summaryrefslogtreecommitdiff
path: root/lib/Math/BigInt.pm
diff options
context:
space:
mode:
authorJarkko Hietaniemi <jhi@iki.fi>2002-02-21 20:02:27 +0000
committerJarkko Hietaniemi <jhi@iki.fi>2002-02-21 20:02:27 +0000
commitb3abae2aec672e5343915a64fe25c941cfd52764 (patch)
tree92e62933f9113093137a84ddde90397fe9b36640 /lib/Math/BigInt.pm
parent24520e9dce27cd3bbc70dc9e62923d7280f96457 (diff)
downloadperl-b3abae2aec672e5343915a64fe25c941cfd52764.tar.gz
Upgrade to Math::BigInt 1.51.
p4raw-id: //depot/perl@14817
Diffstat (limited to 'lib/Math/BigInt.pm')
-rw-r--r--lib/Math/BigInt.pm759
1 files changed, 664 insertions, 95 deletions
diff --git a/lib/Math/BigInt.pm b/lib/Math/BigInt.pm
index 516406b6a4..c36014aa39 100644
--- a/lib/Math/BigInt.pm
+++ b/lib/Math/BigInt.pm
@@ -1,5 +1,3 @@
-#!/usr/bin/perl -w
-
# The following hash values are used:
# value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
# sign : +,-,NaN,+inf,-inf
@@ -14,11 +12,12 @@ package Math::BigInt;
my $class = "Math::BigInt";
require 5.005;
-$VERSION = '1.49';
+$VERSION = '1.51';
use Exporter;
@ISA = qw( Exporter );
@EXPORT_OK = qw( objectify _swap bgcd blcm);
use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode/;
+use vars qw/$upgrade $downgrade/;
use strict;
# Inside overload, the first arg is always an object. If the original code had
@@ -57,6 +56,7 @@ use overload
'|=' => sub { $_[0]->bior($_[1]); },
'**=' => sub { $_[0]->bpow($_[1]); },
+# not supported by Perl yet
'..' => \&_pointpoint,
'<=>' => sub { $_[2] ?
@@ -64,13 +64,14 @@ use overload
ref($_[0])->bcmp($_[0],$_[1])},
'cmp' => sub {
$_[2] ?
- $_[1] cmp $_[0]->bstr() :
- $_[0]->bstr() cmp $_[1] },
+ "$_[1]" cmp $_[0]->bstr() :
+ $_[0]->bstr() cmp "$_[1]" },
'log' => sub { $_[0]->copy()->blog(); },
'int' => sub { $_[0]->copy(); },
'neg' => sub { $_[0]->copy()->bneg(); },
'abs' => sub { $_[0]->copy()->babs(); },
+'sqrt' => sub { $_[0]->copy()->bsqrt(); },
'~' => sub { $_[0]->copy()->bnot(); },
'*' => sub { my @a = ref($_[0])->_swap(@_); $a[0]->bmul($a[1]); },
@@ -95,7 +96,7 @@ use overload
# v5.6.1 dumps on that: return !$_[0]->is_zero() || undef; :-(
my $t = !$_[0]->is_zero();
undef $t if $t == 0;
- return $t;
+ $t;
},
# the original qw() does not work with the TIESCALAR below, why?
@@ -114,13 +115,15 @@ my $nan = 'NaN'; # constants for easier life
my $CALC = 'Math::BigInt::Calc'; # module to do low level math
my $IMPORT = 0; # did import() yet?
-sub _core_lib () { return $CALC; } # for test suite
$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
$accuracy = undef;
$precision = undef;
$div_scale = 40;
+$upgrade = undef; # default is no upgrade
+$downgrade = undef; # default is no downgrade
+
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
@@ -144,11 +147,25 @@ sub round_mode
my $m = shift;
die "Unknown round mode $m"
if $m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/;
- ${"${class}::round_mode"} = $m; return $m;
+ return ${"${class}::round_mode"} = $m;
}
return ${"${class}::round_mode"};
}
+sub upgrade
+ {
+ no strict 'refs';
+ # make Class->round_mode() work
+ my $self = shift;
+ my $class = ref($self) || $self || __PACKAGE__;
+ if (defined $_[0])
+ {
+ my $u = shift;
+ return ${"${class}::upgrade"} = $u;
+ }
+ return ${"${class}::upgrade"};
+ }
+
sub div_scale
{
no strict 'refs';
@@ -190,6 +207,7 @@ sub accuracy
{
# set global
${"${class}::accuracy"} = $a;
+ ${"${class}::precision"} = undef; # clear P
}
return $a; # shortcut
}
@@ -222,12 +240,13 @@ sub precision
# $object->precision() or fallback to global
$x->bfround($p) if defined $p;
$x->{_p} = $p; # set/overwrite, even if not rounded
- $x->{_a} = undef; # clear P
+ $x->{_a} = undef; # clear A
}
else
{
# set global
${"${class}::precision"} = $p;
+ ${"${class}::accuracy"} = undef; # clear A
}
return $p; # shortcut
}
@@ -240,6 +259,26 @@ sub precision
return ${"${class}::precision"};
}
+sub config
+ {
+ # return (later set?) configuration data as hash ref
+ my $class = shift || 'Math::BigInt';
+
+ no strict 'refs';
+ my $lib = $CALC;
+ my $cfg = {
+ lib => $lib,
+ lib_version => ${"${lib}::VERSION"},
+ class => $class,
+ };
+ foreach (
+ qw/upgrade downgrade precisison accuracy round_mode VERSION div_scale/)
+ {
+ $cfg->{lc($_)} = ${"${class}::$_"};
+ };
+ $cfg;
+ }
+
sub _scale_a
{
# select accuracy parameter based on precedence,
@@ -376,6 +415,7 @@ sub new
if ($diff < 0) # Not integer
{
#print "NOI 1\n";
+ return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
else # diff >= 0
@@ -391,6 +431,7 @@ sub new
{
# fraction and negative/zero E => NOI
#print "NOI 2 \$\$mfv '$$mfv'\n";
+ return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
elsif ($e < 0)
@@ -401,6 +442,7 @@ sub new
if ($$miv !~ s/0{$e}$//) # can strip so many zero's?
