summaryrefslogtreecommitdiff
path: root/dist/Math-BigInt/lib
diff options
context:
space:
mode:
authorPeter J. Acklam) (via RT <perlbug-followup@perl.org>2011-01-06 23:12:42 -0800
committerAbigail <abigail@abigail.be>2011-01-07 11:29:08 +0100
commitc4a6f826b3676d1fdbd9972a9d0a8f11c02d003d (patch)
treef246b362bc76c9dac721de18db8432c7b4bdc937 /dist/Math-BigInt/lib
parent2a467c83e2ce01bdf8cdda501e2e3df4b188134f (diff)
downloadperl-c4a6f826b3676d1fdbd9972a9d0a8f11c02d003d.tar.gz
Fix typos (spelling errors) in dist/*
# New Ticket Created by (Peter J. Acklam) # Please include the string: [perl #81888] # in the subject line of all future correspondence about this issue. # <URL: http://rt.perl.org/rt3/Ticket/Display.html?id=81888 > Signed-off-by: Abigail <abigail@abigail.be>
Diffstat (limited to 'dist/Math-BigInt/lib')
-rw-r--r--dist/Math-BigInt/lib/Math/BigFloat.pm4
-rw-r--r--dist/Math-BigInt/lib/Math/BigInt.pm22
-rw-r--r--dist/Math-BigInt/lib/Math/BigInt/Calc.pm2
3 files changed, 14 insertions, 14 deletions
diff --git a/dist/Math-BigInt/lib/Math/BigFloat.pm b/dist/Math-BigInt/lib/Math/BigFloat.pm
index 1ccd381680..1d9da29be1 100644
--- a/dist/Math-BigInt/lib/Math/BigFloat.pm
+++ b/dist/Math-BigInt/lib/Math/BigFloat.pm
@@ -2501,7 +2501,7 @@ sub bpow
sub bmodpow
{
# takes a very large number to a very large exponent in a given very
- # large modulus, quickly, thanks to binary exponentation. Supports
+ # large modulus, quickly, thanks to binary exponentiation. Supports
# negative exponents.
my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
@@ -3888,7 +3888,7 @@ Math::BigFloat - Arbitrary size floating point math package
$x->bmod($y); # modulus ($x % $y)
$x->bpow($y); # power of arguments ($x ** $y)
- $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
+ $x->bmodpow($exp,$mod); # modular exponentiation (($num**$exp) % $mod))
$x->blsft($y, $n); # left shift by $y places in base $n
$x->brsft($y, $n); # right shift by $y places in base $n
# returns (quo,rem) or quo if in scalar context
diff --git a/dist/Math-BigInt/lib/Math/BigInt.pm b/dist/Math-BigInt/lib/Math/BigInt.pm
index 52acc7a682..c3a05a1567 100644
--- a/dist/Math-BigInt/lib/Math/BigInt.pm
+++ b/dist/Math-BigInt/lib/Math/BigInt.pm
@@ -931,7 +931,7 @@ sub round
# Round $self according to given parameters, or given second argument's
# parameters or global defaults
- # for speed reasons, _find_round_parameters is embeded here:
+ # for speed reasons, _find_round_parameters is embedded here:
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
@@ -989,7 +989,7 @@ sub round
{
$self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p;
}
- # bround() or bfround() already callled bnorm() if nec.
+ # bround() or bfround() already called bnorm() if nec.
$self;
}
@@ -1402,7 +1402,7 @@ sub bgcd
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
- # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff)
+ # GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff)
my $y = shift;
$y = $class->new($y) if !ref($y);
@@ -1859,7 +1859,7 @@ sub bmodinv
sub bmodpow
{
# takes a very large number to a very large exponent in a given very
- # large modulus, quickly, thanks to binary exponentation. Supports
+ # large modulus, quickly, thanks to binary exponentiation. Supports
# negative exponents.
my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
@@ -2886,7 +2886,7 @@ sub _split
# invalid input.
my $x = shift;
- # strip white space at front, also extranous leading zeros
+ # strip white space at front, also extraneous leading zeros
$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
$x =~ s/^\s+//; # but this will
$x =~ s/\s+$//g; # strip white space at end
@@ -3212,8 +3212,8 @@ Math::BigInt - Arbitrary size integer/float math package
$x->bmuladd($y,$z); # $x = $x * $y + $z
$x->bmod($y); # modulus (x % y)
- $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
- $x->bmodinv($mod); # the multiplicative inverse of $x modulo $mod
+ $x->bmodpow($exp,$mod); # modular exponentiation (($num**$exp) % $mod)
+ $x->bmodinv($mod); # the inverse of $x in the given modulus $mod
$x->bpow($y); # power of arguments (x ** y)
$x->blsft($y); # left shift in base 2
@@ -3749,11 +3749,11 @@ inverse exists.
=head2 bmodpow()
- $num->bmodpow($exp,$mod); # modular exponentation
+ $num->bmodpow($exp,$mod); # modular exponentiation
# ($num**$exp % $mod)
Returns the value of C<$num> taken to the power C<$exp> in the modulus
-C<$mod> using binary exponentation. C<bmodpow> is far superior to
+C<$mod> using binary exponentiation. C<bmodpow> is far superior to
writing
$num ** $exp % $mod
@@ -4085,7 +4085,7 @@ the decimal point. For example, 123.45 has a precision of -2. 0 means an
integer like 123 (or 120). A precision of 2 means two digits to the left
of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
numbers with zeros before the decimal point may have different precisions,
-because 1200 can have p = 0, 1 or 2 (depending on what the inital value
+because 1200 can have p = 0, 1 or 2 (depending on what the initial value
was). It could also have p < 0, when the digits after the decimal point
are zero.
@@ -4232,7 +4232,7 @@ versions <= 5.7.2) is like this:
assumption that 124 has 3 significant digits, while 120/7 will get you
'17', not '17.1' since 120 is thought to have 2 significant digits.
The rounding after the division then uses the remainder and $y to determine
- wether it must round up or down.
+ whether it must round up or down.
? I have no idea which is the right way. That's why I used a slightly more
? simple scheme and tweaked the few failing testcases to match it.
diff --git a/dist/Math-BigInt/lib/Math/BigInt/Calc.pm b/dist/Math-BigInt/lib/Math/BigInt/Calc.pm
index 054e8984a7..f78457af43 100644
--- a/dist/Math-BigInt/lib/Math/BigInt/Calc.pm
+++ b/dist/Math-BigInt/lib/Math/BigInt/Calc.pm
@@ -1492,7 +1492,7 @@ sub _lsft
}
# set lowest parts to 0
while ($dst >= 0) { $x->[$dst--] = 0; }
- # fix spurios last zero element
+ # fix spurious last zero element
splice @$x,-1 if $x->[-1] == 0;
$x;
}