diff options
author | Jarkko Hietaniemi <jhi@iki.fi> | 1997-09-05 00:00:00 +0000 |
---|---|---|
committer | Tim Bunce <Tim.Bunce@ig.co.uk> | 1997-09-05 00:00:00 +1200 |
commit | 8c03c583a5f470c68c67a27898643a5dafca2d66 (patch) | |
tree | fb0459770a78016ed548c88dd2d66e28fe6a8f28 /lib/Math/Complex.pm | |
parent | 687277c3db608708e6f760adc8a7c426df7f12e2 (diff) | |
download | perl-8c03c583a5f470c68c67a27898643a5dafca2d66.tar.gz |
5.004_02: Complex/Trig: update
The following patches do not fix actual grave errors but they do:
- make the code more robust (more discontinuities catched)
(e.g. atan(-i), atanh(-1))
- make the results agree on signs and/or conjugate forms with the
results MATLAB gives: the results were already correct thanks to
the periodicity of trig funcs but now they are also consistent.
(e.g. acos(x) did have an unnecessary discontinuity at x = 0)
- for some pure real arguments short-circuit the calculation
to avoid rounding errors (which make epsilons appear where
clear zeros should reign)
Tested on NetBSD 1.2G i686, Linux 2.0.25 i686, Digital UNIX 4.0 EV56.
p5p-msgid: 199708081842.VAA31214@alpha.hut.fi
Diffstat (limited to 'lib/Math/Complex.pm')
-rw-r--r-- | lib/Math/Complex.pm | 127 |
1 files changed, 104 insertions, 23 deletions
diff --git a/lib/Math/Complex.pm b/lib/Math/Complex.pm index 7a4617c65a..33c60231aa 100644 --- a/lib/Math/Complex.pm +++ b/lib/Math/Complex.pm @@ -511,6 +511,27 @@ sub exp { } # +# _logofzero +# +# Die on division by zero. +# +sub _logofzero { + my $mess = "$_[0]: Logarithm of zero.\n"; + + if (defined $_[1]) { + $mess .= "(Because in the definition of $_[0], the argument "; + $mess .= "$_[1] " unless ($_[1] eq '0'); + $mess .= "is 0)\n"; + } + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# # (log) # # Compute log(z). @@ -659,7 +680,19 @@ sub cotan { Math::Complex::cot(@_) } sub acos { my ($z) = @_; $z = cplx($z, 0) unless ref $z; - return ~i * log($z + (Re($z) * Im($z) > 0 ? 1 : -1) * sqrt($z*$z - 1)); + my ($re, $im) = @{$z->cartesian}; + return atan2(sqrt(1 - $re * $re), $re) + if ($im == 0 and abs($re) <= 1.0); + my $acos = ~i * log($z + sqrt($z*$z - 1)); + if ($im == 0 || + (abs($re) < 1 && abs($im) < 1) || + (abs($re) > 1 && abs($im) > 1 + && !($re > 1 && $im > 1) + && !($re < -1 && $im < -1))) { + # this rule really, REALLY, must be simpler + return -$acos; + } + return $acos; } # @@ -670,6 +703,9 @@ sub acos { sub asin { my ($z) = @_; $z = cplx($z, 0) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return atan2($re, sqrt(1 - $re * $re)) + if ($im == 0 and abs($re) <= 1.0); return ~i * log(i * $z + sqrt(1 - $z*$z)); } @@ -681,7 +717,8 @@ sub asin { sub atan { my ($z) = @_; $z = cplx($z, 0) unless ref $z; - _divbyzero "atan($z)", "i - $z" if ($z == i); + _divbyzero "atan(i)" if ( $z == i); + _divbyzero "atan(-i)" if (-$z == i); return i/2*log((i + $z) / (i - $z)); } @@ -693,18 +730,35 @@ sub atan { sub asec { my ($z) = @_; _divbyzero "asec($z)", $z if ($z == 0); - return acos(1 / $z); + $z = cplx($z, 0) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + if ($im == 0 && abs($re) >= 1.0) { + my $ire = 1 / $re; + return atan2(sqrt(1 - $ire * $ire), $ire); + } + my $asec = acos(1 / $z); + return ~$asec if $re < 0 && $re > -1 && $im == 0; + return -$asec if $im && !($re > 0 && $im > 0) && !