{
#print "NOI 3\n";
+ return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
}
@@ -411,6 +453,7 @@ sub new
# do not round for new($x,undef,undef) since that is used by MBF to signal
# no rounding
$self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
+ # print "mbi new $self\n";
return $self;
}
@@ -683,7 +726,7 @@ sub bnorm
# (numstr or BINT) return BINT
# Normalize number -- no-op here
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
- return $x;
+ $x;
}
sub babs
@@ -705,9 +748,9 @@ sub bneg
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x if $x->modify('bneg');
+
# for +0 dont negate (to have always normalized)
- return $x if $x->is_zero();
- $x->{sign} =~ tr/+-/-+/; # does nothing for NaN
+ $x->{sign} =~ tr/+-/-+/ if !$x->is_zero(); # does nothing for NaN
$x;
}
@@ -725,7 +768,7 @@ sub bcmp
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
- return +1 if $y->{sign} eq '-inf';
+ return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
@@ -747,9 +790,7 @@ sub bcmp
# $x->{sign} eq '-'
return -1 if $y->{sign} eq '+';
- return $CALC->_acmp($y->{value},$x->{value}); # swaped
-
- # &cmp($x->{value},$y->{value},$x->{sign},$y->{sign}) <=> 0;
+ $CALC->_acmp($y->{value},$x->{value}); # swaped (lib does only 0,1,-1)
}
sub bacmp
@@ -766,7 +807,7 @@ sub bacmp
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return +1; # inf is always bigger
}
- $CALC->_acmp($x->{value},$y->{value}) <=> 0;
+ $CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1
}
sub badd
@@ -776,6 +817,12 @@ sub badd
my ($self,$x,$y,@r) = objectify(2,@_);
return $x if $x->modify('badd');
+# print "mbi badd ",join(' ',caller()),"\n";
+# print "upgrade => ",$upgrade||'undef',
+# " \$x (",ref($x),") \$y (",ref($y),")\n";
+# return $upgrade->badd($x,$y,@r) if defined $upgrade &&
+# ((ref($x) eq $upgrade) || (ref($y) eq $upgrade));
+# print "still badd\n";
$r[3] = $y; # no push!
# inf and NaN handling
@@ -786,9 +833,9 @@ sub badd
# inf handline
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
- # + and + => +, - and - => -, + and - => 0, - and + => 0
- return $x->bzero(@r) if $x->{sign} ne $y->{sign};
- return $x;
+ # +inf++inf or -inf+-inf => same, rest is NaN
+ return $x if $x->{sign} eq $y->{sign};
+ return $x->bnan();
}
# +-inf + something => +inf
# something +-inf => +-inf
@@ -796,16 +843,6 @@ sub badd
return $x;
}
- # speed: no add for 0+y or x+0
- return $x->round(@r) if $y->is_zero(); # x+0
- if ($x->is_zero()) # 0+y
- {
- # make copy, clobbering up x
- $x->{value} = $CALC->_copy($y->{value});
- $x->{sign} = $y->{sign} || $nan;
- return $x->round(@r);
- }
-
my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs
if ($sx eq $sy)
@@ -843,16 +880,20 @@ sub bsub
{
# (BINT or num_str, BINT or num_str) return num_str
# subtract second arg from first, modify first
- my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
+ my ($self,$x,$y,@r) = objectify(2,@_);
return $x if $x->modify('bsub');
-
- if (!$y->is_zero()) # don't need to do anything if $y is 0
- {
- $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
- $x->badd($y,$a,$p,$r); # badd does not leave internal zeros
- $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
+# return $upgrade->badd($x,$y,@r) if defined $upgrade &&
+# ((ref($x) eq $upgrade) || (ref($y) eq $upgrade));
+
+ if ($y->is_zero())
+ {
+ return $x->round(@r);
}
+
+ $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
+ $x->badd($y,@r); # badd does not leave internal zeros
+ $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd() or no round necc.
