diff options
author | Karl Williamson <khw@khw-desktop.(none)> | 2009-11-12 22:40:21 -0700 |
---|---|---|
committer | Rafael Garcia-Suarez <rgs@consttype.org> | 2009-11-14 23:34:55 +0100 |
commit | 00f254e235ff10d6223aa9a402ad5b7a85689829 (patch) | |
tree | ecbf0c57e651245f5632419e0b86788eb252dac1 /pp.c | |
parent | a1248f17ffcfa8fe0e91df962317b46b81fc0ce5 (diff) | |
download | perl-00f254e235ff10d6223aa9a402ad5b7a85689829.tar.gz |
add code for Unicode semantics for non-utf8 latin1 chars
Diffstat (limited to 'pp.c')
-rw-r--r-- | pp.c | 736 |
1 files changed, 632 insertions, 104 deletions
@@ -3525,22 +3525,97 @@ PP(pp_crypt) #endif } +/* Generally UTF-8 and UTF-EBCDIC are indistinguishable at this level. So + * most comments below say UTF-8, when in fact they mean UTF-EBCDIC as well */ + +/* Both the characters below can be stored in two UTF-8 bytes. In UTF-8 the max + * character that 2 bytes can hold is U+07FF, and in UTF-EBCDIC it is U+03FF. + * See http://www.unicode.org/unicode/reports/tr16 */ +#define LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS 0x0178 /* Also is title case */ +#define GREEK_CAPITAL_LETTER_MU 0x039C /* Upper and title case of MICRON */ + +/* Below are several macros that generate code */ +/* Generates code to store a unicode codepoint c that is known to occupy + * exactly two UTF-8 and UTF-EBCDIC bytes; it is stored into p and p+1. */ +#define STORE_UNI_TO_UTF8_TWO_BYTE(p, c) \ + STMT_START { \ + *(p) = UTF8_TWO_BYTE_HI(c); \ + *((p)+1) = UTF8_TWO_BYTE_LO(c); \ + } STMT_END + +/* Like STORE_UNI_TO_UTF8_TWO_BYTE, but advances p to point to the next + * available byte after the two bytes */ +#define CAT_UNI_TO_UTF8_TWO_BYTE(p, c) \ + STMT_START { \ + *(p)++ = UTF8_TWO_BYTE_HI(c); \ + *((p)++) = UTF8_TWO_BYTE_LO(c); \ + } STMT_END + +/* Generates code to store the upper case of latin1 character l which is known + * to have its upper case be non-latin1 into the two bytes p and p+1. There + * are only two characters that fit this description, and this macro knows + * about them, and that the upper case values fit into two UTF-8 or UTF-EBCDIC + * bytes */ +#define STORE_NON_LATIN1_UC(p, l) \ +STMT_START { \ + if ((l) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) { \ + STORE_UNI_TO_UTF8_TWO_BYTE((p), LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS); \ + } else { /* Must be the following letter */ \ + STORE_UNI_TO_UTF8_TWO_BYTE((p), GREEK_CAPITAL_LETTER_MU); \ + } \ +} STMT_END + +/* Like STORE_NON_LATIN1_UC, but advances p to point to the next available byte + * after the character stored */ +#define CAT_NON_LATIN1_UC(p, l) \ +STMT_START { \ + if ((l) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) { \ + CAT_UNI_TO_UTF8_TWO_BYTE((p), LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS); \ + } else { \ + CAT_UNI_TO_UTF8_TWO_BYTE((p), GREEK_CAPITAL_LETTER_MU); \ + } \ +} STMT_END + +/* Generates code to add the two UTF-8 bytes (probably u) that are the upper + * case of l into p and p+1. u must be the result of toUPPER_LATIN1_MOD(l), + * and must require two bytes to store it. Advances p to point to the next + * available position */ +#define CAT_TWO_BYTE_UNI_UPPER_MOD(p, l, u) \ +STMT_START { \ + if ((u) != LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) { \ + CAT_UNI_TO_UTF8_TWO_BYTE((p), (u)); /* not special, just save it */ \ + } else if (l == LATIN_SMALL_LETTER_SHARP_S) { \ + *(p)++ = 'S'; *(p)++ = 'S'; /* upper case is 'SS' */ \ + } else {/* else is one of the other two special cases */ \ + CAT_NON_LATIN1_UC((p), (l)); \ + } \ +} STMT_END + PP(pp_ucfirst) { + /* Actually is both lcfirst() and ucfirst(). Only the first character + * changes. This means that possibly we can change in-place, ie., just + * take the source and change that one