($re < 0 && $im < 0); + return $asec; } # # acsc # -# Computes the arc cosecant sec(z) = asin(1 / z). +# Computes the arc cosecant acsc(z) = asin(1 / z). # sub acsc { my ($z) = @_; _divbyzero "acsc($z)", $z if ($z == 0); - return asin(1 / $z); + $z = cplx($z, 0) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + if ($im == 0 && abs($re) >= 1.0) { + my $ire = 1 / $re; + return atan2($ire, sqrt(1 - $ire * $ire)); + } + my $acsc = asin(1 / $z); + return ~$acsc if $re < 0 && $re > -1 && $im == 0; + return $acsc; } # @@ -717,13 +771,15 @@ sub acosec { Math::Complex::acsc(@_) } # # acot # -# Computes the arc cotangent acot(z) = -i/2 log((i+z) / (z-i)) +# Computes the arc cotangent acot(z) = atan(1 / z) # sub acot { my ($z) = @_; + _divbyzero "acot($z)" if ($z == 0); $z = cplx($z, 0) unless ref $z; - _divbyzero "acot($z)", "$z - i" if ($z == i); - return i/-2 * log((i + $z) / ($z - i)); + _divbyzero "acot(i)", if ( $z == i); + _divbyzero "acot(-i)" if (-$z == i); + return atan(1 / $z); } # @@ -838,11 +894,14 @@ sub cotanh { Math::Complex::coth(@_) } # # acosh # -# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). +# Computes the arc hyperbolic cosine acosh(z) = log(z +- sqrt(z*z-1)). # sub acosh { my ($z) = @_; $z = cplx($z, 0) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return log($re + sqrt(cplx($re*$re - 1, 0))) + if ($im == 0 && $re < 0); return log($z + sqrt($z*$z - 1)); } @@ -864,10 +923,14 @@ sub asinh { # sub atanh { my ($z) = @_; - _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); + _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); + _logofzero 'atanh(-1)' if ($z == -1); $z = cplx($z, 0) unless ref $z; - my $cz = (1 + $z) / (1 - $z); - return log($cz) / 2; + my ($re, $im) = @{$z->cartesian}; + if ($im == 0 && $re > 1) { + return cplx(atanh(1 / $re), pi/2); + } + return log((1 + $z) / (1 - $z)) / 2; } # @@ -878,6 +941,12 @@ sub atanh { sub asech { my ($z) = @_; _divbyzero 'asech(0)', $z if ($z == 0); + $z = cplx($z, 0) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + if ($im == 0 && $re < 0) { + my $ire = 1 / $re; + return log($ire + sqrt(cplx($ire*$ire - 1, 0))); + } return acosh(1 / $z); } @@ -906,10 +975,14 @@ sub acosech { Math::Complex::acsch(@_) } # sub acoth { my ($z) = @_; - _divbyzero 'acoth(1)', "$z - 1" if ($z == 1); + _divbyzero 'acoth(1)', "$z - 1" if ($z == 1); + _logofzero 'acoth(-1)' if ($z == -1); $z = cplx($z, 0) unless ref $z; - my $cz = (1 + $z) / ($z - 1); - return log($cz) / 2; + my ($re, $im) = @{$z->cartesian}; + if ($im == 0 and abs($re) < 1) { + return cplx(acoth(1/$re) , pi/2); + } + return log((1 + $z) / ($z - 1)) / 2; } # @@ -1295,7 +1368,7 @@ numbers: acsc(z) = asin(1 / z) asec(z) = acos(1 / z) - acot(z) = -i/2 * log((i+z) / (z-i)) + acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) sinh(z) = 1/2 (exp(z) - exp(-z)) cosh(z) = 1/2 (exp(z) + exp(-z)) @@ -1437,18 +1510,26 @@ The division (/) and the following functions acoth cannot be computed for all arguments because that would mean dividing -by zero. These situations cause fatal runtime errors looking like this +by zero or taking logarithm of zero. These situations cause fatal +runtime errors looking like this cot(0): Division by zero. (Because in the definition of cot(0), the divisor sin(0) is 0) Died at ... -For the C<csc>, C<cot>, C<asec>, C<acsc>, C<csch>, C<coth>, C<asech>, -C<acsch>, the argument cannot be C<0> (zero). For the C<atanh>, -C<acoth>, the argument cannot be C<1> (one). For the C<atan>, C<acot>, -the argument cannot be C<i> (the imaginary unit). For the C<tan>, -C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * pi>, where -I<k> is any integer. +or + + atanh(-1): Logarithm of zero. + Died at... + +For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, +C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the +C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the +C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the +C<atan>, C<acot>, the argument cannot be C<i> (the imaginary unit). +For the C<atan>, C<acoth>, the argument cannot be C<-i> (the negative +imaginary unit). For the C<tan>, C<sec>, C<tanh>, C<sech>, the +argument cannot be I<pi/2 + k * pi>, where I<k> is any integer. =head1 BUGS |