}
@@ -905,8 +946,10 @@ sub bdec
sub blog
{
# not implemented yet
- my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+ my ($self,$x,$base,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
+ return $upgrade->blog($x,$base,$a,$p,$r) if defined $upgrade;
+
return $x->bnan();
}
@@ -971,6 +1014,8 @@ sub bnot
$x->bneg()->bdec(); # bdec already does round
}
+# is_foo test routines
+
sub is_zero
{
# return true if arg (BINT or num_str) is zero (array '+', '0')
@@ -1061,6 +1106,16 @@ sub is_negative
0;
}
+sub is_int
+ {
+ # return true when arg (BINT or num_str) is an integer
+ # always true for BigInt, but different for Floats
+ # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
+ my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
+
+ $x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
+ }
+
###############################################################################
sub bmul
@@ -1074,12 +1129,11 @@ sub bmul
$r[3] = $y; # no push here
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
- # handle result = 0
- return $x->round(@r) if $x->is_zero();
- return $x->bzero()->round(@r) if $y->is_zero();
+
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
+ return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
@@ -1090,8 +1144,9 @@ sub bmul
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
- $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
- return $x->round(@r);
+ $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
+ $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
+ $x->round(@r);
}
sub _div_inf
@@ -1104,17 +1159,10 @@ sub _div_inf
if (($x->is_nan() || $y->is_nan()) ||
($x->is_zero() && $y->is_zero()));
- # +inf / +inf == -inf / -inf == 1, remainder is 0 (A / A = 1, remainder 0)
- if (($x->{sign} eq $y->{sign}) &&
- ($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
- {
- return wantarray ? ($x->bone(),$self->bzero()) : $x->bone();
- }
- # +inf / -inf == -inf / +inf == -1, remainder 0
- if (($x->{sign} ne $y->{sign}) &&
- ($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
+ # +-inf / +-inf == NaN, reminder also NaN
+ if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
- return wantarray ? ($x->bone('-'),$self->bzero()) : $x->bone('-');
+ return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
}
# x / +-inf => 0, remainder x (works even if x == 0)
if ($y->{sign} =~ /^[+-]inf$/)
@@ -1163,10 +1211,12 @@ sub bdiv
return
wantarray ? ($x->round(@r),$self->bzero(@r)):$x->round(@r) if $x->is_zero();
- # Is $x in the interval [0, $y) ?
+ # Is $x in the interval [0, $y) (aka $x <= $y) ?
my $cmp = $CALC->_acmp($x->{value},$y->{value});
- if (($cmp < 0) and ($x->{sign} eq $y->{sign}))
+ if (($cmp < 0) and (($x->{sign} eq $y->{sign}) or !wantarray))
{
+ return $upgrade->bdiv($x,$y,@r) if defined $upgrade;
+
return $x->bzero()->round(@r) unless wantarray;
my $t = $x->copy(); # make copy first, because $x->bzero() clobbers $x
return ($x->bzero()->round(@r),$t);
@@ -1232,9 +1282,9 @@ sub bmod
{
# calc new sign and in case $y == +/- 1, return $x
$x->{value} = $CALC->_mod($x->{value},$y->{value});
- my $xsign = $x->{sign};
if (!$CALC->_is_zero($x->{value}))
{
+ my $xsign = $x->{sign};
$x->{sign} = $y->{sign};
$x = $y-$x if $xsign ne $y->{sign}; # one of them '-'
}
@@ -1244,9 +1294,44 @@ sub bmod
}
return $x->round(@r);
}
- $x = (&bdiv($self,$x,$y,@r))[1]; # slow way (also rounds)
+ my ($t,$rem) = $self->bdiv($x->copy(),$y,@r); # slow way (also rounds)
+ # modify in place
+ foreach (qw/value sign _a _p/)
+ {
+ $x->{$_} = $rem->{$_};
+ }
+ $x;
}
+sub bfac
+ {
+ # (BINT or num_str, BINT or num_str) return BINT
+ # compute factorial numbers
+ # modifies first argument
+ my ($self,$x,@r) = objectify(1,@_);
+
+ return $x if $x->modify('bfac');
+
+ return $x->bnan() if $x->{sign} ne '+'; # inf, NnN, <0 etc => NaN
+ return $x->bone(@r) if $x->is_zero() || $x->is_one(); # 0 or 1 => 1
+
+ if ($CALC->can('_fac'))
+ {
+ $x->{value} = $CALC->_fac($x->{value});
+ return $x->round(@r);
+ }
+
+ my $n = $x->copy();
+ $x->bone();
+ my $f = $self->new(2);
+ while ($f->bacmp($n) < 0)
+ {
+ $x->bmul($f); $f->binc();
+ }
+ $x->bmul($f); # last step
+ $x->round(@r); # round
+ }
+
sub bpow
{
# (BINT or num_str, BINT or num_str) return BINT
@@ -1312,40 +1397,81 @@ sub blsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x << y, base n, y >= 0
- my ($self,$x,$y,$n) = objectify(2,@_);
+ my ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
return $x if $x->modify('blsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+ return $x->round($a,$p,$r) if $y->is_zero();
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
my $t; $t = $CALC->_lsft($x->{value},$y->{value},$n) if $CALC->can('_lsft');
if (defined $t)
{
- $x->{value} = $t; return $x;
+ $x->{value} = $t; return $x->round($a,$p,$r);
}
# fallback
- return $x->bmul( $self->bpow($n, $y) );
+ return $x->bmul( $self->bpow($n, $y, $a, $p, $r), $a, $p, $r );
}
sub brsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x >> y, base n, y >= 0
- my ($self,$x,$y,$n) = objectify(2,@_);
+ my ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
return $x if $x->modify('brsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
+ return $x->round($a,$p,$r) if $y->is_zero();
+ return $x->bzero($a,$p,$r) if $x->is_zero(); # 0 => 0
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
+ # this only works for negative numbers when shifting in base 2
+ if (($x->{sign} eq '-') && ($n == 2))
+ {
+ return $x->round($a,$p,$r) if $x->is_one('-'); # -1 => -1
+ if (!$y->is_one())
+ {
+ # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
+ # but perhaps there is a better emulation for two's complement shift...
