ $preld2pos,$ld2pos,$str2pos,$rd2pos,
+ $modpos) = ( length($$textref), pos($$textref) = pos($$textref) || 0 );
+
+ unless ($$textref =~ m/\G($pre)/gc)
+ {
+ _failmsg qq{Did not find prefix /$pre/ at "} .
+ substr($$textref, pos($$textref), 20) .
+ q{..."},
+ pos $$textref;
+ return;
+ }
+ $oppos = pos($$textref);
+
+ my $initial = substr($$textref,$oppos,1);
+
+ if ($initial && $initial =~ m|^[\"\'\`]|
+ || $rawmatch && $initial =~ m|^/|
+ || $qmark && $initial =~ m|^\?|)
+ {
+ unless ($$textref =~ m/ \Q$initial\E [^\\$initial]* (\\.[^\\$initial]*)* \Q$initial\E /gcsx)
+ {
+ _failmsg qq{Did not find closing delimiter to match '$initial' at "} .
+ substr($$textref, $oppos, 20) .
+ q{..."},
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ $modpos= pos($$textref);
+ $rd1pos = $modpos-1;
+
+ if ($initial eq '/' || $initial eq '?')
+ {
+ $$textref =~ m/\G$mods{none}/gc
+ }
+
+ my $endpos = pos($$textref);
+ return (
+ $startpos, $oppos-$startpos, # PREFIX
+ $oppos, 0, # NO OPERATOR
+ $oppos, 1, # LEFT DEL
+ $oppos+1, $rd1pos-$oppos-1, # STR/PAT
+ $rd1pos, 1, # RIGHT DEL
+ $modpos, 0, # NO 2ND LDEL
+ $modpos, 0, # NO 2ND STR
+ $modpos, 0, # NO 2ND RDEL
+ $modpos, $endpos-$modpos, # MODIFIERS
+ $endpos, $textlen-$endpos, # REMAINDER
+ );
+ }
+
+ unless ($$textref =~ m{\G(\b(?:m|s|qq|qx|qw|q|qr|tr|y)\b(?=\s*\S)|<<)}gc)
+ {
+ _failmsg q{No quotelike operator found after prefix at "} .
+ substr($$textref, pos($$textref), 20) .
+ q{..."},
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+
+ my $op = $1;
+ $preld1pos = pos($$textref);
+ if ($op eq '<<') {
+ $ld1pos = pos($$textref);
+ my $label;
+ if ($$textref =~ m{\G([A-Za-z_]\w*)}gc) {
+ $label = $1;
+ }
+ elsif ($$textref =~ m{ \G ' ([^'\\]* (?:\\.[^'\\]*)*) '
+ | \G " ([^"\\]* (?:\\.[^"\\]*)*) "
+ | \G ` ([^`\\]* (?:\\.[^`\\]*)*) `
+ }gcsx) {
+ $label = $+;
+ }
+ else {
+ $label = "";
+ }
+ my $extrapos = pos($$textref);
+ $$textref =~ m{.*\n}gc;
+ $str1pos = pos($$textref)--;
+ unless ($$textref =~ m{.*?\n(?=\Q$label\E\n)}gc) {
+ _failmsg qq{Missing here doc terminator ('$label') after "} .
+ substr($$textref, $startpos, 20) .
+ q{..."},
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ $rd1pos = pos($$textref);
+ $$textref =~ m{\Q$label\E\n}gc;
+ $ld2pos = pos($$textref);
+ return (
+ $startpos, $oppos-$startpos, # PREFIX
+ $oppos, length($op), # OPERATOR
+ $ld1pos, $extrapos-$ld1pos, # LEFT DEL
+ $str1pos, $rd1pos-$str1pos, # STR/PAT
+ $rd1pos, $ld2pos-$rd1pos, # RIGHT DEL
+ $ld2pos, 0, # NO 2ND LDEL
+ $ld2pos, 0, # NO 2ND STR
+ $ld2pos, 0, # NO 2ND RDEL
+ $ld2pos, 0, # NO MODIFIERS
+ $ld2pos, $textlen-$ld2pos, # REMAINDER
+ $extrapos, $str1pos-$extrapos, # FILLETED BIT
+ );
+ }
+
+ $$textref =~ m/\G\s*/gc;
+ $ld1pos = pos($$textref);
+ $str1pos = $ld1pos+1;
+
+ unless ($$textref =~ m/\G(\S)/gc) # SHOULD USE LOOKAHEAD
+ {
+ _failmsg "No block delimiter found after quotelike $op",
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ pos($$textref) = $ld1pos; # HAVE TO DO THIS BECAUSE LOOKAHEAD BROKEN
+ my ($ldel1, $rdel1) = ("\Q$1","\Q$1");
+ if ($ldel1 =~ /[[(<{]/)
+ {
+ $rdel1 =~ tr/[({</])}>/;
+ defined(_match_bracketed($textref,"",$ldel1,"","",$rdel1))
+ || do { pos $$textref = $startpos; return };
+ $ld2pos = pos($$textref);
+ $rd1pos = $ld2pos-1;
+ }
+ else
+ {
+ $$textref =~ /\G$ldel1[^\\$ldel1]*(\\.[^\\$ldel1]*)*$ldel1/gcs
+ || do { pos $$textref = $startpos; return };
+ $ld2pos = $rd1pos = pos($$textref)-1;
+ }
+
+ my $second_arg = $op =~ /s|tr|y/ ? 1 : 0;
+ if ($second_arg)
+ {
+ my ($ldel2, $rdel2);
+ if ($ldel1 =~ /[[(<{]/)
+ {
+ unless ($$textref =~ /\G\s*(\S)/gc) # SHOULD USE LOOKAHEAD
+ {
+ _failmsg "Missing second block for quotelike $op",
+ pos $$textref;
+ pos $$textref = $startpos;
+ return;
+ }
+ $ldel2 = $rdel2 = "\Q$1";
+ $rdel2 =~ tr/[({</])}>/;
+ }
+ else
+ {
+ $ldel2 = $rdel2 = $ldel1;
+ }
+ $str2pos = $ld2pos+1;
+
+ if ($ldel2 =~ /[[(<{]/)
+ {
+ pos($$textref)--; # OVERCOME BROKEN LOOKAHEAD
+ defined(_match_bracketed($textref,"",$ldel2,"","",$rdel2))
+ || do { pos $$textref = $startpos; return };
+ }
+ else
+ {
+ $$textref =~ /[^\\$ldel2]*(\\.[^\\$ldel2]*)*$ldel2/gcs
+ || do { pos $$textref = $startpos; return };
+ }
+ $rd2pos = pos($$textref)-1;
+ }
+ else
+ {
+ $ld2pos = $str2pos = $rd2pos = $rd1pos;
+ }
+
+ $modpos = pos $$textref;
+
+ $$textref =~ m/\G($mods{$op})/gc;
+ my $endpos = pos $$textref;
+
+ return (
+ $startpos, $oppos-$startpos, # PREFIX
+ $oppos, length($op), # OPERATOR
+ $ld1pos, 1, # LEFT DEL
+ $str1pos, $rd1pos-$str1pos, # STR/PAT
+ $rd1pos, 1, # RIGHT DEL
+ $ld2pos, $second_arg, # 2ND LDEL (MAYBE)
+ $str2pos, $rd2pos-$str2pos, # 2ND STR (MAYBE)
+ $rd2pos, $second_arg, # 2ND RDEL (MAYBE)
+ $modpos, $endpos-$modpos, # MODIFIERS
+ $endpos, $textlen-$endpos, # REMAINDER
+ );
+}
+
+my $def_func = [
+ sub { extract_variable($_[0], '') },
+ sub { extract_quotelike($_[0],'') },
+ sub { extract_codeblock($_[0],'{}','') },
+];
+
+sub extract_multiple (;$$$$) # ($text, $functions_ref, $max_fields, $ignoreunknown)
+{
+ my $textref = defined($_[0]) ? \$_[0] : \$_;
+ my $posbug = pos;
+ my ($lastpos, $firstpos);
+ my @fields = ();
+
+ #for ($$textref)
+ {
+ my @func = defined $_[1] ? @{$_[1]} : @{$def_func};
+ my $max = defined $_[2] && $_[2]>0 ? $_[2] : 1_000_000_000;
+ my $igunk = $_[3];
+
+ pos $$textref ||= 0;
+
+ unless (wantarray)
+ {
+ use Carp;
+ carp "extract_multiple reset maximal count to 1 in scalar context"
+ if $^W && defined($_[2]) && $max > 1;
+ $max = 1
+ }
+
+ my $unkpos;
+ my $func;
+ my $class;
+
+ my @class;
+ foreach $func ( @func )
+ {
+ if (ref($func) eq 'HASH')
+ {
+ push @class, (keys %$func)[0];
+ $func = (values %$func)[0];
+ }
+ else
+ {
+ push @class, undef;
+ }
+ }
+
+ FIELD: while (pos($$textref) < length($$textref))
+ {
+ my ($field, $rem);
+ my @bits;
+ foreach my $i ( 0..$#func )
+ {
+ my $pref;
+ $func = $func[$i];
+ $class = $class[$i];
+ $lastpos = pos $$textref;
+ if (ref($func) eq 'CODE')
+ { ($field,$rem,$pref) = @bits = $func->($$textref) }
+ elsif (ref($func) eq 'Text::Balanced::Extractor')
+ { @bits = $field = $func->extract($$textref) }
+ elsif( $$textref =~ m/\G$func/gc )
+ { @bits = $field = defined($1)
+ ? $1
+ : substr($$textref, $-[0], $+[0] - $-[0])
+ }
+ $pref ||= "";
+ if (defined($field) && length($field))
+ {
+ if (!$igunk) {
+ $unkpos = $lastpos
+ if length($pref) && !defined($unkpos);
+ if (defined $unkpos)
+ {
+ push @fields, substr($$textref, $unkpos, $lastpos-$unkpos).$pref;
+ $firstpos = $unkpos unless defined $firstpos;
+ undef $unkpos;
+ last FIELD if @fields == $max;
+ }
+ }
+ push @fields, $class
+ ? bless (\$field, $class)
+ : $field;
+ $firstpos = $lastpos unless defined $firstpos;
+ $lastpos = pos $$textref;
+ last FIELD if @fields == $max;
+ next FIELD;
+ }
+ }
+ if ($$textref =~ /\G(.)/gcs)
+ {
+ $unkpos = pos($$textref)-1
+ unless $igunk || defined $unkpos;
+ }
+ }
+
+ if (defined $unkpos)
+ {
+ push @fields, substr($$textref, $unkpos);
+ $firstpos = $unkpos unless defined $firstpos;
+ $lastpos = length $$textref;
+ }
+ last;
+ }
+
+ pos $$textref = $lastpos;
+ return @fields if wantarray;
+
+ $firstpos ||= 0;
+ eval { substr($$textref,$firstpos,$lastpos-$firstpos)="";
+ pos $$textref = $firstpos };
+ return $fields[0];
+}
+
+sub gen_extract_tagged # ($opentag, $closetag, $pre, \%options)
+{
+ my $ldel = $_[0];
+ my $rdel = $_[1];
+ my $pre = defined $_[2] ? $_[2] : '\s*';
+ my %options = defined $_[3] ? %{$_[3]} : ();
+ my $omode = defined $options{fail} ? $options{fail} : '';
+ my $bad = ref($options{reject}) eq 'ARRAY' ? join('|', @{$options{reject}})
+ : defined($options{reject}) ? $options{reject}
+ : ''
+ ;
+ my $ignore = ref($options{ignore}) eq 'ARRAY' ? join('|', @{$options{ignore}})
+ : defined($options{ignore}) ? $options{ignore}
+ : ''
+ ;
+
+ if (!defined $ldel) { $ldel = '<\w+(?:' . gen_delimited_pat(q{'"}) . '|[^>])*>'; }
+
+ my $posbug = pos;
+ for ($ldel, $pre, $bad, $ignore) { $_ = qr/$_/ if $_ }
+ pos = $posbug;
+
+ my $closure = sub
+ {
+ my $textref = defined $_[0] ? \$_[0] : \$_;
+ my @match = Text::Balanced::_match_tagged($textref, $pre, $ldel, $rdel, $omode, $bad, $ignore);
+
+ return _fail(wantarray, $textref) unless @match;
+ return _succeed wantarray, $textref,
+ $match[2], $match[3]+$match[5]+$match[7], # MATCH
+ @match[8..9,0..1,2..7]; # REM, PRE, BITS
+ };
+
+ bless $closure, 'Text::Balanced::Extractor';
+}
+
+package Text::Balanced::Extractor;
+
+sub extract($$) # ($self, $text)
+{
+ &{$_[0]}($_[1]);
+}
+
+package Text::Balanced::ErrorMsg;
+
+use overload '""' => sub { "$_[0]->{error}, detected at offset $_[0]->{pos}" };
+
+1;
+
+__END__
+
+=pod
+
+=head1 NAME
+
+Text::Balanced - Extract delimited text sequences from strings.