character and store it back, but not + * if read-only etc, or if the length changes */ + dVAR; dSP; SV *source = TOPs; - STRLEN slen; + STRLEN slen; /* slen is the byte length of the whole SV. */ STRLEN need; SV *dest; - bool inplace = TRUE; - bool doing_utf8; + bool inplace; /* ? Convert first char only, in-place */ + bool doing_utf8 = FALSE; /* ? using utf8 */ + bool convert_source_to_utf8 = FALSE; /* ? need to convert */ const int op_type = PL_op->op_type; const U8 *s; U8 *d; U8 tmpbuf[UTF8_MAXBYTES_CASE+1]; - STRLEN ulen; - STRLEN tculen; + STRLEN ulen; /* ulen is the byte length of the original Unicode character + * stored as UTF-8 at s. */ + STRLEN tculen; /* tculen is the byte length of the freshly titlecased (or + * lowercased) character stored in tmpbuf. May be either + * UTF-8 or not, but in either case is the number of bytes */ SvGETMAGIC(source); if (SvOK(source)) { @@ -3552,25 +3627,187 @@ PP(pp_ucfirst) slen = 0; } - if (slen && DO_UTF8(source) && UTF8_IS_START(*s)) { + /* We may be able to get away with changing only the first character, in + * place, but not if read-only, etc. Later we may discover more reasons to + * not convert in-place. */ + inplace = SvPADTMP(source) && !SvREADONLY(source) && SvTEMP(source); + + /* First calculate what the changed first character should be. This affects + * whether we can just swap it out, leaving the rest of the string unchanged, + * or even if have to convert the dest to UTF-8 when the source isn't */ + + if (! slen) { /* If empty */ + need = 1; /* still need a trailing NUL */ + } + else if (DO_UTF8(source)) { /* Is the source utf8? */ doing_utf8 = TRUE; - utf8_to_uvchr(s, &ulen); - if (op_type == OP_UCFIRST) { - toTITLE_utf8(s, tmpbuf, &tculen); - } else { - toLOWER_utf8(s, tmpbuf, &tculen); + +/* TODO: This is #ifdefd out because it has hard-coded the standard mappings, + * and doesn't allow for the user to specify their own. When code is added to + * detect if there is a user-defined mapping in force here, and if so to use + * that, then the code below can be compiled. The detection would be a good + * thing anyway, as currently the user-defined mappings only work on utf8 + * strings, and thus depend on the chosen internal storage method, which is a + * bad thing */ +#ifdef GO_AHEAD_AND_BREAK_USER_DEFINED_CASE_MAPPINGS + if (UTF8_IS_INVARIANT(*s)) { + + /* An invariant source character is either ASCII or, in EBCDIC, an + * ASCII equivalent or a caseless C1 control. In both these cases, + * the lower and upper cases of any character are also invariants + * (and title case is the same as upper case). So it is safe to + * use the simple case change macros which avoid the overhead of + * the general functions. Note that if perl were to be extended to + * do locale handling in UTF-8 strings, this wouldn't be true in, + * for example, Lithuanian or Turkic. */ + *tmpbuf = (op_type == OP_LCFIRST) ? toLOWER(*s) : toUPPER(*s); + tculen = ulen = 1; + need = slen + 1; + } + else if (UTF8_IS_DOWNGRADEABLE_START(*s)) { + U8 chr; + + /* Similarly, if the source character isn't invariant but is in the + * latin1 range (or EBCDIC equivalent thereof), we have the case + * changes compiled into perl, and can avoid the overhead of the + * general functions. In this range, the characters are stored as + * two UTF-8 bytes, and it so happens that any changed-case version + * is also two bytes (in both ASCIIish and EBCDIC machines). */ + tculen = ulen = 2; + need = slen + 1; + + /* Convert the two source bytes to a single Unicode code point + * value, change case and save for below */ + chr = UTF8_ACCUMULATE(*s, *(s+1)); + if (op_type == OP_LCFIRST) { /* lower casing is easy */ + U8 lower = toLOWER_LATIN1(chr); + STORE_UNI_TO_UTF8_TWO_BYTE(tmpbuf, lower); + } + else { /* ucfirst */ + U8 upper = toUPPER_LATIN1_MOD(chr); + + /* Most of the latin1 range characters are well-behaved. Their + * title and upper cases are the same, and are also in the + * latin1 range. The macro above returns their upper (hence + * title) case, and all that need be done is to save the result + * for below. However, several characters are problematic, and + * have to be handled specially. The MOD in the macro name + * above means that these tricky characters all get mapped to + * the single character LATIN_SMALL_LETTER_Y_WITH_DIAERESIS. + * This mapping saves some tests for the majority of the + * characters */ + + if (upper != LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) { + + /* Not tricky. Just save it. */ + STORE_UNI_TO_UTF8_TWO_BYTE(tmpbuf, upper); + } + else if (chr == LATIN_SMALL_LETTER_SHARP_S) { + + /* This one is tricky because it is two characters long, + * though the UTF-8 is still two bytes, so the stored + * length doesn't change */ + *tmpbuf = 'S'; /* The UTF-8 is 'Ss' */ + *(tmpbuf + 1) = 's'; + } + else { + + /* The other two have their title and upper cases the same, + * but are tricky because the changed-case characters + * aren't in the latin1 range. They, however, do fit into + * two UTF-8 bytes */ + STORE_NON_LATIN1_UC(tmpbuf, chr); + } + } } - /* If the two differ, we definately cannot do inplace. */ - inplace = (ulen == tculen); - need = slen + 1 - ulen + tculen; - } else { - doing_utf8 = FALSE; - need = slen + 1; + else { +#endif /* end of dont want to break user-defined casing */ + + /* Here, can't short-cut the general case */ + + utf8_to_uvchr(s, &ulen); + if (op_type == OP_UCFIRST) toTITLE_utf8(s, tmpbuf, &tculen); + else toLOWER_utf8(s, tmpbuf, &tculen); + + /* we can't do in-place if the length changes. */ + if (ulen != tculen) inplace = FALSE; + need = slen + 1 - ulen + tculen; +#ifdef GO_AHEAD_AND_BREAK_USER_DEFINED_CASE_MAPPINGS + } +#endif } + else { /* Non-zero length, non-UTF-8, Need to consider locale and if + * latin1 is treated as caseless. Note that a locale takes + * precedence */ + tculen = 1; /* Most characters will require one byte, but this will + * need to be overridden for the tricky ones */ + need = slen + 1; + + if (op_type == OP_LCFIRST) { + + /* lower case the first letter: no trickiness for any character */ + *tmpbuf = (IN_LOCALE_RUNTIME) ? toLOWER_LC(*s) : + ((IN_UNI_8_BIT) ? toLOWER_LATIN1(*s) : toLOWER(*s)); + } + /* is ucfirst() */ + else if (IN_LOCALE_RUNTIME) { + *tmpbuf = toUPPER_LC(*s); /* This would be a bug if any locales + * have upper and title case different + */ + } + else if (! IN_UNI_8_BIT) { + *tmpbuf = toUPPER(*s); /* Returns caseless for non-ascii, or + * on EBCDIC machines whatever the + * native function does */ + } + else { /* is ucfirst non-UTF-8, not in locale, and cased latin1 */ + *tmpbuf = toUPPER_LATIN1_MOD(*s); + + /* tmpbuf now has the correct title case for all latin1 characters + * except for the several ones that have tricky handling. All + * of these are mapped by the MOD to the letter below. */ + if (*tmpbuf == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) { + + /* The length is going to change, with all three of these, so + * can't replace just the first character */ + inplace = FALSE; + + /* We use the original to distinguish between these tricky + * cases */ + if (*s == LATIN_SMALL_LETTER_SHARP_S) { + /* Two character title case 'Ss', but can remain non-UTF-8 */ + need = slen + 2; + *tmpbuf = 'S'; + *(tmpbuf + 1) = 's'; /* Assert: length(tmpbuf) >= 2 */ + tculen = 2; + } + else { + + /* The other two tricky ones have their title case outside + * latin1. It is the same as their upper case. */ + doing_utf8 = TRUE; + STORE_NON_LATIN1_UC(tmpbuf, *s); + + /* The UTF-8 and UTF-EBCDIC