+ # if $y != 1, we must simulate it by doing:
+ # convert to bin, flip all bits, shift, and be done
+ $x->binc(); # -3 => -2
+ my $bin = $x->as_bin();
+ $bin =~ s/^-0b//; # strip '-0b' prefix
+ $bin =~ tr/10/01/; # flip bits
+ # now shift
+ if (length($bin) <= $y)
+ {
+ $bin = '0'; # shifting to far right creates -1
+ # 0, because later increment makes
+ # that 1, attached '-' makes it '-1'
+ # because -1 >> x == -1 !
+ }
+ else
+ {
+ $bin =~ s/.{$y}$//; # cut off at the right side
+ $bin = '1' . $bin; # extend left side by one dummy '1'
+ $bin =~ tr/10/01/; # flip bits back
+ }
+ my $res = $self->new('0b'.$bin); # add prefix and convert back
+ $res->binc(); # remember to increment
+ $x->{value} = $res->{value}; # take over value
+ return $x->round($a,$p,$r); # we are done now, magic, isn't?
+ }
+ $x->bdec(); # n == 2, but $y == 1: this fixes it
+ }
+
my $t; $t = $CALC->_rsft($x->{value},$y->{value},$n) if $CALC->can('_rsft');
if (defined $t)
{
- $x->{value} = $t; return $x;
+ $x->{value} = $t;
+ return $x->round($a,$p,$r);
}
# fallback
- return scalar bdiv($x, $self->bpow($n, $y));
+ $x->bdiv($self->bpow($n,$y, $a,$p,$r), $a,$p,$r);
+ $x;
}
sub band
@@ -1356,6 +1482,8 @@ sub band
return $x if $x->modify('band');
+ local $Math::BigInt::upgrade = undef;
+
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->bzero() if $y->is_zero() || $x->is_zero();
@@ -1370,8 +1498,8 @@ sub band
return $x->round($a,$p,$r);
}
- my $m = Math::BigInt->bone(); my ($xr,$yr);
- my $x10000 = new Math::BigInt (0x1000);
+ my $m = $self->bone(); my ($xr,$yr);
+ my $x10000 = $self->new (0x1000);
my $y1 = copy(ref($x),$y); # make copy
$y1->babs(); # and positive
my $x1 = $x->copy()->babs(); $x->bzero(); # modify x in place!
@@ -1398,6 +1526,8 @@ sub bior
return $x if $x->modify('bior');
+ local $Math::BigInt::upgrade = undef;
+
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x if $y->is_zero();
@@ -1413,8 +1543,8 @@ sub bior
return $x->round($a,$p,$r);
}
- my $m = Math::BigInt->bone(); my ($xr,$yr);
- my $x10000 = Math::BigInt->new(0x10000);
+ my $m = $self->bone(); my ($xr,$yr);
+ my $x10000 = $self->new(0x10000);
my $y1 = copy(ref($x),$y); # make copy
$y1->babs(); # and positive
my $x1 = $x->copy()->babs(); $x->bzero(); # modify x in place!
@@ -1441,6 +1571,8 @@ sub bxor
return $x if $x->modify('bxor');
+ local $Math::BigInt::upgrade = undef;
+
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x if $y->is_zero();
@@ -1457,7 +1589,7 @@ sub bxor
}
my $m = $self->bone(); my ($xr,$yr);
- my $x10000 = Math::BigInt->new(0x10000);
+ my $x10000 = $self->new(0x10000);
my $y1 = copy(ref($x),$y); # make copy
$y1->babs(); # and positive
my $x1 = $x->copy()->babs(); $x->bzero(); # modify x in place!