+
+=head1 SYNOPSIS
+
+ use Text::Balanced qw (
+ extract_delimited
+ extract_bracketed
+ extract_quotelike
+ extract_codeblock
+ extract_variable
+ extract_tagged
+ extract_multiple
+ gen_delimited_pat
+ gen_extract_tagged
+ );
+
+ # Extract the initial substring of $text that is delimited by
+ # two (unescaped) instances of the first character in $delim.
+
+ ($extracted, $remainder) = extract_delimited($text,$delim);
+
+
+ # Extract the initial substring of $text that is bracketed
+ # with a delimiter(s) specified by $delim (where the string
+ # in $delim contains one or more of '(){}[]<>').
+
+ ($extracted, $remainder) = extract_bracketed($text,$delim);
+
+
+ # Extract the initial substring of $text that is bounded by
+ # an XML tag.
+
+ ($extracted, $remainder) = extract_tagged($text);
+
+
+ # Extract the initial substring of $text that is bounded by
+ # a C<BEGIN>...C<END> pair. Don't allow nested C<BEGIN> tags
+
+ ($extracted, $remainder) =
+ extract_tagged($text,"BEGIN","END",undef,{bad=>["BEGIN"]});
+
+
+ # Extract the initial substring of $text that represents a
+ # Perl "quote or quote-like operation"
+
+ ($extracted, $remainder) = extract_quotelike($text);
+
+
+ # Extract the initial substring of $text that represents a block
+ # of Perl code, bracketed by any of character(s) specified by $delim
+ # (where the string $delim contains one or more of '(){}[]<>').
+
+ ($extracted, $remainder) = extract_codeblock($text,$delim);
+
+
+ # Extract the initial substrings of $text that would be extracted by
+ # one or more sequential applications of the specified functions
+ # or regular expressions
+
+ @extracted = extract_multiple($text,
+ [ \&extract_bracketed,
+ \&extract_quotelike,
+ \&some_other_extractor_sub,
+ qr/[xyz]*/,
+ 'literal',
+ ]);
+
+# Create a string representing an optimized pattern (a la Friedl)
+# that matches a substring delimited by any of the specified characters
+# (in this case: any type of quote or a slash)
+
+ $patstring = gen_delimited_pat(q{'"`/});
+
+# Generate a reference to an anonymous sub that is just like extract_tagged
+# but pre-compiled and optimized for a specific pair of tags, and consequently
+# much faster (i.e. 3 times faster). It uses qr// for better performance on
+# repeated calls, so it only works under Perl 5.005 or later.
+
+ $extract_head = gen_extract_tagged('<HEAD>','</HEAD>');
+
+ ($extracted, $remainder) = $extract_head->($text);
+
+=head1 DESCRIPTION
+
+The various C<extract_...> subroutines may be used to
+extract a delimited substring, possibly after skipping a
+specified prefix string. By default, that prefix is
+optional whitespace (C</\s*/>), but you can change it to whatever
+you wish (see below).
+
+The substring to be extracted must appear at the
+current C<pos> location of the string's variable
+(or at index zero, if no C<pos> position is defined).
+In other words, the C<extract_...> subroutines I<don't>
+extract the first occurrence of a substring anywhere
+in a string (like an unanchored regex would). Rather,
+they extract an occurrence of the substring appearing
+immediately at the current matching position in the
+string (like a C<\G>-anchored regex would).
+
+=head2 General behaviour in list contexts
+
+In a list context, all the subroutines return a list, the first three
+elements of which are always:
+
+=over 4
+
+=item [0]
+
+The extracted string, including the specified delimiters.
+If the extraction fails C<undef> is returned.
+
+=item [1]
+
+The remainder of the input string (i.e. the characters after the
+extracted string). On failure, the entire string is returned.
+
+=item [2]
+
+The skipped prefix (i.e. the characters before the extracted string).
+On failure, C<undef> is returned.
+
+=back
+
+Note that in a list context, the contents of the original input text (the first
+argument) are not modified in any way.
+
+However, if the input text was passed in a variable, that variable's
+C<pos> value is updated to point at the first character after the
+extracted text. That means that in a list context the various
+subroutines can be used much like regular expressions. For example:
+
+ while ( $next = (extract_quotelike($text))[0] )
+ {
+ # process next quote-like (in $next)
+ }
+
+=head2 General behaviour in scalar and void contexts
+
+In a scalar context, the extracted string is returned, having first been
+removed from the input text. Thus, the following code also processes
+each quote-like operation, but actually removes them from $text:
+
+ while ( $next = extract_quotelike($text) )
+ {
+ # process next quote-like (in $next)
+ }
+
+Note that if the input text is a read-only string (i.e. a literal),
+no attempt is made to remove the extracted text.
+
+In a void context the behaviour of the extraction subroutines is
+exactly the same as in a scalar context, except (of course) that the
+extracted substring is not returned.
+
+=head2 A note about prefixes
+
+Prefix patterns are matched without any trailing modifiers (C</gimsox> etc.)
+This can bite you if you're expecting a prefix specification like
+'.*?(?=<H1>)' to skip everything up to the first <H1> tag. Such a prefix
+pattern will only succeed if the <H1> tag is on the current line, since
+. normally doesn't match newlines.
+
+To overcome this limitation, you need to turn on /s matching within
+the prefix pattern, using the C<(?s)> directive: '(?s).*?(?=<H1>)'
+
+=head2 C<extract_delimited>
+
+The C<extract_delimited> function formalizes the common idiom
+of extracting a single-character-delimited substring from the start of
+a string. For example, to extract a single-quote delimited string, the
+following code is typically used:
+
+ ($remainder = $text) =~ s/\A('(\\.|[^'])*')//s;
+ $extracted = $1;
+
+but with C<extract_delimited> it can be simplified to:
+
+ ($extracted,$remainder) = extract_delimited($text, "'");
+
+C<extract_delimited> takes up to four scalars (the input text, the
+delimiters, a prefix pattern to be skipped, and any escape characters)
+and extracts the initial substring of the text that
+is appropriately delimited. If the delimiter string has multiple
+characters, the first one encountered in the text is taken to delimit
+the substring.
+The third argument specifies a prefix pattern that is to be skipped
+(but must be present!) before the substring is extracted.
+The final argument specifies the escape character to be used for each
+delimiter.
+
+All arguments are optional. If the escape characters are not specified,
+every delimiter is escaped with a backslash (C<\>).
+If the prefix is not specified, the
+pattern C<'\s*'> - optional whitespace - is used. If the delimiter set
+is also not specified, the set C</["'`]/> is used. If the text to be processed
+is not specified either, C<$_> is used.
+
+In list context, C<extract_delimited> returns a array of three
+elements, the extracted substring (I<including the surrounding
+delimiters>), the remainder of the text, and the skipped prefix (if
+any). If a suitable delimited substring is not found, the first
+element of the array is the empty string, the second is the complete
+original text, and the prefix returned in the third element is an
+empty string.
+
+In a scalar context, just the extracted substring is returned. In
+a void context, the extracted substring (and any prefix) are simply
+removed from the beginning of the first argument.
+
+Examples:
+
+ # Remove a single-quoted substring from the very beginning of $text:
+
+ $substring = extract_delimited($text, "'", '');
+
+ # Remove a single-quoted Pascalish substring (i.e. one in which
+ # doubling the quote character escapes it) from the very
+ # beginning of $text:
+
+ $substring = extract_delimited($text, "'", '', "'");
+
+ # Extract a single- or double- quoted substring from the
+ # beginning of $text, optionally after some whitespace
+ # (note the list context to protect $text from modification):
+
+ ($substring) = extract_delimited $text, q{"'};
+
+ # Delete the substring delimited by the first '/' in $text:
+
+ $text = join '', (extract_delimited($text,'/','[^/]*')[2,1];
+
+Note that this last example is I<not> the same as deleting the first
+quote-like pattern. For instance, if C<$text> contained the string:
+
+ "if ('./cmd' =~ m/$UNIXCMD/s) { $cmd = $1; }"
+
+then after the deletion it would contain:
+
+ "if ('.$UNIXCMD/s) { $cmd = $1; }"
+
+not:
+
+ "if ('./cmd' =~ ms) { $cmd = $1; }"
+
+See L<"extract_quotelike"> for a (partial) solution to this problem.
+
+=head2 C<extract_bracketed>
+
+Like C<"extract_delimited">, the C<extract_bracketed> function takes
+up to three optional scalar arguments: a string to extract from, a delimiter
+specifier, and a prefix pattern. As before, a missing prefix defaults to
+optional whitespace and a missing text defaults to C<$_>. However, a missing
+delimiter specifier defaults to C<'{}()[]E<lt>E<gt>'> (see below).
