summaryrefslogtreecommitdiff
path: root/lib/Math
diff options
context:
space:
mode:
authorJarkko Hietaniemi <jhi@iki.fi>2001-04-01 18:43:09 +0000
committerJarkko Hietaniemi <jhi@iki.fi>2001-04-01 18:43:09 +0000
commit7e5f197a77be82f8e343b9d7b685f1987eefd832 (patch)
tree0222e83db113bf4073c7342c691ce971a26955a7 /lib/Math
parente2be6f076cc59730d8ec4f9a3cbe716348da62de (diff)
downloadperl-7e5f197a77be82f8e343b9d7b685f1987eefd832.tar.gz
Add great_circle_direction().
p4raw-id: //depot/perl@9504
Diffstat (limited to 'lib/Math')
-rw-r--r--lib/Math/Trig.pm55
1 files changed, 47 insertions, 8 deletions
diff --git a/lib/Math/Trig.pm b/lib/Math/Trig.pm
index b28f150798..2a23590a2f 100644
--- a/lib/Math/Trig.pm
+++ b/lib/Math/Trig.pm
@@ -32,7 +32,7 @@ my @rdlcnv = qw(cartesian_to_cylindrical
spherical_to_cartesian
spherical_to_cylindrical);
-@EXPORT_OK = (@rdlcnv, 'great_circle_distance');
+@EXPORT_OK = (@rdlcnv, 'great_circle_distance', 'great_circle_direction');
%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
@@ -130,6 +130,20 @@ sub great_circle_distance {
sin( $lat0 ) * sin( $lat1 ) );
}
+sub great_circle_direction {
+ my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ my $direction =
+ atan2(sin($theta0 - $theta1) * cos($lat1),
+ cos($lat0) * sin($lat1) -
+ sin($lat0) * cos($lat1) * cos($theta0 - $theta1));
+
+ return rad2rad($direction);
+}
+
=pod
=head1 NAME
@@ -383,12 +397,12 @@ Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
=back
-=head1 GREAT CIRCLE DISTANCES
+=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
You can compute spherical distances, called B<great circle distances>,
-by importing the C<great_circle_distance> function:
+by importing the great_circle_distance() function:
- use Math::Trig 'great_circle_distance'
+ use Math::Trig 'great_circle_distance';
$distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
@@ -409,10 +423,26 @@ degrees).
$distance = great_circle_distance($lon0, pi/2 - $lat0,
$lon1, pi/2 - $lat1, $rho);
+The direction you must follow the great circle can be computed by the
+great_circle_direction() function:
+
+ use Math::Trig 'great_circle_direction';
+
+ $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
+
+The result is in radians, zero indicating straight north, pi or -pi
+straight south, pi/2 straight west, and -pi/2 straight east.
+
+Notice that the resulting directions might be somewhat surprising if
+you are looking at a flat worldmap: in such map projections the great
+circles quite often do not look like the shortest routes-- but for
+example the shortest possible routes from Europe or North America to
+Asia do often cross the polar regions.
+
=head1 EXAMPLES
-To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
-139.8E) in kilometers:
+To calculate the distance between London (51.3N 0.5W) and Tokyo
+(35.7N 139.8E) in kilometers:
use Math::Trig qw(great_circle_distance deg2rad);
@@ -422,8 +452,17 @@ To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
$km = great_circle_distance(@L, @T, 6378);
-The answer may be off by few percentages because of the irregular
-(slightly aspherical) form of the Earth. The used formula
+The direction you would have to go from London to Tokyo
+
+ use Math::Trig qw(great_circle_direction);
+
+ $rad = great_circle_direction(@L, @T);
+
+=head2 CAVEAT FOR GREAT CIRCLE FORMULAS
+
+The answers may be off by few percentages because of the irregular
+(slightly aspherical) form of the Earth. The formula used for
+grear circle distances
lat0 = 90 degrees - phi0
lat1 = 90 degrees - phi1