@@ -1513,10 +1645,13 @@ sub bsqrt
{
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
+ return $x if $x->modify('bsqrt');
+
return $x->bnan() if $x->{sign} ne '+'; # -x or inf or NaN => NaN
return $x->bzero($a,$p) if $x->is_zero(); # 0 => 0
return $x->round($a,$p,$r) if $x->is_one(); # 1 => 1
- return $x->bone($a,$p) if $x < 4; # 2,3 => 1
+
+ return $upgrade->bsqrt($x,$a,$p,$r) if defined $upgrade;
if ($CALC->can('_sqrt'))
{
@@ -1524,6 +1659,7 @@ sub bsqrt
return $x->round($a,$p,$r);
}
+ return $x->bone($a,$p) if $x < 4; # 2,3 => 1
my $y = $x->copy();
my $l = int($x->length()/2);
@@ -1540,7 +1676,7 @@ sub bsqrt
$x /= $two;
}
$x-- if $x * $x > $y; # overshot?
- return $x->round($a,$p,$r);
+ $x->round($a,$p,$r);
}
sub exponent
@@ -1594,6 +1730,7 @@ sub bfround
my $x = shift; $x = $class->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_p($x->precision(),$x->round_mode(),@_);
return $x if !defined $scale; # no-op
+ return $x if $x->modify('bfround');
# no-op for BigInts if $n <= 0
if ($scale <= 0)
@@ -1644,6 +1781,7 @@ sub bround
my $x = shift; $x = $class->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_a($x->accuracy(),$x->round_mode(),@_);
return $x if !defined $scale; # no-op
+ return $x if $x->modify('bround');
if ($x->is_zero() || $scale == 0)
{
@@ -1916,11 +2054,18 @@ sub import
overload::constant integer => sub { $self->new(shift) };
splice @a, $j, 1; $j --;
}
+ elsif ($_[$i] eq 'upgrade')
+ {
+ # this causes upgrading
+ $upgrade = $_[$i+1]; # or undef to disable
+ my $s = 2; $s = 1 if @a-$j < 2; # avoid "can not modify non-existant..."
+ splice @a, $j, $s; $j -= $s;
+ }
elsif ($_[$i] =~ /^lib$/i)
{
# this causes a different low lib to take care...
$CALC = $_[$i+1] || '';
- my $s = 2; $s = 1 if @a-$j < 2; # avoid "can not modify non-existant..."
+ my $s = 2; $s = 1 if @a-$j < 2; # avoid "can not modify non-existant..."
splice @a, $j, $s; $j -= $s;
}
}
@@ -2236,6 +2381,7 @@ Math::BigInt - Arbitrary size integer math package
$x->is_positive(); # true if >= 0
$x->is_negative(); # true if < 0
$x->is_inf(sign); # true if +inf, or -inf (sign is default '+')
+ $x->is_int(); # true if $x is an integer (not a float)
$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
@@ -2250,6 +2396,8 @@ Math::BigInt - Arbitrary size integer math package
$x->bnan(); # set $x to NaN
$x->bone(); # set $x to +1
$x->bone('-'); # set $x to -1
+ $x->binf(); # set $x to inf
+ $x->binf('-'); # set $x to -inf
$x->bneg(); # negation
$x->babs(); # absolute value
@@ -2277,6 +2425,7 @@ Math::BigInt - Arbitrary size integer math package
$x->bnot(); # bitwise not (two's complement)
$x->bsqrt(); # calculate square-root
+ $x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->round($A,$P,$round_mode); # round to accuracy or precision using mode $r
$x->bround($N); # accuracy: preserve $N digits
@@ -2355,6 +2504,291 @@ return either undef, <0, 0 or >0 and are suited for sort.
=back
+=head1 METHODS
+
+Each of the methods below accepts three additional parameters. These arguments
+$A, $P and $R are accuracy, precision and round_mode. Please see more in the
+section about ACCURACY and ROUNDIND.
+
+=head2 brsft
+
+ $x->brsft($y,$n);
+
+Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
+2, but others work, too.
+
+Right shifting usually amounts to dividing $x by $n ** $y and truncating the
+result:
+
+
+ $x = Math::BigInt->new(10);
+ $x->brsft(1); # same as $x >> 1: 5
+ $x = Math::BigInt->new(1234);
+ $x->brsft(2,10); # result 12
+
+There is one exception, and that is base 2 with negative $x:
+
+
+ $x = Math::BigInt->new(-5);
+ print $x->brsft(1);
+
+This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
+result).
+
+=head2 new
+
+ $x = Math::BigInt->new($str,$A,$P,$R);
+
+Creates a new BigInt object from a string or another BigInt object. The
+input is accepted as decimal, hex (with leading '0x') or binary (with leading
+'0b').
+
+=head2 bnan
+
+ $x = Math::BigInt->bnan();
+
+Creates a new BigInt object representing NaN (Not A Number).
+If used on an object, it will set it to NaN:
+
+ $x->bnan();
+
+=head2 bzero
+
+ $x = Math::BigInt->bzero();
+
+Creates a new BigInt object representing zero.
+If used on an object, it will set it to zero:
+
+ $x->bzero();
+
+=head2 binf
+
+ $x = Math::BigInt->binf($sign);
+
+Creates a new BigInt object representing infinity. The optional argument is
+either '-' or '+', indicating whether you want infinity or minus infinity.