+
+C<extract_bracketed> extracts a balanced-bracket-delimited
+substring (using any one (or more) of the user-specified delimiter
+brackets: '(..)', '{..}', '[..]', or '<..>'). Optionally it will also
+respect quoted unbalanced brackets (see below).
+
+A "delimiter bracket" is a bracket in list of delimiters passed as
+C<extract_bracketed>'s second argument. Delimiter brackets are
+specified by giving either the left or right (or both!) versions
+of the required bracket(s). Note that the order in which
+two or more delimiter brackets are specified is not significant.
+
+A "balanced-bracket-delimited substring" is a substring bounded by
+matched brackets, such that any other (left or right) delimiter
+bracket I<within> the substring is also matched by an opposite
+(right or left) delimiter bracket I<at the same level of nesting>. Any
+type of bracket not in the delimiter list is treated as an ordinary
+character.
+
+In other words, each type of bracket specified as a delimiter must be
+balanced and correctly nested within the substring, and any other kind of
+("non-delimiter") bracket in the substring is ignored.
+
+For example, given the string:
+
+ $text = "{ an '[irregularly :-(] {} parenthesized >:-)' string }";
+
+then a call to C<extract_bracketed> in a list context:
+
+ @result = extract_bracketed( $text, '{}' );
+
+would return:
+
+ ( "{ an '[irregularly :-(] {} parenthesized >:-)' string }" , "" , "" )
+
+since both sets of C<'{..}'> brackets are properly nested and evenly balanced.
+(In a scalar context just the first element of the array would be returned. In
+a void context, C<$text> would be replaced by an empty string.)
+
+Likewise the call in:
+
+ @result = extract_bracketed( $text, '{[' );
+
+would return the same result, since all sets of both types of specified
+delimiter brackets are correctly nested and balanced.
+
+However, the call in:
+
+ @result = extract_bracketed( $text, '{([<' );
+
+would fail, returning:
+
+ ( undef , "{ an '[irregularly :-(] {} parenthesized >:-)' string }" );
+
+because the embedded pairs of C<'(..)'>s and C<'[..]'>s are "cross-nested" and
+the embedded C<'E<gt>'> is unbalanced. (In a scalar context, this call would
+return an empty string. In a void context, C<$text> would be unchanged.)
+
+Note that the embedded single-quotes in the string don't help in this
+case, since they have not been specified as acceptable delimiters and are
+therefore treated as non-delimiter characters (and ignored).
+
+However, if a particular species of quote character is included in the
+delimiter specification, then that type of quote will be correctly handled.
+for example, if C<$text> is:
+
+ $text = '<A HREF=">>>>">link</A>';
+
+then
+
+ @result = extract_bracketed( $text, '<">' );
+
+returns:
+
+ ( '<A HREF=">>>>">', 'link</A>', "" )
+
+as expected. Without the specification of C<"> as an embedded quoter:
+
+ @result = extract_bracketed( $text, '<>' );
+
+the result would be:
+
+ ( '<A HREF=">', '>>>">link</A>', "" )
+
+In addition to the quote delimiters C<'>, C<">, and C<`>, full Perl quote-like
+quoting (i.e. q{string}, qq{string}, etc) can be specified by including the
+letter 'q' as a delimiter. Hence:
+
+ @result = extract_bracketed( $text, '<q>' );
+
+would correctly match something like this:
+
+ $text = '<leftop: conj /and/ conj>';
+
+See also: C<"extract_quotelike"> and C<"extract_codeblock">.
+
+=head2 C<extract_variable>
+
+C<extract_variable> extracts any valid Perl variable or
+variable-involved expression, including scalars, arrays, hashes, array
+accesses, hash look-ups, method calls through objects, subroutine calls
+through subroutine references, etc.
+
+The subroutine takes up to two optional arguments:
+
+=over 4
+
+=item 1.
+
+A string to be processed (C<$_> if the string is omitted or C<undef>)
+
+=item 2.
+
+A string specifying a pattern to be matched as a prefix (which is to be
+skipped). If omitted, optional whitespace is skipped.
+
+=back
+
+On success in a list context, an array of 3 elements is returned. The
+elements are:
+
+=over 4
+
+=item [0]
+
+the extracted variable, or variablish expression
+
+=item [1]
+
+the remainder of the input text,
+
+=item [2]
+
+the prefix substring (if any),
+
+=back
+
+On failure, all of these values (except the remaining text) are C<undef>.
+
+In a scalar context, C<extract_variable> returns just the complete
+substring that matched a variablish expression. C<undef> is returned on
+failure. In addition, the original input text has the returned substring
+(and any prefix) removed from it.
+
+In a void context, the input text just has the matched substring (and
+any specified prefix) removed.
+
+
+=head2 C<extract_tagged>
+
+C<extract_tagged> extracts and segments text between (balanced)
+specified tags.
+
+The subroutine takes up to five optional arguments:
+
+=over 4
+
+=item 1.
+
+A string to be processed (C<$_> if the string is omitted or C<undef>)
+
+=item 2.
+
+A string specifying a pattern to be matched as the opening tag.
+If the pattern string is omitted (or C<undef>) then a pattern
+that matches any standard XML tag is used.
+
+=item 3.
+
+A string specifying a pattern to be matched at the closing tag.
+If the pattern string is omitted (or C<undef>) then the closing
+tag is constructed by inserting a C</> after any leading bracket
+characters in the actual opening tag that was matched (I<not> the pattern
+that matched the tag). For example, if the opening tag pattern
+is specified as C<'{{\w+}}'> and actually matched the opening tag
+C<"{{DATA}}">, then the constructed closing tag would be C<"{{/DATA}}">.
+
+=item 4.
+
+A string specifying a pattern to be matched as a prefix (which is to be
+skipped). If omitted, optional whitespace is skipped.
+
+=item 5.
+
+A hash reference containing various parsing options (see below)
+
+=back
+
+The various options that can be specified are:
+
+=over 4
+
+=item C<reject =E<gt> $listref>
+
+The list reference contains one or more strings specifying patterns
+that must I<not> appear within the tagged text.
+
+For example, to extract
+an HTML link (which should not contain nested links) use:
+
+ extract_tagged($text, '<A>', '</A>', undef, {reject => ['<A>']} );
+
+=item C<ignore =E<gt> $listref>
+
+The list reference contains one or more strings specifying patterns
+that are I<not> be be treated as nested tags within the tagged text
+(even if they would match the start tag pattern).
+
+For example, to extract an arbitrary XML tag, but ignore "empty" elements:
+
+ extract_tagged($text, undef, undef, undef, {ignore => ['<[^>]*/>']} );
+
+(also see L<"gen_delimited_pat"> below).
+
+=item C<fail =E<gt> $str>
+
+The C<fail> option indicates the action to be taken if a matching end
+tag is not encountered (i.e. before the end of the string or some
+C<reject> pattern matches). By default, a failure to match a closing
+tag causes C<extract_tagged> to immediately fail.
+
+However, if the string value associated with <reject> is "MAX", then
+C<extract_tagged> returns the complete text up to the point of failure.
+If the string is "PARA", C<extract_tagged> returns only the first paragraph
+after the tag (up to the first line that is either empty or contains
+only whitespace characters).
+If the string is "", the the default behaviour (i.e. failure) is reinstated.
+
+For example, suppose the start tag "/para" introduces a paragraph, which then
+continues until the next "/endpara" tag or until another "/para" tag is
+encountered:
+
+ $text = "/para line 1\n\nline 3\n/para line 4";
+
+ extract_tagged($text, '/para', '/endpara', undef,
+ {reject => '/para', fail => MAX );
+
+ # EXTRACTED: "/para line 1\n\nline 3\n"
+
+Suppose instead, that if no matching "/endpara" tag is found, the "/para"
+tag refers only to the immediately following paragraph:
+
+ $text = "/para line 1\n\nline 3\n/para line 4";
+
+ extract_tagged($text, '/para', '/endpara', undef,
+ {reject => '/para', fail => MAX );
+
+ # EXTRACTED: "/para line 1\n"
+
+Note that the specified C<fail> behaviour applies to nested tags as well.
+
+=back
+
+On success in a list context, an array of 6 elements is returned. The elements are:
+
+=over 4
+
+=item [0]
+
+the extracted tagged substring (including the outermost tags),
+
+=item [1]
+
+the remainder of the input text,
+
+=item [2]
+
+the prefix substring (if any),
+
+=item [3]
+
+the opening tag
+
+=item [4]
+
+the text between the opening and closing tags
+
+=item [5]
+
+the closing tag (or "" if no closing tag was found)
+
+=back
+
+On failure, all of these values (except the remaining text) are C<undef>.
+
+In a scalar context, C<extract_tagged> returns just the complete
+substring that matched a tagged text (including the start and end
+tags). C<undef> is returned on failure. In addition, the original input
+text has the returned substring (and any prefix) removed from it.
+
+In a void context, the input text just has the matched substring (and
+any specified prefix) removed.
+
+=head2 C<gen_extract_tagged>
+
+(Note: This subroutine is only available under Perl5.005)
+
+C<gen_extract_tagged> generates a new anonymous subroutine which
+extracts text between (balanced) specified tags. In other words,
+it generates a function identical in function to C<extract_tagged>.
+
+The difference between C<extract_tagged> and the anonymous
+subroutines generated by
+C<gen_extract_tagged>, is that those generated subroutines:
+
+=over 4
+
+=item *
+
+do not have to reparse tag specification or parsing options every time
+they are called (whereas C<extract_tagged> has to effectively rebuild
+its tag parser on every call);
+
+=item *
+
+make use of the new qr// construct to pre-compile the regexes they use
+(whereas C<extract_tagged> uses standard string variable interpolation
+to create tag-matching patterns).
+
+=back
+
+The subroutine takes up to four optional arguments (the same set as
+C<extract_tagged> except for the string to be processed). It returns
+a reference to a subroutine which in turn takes a single argument (the text to
+be extracted from).
+
+In other words, the implementation of C<extract_tagged> is exactly
+equivalent to:
+
+ sub extract_tagged
+ {
+ my $text = shift;
+ $extractor = gen_extract_tagged(@_);
+ return $extractor->($text);
+ }
+
+(although C<extract_tagged> is not currently implemented that way, in order
+to preserve pre-5.005 compatibility).
+
+Using C<gen_extract_tagged> to create extraction functions for specific tags
+is a good idea if those functions are going to be called more than once, since
+their performance is typically twice as good as the more general-purpose
+C<extract_tagged>.