lengths of both these characters + * and their upper cases is 2. */ + tculen = ulen = 2; + + /* The entire result will have to be in UTF-8. Assume worst + * case sizing in conversion. (all latin1 characters occupy + * at most two bytes in utf8) */ + convert_source_to_utf8 = TRUE; + need = slen * 2 + 1; + } + } /* End of is one of the three special chars */ + } /* End of use Unicode (Latin1) semantics */ + } /* End of changing the case of the first character */ - if (SvPADTMP(source) && !SvREADONLY(source) && inplace && SvTEMP(source)) { - /* We can convert in place. */ + /* Here, have the first character's changed case stored in tmpbuf. Ready to + * generate the result */ + if (inplace) { + /* We can convert in place. This means we change just the first + * character without disturbing the rest; no need to grow */ dest = source; s = d = (U8*)SvPV_force_nomg(source, slen); } else { @@ -3578,53 +3815,83 @@ PP(pp_ucfirst) dest = TARG; + /* Here, we can't convert in place; we earlier calculated how much + * space we will need, so grow to accommodate that */ SvUPGRADE(dest, SVt_PV); d = (U8*)SvGROW(dest, need); (void)SvPOK_only(dest); SETs(dest); - - inplace = FALSE; } if (doing_utf8) { - if(!inplace) { - /* slen is the byte length of the whole SV. - * ulen is the byte length of the original Unicode character - * stored as UTF-8 at s. - * tculen is the byte length of the freshly titlecased (or - * lowercased) Unicode character stored as UTF-8 at tmpbuf. - * We first set the result to be the titlecased (/lowercased) - * character, and then append the rest of the SV data. */ - sv_setpvn(dest, (char*)tmpbuf, tculen); - if (slen > ulen) - sv_catpvn(dest, (char*)(s + ulen), slen - ulen); + if (! inplace) { + if (! convert_source_to_utf8) { + + /* Here both source and dest are in UTF-8, but have to create + * the entire output. We initialize the result to be the + * title/lower cased first character, and then append the rest + * of the string. */ + sv_setpvn(dest, (char*)tmpbuf, tculen); + if (slen > ulen) { + sv_catpvn(dest, (char*)(s + ulen), slen - ulen); + } + } + else { + const U8 *const send = s + slen; + + /* Here the dest needs to be in UTF-8, but the source isn't, + * except we earlier UTF-8'd the first character of the source + * into tmpbuf. First put that into dest, and then append the + * rest of the source, converting it to UTF-8 as we go. */ + + /* Assert tculen is 2 here because the only two characters that + * get to this part of the code have 2-byte UTF-8 equivalents */ + *d++ = *tmpbuf; + *d++ = *(tmpbuf + 1); + s++; /* We have just processed the 1st char */ + + for (; s < send; s++) { + d = uvchr_to_utf8(d, *s); + } + *d = '\0'; + SvCUR_set(dest, d - (U8*)SvPVX_const(dest)); + } SvUTF8_on(dest); } - else { + else { /* in-place UTF-8. Just overwrite the first character */ Copy(tmpbuf, d, tculen, U8); SvCUR_set(dest, need - 1); } } - else { - if (*s) { + else { /* Neither source nor dest are in or need to be UTF-8 */ + if (slen) { if (IN_LOCALE_RUNTIME) { TAINT; SvTAINTED_on(dest); - *d = (op_type == OP_UCFIRST) - ? toUPPER_LC(*s) : toLOWER_LC(*s); } - else - *d = (op_type == OP_UCFIRST) ? toUPPER(*s) : toLOWER(*s); - } else { - /* See bug #39028 */ + if (inplace) { /* in-place, only need to change the 1st char */ + *d = *tmpbuf; + } + else { /* Not in-place */ + + /* Copy the case-changed character(s) from tmpbuf */ + Copy(tmpbuf, d, tculen, U8); + d += tculen - 1; /* Code below expects d to point to final + * character stored */ + } + } + else { /* empty source */ + /* See bug #39028: Don't taint if empty */ *d = *s; } + /* In a "use bytes" we don't treat the source as UTF-8, but, still want + * the destination to retain that flag */ if (SvUTF8(source)) SvUTF8_on(dest); - if (!inplace) { + if (!inplace) { /* Finish the rest of the string, unchanged */ /* This will copy the trailing NUL */ Copy(s + 1, d + 1, slen, U8); SvCUR_set(dest, need - 1); @@ -3636,7 +3903,7 @@ PP(pp_ucfirst) /* There's so much setup/teardown code common between uc and lc, I wonder if it would be worth merging the two, and just having a switch outside each - of the three tight loops. */ + of the three tight loops. There is less and less commonality though */ PP(pp_uc) { dVAR; @@ -3651,9 +3918,16 @@ PP(pp_uc) SvGETMAGIC(source); if (SvPADTMP(source) && !SvREADONLY(source) && !SvAMAGIC(source) - && SvTEMP(source) && !DO_UTF8(source)) { - /* We can convert in place. */ - + && SvTEMP(source) && !DO_UTF8(source) + && (IN_LOCALE_RUNTIME || ! IN_UNI_8_BIT)) { + + /* We can convert in place. The reason we can't if in UNI_8_BIT is to + * make the loop tight, so we overwrite the source with the dest before + * looking at it, and we need to look at the original source + * afterwards. There would also need to be code added to handle + * switching to not in-place in midstream if we run into characters + * that change the length. + */ dest = source; s = d = (U8*)SvPV_force_nomg(source, len); min = len + 1; @@ -3693,48 +3967,209 @@ PP(pp_uc) const U8 *const send = s + len; U8 tmpbuf[UTF8_MAXBYTES+1]; +/* This is ifdefd out because it needs more work and thought. It isn't clear + * that we should do it. These are hard-coded rules from the Unicode standard, + * and may change. 5.2 gives new guidance on the iota subscript, for example, + * which has not been checked against this; and secondly it may be that we are + * passed a subset of the context, via a \U...\E, for example, and its not + * clear what the best approach is to that */ +#ifdef CONTEXT_DEPENDENT_CASING + bool in_iota_subscript = FALSE; +#endif + while (s < send) { - const STRLEN u = UTF8SKIP(s); - STRLEN ulen; - - toUPPER_utf8(s, tmpbuf, &ulen); - if (ulen > u && (SvLEN(dest) < (min += ulen - u))) { - /* If the eventually required minimum size outgrows - * the available space, we need to grow. */ - const UV o = d - (U8*)SvPVX_const(dest); - - /* If someone uppercases one million U+03B0s we SvGROW() one - * million times. Or we could try guessing how much to - allocate without allocating too much. Such is life. */ - SvGROW(dest, min); - d = (U8*)SvPVX(dest) + o; +#ifdef CONTEXT_DEPENDENT_CASING + if (in_iota_subscript && ! is_utf8_mark(s)) { + /* A non-mark. Time to output the iota subscript */ +#define GREEK_CAPITAL_LETTER_IOTA 0x0399 +#define COMBINING_GREEK_YPOGEGRAMMENI 0x0345 + + CAT_UNI_TO_UTF8_TWO_BYTE(d, GREEK_CAPITAL_LETTER_IOTA); + in_iota_subscript = FALSE; + } +#endif + + +/* See comments at the first instance in this file of this ifdef */ +#ifdef GO_AHEAD_AND_BREAK_USER_DEFINED_CASE_MAPPINGS + + /* If the UTF-8 character is invariant, then it is in the range + * known by the standard macro; result is only one byte long */ + if (UTF8_IS_INVARIANT(*s)) { + *d++ = toUPPER(*s); + s++; + } + else if (UTF8_IS_DOWNGRADEABLE_START(*s)) { + + /* Likewise, if it fits in a byte, its case change is in our + * table */ + U8 orig = UTF8_ACCUMULATE(*s, *(s+1)); + U8 upper = toUPPER_LATIN1_MOD(orig); + CAT_TWO_BYTE_UNI_UPPER_MOD(d, orig, upper); + s += 2; + } + else { +#else + { +#endif + + /* Otherwise, need the general UTF-8 case. Get the changed + * case value and copy it to the output buffer */ + + const STRLEN u = UTF8SKIP(s); + STRLEN ulen; + +#ifndef CONTEXT_DEPENDENT_CASING + toUPPER_utf8(s, tmpbuf, &ulen); +#else + const UV uv = toUPPER_utf8(s, tmpbuf, &ulen); + if (uv == GREEK_CAPITAL_LETTER_IOTA && utf8_to_uvchr(s, 0) == COMBINING_GREEK_YPOGEGRAMMENI) { + in_iota_subscript = TRUE; + } + else { +#endif + if (ulen > u && (SvLEN(dest) < (min += ulen - u))) { + /* If