+If used on an object, it will set it to infinity:
+
+ $x->binf();
+ $x->binf('-');
+
+=head2 bone
+
+ $x = Math::BigInt->binf($sign);
+
+Creates a new BigInt object representing one. The optional argument is
+either '-' or '+', indicating whether you want one or minus one.
+If used on an object, it will set it to one:
+
+ $x->bone(); # +1
+ $x->bone('-'); # -1
+
+=head2 is_one()/is_zero()/is_nan()/is_positive()/is_negative()/is_inf()/is_odd()/is_even()/is_int()
+
+ $x->is_zero(); # true if arg is +0
+ $x->is_nan(); # true if arg is NaN
+ $x->is_one(); # true if arg is +1
+ $x->is_one('-'); # true if arg is -1
+ $x->is_odd(); # true if odd, false for even
+ $x->is_even(); # true if even, false for odd
+ $x->is_positive(); # true if >= 0
+ $x->is_negative(); # true if < 0
+ $x->is_inf(); # true if +inf
+ $x->is_inf('-'); # true if -inf (sign is default '+')
+ $x->is_int(); # true if $x is an integer
+
+These methods all test the BigInt for one condition and return true or false
+depending on the input.
+
+=head2 bcmp
+
+ $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
+
+=head2 bacmp
+
+ $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
+
+=head2 sign
+
+ $x->sign(); # return the sign, either +,- or NaN
+
+=head2 bcmp
+
+ $x->digit($n); # return the nth digit, counting from right
+
+=head2 bneg
+
+ $x->bneg();
+
+Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
+and '-inf', respectively. Does nothing for NaN or zero.
+
+=head2 babs
+
+ $x->babs();
+
+Set the number to it's absolute value, e.g. change the sign from '-' to '+'
+and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
+numbers.
+
+=head2 bnorm
+
+ $x->bnorm(); # normalize (no-op)
+
+=head2 bnot
+
+ $x->bnot(); # two's complement (bit wise not)
+
+=head2 binc
+
+ $x->binc(); # increment x by 1
+
+=head2 bdec
+
+ $x->bdec(); # decrement x by 1
+
+=head2 badd
+
+ $x->badd($y); # addition (add $y to $x)
+
+=head2 bsub
+
+ $x->bsub($y); # subtraction (subtract $y from $x)
+
+=head2 bmul
+
+ $x->bmul($y); # multiplication (multiply $x by $y)
+
+=head2 bdiv
+
+ $x->bdiv($y); # divide, set $x to quotient
+ # return (quo,rem) or quo if scalar
+
+=head2 bmod
+
+ $x->bmod($y); # modulus (x % y)
+
+=head2 bpow
+
+ $x->bpow($y); # power of arguments (x ** y)
+
+=head2 blsft
+
+ $x->blsft($y); # left shift
+ $x->blsft($y,$n); # left shift, by base $n (like 10)
+
+=head2 brsft
+
+ $x->brsft($y); # right shift
+ $x->brsft($y,$n); # right shift, by base $n (like 10)
+
+=head2 band
+
+ $x->band($y); # bitwise and
+
+=head2 bior
+
+ $x->bior($y); # bitwise inclusive or
+
+=head2 bxor
+
+ $x->bxor($y); # bitwise exclusive or
+
+=head2 bnot
+
+ $x->bnot(); # bitwise not (two's complement)
+
+=head2 bsqrt
+
+ $x->bsqrt(); # calculate square-root
+
+=head2 bfac
+
+ $x->bfac(); # factorial of $x (1*2*3*4*..$x)
+
+=head2 round
+
+ $x->round($A,$P,$round_mode); # round to accuracy or precision using mode $r
+
+=head2 bround
+
+ $x->bround($N); # accuracy: preserve $N digits
+
+=head2 bfround
+
+ $x->bfround($N); # round to $Nth digit, no-op for BigInts
+
+=head2 bfloor
+
+ $x->bfloor();
+
+Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
+does change $x in BigFloat.
+
+=head2 bceil
+
+ $x->bceil();
+
+Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
+does change $x in BigFloat.
+
+=head2 bgcd
+
+ bgcd(@values); # greatest common divisor (no OO style)
+
+=head2 blcm
+
+ blcm(@values); # lowest common multiplicator (no OO style)
+
+head2 length
+
+ $x->length();
+ ($xl,$fl) = $x->length();
+
+Returns the number of digits in the decimal representation of the number.
+In list context, returns the length of the integer and fraction part. For
+BigInt's, the length of the fraction part will always be 0.
+
+=head2 exponent
+
+ $x->exponent();
+
+Return the exponent of $x as BigInt.
+
+=head2 mantissa
+
+ $x->mantissa();
+
+Return the signed mantissa of $x as BigInt.