+
+
+=head2 C<extract_quotelike>
+
+C<extract_quotelike> attempts to recognize, extract, and segment any
+one of the various Perl quotes and quotelike operators (see
+L<perlop(3)>) Nested backslashed delimiters, embedded balanced bracket
+delimiters (for the quotelike operators), and trailing modifiers are
+all caught. For example, in:
+
+ extract_quotelike 'q # an octothorpe: \# (not the end of the q!) #'
+
+ extract_quotelike ' "You said, \"Use sed\"." '
+
+ extract_quotelike ' s{([A-Z]{1,8}\.[A-Z]{3})} /\L$1\E/; '
+
+ extract_quotelike ' tr/\\\/\\\\/\\\//ds; '
+
+the full Perl quotelike operations are all extracted correctly.
+
+Note too that, when using the /x modifier on a regex, any comment
+containing the current pattern delimiter will cause the regex to be
+immediately terminated. In other words:
+
+ 'm /
+ (?i) # CASE INSENSITIVE
+ [a-z_] # LEADING ALPHABETIC/UNDERSCORE
+ [a-z0-9]* # FOLLOWED BY ANY NUMBER OF ALPHANUMERICS
+ /x'
+
+will be extracted as if it were:
+
+ 'm /
+ (?i) # CASE INSENSITIVE
+ [a-z_] # LEADING ALPHABETIC/'
+
+This behaviour is identical to that of the actual compiler.
+
+C<extract_quotelike> takes two arguments: the text to be processed and
+a prefix to be matched at the very beginning of the text. If no prefix
+is specified, optional whitespace is the default. If no text is given,
+C<$_> is used.
+
+In a list context, an array of 11 elements is returned. The elements are:
+
+=over 4
+
+=item [0]
+
+the extracted quotelike substring (including trailing modifiers),
+
+=item [1]
+
+the remainder of the input text,
+
+=item [2]
+
+the prefix substring (if any),
+
+=item [3]
+
+the name of the quotelike operator (if any),
+
+=item [4]
+
+the left delimiter of the first block of the operation,
+
+=item [5]
+
+the text of the first block of the operation
+(that is, the contents of
+a quote, the regex of a match or substitution or the target list of a
+translation),
+
+=item [6]
+
+the right delimiter of the first block of the operation,
+
+=item [7]
+
+the left delimiter of the second block of the operation
+(that is, if it is a C<s>, C<tr>, or C<y>),
+
+=item [8]
+
+the text of the second block of the operation
+(that is, the replacement of a substitution or the translation list
+of a translation),
+
+=item [9]
+
+the right delimiter of the second block of the operation (if any),
+
+=item [10]
+
+the trailing modifiers on the operation (if any).
+
+=back
+
+For each of the fields marked "(if any)" the default value on success is
+an empty string.
+On failure, all of these values (except the remaining text) are C<undef>.
+
+In a scalar context, C<extract_quotelike> returns just the complete substring
+that matched a quotelike operation (or C<undef> on failure). In a scalar or
+void context, the input text has the same substring (and any specified
+prefix) removed.
+
+Examples:
+
+ # Remove the first quotelike literal that appears in text
+
+ $quotelike = extract_quotelike($text,'.*?');
+
+ # Replace one or more leading whitespace-separated quotelike
+ # literals in $_ with "<QLL>"
+
+ do { $_ = join '<QLL>', (extract_quotelike)[2,1] } until $@;
+
+
+ # Isolate the search pattern in a quotelike operation from $text
+
+ ($op,$pat) = (extract_quotelike $text)[3,5];
+ if ($op =~ /[ms]/)
+ {
+ print "search pattern: $pat\n";
+ }
+ else
+ {
+ print "$op is not a pattern matching operation\n";
+ }
+
+=head2 C<extract_quotelike> and "here documents"
+
+C<extract_quotelike> can successfully extract "here documents" from an input
+string, but with an important caveat in list contexts.
+
+Unlike other types of quote-like literals, a here document is rarely
+a contiguous substring. For example, a typical piece of code using
+here document might look like this:
+
+ <<'EOMSG' || die;
+ This is the message.
+ EOMSG
+ exit;
+
+Given this as an input string in a scalar context, C<extract_quotelike>
+would correctly return the string "<<'EOMSG'\nThis is the message.\nEOMSG",
+leaving the string " || die;\nexit;" in the original variable. In other words,
+the two separate pieces of the here document are successfully extracted and
+concatenated.
+
+In a list context, C<extract_quotelike> would return the list
+
+=over 4
+
+=item [0]
+
+"<<'EOMSG'\nThis is the message.\nEOMSG\n" (i.e. the full extracted here document,
+including fore and aft delimiters),
+
+=item [1]
+
+" || die;\nexit;" (i.e. the remainder of the input text, concatenated),
+
+=item [2]
+
+"" (i.e. the prefix substring -- trivial in this case),
+
+=item [3]
+
+"<<" (i.e. the "name" of the quotelike operator)
+
+=item [4]
+
+"'EOMSG'" (i.e. the left delimiter of the here document, including any quotes),
+
+=item [5]
+
+"This is the message.\n" (i.e. the text of the here document),
+
+=item [6]
+
+"EOMSG" (i.e. the right delimiter of the here document),
+
+=item [7..10]
+
+"" (a here document has no second left delimiter, second text, second right
+delimiter, or trailing modifiers).
+
+=back
+
+However, the matching position of the input variable would be set to
+"exit;" (i.e. I<after> the closing delimiter of the here document),
+which would cause the earlier " || die;\nexit;" to be skipped in any
+sequence of code fragment extractions.
+
+To avoid this problem, when it encounters a here document whilst
+extracting from a modifiable string, C<extract_quotelike> silently
+rearranges the string to an equivalent piece of Perl:
+
+ <<'EOMSG'
+ This is the message.
+ EOMSG
+ || die;
+ exit;
+
+in which the here document I<is> contiguous. It still leaves the
+matching position after the here document, but now the rest of the line
+on which the here document starts is not skipped.
+
+To prevent <extract_quotelike> from mucking about with the input in this way
+(this is the only case where a list-context C<extract_quotelike> does so),
+you can pass the input variable as an interpolated literal:
+
+ $quotelike = extract_quotelike("$var");
+
+=head2 C<extract_codeblock>
+
+C<extract_codeblock> attempts to recognize and extract a balanced
+bracket delimited substring that may contain unbalanced brackets
+inside Perl quotes or quotelike operations. That is, C<extract_codeblock>
+is like a combination of C<"extract_bracketed"> and
+C<"extract_quotelike">.
+
+C<extract_codeblock> takes the same initial three parameters as C<extract_bracketed>:
+a text to process, a set of delimiter brackets to look for, and a prefix to
+match first. It also takes an optional fourth parameter, which allows the
+outermost delimiter brackets to be specified separately (see below).
+
+Omitting the first argument (input text) means process C<$_> instead.
+Omitting the second argument (delimiter brackets) indicates that only C<'{'> is to be used.
+Omitting the third argument (prefix argument) implies optional whitespace at the start.
+Omitting the fourth argument (outermost delimiter brackets) indicates that the
+value of the second argument is to be used for the outermost delimiters.
+
+Once the prefix an dthe outermost opening delimiter bracket have been
+recognized, code blocks are extracted by stepping through the input text and
+trying the following alternatives in sequence:
+
+=over 4
+
+=item 1.
+
+Try and match a closing delimiter bracket. If the bracket was the same
+species as the last opening bracket, return the substring to that
+point. If the bracket was mismatched, return an error.
+
+=item 2.
+
+Try to match a quote or quotelike operator. If found, call
+C<extract_quotelike> to eat it. If C<extract_quotelike> fails, return
+the error it returned. Otherwise go back to step 1.
+
+=item 3.
+
+Try to match an opening delimiter bracket. If found, call
+C<extract_codeblock> recursively to eat the embedded block. If the
+recursive call fails, return an error. Otherwise, go back to step 1.
+
+=item 4.
+
+Unconditionally match a bareword or any other single character, and
+then go back to step 1.
+
+=back
+
+Examples:
+
+ # Find a while loop in the text
+
+ if ($text =~ s/.*?while\s*\{/{/)
+ {
+ $loop = "while " . extract_codeblock($text);
+ }
+
+ # Remove the first round-bracketed list (which may include
+ # round- or curly-bracketed code blocks or quotelike operators)
+
+ extract_codeblock $text, "(){}", '[^(]*';
+
+
+The ability to specify a different outermost delimiter bracket is useful
+in some circumstances. For example, in the Parse::RecDescent module,
+parser actions which are to be performed only on a successful parse
+are specified using a C<E<lt>defer:...E<gt>> directive. For example:
+
+ sentence: subject verb object
+ <defer: {$::theVerb = $item{verb}} >
+
+Parse::RecDescent uses C<extract_codeblock($text, '{}E<lt>E<gt>')> to extract the code
+within the C<E<lt>defer:...E<gt>> directive, but there's a problem.
+
+A deferred action like this:
+
+ <defer: {if ($count>10) {$count--}} >
+
+will be incorrectly parsed as:
+
+ <defer: {if ($count>
+
+because the "less than" operator is interpreted as a closing delimiter.
+
+But, by extracting the directive using
+S<C<extract_codeblock($text, '{}', undef, 'E<lt>E<gt>')>>
+the '>' character is only treated as a delimited at the outermost
+level of the code block, so the directive is parsed correctly.
+
+=head2 C<extract_multiple>
+
+The C<extract_multiple> subroutine takes a string to be processed and a
+list of extractors (subroutines or regular expressions) to apply to that string.
+
+In an array context C<extract_multiple> returns an array of substrings
+of the original string, as extracted by the specified extractors.
+In a scalar context, C<extract_multiple> returns the first
+substring successfully extracted from the original string. In both
+scalar and void contexts the original string has the first successfully
+extracted substring removed from it. In all contexts
+C<extract_multiple> starts at the current C<pos> of the string, and
+sets that C<pos> appropriately after it matches.
+
+Hence, the aim of of a call to C<extract_multiple> in a list context
+is to split the processed string into as many non-overlapping fields as
+possible, by repeatedly applying each of the specified extractors
+to the remainder of the string. Thus C<extract_multiple> is
+a generalized form of Perl's C<split> subroutine.
+
+The subroutine takes up to four optional arguments:
+
+=over 4
+
+=item 1.
+
+A string to be processed (C<$_> if the string is omitted or C<undef>)
+
+=item 2.
+
+A reference to a list of subroutine references and/or qr// objects and/or
+literal strings and/or hash references, specifying the extractors
+to be used to split the string. If this argument is omitted (or
+C<undef>) the list:
+
+ [
+ sub { extract_variable($_[0], '') },
+ sub { extract_quotelike($_[0],'') },
+ sub { extract_codeblock($_[0],'{}','') },
+ ]
+
+is used.
+
+=item 3.