the eventually required minimum size outgrows + * the available space, we need to grow. */ + const UV o = d - (U8*)SvPVX_const(dest); + + /* If someone uppercases one million U+03B0s we + * SvGROW() one million times. Or we could try + * guessing how much to allocate without allocating too + * much. Such is life. See corresponding comment in lc code + * for another option */ + SvGROW(dest, min); + d = (U8*)SvPVX(dest) + o; + } + Copy(tmpbuf, d, ulen, U8); + d += ulen; +#ifdef CONTEXT_DEPENDENT_CASING + } +#endif + s += u; } - Copy(tmpbuf, d, ulen, U8); - d += ulen; - s += u; } +#ifdef CONTEXT_DEPENDENT_CASING + if (in_iota_subscript) CAT_UNI_TO_UTF8_TWO_BYTE(d, GREEK_CAPITAL_LETTER_IOTA); +#endif SvUTF8_on(dest); *d = '\0'; SvCUR_set(dest, d - (U8*)SvPVX_const(dest)); - } else { + } else { /* Not UTF-8 */ if (len) { const U8 *const send = s + len; + + /* Use locale casing if in locale; regular style if not treating + * latin1 as having case; otherwise the latin1 casing. Do the + * whole thing in a tight loop, for speed, */ if (IN_LOCALE_RUNTIME) { TAINT; SvTAINTED_on(dest); for (; s < send; d++, s++) *d = toUPPER_LC(*s); } - else { - for (; s < send; d++, s++) + else if (! IN_UNI_8_BIT) { + for (; s < send; d++, s++) { *d = toUPPER(*s); + } } - } + else { + for (; s < send; d++, s++) { + *d = toUPPER_LATIN1_MOD(*s); + if (*d != LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) continue; + + /* The mainstream case is the tight loop above. To avoid + * extra tests in that, all three characters that require + * special handling are mapped by the MOD to the one tested + * just above. + * Use the source to distinguish between the three cases */ + + if (*s == LATIN_SMALL_LETTER_SHARP_S) { + + /* uc() of this requires 2 characters, but they are + * ASCII. If not enough room, grow the string */ + if (SvLEN(dest) < ++min) { + const UV o = d - (U8*)SvPVX_const(dest); + SvGROW(dest, min); + d = (U8*)SvPVX(dest) + o; + } + *d++ = 'S'; *d = 'S'; /* upper case is 'SS' */ + continue; /* Back to the tight loop; still in ASCII */ + } + + /* The other two special handling characters have their + * upper cases outside the latin1 range, hence need to be + * in UTF-8, so the whole result needs to be in UTF-8. So, + * here we are somewhere in the middle of processing a + * non-UTF-8 string, and realize that we will have to convert + * the whole thing to UTF-8. What to do? There are + * several possibilities. The simplest to code is to + * convert what we have so far, set a flag, and continue on + * in the loop. The flag would be tested each time through + * the loop, and if set, the next character would be + * converted to UTF-8 and stored. But, I (khw) didn't want + * to slow down the mainstream case at all for this fairly + * rare case, so I didn't want to add a test that didn't + * absolutely have to be there in the loop, besides the + * possibility that it would get too complicated for + * optimizers to deal with. Another possibility is to just + * give up, convert the source to UTF-8, and restart the + * function that way. Another possibility is to convert + * both what has already been processed and what is yet to + * come separately to UTF-8, then jump into the loop that + * handles UTF-8. But the most efficient time-wise of the + * ones I could think of is what follows, and turned out to + * not require much extra code. */ + + /* Convert what we have so far into UTF-8, telling the + * function that we know it should be converted, and to + * allow extra space for what we haven't processed yet. + * Assume the worst case space requirements for converting + * what we haven't processed so far: that it will require + * two bytes for each remaining source character, plus the + * NUL at the end. This may