summaryrefslogtreecommitdiff
path: root/regexec.c
diff options
context:
space:
mode:
authorDavid Mitchell <davem@iabyn.com>2010-05-03 13:57:58 +0100
committerDavid Mitchell <davem@iabyn.com>2010-05-03 14:29:54 +0100
commit2e64971a6530d2645969bc489f564bfd3ce64993 (patch)
tree8b5ab3ff672755f1ca62bd040b2240dbb5719934 /regexec.c
parenta23e6e2012eae03dbd049a058d24b0ce29357c76 (diff)
downloadperl-2e64971a6530d2645969bc489f564bfd3ce64993.tar.gz
tries: don't allocate memory at runtime
This is an indirect fix for [perl #74484] Regex causing exponential runtime+mem usage The trie runtime code was doing more SAVETMPS than FREETMPS and was thus growing a large tmps stack on heavy backtracking. Rather than fixing this directly, I rewrote part of the trie code so that it no longer needs to allocate memory in S_regmatch (it still does in find_byclass()). The basic issue is that multiple branches in the trie may trigger an accept state; for example: "abcd" =~ /xyz/abcd.*X|ab.*Y|/ here, words (branches) 2 and 3 are accept states. The original approach was, at run time, to create a list of accepted word numbers and the character positions of the end of each of those words. Then run the rest of the pattern for each word in the list in turn (in word index order). This requires memory for the list to be allocated and freed. The new approach involves creating extra info at compile time; in particular, for each word, a pointer to the previous accepted word (if any) in the state tree. For example for the above pattern, part of the state tree may be q b c d 1 -> 2 -> 3 -> 4 -> 5 (#3) (#2) (e.g. at state 1, if the next char is 'a', we transition to state 2). Here, state 3 is an accept state with word #3, and 5 is an accept state with word #2. So we build a table indexed by word number, which has wordinfo[2] = 3, wordinfo[3] = 0, thus building the word chain 2->3->0. At run time we run the trie to completion, and remember the word associated with the longest accept state (word #2 above). Then by following back the chain of .prev fields, we can produce a list of all accepting words. We then iteratively find the smallest-numbered (ie LH-most) word in the chain, and run with it. On failure and backtrack, we find the next-smallest and so on. Since we are no longer recording the end-position of each word in the string, we have to recalculate this for each backtrack. We initially record the end-position of the shortest accepting word, and given that we know the length of each word, we can calculate the new position each time as an offset from that first word. Depending on unicode and folding, that calculation can be cheap or expensive. This algorithm is optimised for the typical case where there are a small number (<= 2) accepting states. This patch creates a new compile-time array, trie->wordinfo[], indexed by word number, which contains relevant info about each word. This also supersedes the old trie->newword[] array, whose function of recording "overspills" of multiple words per accept state, is now handled as part of the wordinfo[].prev chain.
Diffstat (limited to 'regexec.c')
-rw-r--r--regexec.c387
1 files changed, 209 insertions, 178 deletions
diff --git a/regexec.c b/regexec.c
index 7222efe8c7..4aa68efde0 100644
--- a/regexec.c
+++ b/regexec.c
@@ -1736,7 +1736,7 @@ S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
}
if ( word ) {
- U8 *lpos= points[ (pointpos - trie->wordlen[word-1] ) % maxlen ];
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
if (!leftmost || lpos < leftmost) {
DEBUG_r(accepted_word=word);
leftmost= lpos;
@@ -1810,7 +1810,7 @@ S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
}
}
if ( aho->states[ state ].wordnum ) {
- U8 *lpos = points[ (pointpos - trie->wordlen[aho->states[ state ].wordnum-1]) % maxlen ];
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
if (!leftmost || lpos < leftmost) {
DEBUG_r(accepted_word=aho->states[ state ].wordnum);
leftmost = lpos;
@@ -2505,9 +2505,6 @@ S_regtry(pTHX_ regmatch_info *reginfo, char **startpos)
#define REPORT_CODE_OFF 32
-/* Make sure there is a test for this +1 options in re_tests */
-#define TRIE_INITAL_ACCEPT_BUFFLEN 4;
-
#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
@@ -3069,6 +3066,50 @@ S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
}
/* FALL THROUGH */
case TRIE:
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 1 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
{
/* what type of TRIE am I? (utf8 makes this contextual) */
DECL_TRIE_TYPE(scan);
@@ -3105,76 +3146,62 @@ S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
STRLEN len = 0;
STRLEN foldlen = 0;
U8 *uscan = (U8*)NULL;
- STRLEN bufflen=0;
- SV *sv_accept_buff = NULL;
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
- ST.accepted = 0; /* how many accepting states we have seen */
ST.B = next;
ST.jump = trie->jump;
ST.me = scan;
- /*
- traverse the TRIE keeping track of all accepting states
- we transition through until we get to a failing node.