+
+An number specifying the maximum number of fields to return. If this
+argument is omitted (or C<undef>), split continues as long as possible.
+
+If the third argument is I<N>, then extraction continues until I<N> fields
+have been successfully extracted, or until the string has been completely
+processed.
+
+Note that in scalar and void contexts the value of this argument is
+automatically reset to 1 (under C<-w>, a warning is issued if the argument
+has to be reset).
+
+=item 4.
+
+A value indicating whether unmatched substrings (see below) within the
+text should be skipped or returned as fields. If the value is true,
+such substrings are skipped. Otherwise, they are returned.
+
+=back
+
+The extraction process works by applying each extractor in
+sequence to the text string.
+
+If the extractor is a subroutine it is called in a list context and is
+expected to return a list of a single element, namely the extracted
+text. It may optionally also return two further arguments: a string
+representing the text left after extraction (like $' for a pattern
+match), and a string representing any prefix skipped before the
+extraction (like $` in a pattern match). Note that this is designed
+to facilitate the use of other Text::Balanced subroutines with
+C<extract_multiple>. Note too that the value returned by an extractor
+subroutine need not bear any relationship to the corresponding substring
+of the original text (see examples below).
+
+If the extractor is a precompiled regular expression or a string,
+it is matched against the text in a scalar context with a leading
+'\G' and the gc modifiers enabled. The extracted value is either
+$1 if that variable is defined after the match, or else the
+complete match (i.e. $&).
+
+If the extractor is a hash reference, it must contain exactly one element.
+The value of that element is one of the
+above extractor types (subroutine reference, regular expression, or string).
+The key of that element is the name of a class into which the successful
+return value of the extractor will be blessed.
+
+If an extractor returns a defined value, that value is immediately
+treated as the next extracted field and pushed onto the list of fields.
+If the extractor was specified in a hash reference, the field is also
+blessed into the appropriate class,
+
+If the extractor fails to match (in the case of a regex extractor), or returns an empty list or an undefined value (in the case of a subroutine extractor), it is
+assumed to have failed to extract.
+If none of the extractor subroutines succeeds, then one
+character is extracted from the start of the text and the extraction
+subroutines reapplied. Characters which are thus removed are accumulated and
+eventually become the next field (unless the fourth argument is true, in which
+case they are discarded).
+
+For example, the following extracts substrings that are valid Perl variables:
+
+ @fields = extract_multiple($text,
+ [ sub { extract_variable($_[0]) } ],
+ undef, 1);
+
+This example separates a text into fields which are quote delimited,
+curly bracketed, and anything else. The delimited and bracketed
+parts are also blessed to identify them (the "anything else" is unblessed):
+
+ @fields = extract_multiple($text,
+ [
+ { Delim => sub { extract_delimited($_[0],q{'"}) } },
+ { Brack => sub { extract_bracketed($_[0],'{}') } },
+ ]);
+
+This call extracts the next single substring that is a valid Perl quotelike
+operator (and removes it from $text):
+
+ $quotelike = extract_multiple($text,
+ [
+ sub { extract_quotelike($_[0]) },
+ ], undef, 1);
+
+Finally, here is yet another way to do comma-separated value parsing:
+
+ @fields = extract_multiple($csv_text,
+ [
+ sub { extract_delimited($_[0],q{'"}) },
+ qr/([^,]+)(.*)/,
+ ],
+ undef,1);
+
+The list in the second argument means:
+I<"Try and extract a ' or " delimited string, otherwise extract anything up to a comma...">.
+The undef third argument means:
+I<"...as many times as possible...">,
+and the true value in the fourth argument means
+I<"...discarding anything else that appears (i.e. the commas)">.
+
+If you wanted the commas preserved as separate fields (i.e. like split
+does if your split pattern has capturing parentheses), you would
+just make the last parameter undefined (or remove it).
+
+=head2 C<gen_delimited_pat>
+
+The C<gen_delimited_pat> subroutine takes a single (string) argument and
+ > builds a Friedl-style optimized regex that matches a string delimited
+by any one of the characters in the single argument. For example:
+
+ gen_delimited_pat(q{'"})
+
+returns the regex:
+
+ (?:\"(?:\\\"|(?!\").)*\"|\'(?:\\\'|(?!\').)*\')
+
+Note that the specified delimiters are automatically quotemeta'd.
+
+A typical use of C<gen_delimited_pat> would be to build special purpose tags
+for C<extract_tagged>. For example, to properly ignore "empty" XML elements
+(which might contain quoted strings):
+
+ my $empty_tag = '<(' . gen_delimited_pat(q{'"}) . '|.)+/>';
+
+ extract_tagged($text, undef, undef, undef, {ignore => [$empty_tag]} );
+
+C<gen_delimited_pat> may also be called with an optional second argument,
+which specifies the "escape" character(s) to be used for each delimiter.
+For example to match a Pascal-style string (where ' is the delimiter
+and '' is a literal ' within the string):
+
+ gen_delimited_pat(q{'},q{'});
+
+Different escape characters can be specified for different delimiters.
+For example, to specify that '/' is the escape for single quotes
+and '%' is the escape for double quotes:
+
+ gen_delimited_pat(q{'"},q{/%});
+
+If more delimiters than escape chars are specified, the last escape char
+is used for the remaining delimiters.
+If no escape char is specified for a given specified delimiter, '\' is used.
+
+=head2 C<delimited_pat>
+
+Note that C<gen_delimited_pat> was previously called C<delimited_pat>.
+That name may still be used, but is now deprecated.
+
+
+=head1 DIAGNOSTICS
+
+In a list context, all the functions return C<(undef,$original_text)>
+on failure. In a scalar context, failure is indicated by returning C<undef>
+(in this case the input text is not modified in any way).
+
+In addition, on failure in I<any> context, the C<$@> variable is set.
+Accessing C<$@-E<gt>{error}> returns one of the error diagnostics listed
+below.
+Accessing C<$@-E<gt>{pos}> returns the offset into the original string at
+which the error was detected (although not necessarily where it occurred!)
+Printing C<$@> directly produces the error message, with the offset appended.
+On success, the C<$@> variable is guaranteed to be C<undef>.
+
+The available diagnostics are:
+
+=over 4
+
+=item C<Did not find a suitable bracket: "%s">
+
+The delimiter provided to C<extract_bracketed> was not one of
+C<'()[]E<lt>E<gt>{}'>.
+
+=item C<Did not find prefix: /%s/>
+
+A non-optional prefix was specified but wasn't found at the start of the text.
+
+=item C<Did not find opening bracket after prefix: "%s">
+
+C<extract_bracketed> or C<extract_codeblock> was expecting a
+particular kind of bracket at the start of the text, and didn't find it.
+
+=item C<No quotelike operator found after prefix: "%s">
+
+C<extract_quotelike> didn't find one of the quotelike operators C<q>,
+C<qq>, C<qw>, C<qx>, C<s>, C<tr> or C<y> at the start of the substring
+it was extracting.
+
+=item C<Unmatched closing bracket: "%c">
+
+C<extract_bracketed>, C<extract_quotelike> or C<extract_codeblock> encountered
+a closing bracket where none was expected.
+
+=item C<Unmatched opening bracket(s): "%s">
+
+C<extract_bracketed>, C<extract_quotelike> or C<extract_codeblock> ran
+out of characters in the text before closing one or more levels of nested
+brackets.
+
+=item C<Unmatched embedded quote (%s)>
+
+C<extract_bracketed> attempted to match an embedded quoted substring, but
+failed to find a closing quote to match it.
+
+=item C<Did not find closing delimiter to match '%s'>
+
+C<extract_quotelike> was unable to find a closing delimiter to match the
+one that opened the quote-like operation.
+
+=item C<Mismatched closing bracket: expected "%c" but found "%s">
+
+C<extract_bracketed>, C<extract_quotelike> or C<extract_codeblock> found
+a valid bracket delimiter, but it was the wrong species. This usually
+indicates a nesting error, but may indicate incorrect quoting or escaping.
+
+=item C<No block delimiter found after quotelike "%s">
+
+C<extract_quotelike> or C<extract_codeblock> found one of the
+quotelike operators C<q>, C<qq>, C<qw>, C<qx>, C<s>, C<tr> or C<y>
+without a suitable block after it.
+
+=item C<Did not find leading dereferencer>
+
+C<extract_variable> was expecting one of '$', '@', or '%' at the start of
+a variable, but didn't find any of them.
+
+=item C<Bad identifier after dereferencer>
+
+C<extract_variable> found a '$', '@', or '%' indicating a variable, but that
+character was not followed by a legal Perl identifier.
+
+=item C<Did not find expected opening bracket at %s>
+
+C<extract_codeblock> failed to find any of the outermost opening brackets
+that were specified.
+
+=item C<Improperly nested codeblock at %s>
+
+A nested code block was found that started with a delimiter that was specified
+as being only to be used as an outermost bracket.
+
+=item C<Missing second block for quotelike "%s">
+
+C<extract_codeblock> or C<extract_quotelike> found one of the
+quotelike operators C<s>, C<tr> or C<y> followed by only one block.
+
+=item C<No match found for opening bracket>
+
+C<extract_codeblock> failed to find a closing bracket to match the outermost
+opening bracket.
+
+=item C<Did not find opening tag: /%s/>
+
+C<extract_tagged> did not find a suitable opening tag (after any specified
+prefix was removed).
+
+=item C<Unable to construct closing tag to match: /%s/>
+
+C<extract_tagged> matched the specified opening tag and tried to
+modify the matched text to produce a matching closing tag (because
+none was specified). It failed to generate the closing tag, almost
+certainly because the opening tag did not start with a
+bracket of some kind.
+
+=item C<Found invalid nested tag: %s>
+
+C<extract_tagged> found a nested tag that appeared in the "reject" list
+(and the failure mode was not "MAX" or "PARA").
+
+=item C<Found unbalanced nested tag: %s>
+
+C<extract_tagged> found a nested opening tag that was not matched by a
+corresponding nested closing tag (and the failure mode was not "MAX" or "PARA").
+
+=item C<Did not find closing tag>
+
+C<extract_tagged> reached the end of the text without finding a closing tag
+to match the original opening tag (and the failure mode was not
+"MAX" or "PARA").
+
+=back
+
+=head1 AUTHOR
+
+Damian Conway (damian@conway.org)
+
+=head1 BUGS AND IRRITATIONS
+
+There are undoubtedly serious bugs lurking somewhere in this code, if
+only because parts of it give the impression of understanding a great deal
+more about Perl than they really do.
+
+Bug reports and other feedback are most welcome.
+
+=head1 COPYRIGHT
+
+Copyright 1997 - 2001 Damian Conway. All Rights Reserved.
+
+Some (minor) parts copyright 2009 Adam Kennedy.
