diff options
author | Peter J. Acklam) (via RT <perlbug-followup@perl.org> | 2011-01-06 23:12:42 -0800 |
---|---|---|
committer | Abigail <abigail@abigail.be> | 2011-01-07 11:29:08 +0100 |
commit | c4a6f826b3676d1fdbd9972a9d0a8f11c02d003d (patch) | |
tree | f246b362bc76c9dac721de18db8432c7b4bdc937 /dist/Math-BigInt/lib | |
parent | 2a467c83e2ce01bdf8cdda501e2e3df4b188134f (diff) | |
download | perl-c4a6f826b3676d1fdbd9972a9d0a8f11c02d003d.tar.gz |
Fix typos (spelling errors) in dist/*
# New Ticket Created by (Peter J. Acklam)
# Please include the string: [perl #81888]
# in the subject line of all future correspondence about this issue.
# <URL: http://rt.perl.org/rt3/Ticket/Display.html?id=81888 >
Signed-off-by: Abigail <abigail@abigail.be>
Diffstat (limited to 'dist/Math-BigInt/lib')
-rw-r--r-- | dist/Math-BigInt/lib/Math/BigFloat.pm | 4 | ||||
-rw-r--r-- | dist/Math-BigInt/lib/Math/BigInt.pm | 22 | ||||
-rw-r--r-- | dist/Math-BigInt/lib/Math/BigInt/Calc.pm | 2 |
3 files changed, 14 insertions, 14 deletions
diff --git a/dist/Math-BigInt/lib/Math/BigFloat.pm b/dist/Math-BigInt/lib/Math/BigFloat.pm index 1ccd381680..1d9da29be1 100644 --- a/dist/Math-BigInt/lib/Math/BigFloat.pm +++ b/dist/Math-BigInt/lib/Math/BigFloat.pm @@ -2501,7 +2501,7 @@ sub bpow sub bmodpow { # takes a very large number to a very large exponent in a given very - # large modulus, quickly, thanks to binary exponentation. Supports + # large modulus, quickly, thanks to binary exponentiation. Supports # negative exponents. my ($self,$num,$exp,$mod,@r) = objectify(3,@_); @@ -3888,7 +3888,7 @@ Math::BigFloat - Arbitrary size floating point math package $x->bmod($y); # modulus ($x % $y) $x->bpow($y); # power of arguments ($x ** $y) - $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod)) + $x->bmodpow($exp,$mod); # modular exponentiation (($num**$exp) % $mod)) $x->blsft($y, $n); # left shift by $y places in base $n $x->brsft($y, $n); # right shift by $y places in base $n # returns (quo,rem) or quo if in scalar context diff --git a/dist/Math-BigInt/lib/Math/BigInt.pm b/dist/Math-BigInt/lib/Math/BigInt.pm index 52acc7a682..c3a05a1567 100644 --- a/dist/Math-BigInt/lib/Math/BigInt.pm +++ b/dist/Math-BigInt/lib/Math/BigInt.pm @@ -931,7 +931,7 @@ sub round # Round $self according to given parameters, or given second argument's # parameters or global defaults - # for speed reasons, _find_round_parameters is embeded here: + # for speed reasons, _find_round_parameters is embedded here: my ($self,$a,$p,$r,@args) = @_; # $a accuracy, if given by caller @@ -989,7 +989,7 @@ sub round { $self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p; } - # bround() or bfround() already callled bnorm() if nec. + # bround() or bfround() already called bnorm() if nec. $self; } @@ -1402,7 +1402,7 @@ sub bgcd { # (BINT or num_str, BINT or num_str) return BINT # does not modify arguments, but returns new object - # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff) + # GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff) my $y = shift; $y = $class->new($y) if !ref($y); @@ -1859,7 +1859,7 @@ sub bmodinv sub bmodpow { # takes a very large number to a very large exponent in a given very - # large modulus, quickly, thanks to binary exponentation. Supports + # large modulus, quickly, thanks to binary exponentiation. Supports # negative exponents. my ($self,$num,$exp,$mod,@r) = objectify(3,@_); @@ -2886,7 +2886,7 @@ sub _split # invalid input. my $x = shift; - # strip white space at front, also extranous leading zeros + # strip white space at front, also extraneous leading zeros $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2' $x =~ s/^\s+//; # but this will $x =~ s/\s+$//g; # strip white space at end @@ -3212,8 +3212,8 @@ Math::BigInt - Arbitrary size integer/float math package $x->bmuladd($y,$z); # $x = $x * $y + $z $x->bmod($y); # modulus (x % y) - $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod)) - $x->bmodinv($mod); # the multiplicative inverse of $x modulo $mod + $x->bmodpow($exp,$mod); # modular exponentiation (($num**$exp) % $mod) + $x->bmodinv($mod); # the inverse of $x in the given modulus $mod $x->bpow($y); # power of arguments (x ** y) $x->blsft($y); # left shift in base 2 @@ -3749,11 +3749,11 @@ inverse exists. =head2 bmodpow() - $num->bmodpow($exp,$mod); # modular exponentation + $num->bmodpow($exp,$mod); # modular exponentiation # ($num**$exp % $mod) Returns the value of C<$num> taken to the power C<$exp> in the modulus -C<$mod> using binary exponentation. C<bmodpow> is far superior to +C<$mod> using binary exponentiation. C<bmodpow> is far superior to writing $num ** $exp % $mod @@ -4085,7 +4085,7 @@ the decimal point. For example, 123.45 has a precision of -2. 0 means an integer like 123 (or 120). A precision of 2 means two digits to the left of the decimal point are zero, so 123 with P = 1 becomes 120. Note that numbers with zeros before the decimal point may have different precisions, -because 1200 can have p = 0, 1 or 2 (depending on what the inital value +because 1200 can have p = 0, 1 or 2 (depending on what the initial value was). It could also have p < 0, when the digits after the decimal point are zero. @@ -4232,7 +4232,7 @@ versions <= 5.7.2) is like this: assumption that 124 has 3 significant digits, while 120/7 will get you '17', not '17.1' since 120 is thought to have 2 significant digits. The rounding after the division then uses the remainder and $y to determine - wether it must round up or down. + whether it must round up or down. ? I have no idea which is the right way. That's why I used a slightly more ? simple scheme and tweaked the few failing testcases to match it. diff --git a/dist/Math-BigInt/lib/Math/BigInt/Calc.pm b/dist/Math-BigInt/lib/Math/BigInt/Calc.pm index 054e8984a7..f78457af43 100644 --- a/dist/Math-BigInt/lib/Math/BigInt/Calc.pm +++ b/dist/Math-BigInt/lib/Math/BigInt/Calc.pm @@ -1492,7 +1492,7 @@ sub _lsft } # set lowest parts to 0 while ($dst >= 0) { $x->[$dst--] = 0; } - # fix spurios last zero element + # fix spurious last zero element splice @$x,-1 if $x->[-1] == 0; $x; } |