diff options
Diffstat (limited to 'dist/Math-BigInt/t/mbimbf.inc')
-rw-r--r-- | dist/Math-BigInt/t/mbimbf.inc | 967 |
1 files changed, 967 insertions, 0 deletions
diff --git a/dist/Math-BigInt/t/mbimbf.inc b/dist/Math-BigInt/t/mbimbf.inc new file mode 100644 index 0000000000..b057eee3ec --- /dev/null +++ b/dist/Math-BigInt/t/mbimbf.inc @@ -0,0 +1,967 @@ +# test rounding, accuracy, precicion and fallback, round_mode and mixing +# of classes + +# Make sure you always quote any bare floating-point values, lest 123.46 will +# be stringified to 123.4599999999 due to limited float prevision. + +use strict; +my ($x,$y,$z,$u,$rc); + +############################################################################### +# test defaults and set/get + +{ + no strict 'refs'; + ok_undef (${"$mbi\::accuracy"}); + ok_undef (${"$mbi\::precision"}); + ok_undef ($mbi->accuracy()); + ok_undef ($mbi->precision()); + ok (${"$mbi\::div_scale"},40); + ok (${"$mbi\::round_mode"},'even'); + ok ($mbi->round_mode(),'even'); + + ok_undef (${"$mbf\::accuracy"}); + ok_undef (${"$mbf\::precision"}); + ok_undef ($mbf->precision()); + ok_undef ($mbf->precision()); + ok (${"$mbf\::div_scale"},40); + ok (${"$mbf\::round_mode"},'even'); + ok ($mbf->round_mode(),'even'); +} + +# accessors +foreach my $class ($mbi,$mbf) + { + ok_undef ($class->accuracy()); + ok_undef ($class->precision()); + ok ($class->round_mode(),'even'); + ok ($class->div_scale(),40); + + ok ($class->div_scale(20),20); + $class->div_scale(40); ok ($class->div_scale(),40); + + ok ($class->round_mode('odd'),'odd'); + $class->round_mode('even'); ok ($class->round_mode(),'even'); + + ok ($class->accuracy(2),2); + $class->accuracy(3); ok ($class->accuracy(),3); + ok_undef ($class->accuracy(undef)); + + ok ($class->precision(2),2); + ok ($class->precision(-2),-2); + $class->precision(3); ok ($class->precision(),3); + ok_undef ($class->precision(undef)); + } + +{ + no strict 'refs'; + # accuracy + foreach (qw/5 42 -1 0/) + { + ok (${"$mbf\::accuracy"} = $_,$_); + ok (${"$mbi\::accuracy"} = $_,$_); + } + ok_undef (${"$mbf\::accuracy"} = undef); + ok_undef (${"$mbi\::accuracy"} = undef); + + # precision + foreach (qw/5 42 -1 0/) + { + ok (${"$mbf\::precision"} = $_,$_); + ok (${"$mbi\::precision"} = $_,$_); + } + ok_undef (${"$mbf\::precision"} = undef); + ok_undef (${"$mbi\::precision"} = undef); + + # fallback + foreach (qw/5 42 1/) + { + ok (${"$mbf\::div_scale"} = $_,$_); + ok (${"$mbi\::div_scale"} = $_,$_); + } + # illegal values are possible for fallback due to no accessor + + # round_mode + foreach (qw/odd even zero trunc +inf -inf/) + { + ok (${"$mbf\::round_mode"} = $_,$_); + ok (${"$mbi\::round_mode"} = $_,$_); + } + ${"$mbf\::round_mode"} = 'zero'; + ok (${"$mbf\::round_mode"},'zero'); + ok (${"$mbi\::round_mode"},'-inf'); # from above + + # reset for further tests + ${"$mbi\::accuracy"} = undef; + ${"$mbi\::precision"} = undef; + ${"$mbf\::div_scale"} = 40; +} + +# local copies +$x = $mbf->new('123.456'); +ok_undef ($x->accuracy()); +ok ($x->accuracy(5),5); +ok_undef ($x->accuracy(undef),undef); +ok_undef ($x->precision()); +ok ($x->precision(5),5); +ok_undef ($x->precision(undef),undef); + +{ + no strict 'refs'; + # see if MBF changes MBIs values + ok (${"$mbi\::accuracy"} = 42,42); + ok (${"$mbf\::accuracy"} = 64,64); + ok (${"$mbi\::accuracy"},42); # should be still 42 + ok (${"$mbf\::accuracy"},64); # should be now 64 +} + +############################################################################### +# see if creating a number under set A or P will round it + +{ + no strict 'refs'; + ${"$mbi\::accuracy"} = 4; + ${"$mbi\::precision"} = undef; + + ok ($mbi->new(123456),123500); # with A + ${"$mbi\::accuracy"} = undef; + ${"$mbi\::precision"} = 3; + ok ($mbi->new(123456),123000); # with P + + ${"$mbf\::accuracy"} = 4; + ${"$mbf\::precision"} = undef; + ${"$mbi\::precision"} = undef; + + ok ($mbf->new('123.456'),'123.5'); # with A + ${"$mbf\::accuracy"} = undef; + ${"$mbf\::precision"} = -1; + ok ($mbf->new('123.456'),'123.5'); # with P from MBF, not MBI! + + ${"$mbf\::precision"} = undef; # reset +} + +############################################################################### +# see if MBI leaves MBF's private parts alone + +{ + no strict 'refs'; + ${"$mbi\::precision"} = undef; ${"$mbf\::precision"} = undef; + ${"$mbi\::accuracy"} = 4; ${"$mbf\::accuracy"} = undef; + ok ($mbf->new('123.456'),'123.456'); + ${"$mbi\::accuracy"} = undef; # reset +} + +############################################################################### +# see if setting accuracy/precision actually rounds the number + +$x = $mbf->new('123.456'); $x->accuracy(4); ok ($x,'123.5'); +$x = $mbf->new('123.456'); $x->precision(-2); ok ($x,'123.46'); + +$x = $mbi->new(123456); $x->accuracy(4); ok ($x,123500); +$x = $mbi->new(123456); $x->precision(2); ok ($x,123500); + +############################################################################### +# test actual rounding via round() + +$x = $mbf->new('123.456'); +ok ($x->copy()->round(5),'123.46'); +ok ($x->copy()->round(4),'123.5'); +ok ($x->copy()->round(5,2),'NaN'); +ok ($x->copy()->round(undef,-2),'123.46'); +ok ($x->copy()->round(undef,2),120); + +$x = $mbi->new('123'); +ok ($x->round(5,2),'NaN'); + +$x = $mbf->new('123.45000'); +ok ($x->copy()->round(undef,-1,'odd'),'123.5'); + +# see if rounding is 'sticky' +$x = $mbf->new('123.4567'); +$y = $x->copy()->bround(); # no-op since nowhere A or P defined + +ok ($y,123.4567); +$y = $x->copy()->round(5); +ok ($y->accuracy(),5); +ok_undef ($y->precision()); # A has precedence, so P still unset +$y = $x->copy()->round(undef,2); +ok ($y->precision(),2); +ok_undef ($y->accuracy()); # P has precedence, so A still unset + +# see if setting A clears P and vice versa +$x = $mbf->new('123.4567'); +ok ($x,'123.4567'); +ok ($x->accuracy(4),4); +ok ($x->precision(-2),-2); # clear A +ok_undef ($x->accuracy()); + +$x = $mbf->new('123.4567'); +ok ($x,'123.4567'); +ok ($x->precision(-2),-2); +ok ($x->accuracy(4),4); # clear P +ok_undef ($x->precision()); + +# does copy work? +$x = $mbf->new(123.456); $x->accuracy(4); $x->precision(2); +$z = $x->copy(); ok_undef ($z->accuracy(),undef); ok ($z->precision(),2); + +# does $x->bdiv($y,d) work when $d > div_scale? +$x = $mbf->new('0.008'); $x->accuracy(8); + +for my $e ( 4, 8, 16, 32 ) + { + print "# Tried: $x->bdiv(3,$e)\n" + unless ok (scalar $x->copy()->bdiv(3,$e), '0.002' . ('6' x ($e-2)) . '7'); + } + +# does accuracy()/precision work on zeros? +foreach my $c ($mbi,$mbf) + { + $x = $c->bzero(); $x->accuracy(5); ok ($x->{_a},5); + $x = $c->bzero(); $x->precision(5); ok ($x->{_p},5); + $x = $c->new(0); $x->accuracy(5); ok ($x->{_a},5); + $x = $c->new(0); $x->precision(5); ok ($x->{_p},5); + + $x = $c->bzero(); $x->round(5); ok ($x->{_a},5); + $x = $c->bzero(); $x->round(undef,5); ok ($x->{_p},5); + $x = $c->new(0); $x->round(5); ok ($x->{_a},5); + $x = $c->new(0); $x->round(undef,5); ok ($x->{_p},5); + + # see if trying to increasing A in bzero() doesn't do something + $x = $c->bzero(); $x->{_a} = 3; $x->round(5); ok ($x->{_a},3); + } + +############################################################################### +# test whether an opp calls objectify properly or not (or at least does what +# it should do given non-objects, w/ or w/o objectify()) + +foreach my $c ($mbi,$mbf) + { +# ${"$c\::precision"} = undef; # reset +# ${"$c\::accuracy"} = undef; # reset + + ok ($c->new(123)->badd(123),246); + ok ($c->badd(123,321),444); + ok ($c->badd(123,$c->new(321)),444); + + ok ($c->new(123)->bsub(122),1); + ok ($c->bsub(321,123),198); + ok ($c->bsub(321,$c->new(123)),198); + + ok ($c->new(123)->bmul(123),15129); + ok ($c->bmul(123,123),15129); + ok ($c->bmul(123,$c->new(123)),15129); + +# ok ($c->new(15129)->bdiv(123),123); +# ok ($c->bdiv(15129,123),123); +# ok ($c->bdiv(15129,$c->new(123)),123); + + ok ($c->new(15131)->bmod(123),2); + ok ($c->bmod(15131,123),2); + ok ($c->bmod(15131,$c->new(123)),2); + + ok ($c->new(2)->bpow(16),65536); + ok ($c->bpow(2,16),65536); + ok ($c->bpow(2,$c->new(16)),65536); + + ok ($c->new(2**15)->brsft(1),2**14); + ok ($c->brsft(2**15,1),2**14); + ok ($c->brsft(2**15,$c->new(1)),2**14); + + ok ($c->new(2**13)->blsft(1),2**14); + ok ($c->blsft(2**13,1),2**14); + ok ($c->blsft(2**13,$c->new(1)),2**14); + } + +############################################################################### +# test wether operations round properly afterwards +# These tests are not complete, since they do not excercise every "return" +# statement in the op's. But heh, it's better than nothing... + +$x = $mbf->new('123.456'); +$y = $mbf->new('654.321'); +$x->{_a} = 5; # $x->accuracy(5) would round $x straightaway +$y->{_a} = 4; # $y->accuracy(4) would round $x straightaway + +$z = $x + $y; ok ($z,'777.8'); +$z = $y - $x; ok ($z,'530.9'); +$z = $y * $x; ok ($z,'80780'); +$z = $x ** 2; ok ($z,'15241'); +$z = $x * $x; ok ($z,'15241'); + +# not: $z = -$x; ok ($z,'-123.46'); ok ($x,'123.456'); +$z = $x->copy(); $z->{_a} = 2; $z = $z / 2; ok ($z,62); +$x = $mbf->new(123456); $x->{_a} = 4; +$z = $x->copy; $z++; ok ($z,123500); + +$x = $mbi->new(123456); +$y = $mbi->new(654321); +$x->{_a} = 5; # $x->accuracy(5) would round $x straightaway +$y->{_a} = 4; # $y->accuracy(4) would round $x straightaway + +$z = $x + $y; ok ($z,777800); +$z = $y - $x; ok ($z,530900); +$z = $y * $x; ok ($z,80780000000); +$z = $x ** 2; ok ($z,15241000000); +# not yet: $z = -$x; ok ($z,-123460); ok ($x,123456); +$z = $x->copy; $z++; ok ($z,123460); +$z = $x->copy(); $z->{_a} = 2; $z = $z / 2; ok ($z,62000); + +$x = $mbi->new(123400); $x->{_a} = 4; +ok ($x->bnot(),-123400); # not -1234001 + +# both babs() and bneg() don't need to round, since the input will already +# be rounded (either as $x or via new($string)), and they don't change the +# value. The two tests below peek at this by using _a (illegally) directly +$x = $mbi->new(-123401); $x->{_a} = 4; ok ($x->babs(),123401); +$x = $mbi->new(-123401); $x->{_a} = 4; ok ($x->bneg(),123401); + +# test fdiv rounding to A and R (bug in v1.48 and maybe earlier versions) +$mbf->round_mode('even'); +$x = $mbf->new('740.7')->fdiv('6',4,undef,'zero'); ok ($x,'123.4'); + +$x = $mbi->new('123456'); $y = $mbi->new('123456'); $y->{_a} = 6; +ok ($x->bdiv($y),1); ok ($x->{_a},6); # carried over + +$x = $mbi->new('123456'); $y = $mbi->new('123456'); $x->{_a} = 6; +ok ($x->bdiv($y),1); ok ($x->{_a},6); # carried over + +$x = $mbi->new('123456'); $y = $mbi->new('223456'); $y->{_a} = 6; +ok ($x->bdiv($y),0); ok ($x->{_a},6); # carried over + +$x = $mbi->new('123456'); $y = $mbi->new('223456'); $x->{_a} = 6; +ok ($x->bdiv($y),0); ok ($x->{_a},6); # carried over + +############################################################################### +# test that bop(0) does the same than bop(undef) + +$x = $mbf->new('1234567890'); +ok ($x->copy()->bsqrt(0),$x->copy()->bsqrt(undef)); +ok ($x->copy->bsqrt(0),'35136.41828644462161665823116758077037159'); + +ok_undef ($x->{_a}); + +# test that bsqrt() modifies $x and does not just return something else +# (especially under BareCalc) +$z = $x->bsqrt(); +ok ($z,$x); ok ($x,'35136.41828644462161665823116758077037159'); + +$x = $mbf->new('1.234567890123456789'); +ok ($x->copy()->bpow('0.5',0),$x->copy()->bpow('0.5',undef)); +ok ($x->copy()->bpow('0.5',0),$x->copy()->bsqrt(undef)); +ok ($x->copy()->bpow('2',0),'1.524157875323883675019051998750190521'); + +############################################################################### +# test (also under Bare) that bfac() rounds at last step + +ok ($mbi->new(12)->bfac(),'479001600'); +ok ($mbi->new(12)->bfac(2),'480000000'); +$x = $mbi->new(12); $x->accuracy(2); ok ($x->bfac(),'480000000'); +$x = $mbi->new(13); $x->accuracy(2); ok ($x->bfac(),'6200000000'); +$x = $mbi->new(13); $x->accuracy(3); ok ($x->bfac(),'6230000000'); +$x = $mbi->new(13); $x->accuracy(4); ok ($x->bfac(),'6227000000'); +# this does 1,2,3...9,10,11,12...20 +$x = $mbi->new(20); $x->accuracy(1); ok ($x->bfac(),'2000000000000000000'); + +############################################################################### +# test bsqrt) rounding to given A/P/R (bug prior to v1.60) +$x = $mbi->new('123456')->bsqrt(2,undef); ok ($x,'350'); # not 351 +$x = $mbi->new('3')->bsqrt(2,undef); ok ($x->accuracy(),2); + +$mbi->round_mode('even'); $x = $mbi->new('126025')->bsqrt(2,undef,'+inf'); +ok ($x,'360'); # not 355 nor 350 + +$x = $mbi->new('126025')->bsqrt(undef,2); ok ($x,'400'); # not 355 + + +############################################################################### +# test mixed arguments + +$x = $mbf->new(10); +$u = $mbf->new(2.5); +$y = $mbi->new(2); + +$z = $x + $y; ok ($z,12); ok (ref($z),$mbf); +$z = $x / $y; ok ($z,5); ok (ref($z),$mbf); +$z = $u * $y; ok ($z,5); ok (ref($z),$mbf); + +$y = $mbi->new(12345); +$z = $u->copy()->bmul($y,2,undef,'odd'); ok ($z,31000); +$z = $u->copy()->bmul($y,3,undef,'odd'); ok ($z,30900); +$z = $u->copy()->bmul($y,undef,0,'odd'); ok ($z,30863); +$z = $u->copy()->bmul($y,undef,1,'odd'); ok ($z,30863); +$z = $u->copy()->bmul($y,undef,2,'odd'); ok ($z,30860); +$z = $u->copy()->bmul($y,undef,3,'odd'); ok ($z,30900); +$z = $u->copy()->bmul($y,undef,-1,'odd'); ok ($z,30862.5); + +my $warn = ''; $SIG{__WARN__} = sub { $warn = shift; }; +# these should no longer warn, even tho '3.17' is a NaN in BigInt (>= returns +# now false, bug until v1.80) +$warn = ''; eval "\$z = 3.17 <= \$y"; ok ($z, ''); +print "# Got: '$warn'\n" unless +ok ($warn !~ /^Use of uninitialized value (\$y )?(in numeric le \(<=\) |)at/); +$warn = ''; eval "\$z = \$y >= 3.17"; ok ($z, ''); +print "# Got: '$warn'\n" unless +ok ($warn !~ /^Use of uninitialized value (\$y )?(in numeric ge \(>=\) |)at/); + +# XXX TODO breakage: +# $z = $y->copy()->bmul($u,2,0,'odd'); ok ($z,31000); +# $z = $y * $u; ok ($z,5); ok (ref($z),$mbi); +# $z = $y + $x; ok ($z,12); ok (ref($z),$mbi); +# $z = $y / $x; ok ($z,0); ok (ref($z),$mbi); + +############################################################################### +# rounding in bdiv with fallback and already set A or P + +{ + no strict 'refs'; + ${"$mbf\::accuracy"} = undef; + ${"$mbf\::precision"} = undef; + ${"$mbf\::div_scale"} = 40; +} + + $x = $mbf->new(10); $x->{_a} = 4; + ok ($x->bdiv(3),'3.333'); + ok ($x->{_a},4); # set's it since no fallback + +$x = $mbf->new(10); $x->{_a} = 4; $y = $mbf->new(3); +ok ($x->bdiv($y),'3.333'); +ok ($x->{_a},4); # set's it since no fallback + +# rounding to P of x +$x = $mbf->new(10); $x->{_p} = -2; +ok ($x->bdiv(3),'3.33'); + +# round in div with requested P +$x = $mbf->new(10); +ok ($x->bdiv(3,undef,-2),'3.33'); + +# round in div with requested P greater than fallback +{ + no strict 'refs'; + ${"$mbf\::div_scale"} = 5; + $x = $mbf->new(10); + ok ($x->bdiv(3,undef,-8),'3.33333333'); + ${"$mbf\::div_scale"} = 40; +} + +$x = $mbf->new(10); $y = $mbf->new(3); $y->{_a} = 4; +ok ($x->bdiv($y),'3.333'); +ok ($x->{_a},4); ok ($y->{_a},4); # set's it since no fallback +ok_undef ($x->{_p}); ok_undef ($y->{_p}); + +# rounding to P of y +$x = $mbf->new(10); $y = $mbf->new(3); $y->{_p} = -2; +ok ($x->bdiv($y),'3.33'); +ok ($x->{_p},-2); + ok ($y->{_p},-2); +ok_undef ($x->{_a}); ok_undef ($y->{_a}); + +############################################################################### +# test whether bround(-n) fails in MBF (undocumented in MBI) +eval { $x = $mbf->new(1); $x->bround(-2); }; +ok ($@ =~ /^bround\(\) needs positive accuracy/,1); + +# test whether rounding to higher accuracy is no-op +$x = $mbf->new(1); $x->{_a} = 4; +ok ($x,'1.000'); +$x->bround(6); # must be no-op +ok ($x->{_a},4); +ok ($x,'1.000'); + +$x = $mbi->new(1230); $x->{_a} = 3; +ok ($x,'1230'); +$x->bround(6); # must be no-op +ok ($x->{_a},3); +ok ($x,'1230'); + +# bround(n) should set _a +$x->bround(2); # smaller works +ok ($x,'1200'); +ok ($x->{_a},2); + +# bround(-n) is undocumented and only used by MBF +# bround(-n) should set _a +$x = $mbi->new(12345); +$x->bround(-1); +ok ($x,'12300'); +ok ($x->{_a},4); + +# bround(-n) should set _a +$x = $mbi->new(12345); +$x->bround(-2); +ok ($x,'12000'); +ok ($x->{_a},3); + +# bround(-n) should set _a +$x = $mbi->new(12345); $x->{_a} = 5; +$x->bround(-3); +ok ($x,'10000'); +ok ($x->{_a},2); + +# bround(-n) should set _a +$x = $mbi->new(12345); $x->{_a} = 5; +$x->bround(-4); +ok ($x,'0'); +ok ($x->{_a},1); + +# bround(-n) should be noop if n too big +$x = $mbi->new(12345); +$x->bround(-5); +ok ($x,'0'); # scale to "big" => 0 +ok ($x->{_a},0); + +# bround(-n) should be noop if n too big +$x = $mbi->new(54321); +$x->bround(-5); +ok ($x,'100000'); # used by MBF to round 0.0054321 at 0.0_6_00000 +ok ($x->{_a},0); + +# bround(-n) should be noop if n too big +$x = $mbi->new(54321); $x->{_a} = 5; +$x->bround(-6); +ok ($x,'100000'); # no-op +ok ($x->{_a},0); + +# bround(n) should set _a +$x = $mbi->new(12345); $x->{_a} = 5; +$x->bround(5); # must be no-op +ok ($x,'12345'); +ok ($x->{_a},5); + +# bround(n) should set _a +$x = $mbi->new(12345); $x->{_a} = 5; +$x->bround(6); # must be no-op +ok ($x,'12345'); + +$x = $mbf->new('0.0061'); $x->bfround(-2); ok ($x,'0.01'); +$x = $mbf->new('0.004'); $x->bfround(-2); ok ($x,'0.00'); +$x = $mbf->new('0.005'); $x->bfround(-2); ok ($x,'0.00'); + +$x = $mbf->new('12345'); $x->bfround(2); ok ($x,'12340'); +$x = $mbf->new('12340'); $x->bfround(2); ok ($x,'12340'); + +# MBI::bfround should clear A for negative P +$x = $mbi->new('1234'); $x->accuracy(3); $x->bfround(-2); +ok_undef ($x->{_a}); + +# test that bfround() and bround() work with large numbers + +$x = $mbf->new(1)->bdiv(5678,undef,-63); +ok ($x, '0.000176118351532229658330398027474462839027826699542092286016203'); + +$x = $mbf->new(1)->bdiv(5678,undef,-90); +ok ($x, '0.000176118351532229658330398027474462839027826699542092286016202888340965128566396618527651'); + +$x = $mbf->new(1)->bdiv(5678,80); +ok ($x, '0.00017611835153222965833039802747446283902782669954209228601620288834096512856639662'); + +############################################################################### +# rounding with already set precision/accuracy + +$x = $mbf->new(1); $x->{_p} = -5; +ok ($x,'1.00000'); + +# further rounding donw +ok ($x->bfround(-2),'1.00'); +ok ($x->{_p},-2); + +$x = $mbf->new(12345); $x->{_a} = 5; +ok ($x->bround(2),'12000'); +ok ($x->{_a},2); + +$x = $mbf->new('1.2345'); $x->{_a} = 5; +ok ($x->bround(2),'1.2'); +ok ($x->{_a},2); + +# mantissa/exponent format and A/P +$x = $mbf->new('12345.678'); $x->accuracy(4); +ok ($x,'12350'); ok ($x->{_a},4); ok_undef ($x->{_p}); + +#ok_undef ($x->{_m}->{_a}); ok_undef ($x->{_e}->{_a}); +#ok_undef ($x->{_m}->{_p}); ok_undef ($x->{_e}->{_p}); + +# check for no A/P in case of fallback +# result +$x = $mbf->new(100) / 3; +ok_undef ($x->{_a}); ok_undef ($x->{_p}); + +# result & reminder +$x = $mbf->new(100) / 3; ($x,$y) = $x->bdiv(3); +ok_undef ($x->{_a}); ok_undef ($x->{_p}); +ok_undef ($y->{_a}); ok_undef ($y->{_p}); + +############################################################################### +# math with two numbers with differen A and P + +$x = $mbf->new(12345); $x->accuracy(4); # '12340' +$y = $mbf->new(12345); $y->accuracy(2); # '12000' +ok ($x+$y,24000); # 12340+12000=> 24340 => 24000 + +$x = $mbf->new(54321); $x->accuracy(4); # '12340' +$y = $mbf->new(12345); $y->accuracy(3); # '12000' +ok ($x-$y,42000); # 54320+12300=> 42020 => 42000 + +$x = $mbf->new('1.2345'); $x->precision(-2); # '1.23' +$y = $mbf->new('1.2345'); $y->precision(-4); # '1.2345' +ok ($x+$y,'2.46'); # 1.2345+1.2300=> 2.4645 => 2.46 + +############################################################################### +# round should find and use proper class + +#$x = Foo->new(); +#ok ($x->round($Foo::accuracy),'a' x $Foo::accuracy); +#ok ($x->round(undef,$Foo::precision),'p' x $Foo::precision); +#ok ($x->bfround($Foo::precision),'p' x $Foo::precision); +#ok ($x->bround($Foo::accuracy),'a' x $Foo::accuracy); + +############################################################################### +# find out whether _find_round_parameters is doing what's it's supposed to do + +{ + no strict 'refs'; + ${"$mbi\::accuracy"} = undef; + ${"$mbi\::precision"} = undef; + ${"$mbi\::div_scale"} = 40; + ${"$mbi\::round_mode"} = 'odd'; +} + +$x = $mbi->new(123); +my @params = $x->_find_round_parameters(); +ok (scalar @params,1); # nothing to round + +@params = $x->_find_round_parameters(1); +ok (scalar @params,4); # a=1 +ok ($params[0],$x); # self +ok ($params[1],1); # a +ok_undef ($params[2]); # p +ok ($params[3],'odd'); # round_mode + +@params = $x->_find_round_parameters(undef,2); +ok (scalar @params,4); # p=2 +ok ($params[0],$x); # self +ok_undef ($params[1]); # a +ok ($params[2],2); # p +ok ($params[3],'odd'); # round_mode + +eval { @params = $x->_find_round_parameters(undef,2,'foo'); }; +ok ($@ =~ /^Unknown round mode 'foo'/,1); + +@params = $x->_find_round_parameters(undef,2,'+inf'); +ok (scalar @params,4); # p=2 +ok ($params[0],$x); # self +ok_undef ($params[1]); # a +ok ($params[2],2); # p +ok ($params[3],'+inf'); # round_mode + +@params = $x->_find_round_parameters(2,-2,'+inf'); +ok (scalar @params,1); # error, A and P defined +ok ($params[0],$x); # self + +{ + no strict 'refs'; + ${"$mbi\::accuracy"} = 1; + @params = $x->_find_round_parameters(undef,-2); + ok (scalar @params,1); # error, A and P defined + ok ($params[0],$x); # self + ok ($x->is_nan(),1); # and must be NaN + + ${"$mbi\::accuracy"} = undef; + ${"$mbi\::precision"} = 1; + @params = $x->_find_round_parameters(1,undef); + ok (scalar @params,1); # error, A and P defined + ok ($params[0],$x); # self + ok ($x->is_nan(),1); # and must be NaN + + ${"$mbi\::precision"} = undef; # reset +} + +############################################################################### +# test whether bone/bzero take additional A & P, or reset it etc + +foreach my $c ($mbi,$mbf) + { + $x = $c->new(2)->bzero(); ok_undef ($x->{_a}); ok_undef ($x->{_p}); + $x = $c->new(2)->bone(); ok_undef ($x->{_a}); ok_undef ($x->{_p}); + $x = $c->new(2)->binf(); ok_undef ($x->{_a}); ok_undef ($x->{_p}); + $x = $c->new(2)->bnan(); ok_undef ($x->{_a}); ok_undef ($x->{_p}); + + $x = $c->new(2); $x->{_a} = 1; $x->{_p} = 2; $x->bnan(); + ok_undef ($x->{_a}); ok_undef ($x->{_p}); + $x = $c->new(2); $x->{_a} = 1; $x->{_p} = 2; $x->binf(); + ok_undef ($x->{_a}); ok_undef ($x->{_p}); + + $x = $c->new(2,1); ok ($x->{_a},1); ok_undef ($x->{_p}); + $x = $c->new(2,undef,1); ok_undef ($x->{_a}); ok ($x->{_p},1); + + $x = $c->new(2,1)->bzero(); ok ($x->{_a},1); ok_undef ($x->{_p}); + $x = $c->new(2,undef,1)->bzero(); ok_undef ($x->{_a}); ok ($x->{_p},1); + + $x = $c->new(2,1)->bone(); ok ($x->{_a},1); ok_undef ($x->{_p}); + $x = $c->new(2,undef,1)->bone(); ok_undef ($x->{_a}); ok ($x->{_p},1); + + $x = $c->new(2); $x->bone('+',2,undef); ok ($x->{_a},2); ok_undef ($x->{_p}); + $x = $c->new(2); $x->bone('+',undef,2); ok_undef ($x->{_a}); ok ($x->{_p},2); + $x = $c->new(2); $x->bone('-',2,undef); ok ($x->{_a},2); ok_undef ($x->{_p}); + $x = $c->new(2); $x->bone('-',undef,2); ok_undef ($x->{_a}); ok ($x->{_p},2); + + $x = $c->new(2); $x->bzero(2,undef); ok ($x->{_a},2); ok_undef ($x->{_p}); + $x = $c->new(2); $x->bzero(undef,2); ok_undef ($x->{_a}); ok ($x->{_p},2); + } + +############################################################################### +# test whether bone/bzero honour globals + +for my $c ($mbi,$mbf) + { + $c->accuracy(2); + $x = $c->bone(); ok ($x->accuracy(),2); + $x = $c->bzero(); ok ($x->accuracy(),2); + $c->accuracy(undef); + + $c->precision(-2); + $x = $c->bone(); ok ($x->precision(),-2); + $x = $c->bzero(); ok ($x->precision(),-2); + $c->precision(undef); + } + +############################################################################### +# check whether mixing A and P creates a NaN + +# new with set accuracy/precision and with parameters +{ + no strict 'refs'; + foreach my $c ($mbi,$mbf) + { + ok ($c->new(123,4,-3),'NaN'); # with parameters + ${"$c\::accuracy"} = 42; + ${"$c\::precision"} = 2; + ok ($c->new(123),'NaN'); # with globals + ${"$c\::accuracy"} = undef; + ${"$c\::precision"} = undef; + } +} + +# binary ops +foreach my $class ($mbi,$mbf) + { + foreach (qw/add sub mul pow mod/) + #foreach (qw/add sub mul div pow mod/) + { + my $try = "my \$x = $class->new(1234); \$x->accuracy(5); "; + $try .= "my \$y = $class->new(12); \$y->precision(-3); "; + $try .= "\$x->b$_(\$y);"; + $rc = eval $try; + print "# Tried: '$try'\n" if !ok ($rc, 'NaN'); + } + } + +# unary ops +foreach (qw/new bsqrt/) + { + my $try = 'my $x = $mbi->$_(1234,5,-3); '; + $rc = eval $try; + print "# Tried: '$try'\n" if !ok ($rc, 'NaN'); + } + +# see if $x->bsub(0) and $x->badd(0) really round +foreach my $class ($mbi,$mbf) + { + $x = $class->new(123); $class->accuracy(2); $x->bsub(0); + ok ($x,120); + $class->accuracy(undef); + $x = $class->new(123); $class->accuracy(2); $x->badd(0); + ok ($x,120); + $class->accuracy(undef); + } + +############################################################################### +# test whether shortcuts returning zero/one preserve A and P + +my ($ans1,$f,$a,$p,$xp,$yp,$xa,$ya,$try,$ans,@args); +my $CALC = Math::BigInt->config()->{lib}; +while (<DATA>) + { + $_ =~ s/[\n\r]//g; # remove newlines + next if /^\s*(#|$)/; # skip comments and empty lines + if (s/^&//) + { + $f = $_; next; # function + } + @args = split(/:/,$_,99); + my $ans = pop(@args); + + ($x,$xa,$xp) = split (/,/,$args[0]); + $xa = $xa || ''; $xp = $xp || ''; + $try = "\$x = $mbi->new('$x'); "; + $try .= "\$x->accuracy($xa); " if $xa ne ''; + $try .