+
+This module is free software. It may be used, redistributed
+and/or modified under the same terms as Perl itself.
+
+=cut
diff --git a/cpan/Text-Balanced/t/01_compile.t b/cpan/Text-Balanced/t/01_compile.t
new file mode 100644
index 0000000000..77c1099995
--- /dev/null
+++ b/cpan/Text-Balanced/t/01_compile.t
@@ -0,0 +1,11 @@
+#!/usr/bin/perl
+
+use strict;
+BEGIN {
+ $| = 1;
+ $^W = 1;
+}
+
+use Test::More tests => 1;
+
+use_ok( 'Text::Balanced' );
diff --git a/cpan/Text-Balanced/t/02_extbrk.t b/cpan/Text-Balanced/t/02_extbrk.t
new file mode 100644
index 0000000000..a36025ddb0
--- /dev/null
+++ b/cpan/Text-Balanced/t/02_extbrk.t
@@ -0,0 +1,76 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..19\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( extract_bracketed );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ if ($str =~ s/\A# USING://) { $neg = 0; $cmd = $str; next; }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ $str =~ s/\\n/\n/g;
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [$str]\n";
+
+ $var = eval "() = $cmd";
+ debug "\t list got: [$var]\n";
+ debug "\t list left: [$str]\n";
+ print "not " if (substr($str,pos($str),1) eq ';')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+
+ pos $str = 0;
+ $var = eval $cmd;
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [$var]\n";
+ debug "\t scalar left: [$str]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+}
+
+__DATA__
+
+# USING: extract_bracketed($str);
+{a nested { and } are okay as are () and <> pairs and escaped \}'s };
+{a nested\n{ and } are okay as are\n() and <> pairs and escaped \}'s };
+
+# USING: extract_bracketed($str,'{}');
+{a nested { and } are okay as are unbalanced ( and < pairs and escaped \}'s };
+
+# THESE SHOULD FAIL
+{an unmatched nested { isn't okay, nor are ( and < };
+{an unbalanced nested [ even with } and ] to match them;
+
+
+# USING: extract_bracketed($str,'<"`q>');
+<a q{uoted} ">" unbalanced right bracket of /(q>)/ either sort (`>>>""">>>>`) is okay >;
+
+# USING: extract_bracketed($str,'<">');
+<a quoted ">" unbalanced right bracket is okay >;
+
+# USING: extract_bracketed($str,'<"`>');
+<a quoted ">" unbalanced right bracket of either sort (`>>>""">>>>`) is okay >;
+
+# THIS SHOULD FAIL
+<a misquoted '>' unbalanced right bracket is bad >;
diff --git a/cpan/Text-Balanced/t/03_extcbk.t b/cpan/Text-Balanced/t/03_extcbk.t
new file mode 100644
index 0000000000..83081ae28d
--- /dev/null
+++ b/cpan/Text-Balanced/t/03_extcbk.t
@@ -0,0 +1,95 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..41\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( extract_codeblock );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ if ($str =~ s/\A# USING://) { $neg = 0; $cmd = $str; next; }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ $str =~ s/\\n/\n/g;
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [$str]\n";
+
+ my @res;
+ $var = eval "\@res = $cmd";
+ debug "\t Failed: $@ at " . $@+0 .")" if $@;
+ debug "\t list got: [" . join("|", map {defined $_ ? $_ : '<undef>'} @res) . "]\n";
+ debug "\t list left: [$str]\n";
+ print "not " if (substr($str,pos($str)||0,1) eq ';')==$neg;
+ print "ok ", $count++;
+ print "\n";
+
+ pos $str = 0;
+ $var = eval $cmd;
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [$var]\n";
+ debug "\t scalar left: [$str]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+}
+
+__DATA__
+
+# USING: extract_codeblock($str,'(){}',undef,'()');
+(Foo(')'));
+
+# USING: extract_codeblock($str);
+{ $data[4] =~ /['"]/; };
+
+# USING: extract_codeblock($str,'<>');
+< %x = ( try => "this") >;
+< %x = () >;
+< %x = ( $try->{this}, "too") >;
+< %'x = ( $try->{this}, "too") >;
+< %'x'y = ( $try->{this}, "too") >;
+< %::x::y = ( $try->{this}, "too") >;
+
+# THIS SHOULD FAIL
+< %x = do { $try > 10 } >;
+
+# USING: extract_codeblock($str);
+
+{ $a = /\}/; };
+{ sub { $_[0] /= $_[1] } }; # / here
+{ 1; };
+{ $a = 1; };
+
+
+# USING: extract_codeblock($str,undef,'=*');
+========{$a=1};
+
+# USING: extract_codeblock($str,'{}<>');
+< %x = do { $try > 10 } >;
+
+# USING: extract_codeblock($str,'{}',undef,'<>');
+< %x = do { $try > 10 } >;
+
+# USING: extract_codeblock($str,'{}');
+{ $a = $b; # what's this doing here? \n };'
+{ $a = $b; \n $a =~ /$b/; \n @a = map /\s/ @b };
+
+# THIS SHOULD FAIL
+{ $a = $b; # what's this doing here? };'
+{ $a = $b; # what's this doing here? ;'
diff --git a/cpan/Text-Balanced/t/04_extdel.t b/cpan/Text-Balanced/t/04_extdel.t
new file mode 100644
index 0000000000..c5ca88eebf
--- /dev/null
+++ b/cpan/Text-Balanced/t/04_extdel.t
@@ -0,0 +1,90 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..45\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( extract_delimited );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ if ($str =~ s/\A# USING://) { $neg = 0; $cmd = $str; next; }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ $str =~ s/\\n/\n/g;
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [$str]\n";
+
+ $var = eval "() = $cmd";
+ debug "\t list got: [$var]\n";
+ debug "\t list left: [$str]\n";
+ print "not " if (substr($str,pos($str)||0,1) eq ';')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+
+ pos $str = 0;
+ $var = eval $cmd;
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [$var]\n";
+ debug "\t scalar left: [$str]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+}
+
+__DATA__
+# USING: extract_delimited($str,'/#$',undef,'/#$');
+/a/;
+/a///;
+#b#;
+#b###;
+$c$;
+$c$$$;
+
+# TEST EXTRACTION OF DELIMITED TEXT WITH ESCAPES
+# USING: extract_delimited($str,'/#$',undef,'\\');
+/a/;
+/a\//;
+#b#;
+#b\##;
+$c$;
+$c\$$;
+
+# TEST EXTRACTION OF DELIMITED TEXT
+# USING: extract_delimited($str);
+'a';
+"b";
+`c`;
+'a\'';
+'a\\';
+'\\a';
+"a\\";
+"\\a";
+"b\'\"\'";
+`c '\`abc\`'`;
+
+# TEST EXTRACTION OF DELIMITED TEXT
+# USING: extract_delimited($str,'/#$','-->');
+-->/a/;
+-->#b#;
+-->$c$;
+
+# THIS SHOULD FAIL
+$c$;
diff --git a/cpan/Text-Balanced/t/05_extmul.t b/cpan/Text-Balanced/t/05_extmul.t
new file mode 100644
index 0000000000..2ac1b19ffd
--- /dev/null
+++ b/cpan/Text-Balanced/t/05_extmul.t
@@ -0,0 +1,319 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..86\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( :ALL );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+sub expect
+{
+ local $^W;
+ my ($l1, $l2) = @_;
+
+ if (@$l1 != @$l2)
+ {
+ print "\@l1: ", join(", ", @$l1), "\n";
+ print "\@l2: ", join(", ", @$l2), "\n";
+ print "not ";
+ }
+ else
+ {
+ for (my $i = 0; $i < @$l1; $i++)
+ {
+ if ($l1->[$i] ne $l2->[$i])
+ {
+ print "field $i: '$l1->[$i]' ne '$l2->[$i]'\n";
+ print "not ";
+ last;
+ }
+ }
+ }
+
+ print "ok $count\n";
+ $count++;
+}
+
+sub divide
+{
+ my ($text, @index) = @_;
+ my @bits = ();
+ unshift @index, 0;
+ push @index, length($text);
+ for ( my $i= 0; $i < $#index; $i++)
+ {
+ push @bits, substr($text, $index[$i], $index[$i+1]-$index[$i]);
+ }
+ pop @bits;
+ return @bits;
+
+}
+
+
+$stdtext1 = q{$var = do {"val" && $val;};};
+
+# TESTS 2-4
+$text = $stdtext1;
+expect [ extract_multiple($text,undef,1) ],
+ [ divide $stdtext1 => 4 ];
+
+expect [ pos $text], [ 4 ];
+expect [ $text ], [ $stdtext1 ];
+
+# TESTS 5-7
+$text = $stdtext1;
+expect [ scalar extract_multiple($text,undef,1) ],
+ [ divide $stdtext1 => 4 ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext1,4) ];
+
+
+# TESTS 8-10
+$text = $stdtext1;
+expect [ extract_multiple($text,undef,2) ],
+ [ divide($stdtext1 => 4, 10) ];
+
+expect [ pos $text], [ 10 ];
+expect [ $text ], [ $stdtext1 ];
+
+# TESTS 11-13
+$text = $stdtext1;
+expect [ eval{local$^W;scalar extract_multiple($text,undef,2)} ],
+ [ substr($stdtext1,0,4) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext1,4) ];
+
+
+# TESTS 14-16
+$text = $stdtext1;
+expect [ extract_multiple($text,undef,3) ],
+ [ divide($stdtext1 => 4, 10, 26) ];
+
+expect [ pos $text], [ 26 ];
+expect [ $text ], [ $stdtext1 ];
+
+# TESTS 17-19
+$text = $stdtext1;
+expect [ eval{local$^W;scalar extract_multiple($text,undef,3)} ],