cause the string pointer to + * move, so re-find it. */ + + len = d - (U8*)SvPVX_const(dest); + SvCUR_set(dest, len); + len = sv_utf8_upgrade_flags_grow(dest, + SV_GMAGIC|SV_FORCE_UTF8_UPGRADE, + (send -s) * 2 + 1); + d = (U8*)SvPVX(dest) + len; + + /* And append the current character's upper case in UTF-8 */ + CAT_NON_LATIN1_UC(d, *s); + + /* Now process the remainder of the source, converting to + * upper and UTF-8. If a resulting byte is invariant in + * UTF-8, output it as-is, otherwise convert to UTF-8 and + * append it to the output. */ + + s++; + for (; s < send; s++) { + U8 upper = toUPPER_LATIN1_MOD(*s); + if UTF8_IS_INVARIANT(upper) { + *d++ = upper; + } + else { + CAT_TWO_BYTE_UNI_UPPER_MOD(d, *s, upper); + } + } + + /* Here have processed the whole source; no need to continue + * with the outer loop. Each character has been converted + * to upper case and converted to UTF-8 */ + + break; + } /* End of processing all latin1-style chars */ + } /* End of processing all chars */ + } /* End of source is not empty */ + if (source != dest) { - *d = '\0'; + *d = '\0'; /* Here d points to 1 after last char, add NUL */ SvCUR_set(dest, d - (U8*)SvPVX_const(dest)); } - } + } /* End of isn't utf8 */ SvSETMAGIC(dest); RETURN; } @@ -3754,8 +4189,9 @@ PP(pp_lc) if (SvPADTMP(source) && !SvREADONLY(source) && !SvAMAGIC(source) && SvTEMP(source) && !DO_UTF8(source)) { - /* We can convert in place. */ + /* We can convert in place, as lowercasing anything in the latin1 range + * (or else DO_UTF8 would have been on) doesn't lengthen it */ dest = source; s = d = (U8*)SvPV_force_nomg(source, len); min = len + 1; @@ -3796,56 +4232,148 @@ PP(pp_lc) U8 tmpbuf[UTF8_MAXBYTES_CASE+1]; while (s < send) { - const STRLEN u = UTF8SKIP(s); - STRLEN ulen; - const UV uv = toLOWER_utf8(s, tmpbuf, &ulen); +/* See comments at the first instance in this file of this ifdef */ +#ifdef GO_AHEAD_AND_BREAK_USER_DEFINED_CASE_MAPPINGS + if (UTF8_IS_INVARIANT(*s)) { -#define GREEK_CAPITAL_LETTER_SIGMA 0x03A3 /* Unicode U+03A3 */ - if (uv == GREEK_CAPITAL_LETTER_SIGMA) { - NOOP; - /* - * Now if the sigma is NOT followed by - * /$ignorable_sequence$cased_letter/; - * and it IS preceded by /$cased_letter$ignorable_sequence/; - * where $ignorable_sequence is [\x{2010}\x{AD}\p{Mn}]* - * and $cased_letter is [\p{Ll}\p{Lo}\p{Lt}] - * then it should be mapped to 0x03C2, - * (GREEK SMALL LETTER FINAL SIGMA), - * instead of staying 0x03A3. - * "should be": in other words, this is not implemented yet. - * See lib/unicore/SpecialCasing.txt. + /* Invariant characters use the standard mappings compiled in. */ + *d++ = toLOWER(*s); + s++; } - if (ulen > u && (SvLEN(dest) < (min += ulen - u))) { - /* If the eventually required minimum size outgrows - * the available space, we need to grow. */ - const UV o = d - (U8*)SvPVX_const(dest); - - /* If someone lowercases one million U+0130s we SvGROW() one - * million times. Or we could try guessing how much to - allocate without allocating too much. Such is life. */ - SvGROW(dest, min); - d = (U8*)SvPVX(dest) + o; + else if (UTF8_IS_DOWNGRADEABLE_START(*s)) { + + /* As do the ones in the Latin1 range */ + U8 lower = toLOWER_LATIN1(UTF8_ACCUMULATE(*s, *(s+1))); + CAT_UNI_TO_UTF8_TWO_BYTE(d, lower); + s += 2; } - Copy(tmpbuf, d, ulen, U8); - d += ulen; - s += u; - } + else { +#endif + /* Here, is utf8 not in Latin-1 range, have to go out and get + * the mappings from the tables. */ + + const STRLEN u = UTF8SKIP(s); + STRLEN ulen; + +/* See comments at the first instance in this file of this ifdef */ +#ifndef CONTEXT_DEPENDENT_CASING + toLOWER_utf8(s, tmpbuf, &ulen); +#else + /* Here is context dependent casing, not compiled in currently; + * needs more thought and work */ + + const UV uv = toLOWER_utf8(s, tmpbuf, &ulen); + + /* If