+
+=head2 parts
+
+ $x->parts(); # return (mantissa,exponent) as BigInt
+
+=head2 copy
+
+ $x->copy(); # make a true copy of $x (unlike $y = $x;)
+
+=head2 as_number
+
+ $x->as_number(); # return as BigInt (in BigInt: same as copy())
+
+=head2 bsrt
+
+ $x->bstr(); # normalized string
+
+=head2 bsstr
+
+ $x->bsstr(); # normalized string in scientific notation
+
+=head2 as_hex
+
+ $x->as_hex(); # as signed hexadecimal string with prefixed 0x
+
+=head2 as_bin
+
+ $x->as_bin(); # as signed binary string with prefixed 0b
+
=head1 ACCURACY and PRECISION
Since version v1.33, Math::BigInt and Math::BigFloat have full support for
@@ -2534,29 +2968,48 @@ This is how it works now:
=item Setting/Accessing
- * You can set the A global via $Math::BigInt::accuracy or
- $Math::BigFloat::accuracy or whatever class you are using.
- * You can also set P globally by using $Math::SomeClass::precision likewise.
+ * You can set the A global via Math::BigInt->accuracy() or
+ Math::BigFloat->accuracy() or whatever class you are using.
+ * You can also set P globally by using Math::SomeClass->precision() likewise.
* Globals are classwide, and not inherited by subclasses.
- * to undefine A, use $Math::SomeCLass::accuracy = undef
- * to undefine P, use $Math::SomeClass::precision = undef
+ * to undefine A, use Math::SomeCLass->accuracy(undef);
+ * to undefine P, use Math::SomeClass->precision(undef);
+ * Setting Math::SomeClass->accuracy() clears automatically
+ Math::SomeClass->precision(), and vice versa.
* To be valid, A must be > 0, P can have any value.
* If P is negative, this means round to the P'th place to the right of the
decimal point; positive values mean to the left of the decimal point.
P of 0 means round to integer.
- * to find out the current global A, take $Math::SomeClass::accuracy
- * use $x->accuracy() for the local setting of $x.
- * to find out the current global P, take $Math::SomeClass::precision
- * use $x->precision() for the local setting
+ * to find out the current global A, take Math::SomeClass->accuracy()
+ * to find out the current global P, take Math::SomeClass->precision()
+ * use $x->accuracy() respective $x->precision() for the local setting of $x.
+ * Please note that $x->accuracy() respecive $x->precision() fall back to the
+ defined globals, when $x's A or P is not set.
=item Creating numbers
- !* When you create a number, there should be a way to define its A & P
- * When a number without specific A or P is created, but the globals are
- defined, these should be used to round the number immediately and also
- stored locally with the number. Thus changing the global defaults later on
+ * When you create a number, you can give it's desired A or P via:
+ $x = Math::BigInt->new($number,$A,$P);
+ * Only one of A or P can be defined, otherwise the result is NaN
+ * If no A or P is give ($x = Math::BigInt->new($number) form), then the
+ globals (if set) will be used. Thus changing the global defaults later on
will not change the A or P of previously created numbers (i.e., A and P of
- $x will be what was in effect when $x was created)
+ $x will be what was in effect when $x was created)
+ * If given undef for A and P, B<no> rounding will occur, and the globals will
+ B<not> be used. This is used by subclasses to create numbers without
+ suffering rounding in the parent. Thus a subclass is able to have it's own
+ globals enforced upon creation of a number by using
+ $x = Math::BigInt->new($number,undef,undef):
+
+ use Math::Bigint::SomeSubclass;
+ use Math::BigInt;
+
+ Math::BigInt->accuracy(2);
+ Math::BigInt::SomeSubClass->accuracy(3);
+ $x = Math::BigInt::SomeSubClass->new(1234);
+
+ $x is now 1230, and not 1200. A subclass might choose to implement
+ this otherwise, e.g. falling back to the parent's A and P.
=item Usage
@@ -2574,9 +3027,8 @@ This is how it works now:
Since you can set/get both A and P, there is a rule that will practically
enforce only A or P to be in effect at a time, even if both are set.
This is called precedence.
- !* If two objects are involved in an operation, and one of them has A in
- ! effect, and the other P, this should result in a warning or an error,
- ! probably in NaN.
+ * If two objects are involved in an operation, and one of them has A in
+ effect, and the other P, this results in an error (NaN).
* A takes precendence over P (Hint: A comes before P). If A is defined, it
is used, otherwise P is used. If neither of them is defined, nothing is
used, i.e. the result will have as many digits as it can (with an
@@ -2587,7 +3039,7 @@ This is how it works now:
the value of F, the higher value will be used instead of F.
This is to limit the digits (A) of the result (just consider what would
happen with unlimited A and P in the case of 1/3 :-)
- * fdiv will calculate 1 more digit than required (determined by
+ * fdiv will calculate (at least) 4 more digits than required (determined by
A, P or F), and, if F is not used, round the result
(this will still fail in the case of a result like 0.12345000000001 with A
or P of 5, but this can not be helped - or can it?)