- */
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
while ( state && uc <= (U8*)PL_regeol ) {
U32 base = trie->states[ state ].trans.base;
UV uvc = 0;
U16 charid;
- /* We use charid to hold the wordnum as we don't use it
- for charid until after we have done the wordnum logic.
- We define an alias just so that the wordnum logic reads
- more naturally. */
-
-#define got_wordnum charid
- got_wordnum = trie->states[ state ].wordnum;
-
- if ( got_wordnum ) {
- if ( ! ST.accepted ) {
- ENTER;
- SAVETMPS; /* XXX is this necessary? dmq */
- bufflen = TRIE_INITAL_ACCEPT_BUFFLEN;
- sv_accept_buff=newSV(bufflen *
- sizeof(reg_trie_accepted) - 1);
- SvCUR_set(sv_accept_buff, 0);
- SvPOK_on(sv_accept_buff);
- sv_2mortal(sv_accept_buff);
- SAVETMPS;
- ST.accept_buff =
- (reg_trie_accepted*)SvPV_nolen(sv_accept_buff );
- }
- do {
- if (ST.accepted >= bufflen) {
- bufflen *= 2;
- ST.accept_buff =(reg_trie_accepted*)
- SvGROW(sv_accept_buff,
- bufflen * sizeof(reg_trie_accepted));
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
}
- SvCUR_set(sv_accept_buff,SvCUR(sv_accept_buff)
- + sizeof(reg_trie_accepted));
-
-
- ST.accept_buff[ST.accepted].wordnum = got_wordnum;
- ST.accept_buff[ST.accepted].endpos = uc;
- ++ST.accepted;
- } while (trie->nextword && (got_wordnum= trie->nextword[got_wordnum]));
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
}
-#undef got_wordnum
DEBUG_TRIE_EXECUTE_r({
DUMP_EXEC_POS( (char *)uc, scan, do_utf8 );
PerlIO_printf( Perl_debug_log,
- "%*s %sState: %4"UVxf" Accepted: %4"UVxf" ",
+ "%*s %sState: %4"UVxf" Accepted: %c ",
2+depth * 2, "", PL_colors[4],
- (UV)state, (UV)ST.accepted );
+ (UV)state, (accepted ? 'Y' : 'N'));
});
+ /* read a char and goto next state */
if ( base ) {
REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
uscan, len, uvc, charid, foldlen,
foldbuf, uniflags);
-
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
if (charid &&
(base + charid > trie->uniquecharcount )
&& (base + charid - 1 - trie->uniquecharcount
@@ -3200,77 +3227,38 @@ S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
charid, uvc, (UV)state, PL_colors[5] );
);
}
- if (!ST.accepted )
+ if (!accepted)
sayNO;
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
DEBUG_EXECUTE_r(
PerlIO_printf( Perl_debug_log,
"%*s %sgot %"IVdf" possible matches%s\n",
REPORT_CODE_OFF + depth * 2, "",
PL_colors[4], (IV)ST.accepted, PL_colors[5] );
);
+ goto trie_first_try; /* jump into the fail handler */
}}
- goto trie_first_try; /* jump into the fail handler */
/* NOTREACHED */
- case TRIE_next_fail: /* we failed - try next alterative */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
if ( ST.jump) {
REGCP_UNWIND(ST.cp);
for (n = *PL_reglastparen; n > ST.lastparen; n--)
PL_regoffs[n].end = -1;
*PL_reglastparen = n;
}
- trie_first_try:
- if (do_cutgroup) {
- do_cutgroup = 0;
- no_final = 0;
- }
-
- if ( ST.jump) {
- ST.lastparen = *PL_reglastparen;
- REGCP_SET(ST.cp);
- }
- if ( ST.accepted == 1 ) {
- /* only one choice left - just continue */
- DEBUG_EXECUTE_r({
- AV *const trie_words
- = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
- SV ** const tmp = av_fetch( trie_words,
- ST.accept_buff[ 0 ].wordnum-1, 0 );
- SV *sv= tmp ? sv_newmortal() : NULL;
-
- PerlIO_printf( Perl_debug_log,
- "%*s %sonly one match left: #%d <%s>%s\n",
- REPORT_CODE_OFF+depth*2, "", PL_colors[4],
- ST.accept_buff[ 0 ].wordnum,
- tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
- PL_colors[0], PL_colors[1],
- (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
- )
- : "not compiled under -Dr",
- PL_colors[5] );
- });
- PL_reginput = (char *)ST.accept_buff[ 0 ].endpos;
- /* in this case we free tmps/leave before we call regmatch
- as we wont be using accept_buff again. */
-
- locinput = PL_reginput;
- nextchr = UCHARAT(locinput);
- if ( !ST.jump || !ST.jump[ST.accept_buff[0].wordnum])
- scan = ST.B;
- else
- scan = ST.me + ST.jump[ST.accept_buff[0].wordnum];