the lower case is a small sigma, it may be that we need + * to change it to a final sigma. This happens at the end of + * a word that contains more than just this character, and only + * when we started with a capital sigma. */ + if (uv == UNICODE_GREEK_SMALL_LETTER_SIGMA && + s > send - len && /* Makes sure not the first letter */ + utf8_to_uvchr(s, 0) == UNICODE_GREEK_CAPITAL_LETTER_SIGMA + ) { + + /* We use the algorithm in: + * http://www.unicode.org/versions/Unicode5.0.0/ch03.pdf (C + * is a CAPITAL SIGMA): If C is preceded by a sequence + * consisting of a cased letter and a case-ignorable + * sequence, and C is not followed by a sequence consisting + * of a case ignorable sequence and then a cased letter, + * then when lowercasing C, C becomes a final sigma */ + + /* To determine if this is the end of a word, need to peek + * ahead. Look at the next character */ + const U8 *peek = s + u; + + /* Skip any case ignorable characters */ + while (peek < send && is_utf8_case_ignorable(peek)) { + peek += UTF8SKIP(peek); + } + + /* If we reached the end of the string without finding any + * non-case ignorable characters, or if the next such one + * is not-cased, then we have met the conditions for it + * being a final sigma with regards to peek ahead, and so + * must do peek behind for the remaining conditions. (We + * know there is stuff behind to look at since we tested + * above that this isn't the first letter) */ + if (peek >= send || ! is_utf8_cased(peek)) { + peek = utf8_hop(s, -1); + + /* Here are at the beginning of the first character + * before the original upper case sigma. Keep backing + * up, skipping any case ignorable characters */ + while (is_utf8_case_ignorable(peek)) { + peek = utf8_hop(peek, -1); + } + + /* Here peek points to the first byte of the closest + * non-case-ignorable character before the capital + * sigma. If it is cased, then by the Unicode + * algorithm, we should use a small final sigma instead + * of what we have */ + if (is_utf8_cased(peek)) { + STORE_UNI_TO_UTF8_TWO_BYTE(tmpbuf, + UNICODE_GREEK_SMALL_LETTER_FINAL_SIGMA); + } + } + } + else { /* Not a context sensitive mapping */ +#endif /* End of commented out context sensitive */ + if (ulen > u && (SvLEN(dest) < (min += ulen - u))) { + + /* If the eventually required minimum size outgrows + * the available space, we need to grow. */ + const UV o = d - (U8*)SvPVX_const(dest); + + /* If someone lowercases one million U+0130s we + * SvGROW() one million times. Or we could try + * guessing how much to allocate without allocating too + * much. Such is life. Another option would be to + * grow an extra byte or two more each time we need to + * grow, which would cut down the million to 500K, with + * little waste */ + SvGROW(dest, min); + d = (U8*)SvPVX(dest) + o; + } +#ifdef CONTEXT_DEPENDENT_CASING + } +#endif + /* Copy the newly lowercased letter to the output buffer we're + * building */ + Copy(tmpbuf, d, ulen, U8); + d += ulen; + s += u; +#ifdef GO_AHEAD_AND_BREAK_USER_DEFINED_CASE_MAPPINGS + } +#endif + } /* End of looping through the source string */ SvUTF8_on(dest); *d = '\0'; SvCUR_set(dest, d - (U8*)SvPVX_const(dest)); - } else { + } else { /* Not utf8 */ if (len) { const U8 *const send = s + len; + + /* Use locale casing if in locale; regular style if not treating + * latin1 as having case; otherwise the latin1 casing. Do the + * whole thing in a tight loop, for speed, */ if (IN_LOCALE_RUNTIME) { TAINT; SvTAINTED_on(dest); for (; s < send; d++, s++) *d = toLOWER_LC(*s); } - else { - for (; s < send; d++, s++) + else if (! IN_UNI_8_BIT) { + for (; s < send; d++, s++) { *d = toLOWER(*s); + } + } + else { + for (; s < send; d++, s++) { + *d = toLOWER_LATIN1(*s); + } } } if (source != dest) { |