diff options
author | Jarkko Hietaniemi <jhi@iki.fi> | 2005-09-14 12:26:11 +0300 |
---|---|---|
committer | Rafael Garcia-Suarez <rgarciasuarez@gmail.com> | 2005-09-14 12:49:58 +0000 |
commit | bf5f1b4c416e9f9e42a04142ba3e61a6ebbc548f (patch) | |
tree | 9380d048bfc5d0cbb74c101808cdf7916593b583 /lib/Math/Trig.pm | |
parent | 3b3034892f7cb176fcb62aa4f67e521945855c1b (diff) | |
download | perl-bf5f1b4c416e9f9e42a04142ba3e61a6ebbc548f.tar.gz |
Math::Complex and Math::Trig updates (Re: [perl #37117] Math::Complex atan2 bug)
Message-ID: <4327C283.80706@gmail.com>
p4raw-id: //depot/perl@25414
Diffstat (limited to 'lib/Math/Trig.pm')
-rw-r--r-- | lib/Math/Trig.pm | 172 |
1 files changed, 146 insertions, 26 deletions
diff --git a/lib/Math/Trig.pm b/lib/Math/Trig.pm index 7560df5415..9ff016fb1d 100644 --- a/lib/Math/Trig.pm +++ b/lib/Math/Trig.pm @@ -10,13 +10,14 @@ package Math::Trig; use 5.006; use strict; +use Math::Complex 1.35; use Math::Complex qw(:trig); our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS); @ISA = qw(Exporter); -$VERSION = 1.02; +$VERSION = 1.03; my @angcnv = qw(rad2deg rad2grad deg2rad deg2grad @@ -32,12 +33,30 @@ my @rdlcnv = qw(cartesian_to_cylindrical spherical_to_cartesian spherical_to_cylindrical); -@EXPORT_OK = (@rdlcnv, 'great_circle_distance', 'great_circle_direction'); +my @greatcircle = qw( + great_circle_distance + great_circle_direction + great_circle_bearing + great_circle_waypoint + great_circle_midpoint + great_circle_destination + ); -%EXPORT_TAGS = ('radial' => [ @rdlcnv ]); +my @pi = qw(pi2 pip2 pip4); + +@EXPORT_OK = (@rdlcnv, @greatcircle, @pi); + +# See e.g. the following pages: +# http://www.movable-type.co.uk/scripts/LatLong.html +# http://williams.best.vwh.net/avform.htm + +%EXPORT_TAGS = ('radial' => [ @rdlcnv ], + 'great_circle' => [ @greatcircle ], + 'pi' => [ @pi ]); sub pi2 () { 2 * pi } sub pip2 () { pi / 2 } +sub pip4 () { pi / 4 } sub DR () { pi2/360 } sub RD () { 360/pi2 } @@ -148,6 +167,57 @@ sub great_circle_direction { return rad2rad($direction); } +*great_circle_bearing = \&great_circle_direction; + +sub great_circle_waypoint { + my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_; + + $point = 0.5 unless defined $point; + + my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 ); + + return undef if $d == pi; + + my $sd = sin($d); + + return ($theta0, $phi0) if $sd == 0; + + my $A = sin((1 - $point) * $d) / $sd; + my $B = sin( $point * $d) / $sd; + + my $lat0 = pip2 - $phi0; + my $lat1 = pip2 - $phi1; + + my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1); + my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1); + my $z = $A * sin($lat0) + $B * sin($lat1); + + my $theta = atan2($y, $x); + my $phi = atan2($z, sqrt($x*$x + $y*$y)); + + return ($theta, $phi); +} + +sub great_circle_midpoint { + great_circle_waypoint(@_[0..3], 0.5); +} + +sub great_circle_destination { + my ( $theta0, $phi0, $dir0, $dst ) = @_; + + my $lat0 = pip2 - $phi0; + + my $phi1 = asin(sin($lat0)*cos($dst)+cos($lat0)*sin($dst)*cos($dir0)); + my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0), + cos($dst)-sin($lat0)*sin($phi1)); + + my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi; + + $dir1 -= pi2 if $dir1 > pi2; + + return ($theta1, $phi1, $dir1); +} + 1; __END__ @@ -169,12 +239,21 @@ Math::Trig - trigonometric functions $rad = deg2rad(120); + # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4). + use Math::Trig ':pi'; + + # Import the conversions between cartesian/spherical/cylindrical. + use Math::Trig ':radial'; + + # Import the great circle formulas. + use Math::Trig ':great_circle'; + =head1 DESCRIPTION C<Math::Trig> defines many trigonometric functions not defined by the core Perl which defines only the C<sin()> and C<cos()>. The constant B<pi> is also defined as are a few convenience functions for angle -conversions. +conversions, and I<great circle formulas> for spherical movement. =head1 TRIGONOMETRIC FUNCTIONS @@ -265,7 +344,7 @@ C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k * -pi>, where I<k> is any integer. +pi>, where I<k> is any integer. atan2(0, 0) is undefined. =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS @@ -338,8 +417,7 @@ B<All angles are in radians>. =head2 COORDINATE SYSTEMS -B<Cartesian> coordinates are the usual rectangular I<(x, y, -z)>-coordinates. +B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates. Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional coordinates which define a point in three-dimensional space. They are @@ -430,16 +508,56 @@ degrees). $distance = great_circle_distance($lon0, pi/2 - $lat0, $lon1, pi/2 - $lat1, $rho); -The direction you must follow the great circle can be computed by the -great_circle_direction() function: +The direction you must follow the great circle (also known as I<bearing>) +can be computed by the great_circle_direction() function: use Math::Trig 'great_circle_direction'; $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1); +(Alias 'great_circle_bearing' is also available.) The result is in radians, zero indicating straight north, pi or -pi straight south, pi/2 straight west, and -pi/2 straight east. +You can inversely compute the destination if you know the +starting point, direction, and distance: + + use Math::Trig 'great_circle_destination'; + + # thetad and phid are the destination coordinates, + # dird is the final direction at the destination. + + ($thetad, $phid, $dird) = + great_circle_destination($theta, $phi, $direction, $distance); + +or the midpoint if you know the end points: + + use Math::Trig 'great_circle_midpoint'; + + ($thetam, $phim) = + great_circle_midpoint($theta0, $phi0, $theta1, $phi1); + +The great_circle_midpoint() is just a special case of + + use Math::Trig 'great_circle_waypoint'; + + ($thetai, $phii) = + great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way); + +Where the $way is a value from zero ($theta0, $phi0) to one ($theta1, +$phi1). Note that antipodal points (where their distance is I<pi> +radians) do not have waypoints between them (they would have an an +"equator" between them), and therefore C<undef> is returned for +antipodal points. If the points are the same and the distance +therefore zero and all waypoints therefore identical, the first point +(either point) is returned. + +The thetas, phis, direction, and distance in the above are all in radians. + +You can import all the great circle formulas by + + use Math::Trig ':great_circle'; + Notice that the resulting directions might be somewhat surprising if you are looking at a flat worldmap: in such map projections the great circles quite often do not look like the shortest routes-- but for @@ -454,31 +572,31 @@ To calculate the distance between London (51.3N 0.5W) and Tokyo use Math::Trig qw(great_circle_distance deg2rad); # Notice the 90 - latitude: phi zero is at the North Pole. - @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); - @T = (deg2rad(139.8),deg2rad(90 - 35.7)); - - $km = great_circle_distance(@L, @T, 6378); + sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) } + my @L = NESW( -0.5, 51.3); + my @T = NESW(139.8, 35.7); + my $km = great_circle_distance(@L, @T, 6378); # About 9600 km. -The direction you would have to go from London to Tokyo +The direction you would have to go from London to Tokyo (in radians, +straight north being zero, straight east being pi/2). use Math::Trig qw(great_circle_direction); - $rad = great_circle_direction(@L, @T); + my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi. -=head2 CAVEAT FOR GREAT CIRCLE FORMULAS +The midpoint between London and Tokyo being -The answers may be off by few percentages because of the irregular -(slightly aspherical) form of the Earth. The formula used for -grear circle distances + use Math::Trig qw(great_circle_midpoint); + + my @M = great_circle_midpoint(@L, @T); + +or about 68.11N 24.74E, in the Finnish Lapland. - lat0 = 90 degrees - phi0 - lat1 = 90 degrees - phi1 - d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) + - sin(lat0) * sin(lat1)) +=head2 CAVEAT FOR GREAT CIRCLE FORMULAS -is also somewhat unreliable for small distances (for locations -separated less than about five degrees) because it uses arc cosine -which is rather ill-conditioned for values close to zero. +The answers may be off by few percentages because of the irregular +(slightly aspherical) form of the Earth. The errors are at worst +about 0.55%, but generally below 0.3%. =head1 BUGS @@ -492,6 +610,8 @@ the computations even when the arguments are not. This, however, cannot be completely avoided if we want things like C<asin(2)> to give an answer instead of giving a fatal runtime error. +Do not attempt navigation using these formulas. + =head1 AUTHORS Jarkko Hietaniemi <F<jhi@iki.fi>> and |