= "\$x->precision($xp); " if $xp ne ''; + + ($y,$ya,$yp) = split (/,/,$args[1]); + $ya = $ya || ''; $yp = $yp || ''; + $try .= "\$y = $mbi->new('$y'); "; + $try .= "\$y->accuracy($ya); " if $ya ne ''; + $try .= "\$y->precision($yp); " if $yp ne ''; + + $try .= "\$x->$f(\$y);"; + + # print "trying $try\n"; + $rc = eval $try; + # convert hex/binary targets to decimal + if ($ans =~ /^(0x0x|0b0b)/) + { + $ans =~ s/^0[xb]//; + $ans = $mbi->new($ans)->bstr(); + } + print "# Tried: '$try'\n" if !ok ($rc, $ans); + # check internal state of number objects + is_valid($rc,$f) if ref $rc; + + # now check whether A and P are set correctly + # only one of $a or $p will be set (no crossing here) + $a = $xa || $ya; $p = $xp || $yp; + + # print "Check a=$a p=$p\n"; + # print "# Tried: '$try'\n"; + if ($a ne '') + { + if (!(ok ($x->{_a}, $a) && ok_undef ($x->{_p}))) + { + print "# Check: A=$a and P=undef\n"; + print "# Tried: '$try'\n"; + } + } + if ($p ne '') + { + if (!(ok ($x->{_p}, $p) && ok_undef ($x->{_a}))) + { + print "# Check: A=undef and P=$p\n"; + print "# Tried: '$try'\n"; + } + } + } + +# all done +1; + +############################################################################### +############################################################################### +# Perl 5.005 does not like ok ($x,undef) + +sub ok_undef + { + my $x = shift; + + ok (1,1) and return 1 if !defined $x; + ok ($x,'undef'); + print "# Called from ",join(' ',caller()),"\n"; + return 0; + } + +############################################################################### +# sub to check validity of a BigInt internally, to ensure that no op leaves a +# number object in an invalid state (f.i. "-0") + +sub is_valid + { + my ($x,$f) = @_; + + my $e = 0; # error? + # ok as reference? + $e = 'Not a reference' if !ref($x); + + # has ok sign? + $e = "Illegal sign $x->{sign} (expected: '+', '-', '-inf', '+inf' or 'NaN'" + if $e eq '0' && $x->{sign} !~ /^(\+|-|\+inf|-inf|NaN)$/; + + $e = "-0 is invalid!" if $e ne '0' && $x->{sign} eq '-' && $x == 0; + $e = $CALC->_check($x->{value}) if $e eq '0'; + + # test done, see if error did crop up + ok (1,1), return if ($e eq '0'); + + ok (1,$e." after op '$f'"); + } + +# format is: +# x,A,P:x,A,P:result +# 123,,3 means 123 with precision 3 (A is undef) +# the A or P of the result is calculated automatically +__DATA__ +&badd +123,,:123,,:246 +123,3,:0,,:123 +123,,-3:0,,:123 +123,,:0,3,:123 +123,,:0,,-3:123 +&bmul +123,,:1,,:123 +123,3,:0,,:0 +123,,-3:0,,:0 +123,,:0,3,:0 +123,,:0,,-3:0 +123,3,:1,,:123 +123,,-3:1,,:123 +123,,:1,3,:123 +123,,:1,,-3:123 +1,3,:123,,:123 +1,,-3:123,,:123 +1,,:123,3,:123 +1,,:123,,-3:123 +&bdiv +123,,:1,,:123 +123,4,:1,,:123 +123,,:1,4,:123 +123,,:1,,-4:123 +123,,-4:1,,:123 +1,4,:123,,:0 +1,,:123,4,:0 +1,,:123,,-4:0 +1,,-4:123,,:0 +&band +1,,:3,,:1 +1234,1,:0,,:0 +1234,,:0,1,:0 +1234,,-1:0,,:0 +1234,,:0,,-1:0 +0xFF,,:0x10,,:0x0x10 +0xFF,2,:0xFF,,:250 +0xFF,,:0xFF,2,:250 +0xFF,,1:0xFF,,:250 +0xFF,,:0xFF,,1:250 +&bxor +1,,:3,,:2 +1234,1,:0,,:1000 +1234,,:0,1,:1000 +1234,,3:0,,:1000 +1234,,:0,,3:1000 +0xFF,,:0x10,,:239 +# 250 ^ 255 => 5 +0xFF,2,:0xFF,,:5 +0xFF,,:0xFF,2,:5 +0xFF,,1:0xFF,,:5 +0xFF,,:0xFF,,1:5 +# 250 ^ 4095 = 3845 => 3800 +0xFF,2,:0xFFF,,:3800 +# 255 ^ 4100 = 4347 => 4300 +0xFF,,:0xFFF,2,:4300 +0xFF,,2:0xFFF,,:3800 +# 255 ^ 4100 = 10fb => 4347 => 4300 +0xFF,,:0xFFF,,2:4300 +&bior +1,,:3,,:3 +1234,1,:0,,:1000 +1234,,:0,1,:1000 +1234,,3:0,,:1000 +1234,,:0,,3:1000 +0xFF,,:0x10,,:0x0xFF +# FF | FA = FF => 250 +250,2,:0xFF,,:250 +0xFF,,:250,2,:250 +0xFF,,1:0xFF,,:250 +0xFF,,:0xFF,,1:250 +&bpow +2,,:3,,:8 +2,,:0,,:1 +2,2,:0,,:1 +2,,:0,2,:1 |