+ [ substr($stdtext1,0,4) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext1,4) ];
+
+
+# TESTS 20-22
+$text = $stdtext1;
+expect [ extract_multiple($text,undef,4) ],
+ [ divide($stdtext1 => 4, 10, 26, 27) ];
+
+expect [ pos $text], [ 27 ];
+expect [ $text ], [ $stdtext1 ];
+
+# TESTS 23-25
+$text = $stdtext1;
+expect [ eval{local$^W;scalar extract_multiple($text,undef,4)} ],
+ [ substr($stdtext1,0,4) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext1,4) ];
+
+
+# TESTS 26-28
+$text = $stdtext1;
+expect [ extract_multiple($text,undef,5) ],
+ [ divide($stdtext1 => 4, 10, 26, 27) ];
+
+expect [ pos $text], [ 27 ];
+expect [ $text ], [ $stdtext1 ];
+
+
+# TESTS 29-31
+$text = $stdtext1;
+expect [ eval{local$^W;scalar extract_multiple($text,undef,5)} ],
+ [ substr($stdtext1,0,4) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext1,4) ];
+
+
+
+# TESTS 32-34
+$stdtext2 = q{$var = "val" && (1,2,3);};
+
+$text = $stdtext2;
+expect [ extract_multiple($text) ],
+ [ divide($stdtext2 => 4, 7, 12, 24) ];
+
+expect [ pos $text], [ 24 ];
+expect [ $text ], [ $stdtext2 ];
+
+# TESTS 35-37
+$text = $stdtext2;
+expect [ scalar extract_multiple($text) ],
+ [ substr($stdtext2,0,4) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext2,4) ];
+
+
+# TESTS 38-40
+$text = $stdtext2;
+expect [ extract_multiple($text,[\&extract_bracketed]) ],
+ [ substr($stdtext2,0,16), substr($stdtext2,16,7), substr($stdtext2,23) ];
+
+expect [ pos $text], [ 24 ];
+expect [ $text ], [ $stdtext2 ];
+
+# TESTS 41-43
+$text = $stdtext2;
+expect [ scalar extract_multiple($text,[\&extract_bracketed]) ],
+ [ substr($stdtext2,0,16) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext2,15) ];
+
+
+# TESTS 44-46
+$text = $stdtext2;
+expect [ extract_multiple($text,[\&extract_variable]) ],
+ [ substr($stdtext2,0,4), substr($stdtext2,4) ];
+
+expect [ pos $text], [ length($text) ];
+expect [ $text ], [ $stdtext2 ];
+
+# TESTS 47-49
+$text = $stdtext2;
+expect [ scalar extract_multiple($text,[\&extract_variable]) ],
+ [ substr($stdtext2,0,4) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext2,4) ];
+
+
+# TESTS 50-52
+$text = $stdtext2;
+expect [ extract_multiple($text,[\&extract_quotelike]) ],
+ [ substr($stdtext2,0,7), substr($stdtext2,7,5), substr($stdtext2,12) ];
+
+expect [ pos $text], [ length($text) ];
+expect [ $text ], [ $stdtext2 ];
+
+# TESTS 53-55
+$text = $stdtext2;
+expect [ scalar extract_multiple($text,[\&extract_quotelike]) ],
+ [ substr($stdtext2,0,7) ];
+
+expect [ pos $text], [ 0 ];
+expect [ $text ], [ substr($stdtext2,6) ];
+
+
+# TESTS 56-58
+$text = $stdtext2;
+expect [ extract_multiple($text,[\&extract_quotelike],2,1) ],
+ [ substr($stdtext2,7,5) ];
+
+expect [ pos $text], [ 23 ];
+expect [ $text ], [ $stdtext2 ];
+
+# TESTS 59-61
+$text = $stdtext2;
+expect [ eval{local$^W;scalar extract_multiple($text,[\&extract_quotelike],2,1)} ],
+ [ substr($stdtext2,7,5) ];
+
+expect [ pos $text], [ 6 ];
+expect [ $text ], [ substr($stdtext2,0,6). substr($stdtext2,12) ];
+
+
+# TESTS 62-64
+$text = $stdtext2;
+expect [ extract_multiple($text,[\&extract_quotelike],1,1) ],
+ [ substr($stdtext2,7,5) ];
+
+expect [ pos $text], [ 12 ];
+expect [ $text ], [ $stdtext2 ];
+
+# TESTS 65-67
+$text = $stdtext2;
+expect [ scalar extract_multiple($text,[\&extract_quotelike],1,1) ],
+ [ substr($stdtext2,7,5) ];
+
+expect [ pos $text], [ 6 ];
+expect [ $text ], [ substr($stdtext2,0,6). substr($stdtext2,12) ];
+
+# TESTS 68-70
+my $stdtext3 = "a,b,c";
+
+$_ = $stdtext3;
+expect [ extract_multiple(undef, [ sub { /\G[a-z]/gc && $& } ]) ],
+ [ divide($stdtext3 => 1,2,3,4,5) ];
+
+expect [ pos ], [ 5 ];
+expect [ $_ ], [ $stdtext3 ];
+
+# TESTS 71-73
+
+$_ = $stdtext3;
+expect [ scalar extract_multiple(undef, [ sub { /\G[a-z]/gc && $& } ]) ],
+ [ divide($stdtext3 => 1) ];
+
+expect [ pos ], [ 0 ];
+expect [ $_ ], [ substr($stdtext3,1) ];
+
+
+# TESTS 74-76
+
+$_ = $stdtext3;
+expect [ extract_multiple(undef, [ qr/\G[a-z]/ ]) ],
+ [ divide($stdtext3 => 1,2,3,4,5) ];
+
+expect [ pos ], [ 5 ];
+expect [ $_ ], [ $stdtext3 ];
+
+# TESTS 77-79
+
+$_ = $stdtext3;
+expect [ scalar extract_multiple(undef, [ qr/\G[a-z]/ ]) ],
+ [ divide($stdtext3 => 1) ];
+
+expect [ pos ], [ 0 ];
+expect [ $_ ], [ substr($stdtext3,1) ];
+
+
+# TESTS 80-82
+
+$_ = $stdtext3;
+expect [ extract_multiple(undef, [ q/([a-z]),?/ ]) ],
+ [ qw(a b c) ];
+
+expect [ pos ], [ 5 ];
+expect [ $_ ], [ $stdtext3 ];
+
+# TESTS 83-85
+
+$_ = $stdtext3;
+expect [ scalar extract_multiple(undef, [ q/([a-z]),?/ ]) ],
+ [ divide($stdtext3 => 1) ];
+
+expect [ pos ], [ 0 ];
+expect [ $_ ], [ substr($stdtext3,2) ];
+
+
+# TEST 86
+
+# Fails in Text-Balanced-1.95 with result ['1 ', '""', '1234']
+$_ = q{ ""1234};
+expect [ extract_multiple(undef, [\&extract_quotelike]) ],
+ [ ' ', '""', '1234' ];
diff --git a/cpan/Text-Balanced/t/06_extqlk.t b/cpan/Text-Balanced/t/06_extqlk.t
new file mode 100644
index 0000000000..6badc0ee18
--- /dev/null
+++ b/cpan/Text-Balanced/t/06_extqlk.t
@@ -0,0 +1,135 @@
+#! /usr/local/bin/perl -ws
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..95\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( extract_quotelike );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+#$DEBUG=1;
+sub debug { print "\t>>>",@_ if $ENV{DEBUG} }
+sub esc { my $x = shift||'<undef>'; $x =~ s/\n/\\n/gs; $x }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ if ($str =~ s/\A# USING://) { $neg = 0; $cmd = $str; next; }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ my $setup_cmd = ($str =~ s/\A\{(.*)\}//) ? $1 : '';
+ my $tests = 'sl';
+ $str =~ s/\\n/\n/g;
+ my $orig = $str;
+
+ eval $setup_cmd if $setup_cmd ne '';
+ if($tests =~ /l/) {
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [" . esc($setup_cmd) . "][" . esc($str) . "]\n";
+ my @res;
+ eval qq{\@res = $cmd; };
+ debug "\t got:\n" . join "", map { "\t\t\t$_: [" . esc($res[$_]) . "]\n"} (0..$#res);
+ debug "\t left: [" . esc($str) . "]\n";
+ debug "\t pos: [" . esc(substr($str,pos($str))) . "...]\n";
+ print "not " if (substr($str,pos($str),1) eq ';')==$neg;
+ print "ok ", $count++;
+ print "\n";
+ }
+
+ eval $setup_cmd if $setup_cmd ne '';
+ if($tests =~ /s/) {
+ $str = $orig;
+ debug "\tUsing: scalar $cmd\n";
+ debug "\t on: [" . esc($str) . "]\n";
+ $var = eval $cmd;
+ print " ($@)" if $@ && $DEBUG;
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [" . esc($var) . "]\n";
+ debug "\t scalar left: [" . esc($str) . "]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print "\n";
+ }
+}
+
+# fails in Text::Balanced 1.95
+$_ = qq(s{}{});
+my @z = extract_quotelike();
+print "not " if $z[0] eq '';
+print "ok ", $count++;
+print "\n";
+
+
+__DATA__
+
+# USING: extract_quotelike($str);
+'';
+"";
+"a";
+'b';
+`cc`;
+
+
+<<EOHERE; done();\nline1\nline2\nEOHERE\n; next;
+ <<EOHERE; done();\nline1\nline2\nEOHERE\n; next;
+<<"EOHERE"; done()\nline1\nline2\nEOHERE\n and next
+<<`EOHERE`; done()\nline1\nline2\nEOHERE\n and next
+<<'EOHERE'; done()\nline1\n'line2'\nEOHERE\n and next
+<<'EOHERE;'; done()\nline1\nline2\nEOHERE;\n and next
+<<" EOHERE"; done() \nline1\nline2\n EOHERE\nand next
+<<""; done()\nline1\nline2\n\n and next
+<<; done()\nline1\nline2\n\n and next
+# fails in Text::Balanced 1.95
+<<EOHERE;\nEOHERE\n;
+# fails in Text::Balanced 1.95
+<<"*";\n\n*\n;
+
+"this is a nested $var[$x] {";
+/a/gci;
+m/a/gci;
+
+q(d);
+qq(e);
+qx(f);
+qr(g);
+qw(h i j);
+q{d};
+qq{e};
+qx{f};
+qr{g};
+qq{a nested { and } are okay as are () and <> pairs and escaped \}'s };
+q/slash/;
+q # slash #;
+qr qw qx;
+
+s/x/y/;
+s/x/y/cgimsox;
+s{a}{b};
+s{a}\n {b};
+s(a){b};
+s(a)/b/;
+s/'/\\'/g;
+tr/x/y/;
+y/x/y/;
+
+# fails on Text-Balanced-1.95
+{ $tests = 'l'; pos($str)=6 }012345<<E;\n\nE\n
+
+# THESE SHOULD FAIL
+s<$self->{pat}>{$self->{sub}}; # CAN'T HANDLE '>' in '->'
+s-$self->{pap}-$self->{sub}-; # CAN'T HANDLE '-' in '->'
+<<EOHERE; done();\nline1\nline2\nEOHERE;\n; next; # RDEL HAS NO ';'
+<<'EOHERE'; done();\nline1\nline2\nEOHERE;\n; next; # RDEF HAS NO ';'
+ << EOTHERE; done();\nline1\nline2\n EOTHERE\n; next; # RDEL IS "" (!)