@@ -2623,7 +3075,7 @@ This is how it works now:
* you will be able to give A, P and R as an argument to all the calculation
routines; the second parameter is A, the third one is P, and the fourth is
- R (shift place by one for binary operations like add). P is used only if
+ R (shift right by one for binary operations like badd). P is used only if
the first parameter (A) is undefined. These three parameters override the
globals in the order detailed as follows, i.e. the first defined value
wins:
@@ -2631,7 +3083,7 @@ This is how it works now:
+ parameter A
+ parameter P
+ local A (if defined on both of the operands: smaller one is taken)
- + local P (if defined on both of the operands: smaller one is taken)
+ + local P (if defined on both of the operands: bigger one is taken)
+ global A
+ global P
+ global F
@@ -2643,6 +3095,7 @@ This is how it works now:
* You can set A and P locally by using $x->accuracy() and $x->precision()
and thus force different A and P for different objects/numbers.
* Setting A or P this way immediately rounds $x to the new value.
+ * $x->accuracy() clears $x->precision(), and vice versa.
=item Rounding
@@ -2710,10 +3163,10 @@ Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigInt lib => 'Foo,Math::BigInt::Bar';
Calc.pm uses as internal format an array of elements of some decimal base
-(usually 1e5, but this might change to 1e7) with the least significant digit
-first, while BitVect.pm uses a bit vector of base 2, most significant bit
-first. Other modules might use even different means of representing the
-numbers. See the respective module documentation for further details.
+(usually 1e5 or 1e7) with the least significant digit first, while BitVect.pm
+uses a bit vector of base 2, most significant bit first. Other modules might
+use even different means of representing the numbers. See the respective
+module documentation for further details.
=head2 SIGN
@@ -2869,6 +3322,116 @@ See L<MATH LIBRARY> for more information.
For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
+=head2 SUBCLASSING
+
+=head1 Subclassing Math::BigInt
+
+The basic design of Math::BigInt allows simple subclasses with very little
+work, as long as a few simple rules are followed:
+
+=over 2
+
+=item *
+
+The public API must remain consistent, i.e. if a sub-class is overloading
+addition, the sub-class must use the same name, in this case badd(). The
+reason for this is that Math::BigInt is optimized to call the object methods
+directly.
+
+=item *
+
+The private object hash keys like C<$x->{sign}> may not be changed, but
+additional keys can be added, like C<$x->{_custom}>.
+
+=item *
+
+Accessor functions are available for all existing object hash keys and should
+be used instead of directly accessing the internal hash keys. The reason for
+this is that Math::BigInt itself has a pluggable interface which permits it
+to support different storage methods.
+
+=back
+
+More complex sub-classes may have to replicate more of the logic internal of
+Math::BigInt if they need to change more basic behaviors. A subclass that
+needs to merely change the output only needs to overload C<bstr()>.
+
+All other object methods and overloaded functions can be directly inherited
+from the parent class.
+
+At the very minimum, any subclass will need to provide it's own C<new()> and can
+store additional hash keys in the object. There are also some package globals
+that must be defined, e.g.:
+
+ # Globals
+ $accuracy = undef;
+ $precision = -2; # round to 2 decimal places
+ $round_mode = 'even';
+ $div_scale = 40;
+
+Additionally, you might want to provide the following two globals to allow
+auto-upgrading and auto-downgrading to work correctly:
+
+ $upgrade = undef;
+ $downgrade = undef;
+
+This allows Math::BigInt to correctly retrieve package globals from the
+subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
+t/Math/BigFloat/SubClass.pm completely functional subclass examples.
+
+Don't forget to
+
+ use overload;
+
+in your subclass to automatically inherit the overloading from the parent. If
+you like, you can change part of the overloading, look at Math::String for an
+example.
+
+=head1 UPGRADING
+
+When used like this:
+
+ use Math::BigInt upgrade => 'Foo::Bar';
+
+certain operations will 'upgrade' their calculation and thus the result to
+the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
+
+ use Math::BigInt upgrade => 'Math::BigFloat';
+
+As a shortcut, you can use the module C<bignum>:
+
+ use bignum;
+
+Also good for oneliners:
+
+ perl -Mbignum -le 'print 2 ** 255'
+
+This makes it possible to mix arguments of different classes (as in 2.5 + 2)
+as well es preserve accuracy (as in sqrt(3)).
+
+Beware: This feature is not fully implemented yet.
+
+=head2 Auto-upgrade
+
+The following methods upgrade themselves unconditionally; that is if upgrade
+is in effect, they will always hand up their work:
+
+=over 2
+
+=item bsqrt()
+
+=item div()
+
+=item blog()
+
+=back
+
+Beware: This list is not complete.
+
+All other methods upgrade themselves only when one (or all) of their
+arguments are of the class mentioned in $upgrade (This might change in later
+versions to a more sophisticated scheme):
+
=head1 BUGS
=over 2
@@ -3180,6 +3743,8 @@ will both result in the proper type due to the way the overloaded math works.
This section also applies to other overloaded math packages, like Math::String.
+One solution to you problem might be L<autoupgrading|upgrading>.
+
=item bsqrt()
C<bsqrt()> works only good if the result is a big integer, e.g. the square
@@ -3197,6 +3762,10 @@ If you want a better approximation of the square root, then use:
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464
+=item brsft()
+
+For negative numbers in base see also L<brsft|brsft>.
+
=back
=head1 LICENSE