diff options
author | Michael G. Schwern <schwern@pobox.com> | 2008-09-29 15:55:17 -0400 |
---|---|---|
committer | Rafael Garcia-Suarez <rgarciasuarez@gmail.com> | 2009-01-03 18:38:52 +0100 |
commit | 7643e68fdb02e6f17d9f2a5801be920285971156 (patch) | |
tree | a6cb420c5268d7859e7c1fe9b27fee4f122c8803 /time64.c | |
parent | 4c91ace1ab7f54d4e52467ee37e480e29b555047 (diff) | |
download | perl-7643e68fdb02e6f17d9f2a5801be920285971156.tar.gz |
Rename localtime64.[ch] to time64.[ch] to mirror change in y2038, and the file isn't about just localtime() anymore.
Diffstat (limited to 'time64.c')
-rw-r--r-- | time64.c | 481 |
1 files changed, 481 insertions, 0 deletions
diff --git a/time64.c b/time64.c new file mode 100644 index 0000000000..cb74b55000 --- /dev/null +++ b/time64.c @@ -0,0 +1,481 @@ +/* + +Copyright (c) 2007-2008 Michael G Schwern + +This software originally derived from Paul Sheer's pivotal_gmtime_r.c. + +The MIT License: + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +*/ + +/* + +Programmers who have available to them 64-bit time values as a 'long +long' type can use localtime64_r() and gmtime64_r() which correctly +converts the time even on 32-bit systems. Whether you have 64-bit time +values will depend on the operating system. + +localtime64_r() is a 64-bit equivalent of localtime_r(). + +gmtime64_r() is a 64-bit equivalent of gmtime_r(). + +*/ + +#include "time64.h" + +static const int days_in_month[2][12] = { + {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, + {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, +}; + +static const int julian_days_by_month[2][12] = { + {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, + {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, +}; + +static const int length_of_year[2] = { 365, 366 }; + +/* Number of days in a 400 year Gregorian cycle */ +static const int years_in_gregorian_cycle = 400; +static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1; + +/* 28 year calendar cycle between 2010 and 2037 */ +static const int safe_years[28] = { + 2016, 2017, 2018, 2019, + 2020, 2021, 2022, 2023, + 2024, 2025, 2026, 2027, + 2028, 2029, 2030, 2031, + 2032, 2033, 2034, 2035, + 2036, 2037, 2010, 2011, + 2012, 2013, 2014, 2015 +}; + +#define SOLAR_CYCLE_LENGTH 28 +static const int dow_year_start[SOLAR_CYCLE_LENGTH] = { + 5, 0, 1, 2, /* 0 2016 - 2019 */ + 3, 5, 6, 0, /* 4 */ + 1, 3, 4, 5, /* 8 */ + 6, 1, 2, 3, /* 12 */ + 4, 6, 0, 1, /* 16 */ + 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ + 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ +}; + +/* Let's assume people are going to be looking for dates in the future. + Let's provide some cheats so you can skip ahead. + This has a 4x speed boost when near 2008. +*/ +/* Number of days since epoch on Jan 1st, 2008 GMT */ +#define CHEAT_DAYS (1199145600 / 24 / 60 / 60) +#define CHEAT_YEARS 108 + +#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) +#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) + +#define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ + USE_SYSTEM_LOCALTIME && \ + (a) <= SYSTEM_LOCALTIME_MAX && \ + (a) >= SYSTEM_LOCALTIME_MIN \ +) +#define SHOULD_USE_SYSTEM_GMTIME(a) ( \ + USE_SYSTEM_GMTIME && \ + (a) <= SYSTEM_GMTIME_MAX && \ + (a) >= SYSTEM_GMTIME_MIN \ +) + + +int _is_exception_century(Int64 year) +{ + int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); + /* printf("is_exception_century: %s\n", is_exception ? "yes" : "no"); */ + + return(is_exception); +} + + +/* timegm() is a GNU extension, so emulate it here if we need it */ +#ifdef HAS_TIMEGM +# define TIMEGM(n) timegm(n); +#else +# define TIMEGM(n) ((time_t)timegm64(n)); +#endif + +Time64_T timegm64(struct tm *date) { + int days = 0; + Int64 seconds = 0; + Int64 year; + + if( date->tm_year > 70 ) { + year = 70; + while( year < date->tm_year ) { + days += length_of_year[IS_LEAP(year)]; + year++; + } + } + else if ( date->tm_year < 70 ) { + year = 69; + do { + days -= length_of_year[IS_LEAP(year)]; + year--; + } while( year >= date->tm_year ); + } + + days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon]; + days += date->tm_mday - 1; + + /* Avoid overflowing the days integer */ + seconds = days; + seconds = seconds * 60 * 60 * 24; + + seconds += date->tm_hour * 60 * 60; + seconds += date->tm_min * 60; + seconds += date->tm_sec; + + return((Time64_T)seconds); +} + + +int _check_tm(struct tm *tm) +{ + /* Don't forget leap seconds */ + assert(tm->tm_sec >= 0); + assert(tm->tm_sec <= 61); + + assert(tm->tm_min >= 0); + assert(tm->tm_min <= 59); + + assert(tm->tm_hour >= 0); + assert(tm->tm_hour <= 23); + + assert(tm->tm_mday >= 1); + assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); + + assert(tm->tm_mon >= 0); + assert(tm->tm_mon <= 11); + + assert(tm->tm_wday >= 0); + assert(tm->tm_wday <= 6); + + assert(tm->tm_yday >= 0); + assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); + +#ifdef HAS_TM_TM_GMTOFF + assert(tm->tm_gmtoff >= -24 * 60 * 60); + assert(tm->tm_gmtoff <= 24 * 60 * 60); +#endif + + return 1; +} + + +/* The exceptional centuries without leap years cause the cycle to + shift by 16 +*/ +Year _cycle_offset(Year year) +{ + const Year start_year = 2000; + Year year_diff = year - start_year; + Year exceptions; + + if( year > start_year ) + year_diff--; + + exceptions = year_diff / 100; + exceptions -= year_diff / 400; + + /* + fprintf(stderr, "# year: %lld, exceptions: %lld, year_diff: %lld\n", + year, exceptions, year_diff); + */ + + return exceptions * 16; +} + +/* For a given year after 2038, pick the latest possible matching + year in the 28 year calendar cycle. + + A matching year... + 1) Starts on the same day of the week. + 2) Has the same leap year status. + + This is so the calendars match up. + + Also the previous year must match. When doing Jan 1st you might + wind up on Dec 31st the previous year when doing a -UTC time zone. + + Finally, the next year must have the same start day of week. This + is for Dec 31st with a +UTC time zone. + It doesn't need the same leap year status since we only care about + January 1st. +*/ +int _safe_year(Year year) +{ + int safe_year; + Year year_cycle = year + _cycle_offset(year); + + /* Change non-leap xx00 years to an equivalent */ + if( _is_exception_century(year) ) + year_cycle += 11; + + /* Also xx01 years, since the previous year will be wrong */ + if( _is_exception_century(year - 1) ) + year_cycle += 17; + + year_cycle %= SOLAR_CYCLE_LENGTH; + if( year_cycle < 0 ) + year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; + + assert( year_cycle >= 0 ); + assert( year_cycle < SOLAR_CYCLE_LENGTH ); + safe_year = safe_years[year_cycle]; + + assert(safe_year <= 2037 && safe_year >= 2010); + + /* + printf("year: %d, year_cycle: %d, safe_year: %d\n", + year, year_cycle, safe_year); + */ + + return safe_year; +} + + +/* Simulate localtime_r() to the best of our ability */ +struct tm * fake_localtime_r(const time_t *clock, struct tm *result) { + const struct tm *static_result = localtime(clock); + + assert(result != NULL); + + if( static_result == NULL ) { + memset(result, 0, sizeof(*result)); + return NULL; + } + else { + memcpy(result, static_result, sizeof(*result)); + return result; + } +} + + +/* Simulate gmtime_r() to the best of our ability */ +struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) { + const struct tm *static_result = gmtime(clock); + + assert(result != NULL); + + if( static_result == NULL ) { + memset(result, 0, sizeof(*result)); + return NULL; + } + else { + memcpy(result, static_result, sizeof(*result)); + return result; + } +} + + +struct tm *gmtime64_r (const Time64_T *in_time, struct tm *p) +{ + int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; + Int64 v_tm_tday; + int leap; + Int64 m; + Time64_T time = *in_time; + Year year = 70; + + assert(p != NULL); + + /* Use the system gmtime() if time_t is small enough */ + if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { + time_t safe_time = *in_time; + GMTIME_R(&safe_time, p); + assert(_check_tm(p)); + return p; + } + +#ifdef HAS_TM_TM_GMTOFF + p->tm_gmtoff = 0; +#endif + p->tm_isdst = 0; + +#ifdef HAS_TM_TM_ZONE + p->tm_zone = "UTC"; +#endif + + v_tm_sec = (int)(time % 60); + time /= 60; + v_tm_min = (int)(time % 60); + time /= 60; + v_tm_hour = (int)(time % 24); + time /= 24; + v_tm_tday = time; + + WRAP (v_tm_sec, v_tm_min, 60); + WRAP (v_tm_min, v_tm_hour, 60); + WRAP (v_tm_hour, v_tm_tday, 24); + + v_tm_wday = (int)((v_tm_tday + 4) % 7); + if (v_tm_wday < 0) + v_tm_wday += 7; + m = v_tm_tday; + + if (m >= CHEAT_DAYS) { + year = CHEAT_YEARS; + m -= CHEAT_DAYS; + } + + if (m >= 0) { + /* Gregorian cycles, this is huge optimization for distant times */ + while (m >= (Time64_T) days_in_gregorian_cycle) { + m -= (Time64_T) days_in_gregorian_cycle; + year += years_in_gregorian_cycle; + } + + /* Years */ + leap = IS_LEAP (year); + while (m >= (Time64_T) length_of_year[leap]) { + m -= (Time64_T) length_of_year[leap]; + year++; + leap = IS_LEAP (year); + } + + /* Months */ + v_tm_mon = 0; + while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { + m -= (Time64_T) days_in_month[leap][v_tm_mon]; + v_tm_mon++; + } + } else { + year--; + + /* Gregorian cycles */ + while (m < (Time64_T) -days_in_gregorian_cycle) { + m += (Time64_T) days_in_gregorian_cycle; + year -= years_in_gregorian_cycle; + } + + /* Years */ + leap = IS_LEAP (year); + while (m < (Time64_T) -length_of_year[leap]) { + m += (Time64_T) length_of_year[leap]; + year--; + leap = IS_LEAP (year); + } + + /* Months */ + v_tm_mon = 11; + while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { + m += (Time64_T) days_in_month[leap][v_tm_mon]; + v_tm_mon--; + } + m += (Time64_T) days_in_month[leap][v_tm_mon]; + } + + p->tm_year = year; + if( p->tm_year != year ) { +#ifdef EOVERFLOW + errno = EOVERFLOW; +#endif + return NULL; + } + + p->tm_mday = (int) m + 1; + p->tm_yday = (int) julian_days_by_month[leap][v_tm_mon] + m; + p->tm_sec = v_tm_sec, p->tm_min = v_tm_min, p->tm_hour = v_tm_hour, + p->tm_mon = v_tm_mon, p->tm_wday = v_tm_wday; + + assert(_check_tm(p)); + + return p; +} + + +struct tm *localtime64_r (const Time64_T *time, struct tm *local_tm) +{ + time_t safe_time; + struct tm gm_tm; + Year orig_year; + int month_diff; + + assert(local_tm != NULL); + + /* Use the system localtime() if time_t is small enough */ + if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { + safe_time = *time; + LOCALTIME_R(&safe_time, local_tm); + assert(_check_tm(local_tm)); + return local_tm; + } + + if( gmtime64_r(time, &gm_tm) == NULL ) + return NULL; + + orig_year = gm_tm.tm_year; + + if (gm_tm.tm_year > (2037 - 1900) || + gm_tm.tm_year < (1902 - 1900) + ) + { + gm_tm.tm_year = _safe_year(gm_tm.tm_year + 1900) - 1900; + } + + safe_time = TIMEGM(&gm_tm); + if( LOCALTIME_R(&safe_time, local_tm) == NULL ) + return NULL; + + local_tm->tm_year = orig_year; + if( local_tm->tm_year != orig_year ) { +#ifdef EOVERFLOW + errno = EOVERFLOW; +#endif + return NULL; + } + + + month_diff = local_tm->tm_mon - gm_tm.tm_mon; + + /* When localtime is Dec 31st previous year and + gmtime is Jan 1st next year. + */ + if( month_diff == 11 ) { + local_tm->tm_year--; + } + + /* When localtime is Jan 1st, next year and + gmtime is Dec 31st, previous year. + */ + if( month_diff == -11 ) { + local_tm->tm_year++; + } + + /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st + in a non-leap xx00. There is one point in the cycle + we can't account for which the safe xx00 year is a leap + year. So we need to correct for Dec 31st comming out as + the 366th day of the year. + */ + if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) + local_tm->tm_yday--; + + assert(_check_tm(local_tm)); + + return local_tm; +} |