- if (!has_cutgroup) {
- FREETMPS;
- LEAVE;
- } else {
- ST.accepted--;
- PUSH_YES_STATE_GOTO(TRIE_next, scan);
- }
-
- continue; /* execute rest of RE */
- }
-
- if ( !ST.accepted-- ) {
+ if (!--ST.accepted) {
DEBUG_EXECUTE_r({
PerlIO_printf( Perl_debug_log,
"%*s %sTRIE failed...%s\n",
@@ -3278,86 +3266,129 @@ S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
PL_colors[4],
PL_colors[5] );
});
- FREETMPS;
- LEAVE;
sayNO_SILENT;
- /*NOTREACHED*/
- }
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ register U32 min = 0;
+ register U32 word;
+ register U16 const nextword = ST.nextword;
+ register reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
- /*
- There are at least two accepting states left. Presumably
- the number of accepting states is going to be low,
- typically two. So we simply scan through to find the one
- with lowest wordnum. Once we find it, we swap the last
- state into its place and decrement the size. We then try to
- match the rest of the pattern at the point where the word
- ends. If we succeed, control just continues along the
- regex; if we fail we return here to try the next accepting
- state
- */
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
- {
- U32 best = 0;
- U32 cur;
- for( cur = 1 ; cur <= ST.accepted ; cur++ ) {
- DEBUG_TRIE_EXECUTE_r(
- PerlIO_printf( Perl_debug_log,
- "%*s %sgot %"IVdf" (%d) as best, looking at %"IVdf" (%d)%s\n",
- REPORT_CODE_OFF + depth * 2, "", PL_colors[4],
- (IV)best, ST.accept_buff[ best ].wordnum, (IV)cur,
- ST.accept_buff[ cur ].wordnum, PL_colors[5] );
- );
+ if ( ST.jump) {
+ ST.lastparen = *PL_reglastparen;
+ REGCP_SET(ST.cp);
+ }
- if (ST.accept_buff[cur].wordnum <
- ST.accept_buff[best].wordnum)
- best = cur;
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ U8 *uc = ST.firstpos;
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ U8 uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (do_utf8) {
+ uvc = utf8n_to_uvuni((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvuni(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
}
+ else {
+ if (do_utf8)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ PL_reginput = (char *)uc;
+ }
- DEBUG_EXECUTE_r({
- AV *const trie_words
- = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
- SV ** const tmp = av_fetch( trie_words,
- ST.accept_buff[ best ].wordnum - 1, 0 );
- regnode *nextop=(!ST.jump || !ST.jump[ST.accept_buff[best].wordnum]) ?
- ST.B :
- ST.me + ST.jump[ST.accept_buff[best].wordnum];
- SV *sv= tmp ? sv_newmortal() : NULL;
-
- PerlIO_printf( Perl_debug_log,
- "%*s %strying alternation #%d <%s> at node #%d %s\n",
- REPORT_CODE_OFF+depth*2, "", PL_colors[4],
- ST.accept_buff[best].wordnum,
- tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
- PL_colors[0], PL_colors[1],
- (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
- ) : "not compiled under -Dr",
- REG_NODE_NUM(nextop),
- PL_colors[5] );
- });
+ scan = (ST.jump && ST.jump[ST.nextword])
+ ? ST.me + ST.jump[ST.nextword]
+ : ST.B;
- if ( best<ST.accepted ) {
- reg_trie_accepted tmp = ST.accept_buff[ best ];
- ST.accept_buff[ best ] = ST.accept_buff[ ST.accepted ];
- ST.accept_buff[ ST.accepted ] = tmp;
- best = ST.accepted;
- }
- PL_reginput = (char *)ST.accept_buff[ best ].endpos;
- if ( !ST.jump || !ST.jump[ST.accept_buff[best].wordnum]) {
- scan = ST.B;
- } else {
- scan = ST.me + ST.jump[ST.accept_buff[best].wordnum];
- }
- PUSH_YES_STATE_GOTO(TRIE_next, scan);
- /* NOTREACHED */
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan);
+ /* NOTREACHED */
}
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = av_fetch( trie_words,
+ ST.nextword-1, 0 );
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ continue; /* execute rest of RE */
/* NOTREACHED */
- case TRIE_next:
- /* we dont want to throw this away, see bug 57042*/
- if (oreplsv != GvSV(PL_replgv))
- sv_setsv(oreplsv, GvSV(PL_replgv));
- FREETMPS;
- LEAVE;
- sayYES;
#undef ST
case EXACT: {