diff --git a/cpan/Text-Balanced/t/07_exttag.t b/cpan/Text-Balanced/t/07_exttag.t
new file mode 100644
index 0000000000..16a48b2ae3
--- /dev/null
+++ b/cpan/Text-Balanced/t/07_exttag.t
@@ -0,0 +1,113 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..53\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( extract_tagged gen_extract_tagged );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ if ($str =~ s/\A# USING://) { $neg = 0; $cmd = $str; next; }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ $str =~ s/\\n/\n/g;
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [$str]\n";
+
+ my @res;
+ $var = eval "\@res = $cmd";
+ debug "\t list got: [" . join("|",map {defined $_ ? $_ : '<undef>'} @res) . "]\n";
+ debug "\t list left: [$str]\n";
+ print "not " if (substr($str,pos($str)||0,1) eq ';')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+
+ pos $str = 0;
+ $var = eval $cmd;
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [$var]\n";
+ debug "\t scalar left: [$str]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+}
+
+__DATA__
+# USING: gen_extract_tagged("BEGIN([A-Z]+)",'END$1',"(?s).*?(?=BEGIN)")->($str);
+ ignore\n this and then BEGINHERE at the ENDHERE;
+ ignore\n this and then BEGINTHIS at the ENDTHIS;
+
+# USING: extract_tagged($str,"BEGIN([A-Z]+)",'END$1',"(?s).*?(?=BEGIN)");
+ ignore\n this and then BEGINHERE at the ENDHERE;
+ ignore\n this and then BEGINTHIS at the ENDTHIS;
+
+# USING: extract_tagged($str,"BEGIN([A-Z]+)",'END$1',"(?s).*?(?=BEGIN)");
+ ignore\n this and then BEGINHERE at the ENDHERE;
+ ignore\n this and then BEGINTHIS at the ENDTHIS;
+
+# THIS SHOULD FAIL
+ ignore\n this and then BEGINTHIS at the ENDTHAT;
+
+# USING: extract_tagged($str,"BEGIN","END","(?s).*?(?=BEGIN)");
+ ignore\n this and then BEGIN at the END;
+
+# USING: extract_tagged($str);
+ <A-1 HREF="#section2">some text</A-1>;
+
+# USING: extract_tagged($str,qr/<[A-Z]+>/,undef, undef, {ignore=>["<BR>"]});
+ <A>aaa<B>bbb<BR>ccc</B>ddd</A>;
+
+# USING: extract_tagged($str,"BEGIN","END");
+ BEGIN at the BEGIN keyword and END at the END;
+ BEGIN at the beginning and end at the END;
+
+# USING: extract_tagged($str,undef,undef,undef,{ignore=>["<[^>]*/>"]});
+ <A>aaa<B>bbb<BR/>ccc</B>ddd</A>;
+
+# USING: extract_tagged($str,";","-",undef,{reject=>[";"],fail=>"MAX"});
+ ; at the ;-) keyword
+
+# USING: extract_tagged($str,"<[A-Z]+>",undef, undef, {ignore=>["<BR>"]});
+ <A>aaa<B>bbb<BR>ccc</B>ddd</A>;
+
+# THESE SHOULD FAIL
+ BEGIN at the beginning and end at the end;
+ BEGIN at the BEGIN keyword and END at the end;
+
+# TEST EXTRACTION OF TAGGED STRINGS
+# USING: extract_tagged($str,"BEGIN","END",undef,{reject=>["BEGIN","END"]});
+# THESE SHOULD FAIL
+ BEGIN at the BEGIN keyword and END at the end;
+
+# USING: extract_tagged($str,";","-",undef,{reject=>[";"],fail=>"PARA"});
+ ; at the ;-) keyword
+
+
+# USING: extract_tagged($str);
+ <A>some text</A>;
+ <B>some text<A>other text</A></B>;
+ <A>some text<A>other text</A></A>;
+ <A HREF="#section2">some text</A>;
+
+# THESE SHOULD FAIL
+ <A>some text
+ <A>some text<A>other text</A>;
+ <B>some text<A>other text</B>;
diff --git a/cpan/Text-Balanced/t/08_extvar.t b/cpan/Text-Balanced/t/08_extvar.t
new file mode 100644
index 0000000000..a33ac919ec
--- /dev/null
+++ b/cpan/Text-Balanced/t/08_extvar.t
@@ -0,0 +1,153 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..183\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( extract_variable );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ if ($str =~ s/\A# USING://) { $neg = 0; $cmd = $str; next; }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ $str =~ s/\\n/\n/g;
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [$str]\n";
+
+ my @res;
+ $var = eval "\@res = $cmd";
+ debug "\t list got: [" . join("|",map {defined $_ ? $_ : '<undef>'} @res) . "]\n";
+ debug "\t list left: [$str]\n";
+ print "not " if (substr($str,pos($str)||0,1) eq ';')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+
+ pos $str = 0;
+ $var = eval $cmd;
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [$var]\n";
+ debug "\t scalar left: [$str]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+}
+
+__DATA__
+
+# USING: extract_variable($str);
+# THESE SHOULD FAIL
+$a->;
+$a (1..3) { print $a };
+
+# USING: extract_variable($str);
+$::obj;
+$obj->nextval;
+*var;
+*$var;
+*{var};
+*{$var};
+*var{cat};
+\&var;
+\&mod::var;
+\&mod'var;
+$a;
+$_;
+$a[1];
+$_[1];
+$a{cat};
+$_{cat};
+$a->[1];
+$a->{"cat"}[1];
+@$listref;
+@{$listref};
+$obj->nextval;
+$obj->_nextval;
+$obj->next_val_;
+@{$obj->nextval};
+@{$obj->nextval($cat,$dog)->{new}};
+@{$obj->nextval($cat?$dog:$fish)->{new}};
+@{$obj->nextval(cat()?$dog:$fish)->{new}};
+$ a {'cat'};
+$a::b::c{d}->{$e->()};
+$a'b'c'd{e}->{$e->()};
+$a'b::c'd{e}->{$e->()};
+$#_;
+$#array;
+$#{array};
+$var[$#var];
+$1;
+$11;
+$&;
+$`;
+$';
+$+;
+$*;
+$.;
+$/;
+$|;
+$,;
+$";
+$;;
+$#;
+$%;
+$=;
+$-;
+$~;
+$^;
+$:;
+$^L;
+$^A;
+$?;
+$!;
+$^E;
+$@;
+$$;
+$<;
+$>;
+$(;
+$);
+$[;
+$];
+$^C;
+$^D;
+$^F;
+$^H;
+$^I;
+$^M;
+$^O;
+$^P;
+$^R;
+$^S;
+$^T;
+$^V;
+$^W;
+${^WARNING_BITS};
+${^WIDE_SYSTEM_CALLS};
+$^X;
+
+# THESE SHOULD FAIL
+$a->;
+@{$;
+$ a :: b :: c
+$ a ' b ' c
+
+# USING: extract_variable($str,'=*');
+========$a;
diff --git a/cpan/Text-Balanced/t/09_gentag.t b/cpan/Text-Balanced/t/09_gentag.t
new file mode 100644
index 0000000000..0dd55a5f3f
--- /dev/null
+++ b/cpan/Text-Balanced/t/09_gentag.t
@@ -0,0 +1,102 @@
+# Before `make install' is performed this script should be runnable with
+# `make test'. After `make install' it should work as `perl test.pl'
+
+######################### We start with some black magic to print on failure.
+
+# Change 1..1 below to 1..last_test_to_print .
+# (It may become useful if the test is moved to ./t subdirectory.)
+
+BEGIN { $| = 1; print "1..37\n"; }
+END {print "not ok 1\n" unless $loaded;}
+use Text::Balanced qw ( gen_extract_tagged );
+$loaded = 1;
+print "ok 1\n";
+$count=2;
+use vars qw( $DEBUG );
+sub debug { print "\t>>>",@_ if $DEBUG }
+
+######################### End of black magic.
+
+
+$cmd = "print";
+$neg = 0;
+while (defined($str = <DATA>))
+{
+ chomp $str;
+ $str =~ s/\\n/\n/g;
+ if ($str =~ s/\A# USING://)
+ {
+ $neg = 0;
+ eval{local$^W;*f = eval $str || die};
+ next;
+ }
+ elsif ($str =~ /\A# TH[EI]SE? SHOULD FAIL/) { $neg = 1; next; }
+ elsif (!$str || $str =~ /\A#/) { $neg = 0; next }
+ $str =~ s/\\n/\n/g;
+ debug "\tUsing: $cmd\n";
+ debug "\t on: [$str]\n";
+
+ my @res;
+ $var = eval { @res = f($str) };
+ debug "\t list got: [" . join("|",map {defined $_ ? $_ : '<undef>'} @res) . "]\n";
+ debug "\t list left: [$str]\n";
+ print "not " if (substr($str,pos($str)||0,1) eq ';')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+
+ pos $str = 0;
+ $var = eval { scalar f($str) };
+ $var = "<undef>" unless defined $var;
+ debug "\t scalar got: [$var]\n";
+ debug "\t scalar left: [$str]\n";
+ print "not " if ($str =~ '\A;')==$neg;
+ print "ok ", $count++;
+ print " ($@)" if $@ && $DEBUG;
+ print "\n";
+}
+
+__DATA__
+
+# USING: gen_extract_tagged('{','}');
+ { a test };
+
+# USING: gen_extract_tagged(qr/<[A-Z]+>/,undef, undef, {ignore=>["<BR>"]});
+ <A>aaa<B>bbb<BR>ccc</B>ddd</A>;
+
+# USING: gen_extract_tagged("BEGIN","END");
+ BEGIN at the BEGIN keyword and END at the END;
+ BEGIN at the beginning and end at the END;
+
+# USING: gen_extract_tagged(undef,undef,undef,{ignore=>["<[^>]*/>"]});
+ <A>aaa<B>bbb<BR/>ccc</B>ddd</A>;
+
+# USING: gen_extract_tagged(";","-",undef,{reject=>[";"],fail=>"MAX"});
+ ; at the ;-) keyword
+
+# USING: gen_extract_tagged("<[A-Z]+>",undef, undef, {ignore=>["<BR>"]});
+ <A>aaa<B>bbb<BR>ccc</B>ddd</A>;
+
+# THESE SHOULD FAIL
+ BEGIN at the beginning and end at the end;
+ BEGIN at the BEGIN keyword and END at the end;
+
+# TEST EXTRACTION OF TAGGED STRINGS
+# USING: gen_extract_tagged("BEGIN","END",undef,{reject=>["BEGIN","END"]});
+# THESE SHOULD FAIL
+ BEGIN at the BEGIN keyword and END at the end;
+
+# USING: gen_extract_tagged(";","-",undef,{reject=>[";"],fail=>"PARA"});
+ ; at the ;-) keyword
+
+
+# USING: gen_extract_tagged();
+ <A>some text</A>;
+ <B>some text<A>other text</A></B>;
+ <A>some text<A>other text</A></A>;
+ <A HREF="#section2">some text</A>;
+
+# THESE SHOULD FAIL
+ <A>some text
+ <A>some text<A>other text</A>;
+ <B>some text<A>other text</B>;